The Joint Universality for L-Functions of Elliptic Curves*

V. Garbaliauskienė¹, R.Kačinskaitė¹, A. Laurinčikas²

¹Šiauliai University, P. Višinskio st. 19, LT-77156 Šiauliai, Lithuania
²Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania antanas.laurincikas@maf.vu.lt

Received: 15.09.2004 Accepted: 13.10.2004

Abstract. A joint universality theorem in the Voronin sense for *L*-functions of elliptic curves over the field of rational numbers is proved.

Keywords: elliptic curve, function of exponential type, limit theorem, probability measure, random element, universality.

1 Introduction

Let E be an elliptic curve over the field of rational numbers given by the Weierstrass equation

 $y^2 = x^3 + ax + b,$

where a and b are rational integers. Suppose that the discriminant of $E \Delta = -16(4a^3 + 27b^2) \neq 0$. It is known that then E is non-singular.

For each prime p, denote by $\nu(p)$ the number of solutions of the congruence

$$y^2 \equiv x^3 + ax + b \pmod{p},$$

and denote $\lambda(p) = p - \nu(p)$. By the classical result of H. Hasse

$$\left|\lambda(p)\right| \le 2\sqrt{p}.\tag{1}$$

^{*}Partially supported by grant from Lithuanian Foundation of Studies and Science.

To study the numbers $\lambda(p)$, H. Hasse and H. Weil introduced and studied the *L*-function attached to *E*. Let $s = \sigma + it$ be a complex variable. Then the later *L*-function is defined by

$$L_E(s) = \prod_{p \nmid \Delta} \left(1 - \frac{\lambda(p)}{p^s} + \frac{1}{p^{2s-1}} \right)^{-1} \prod_{p \mid \Delta} \left(1 - \frac{\lambda(p)}{p^s} \right)^{-1},$$

in view of (1) the product being absolutely convergent for $\sigma > \frac{3}{2}$. By the Shimura-Taniyama theorem proved in [1] the function $L_E(s)$ is analytically continuable to an entire function and satisfies the functional equation

$$\left(\frac{\sqrt{q}}{2\pi}\right)^s \Gamma(s) L_E(s) = \eta \left(\frac{\sqrt{q}}{2\pi}\right)^{2-s} \Gamma(2-s) L_E(2-s),$$

where q is a positive integer composed of prime factors of the discriminant Δ , $\eta = \pm 1$ is the root number, and $\Gamma(s)$ denotes the Euler gamma-function.

In [2] the universality in the Voronin sense of the function $L_E(s)$ has been obtained. Denote by meas $\{A\}$ the Lebesque measure of the set A, and let, for T > 0,

$$\nu_T(\ldots) = \frac{1}{T} \operatorname{meas} \{ \tau \in [0, T] \colon \ldots \},\$$

where in place of dots a conditinion satisfied by τ is to be written. Let \mathbb{C} be the complex plane, and $D = \{s \in \mathbb{C} : 1 < \sigma < \frac{3}{2}\}.$

Theorem A. Suppose that E is a non-singular elliptic curve over the field of rational numbers. Let K be a compact subset of the strip D with connected complement, and let f(s) be a continuous non-vanishing on K function which is analytic in the interior of K. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \Big(\sup_{s \in K} \left| L_E(s + i\tau) - f(s) \right| < \varepsilon \Big) > 0.$$

In [2] also the universality of $L_E^k(s)$, k = 2, 3, ..., and, under the analogue of the Riemann hypothesis for $L_E(s)$, of $L_E^{-k}(s)$, k = 1, 2, ..., was considered.

The aim of this paper is to obtain the joint universality for L-functions of elliptic curves.

Let n > 1 be an positive integer. Consider n elliptic curves E_1, \ldots, E_n given by the Weierstrass equations

$$y^2 = x^3 + a_j x + b_j$$

with $\Delta_j = -16(4a_j^3 + 27b_j^2) \neq 0, \ j = 1, ..., n$. Let, as above,

$$\lambda_j(p) = p - \nu_j(p),$$

where $\nu_j(p)$ is the number of solutions of the congruence

$$y^2 \equiv x^3 + a_j x + b_j (\operatorname{mod} p), \quad j = 1, \dots, n.$$

Define

$$L_{E_j}(s) = \prod_{p \nmid \Delta_j} \left(1 - \frac{\lambda_j(p)}{p^s} + \frac{1}{p^{2s-1}} \right)^{-1} \prod_{p \mid \Delta_j} \left(1 - \frac{\lambda_j(p)}{p^s} \right)^{-1}, \quad j = 1, \dots, n.$$

To state a joint universality theorem for the functions $L_{E_j}(s)$ we need some additional conditions. Let P be the set of all prime numbers and let P_l , $l = 1, \ldots, r, r, r \ge n$, be sets of prime numbers such that $P_{l_1} \bigcap P_{l_2} = \emptyset$ for $l_1 \ne l_2$, and

$$P = \bigcup_{l=1}^{r} P_l.$$

Moreover, we suppose that, for $x \to \infty$,

$$\sum_{\substack{p \le x \\ p \in P_l}} \frac{1}{p} = \varkappa_l \log \log x + b_l + \rho_l(x), \tag{2}$$

where $\varkappa_1 + \ldots + \varkappa_r = 1$, $\varkappa_l > 0$, $\rho_l(x) = O(\log^{-\theta_l} x)$ with $\theta_l > 1$, and b_l is some real number, $l = 1, \ldots, r$. Denote

$$B_j(p) = \frac{\lambda_j(p)}{\sqrt{p}},$$

and suppose that $B_i(p)$ is constant for $p \in P_l$, i. e., for $p \in P_l$

$$B_1(p) = B_{l1},$$

$$\dots,$$

$$B_n(p) = B_{ln}$$

Let

$$B_{rn} = \begin{pmatrix} B_{11} & \dots & B_{1n} \\ \dots & \dots & \dots \\ B_{r1} & \dots & B_{rn} \end{pmatrix}$$

Theorem 1. Suppose that $\operatorname{rank}(B_{rn}) = n$. Let K_j be a compact subset of the strip D with connected complement, and let $f_j(s)$ be a continuous non-vanishing on K_j function which is analytic in the interior of K_j , j = 1, ..., n. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \left(\sup_{l \le j \le n} \sup_{s \in K_j} \left| L_{E_j}(s + i\tau) - f_j(s) \right| < \varepsilon \right) > 0.$$

Joint universality theorems for Dirichlet *L*-functions independently were proved by S.M. Voronin [3], S.M. Gonek [4] and B.Bagchi [5], [6]. For Dirichlet series with multiplicative coefficients they were obtained in [7]. The joint universality for Lerch zeta-functions, for Matsumoto zeta-functions, and for zeta-functions attached to certain cusp forms were proved in [8], [9] and [10], respectively. Joint universality theorems for twists of Dirichlet series with Dirichlet characters were investigated in [11] and [12]. Finally, theorems of a such type for some classes of general Dirichlet series were obtained in [13] and [14]. A survey on universality is given in [15] and [16]. A large part of the work [17] is also devoted to universality of Dirichlet series.

2 A limit theorem

Let V > 0, and

$$D_V = \left\{ s \in \mathbb{C} \colon 1 < \sigma < \frac{3}{2}, \quad |t| < V \right\}.$$

In this section we state a joint limit theorem for functions L_{E_1}, \ldots, L_{E_n} on the space of analytic on D_V functions. Denote by H(G) the space of analytic on the region G functions equipped with the topology of uniform convergence on compacta, and let

$$H^m(G) = \underbrace{H(G) \times \ldots \times H(G)}_{m}, \quad m \ge 2.$$

Moreover, by $\mathcal{B}(S)$ we denote the class of Borel sets of the space S. We will consider the weak convergence of the probability measure

$$P_T(A) = \nu_T\left(\left(L_{E_1}(s+i\tau), \dots, L_{E_n}(s+i\tau)\right) \in A\right), \quad A \in \mathcal{B}\left(H^n(D_V)\right),$$

as $T \to \infty$.

Let $\gamma = \{s \in \mathbb{C} \colon |s| = 1\}$ be the unit circle on the complex plane, and

$$\Omega = \prod_p \gamma_p,$$

where $\gamma_p = \gamma$ for any prime p. With the product topology and operation of pointwise multiplication the set Ω is a compact topological Abelian group, therefore the probability Haar measure m_H on $(\Omega, \mathcal{B}(\Omega))$ exists. This gives a probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Denote by $\omega(p)$ the projection of $\omega \in \Omega$ to the coordinate space γ_p , and define on the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$ the $H^n(D_V)$ -valued random element $L(s, \omega)$ by

$$L(s,\omega) = \left(L_{E_1}(s,\omega), \dots, L_{E_n}(s,\omega)\right),\tag{3}$$

where

$$L_{E_j}(s,\omega) = \prod_{p \nmid \Delta_j} \left(1 - \frac{\lambda_j(p)\omega(p)}{p^s} + \frac{\omega^2(p)}{p^{2s-1}} \right)^{-1} \prod_{p \mid \Delta_j} \left(1 - \frac{\lambda_j(p)\omega(p)}{p^s} \right)^{-1},$$

 $j = 1, \ldots, n$. Let P_L be the distribution of the random element $L(s, \omega)$, i. e.,

$$P_L(A) = m_H(\omega \in \Omega \colon L(s,\omega) \in A), \quad A \in \mathcal{B}(H^n(D_V)).$$

Lemma 1. The probability measure P_T converges weakly to P_L as $T \to \infty$.

Proof. The function $L_{E_i}(s)$, for $\sigma > \frac{3}{2}$, can be written in the form

$$L_{E_j}(s) = \prod_{p \mid \Delta_j} \left(1 - \frac{\lambda_j(p)}{p^s} \right)^{-1} \prod_{p \nmid \Delta_j} \left(1 - \frac{\alpha_j(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta_j(p)}{p^s} \right)^{-1},$$

where

$$\alpha_j(p) + \beta_j(p) = \lambda_j(p),$$

and by (2)

$$|\alpha_j(p)| \le 2\sqrt{p}, \quad |\beta_j(p)| \le 2\sqrt{p} \quad j = 1, \dots, n.$$

Therefore, $L_{E_j}(s)$ is the Matsumoto zeta-function with $\alpha = 0$ and $\beta = \frac{1}{2}$, for definitions, see [18] and [19]. Since by the Shimura-Taniyama theorem $L_{E_j}(s)$ coincides with *L*-function attached to a newform of level 2, we have that, for $\sigma > 1$, the estimates

$$L_{E_j}(\sigma + it) = O(|t|^{\alpha_j}), \quad |t| \ge t_0, \quad \alpha_j > 0,$$

and

$$\int_{0}^{T} \left| L_{E_{j}}(\sigma + it) \right|^{2} \mathrm{d} t = O(T), \quad T \to \infty,$$

are satisfied. Therefore, by Theorem 2 of [9] we have that the probability measure

$$\nu_T\left(\left(L_{E_1}(s+i\tau),\ldots,L_{E_n}(s+i\tau)\right)\in A\right),\quad A\in\mathcal{B}(H^n(D)).$$

weakly converges to the distribution of the $H^n(D)$ -valued random element defined by (3) as $T \to \infty$. The function $h: H^n(D) \to H^n(D_V)$ defined by the coordinatewise restriction is continuous, therefore by Theorem 5.1 of [20] hence we obtain the lemma.

3 A denseness lemma

To prove Theorem 1 we need the support of the measure P_L in Lemma 1. For this we will consider the random element $L(s, \omega)$ and its support.

Let $a_p \in \gamma$. For $j = 1, \ldots, n$, we define

$$f_{jp}(s, a_p) = \begin{cases} -\log\left(1 - \frac{\lambda_j(p)a_p}{p^s} + \frac{a_p^2}{p^{2s-1}}\right), & \text{if } p \nmid \Delta_j, \\ -\log\left(1 - \frac{\lambda_j(p)a_p}{p^s}\right), & \text{if } p \mid \Delta_j, \end{cases}$$

and

$$\underline{f}_p(s, a_p) = \left(f_{1p}(s, a_p), \dots, f_{np}(s, a_p)\right).$$

Lemma 2. Suppose that rank $(B_{rn}) = n$. Then the set of all convergent series $\sum_{p} \underline{f}(s, a_p)$ is dense in $H^n(D_V)$.

For the proof of the lemma we will use the following statements.

Lemma 3. Let μ be a complex Borel measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with compact support contained in $\{s \in \mathbb{C} : \sigma > \sigma_0\}$, and let

$$f(z) = \int_{\mathbb{C}} e^{sz} d\mu(s), \quad z \in \mathbb{C}.$$

If
$$f(z) \neq 0$$
, then $\limsup_{x \to \infty} \frac{\log |f(x)|}{x} > \sigma_0$.

The lemma is Lemma 5.2.2 of [5]. Its proof is also given [21], Lemma 6.4.10.

Lemma 4. Let f(s) be a function of exponential type such that

$$\limsup_{x\to\infty} \frac{\log |f(x)|}{x} > -1.$$

Then, for l = 1, ..., r*,*

$$\sum_{p \in P_l} \left| f(\log p) \right| = \infty.$$

The proof is based on the property (2) of the sets P_l as well as on the following lemma.

Lemma 5. Let f(s) be an entire function of exponential type, and let $\{\lambda_m\}$ be a sequence of complex numbers. Let α, β and δ be positive real numbers such that

(i) $\limsup_{x \to \infty} \frac{\log |f(\pm ix)|}{x} \le \alpha;$

(ii)
$$|\lambda_m - \lambda_n| \ge \delta |m - n|;$$

(iii)
$$\lim_{m \to \infty} \frac{\lambda_m}{m} = \beta;$$

(iv)
$$\alpha\beta < \pi$$
.

Then
$$\limsup_{m \to \infty} \frac{\log |f(\lambda_m)|}{|\lambda_m|} = \limsup_{r \to \infty} \frac{\log |f(r)|}{r}.$$

The lemma is a special version of the Bernstein theorem. The proof is given in [21].

Proof of Lemma 4. Since f(s) is a function of exponential type, there exists an $\alpha > 0$ such that

$$\limsup_{x \to \infty} \frac{\log |f(\pm ix)|}{x} \le \alpha.$$

We fix a postitive number β such that $\alpha\beta < \pi$. Suppose, on the contrary, that for some $l, 1 \leq l \leq r$, the series

$$\sum_{p \in P_l} \left| f(\log p) \right| \tag{4}$$

converges.

Define the subset A of the set \mathbb{N} of positive integers by

$$A = \Big\{ m \in \mathbb{N} \colon \exists r \in \left((m - \frac{1}{4})\beta, (m + \frac{1}{4})\beta \right] \text{ and } |f(r)| \le e^{-r} \Big\}.$$

Then we have that

$$\sum_{p \in P_l} \left| f(\log p) \right| \ge \sum_{m \notin A} \sum_m' \left| f(\log p) \right| \ge \sum_{m \notin A} \sum_m' \frac{1}{p},\tag{5}$$

where \sum_{m}^{\prime} denotes a sum over prime numbers $p \in P_l$ such that

$$(m-\frac{1}{4})\beta < \log p \le (m+\frac{1}{4})\beta.$$

In view of (2) we find

$$\sum_{m}' \frac{1}{p} = \sum_{\substack{p \in P_l \\ p \le \exp\{(m + \frac{1}{4})\beta\}}} \frac{1}{p} - \sum_{\substack{p \in P_l \\ p \le \exp\{(m - \frac{1}{4})\beta\}}} \frac{1}{p}$$
$$= \varkappa_l \log \frac{m + \frac{1}{4}}{m - \frac{1}{4}} + O\left((m - \frac{1}{4})^{\theta_l}\right) = \frac{\varkappa_l}{2m} + O\left(\frac{1}{m^{\theta_l}}\right).$$

This, the convergence of the series (4) and (5) yield

$$\sum_{m \notin A} \left(\frac{\varkappa_l}{2m} + O\left(\frac{1}{m^{\theta_l}}\right) \right) = \sum_{m \notin A} \sum_m' \frac{1}{p} \le \sum_{p \in P_l} \left| f(\log p) \right| < \infty.$$

Hence, clearly, since $\varkappa_l > 0$,

$$\sum_{m \notin A} \frac{1}{m} < \infty.$$
⁽⁶⁾

Suppose that $A = \{a_m \in \mathbb{N} : a_1 < a_2 < \ldots\}$. Then (6) shows that

$$\lim_{m \to \infty} \frac{a_m}{m} = 1. \tag{7}$$

Moreover, by the definition of the set A, there exists a sequence $\{\lambda_m\}$ such that

$$(a_m - \frac{1}{4})\beta < \lambda_m \le (a_m + \frac{1}{4})\beta,\tag{8}$$

and

$$\left|f(\lambda_m)\right| \le e^{-\lambda_m}.\tag{9}$$

Therefore, by (7) and (8)

$$\lim_{m \to \infty} \frac{\lambda_m}{m} = \beta,$$

and

$$|\lambda_m - \lambda_n| \ge \beta |a_m - a_n| - \frac{1}{2}\beta \ge \delta |m - n|$$

with some $\delta > 0$, and in view of (9)

$$\limsup_{m \to \infty} \frac{\log |f(\lambda_m)|}{|\lambda_m|} \le -1.$$
(10)

So, all hypotheses of Lemma 5 are satisfied, and we have by (10) that

$$\limsup_{r \to \infty} \frac{\log |f(r)|}{r} \le -1.$$

Howewer, this contradicts the hypothesis of the lemma. Hence, the series (4) must be divergent, and the lemma is proved. $\hfill \Box$

Lemma 6. Let $\{\underline{f}_m\} = \{(f_{1m}, \ldots, f_{nm})\}$ be a sequence in $H^n(D_V)$ which satisfies:

(i) If μ₁,..., μ_n are complex Borel measures on (C, B(C)) with compact supports contained in D_V such that

$$\sum_{m=1}^{\infty} \left| \sum_{j=1}^{n} \int_{\mathbb{C}} f_{jm} \,\mathrm{d}\,\mu_{j} \right| < \infty,$$

then

$$\int_{\mathbb{C}} s^r \,\mathrm{d}\,\mu_j(s) = 0 \quad for \quad j = 1, \dots, n \quad and \quad r = 0, 1, 2, \dots;$$

(ii) The series
$$\sum_{m=1}^{\infty} \underline{f}_m$$
 converges in $H^n(D_V)$;

(iii) For any compacts $K_1, \ldots, K_n \subset D_V$,

$$\sum_{m=1}^{\infty} \sum_{j=1}^{n} \sup_{s \in K_j} \left| f_{jm}(s) \right|^2 < \infty.$$

Then the set of all convergent series $\sum_{m=1}^{\infty} a_m \underline{f}_m$ with $a_m \in \gamma$ is dense in $H^n(D_V)$.

The lemma is a special case of Lemma 5 from [10], where its proof is given. Now we are ready to prove Lemma 2.

Proof of Lemma 2. Let p_0 be a fixed positive number. We define

$$\underline{f}_{p}(s) = \begin{cases} \underline{f}_{p}(s,1), & \text{if } p > p_{0}, \\ 0, & \text{if } p \le p_{0}. \end{cases}$$

First we observe that there exists a sequence $\{\hat{a}_p\colon \hat{a}_p\in\gamma\}$ such that the series

$$\sum_{p} \hat{a}_{p} \underline{f}_{p} \tag{11}$$

converges in $H^n(D_V)$. Really, in view of (1)

$$f_{jp}(s,1) = \frac{\lambda_j(p)}{p^s} + r_{jp}(s),$$

where $r_{jp}(s) = O(p^{1-2\sigma}), j = 1, ..., n$. Hence we have that for compact subsets $K_1, ..., K_n$ of D_V ,

$$\sum_{j=1}^n \sum_p \sup_{s \in K_j} \left| r_{jp}(s) \right| < \infty.$$

In the proof that $L_{E_j}(s, \omega)$, j = 1, ..., n, is an $H(D_V)$ -valued random element it is proved that the series

$$\sum_{p} \frac{\lambda_j(p)\omega(p)}{p^s}, \quad j = 1, \dots, n,$$

converges uniformly on compact subsets of D_V for almost all $\omega \in \Omega$, see, for example, [19], where the Matsumoto zeta-functions were considered. Hence the series

$$\sum_{p} \left(\frac{\lambda_1(p)\omega(p)}{p^s}, \dots, \frac{\lambda_n(p)\omega(p)}{p^s} \right)$$

converges in $H^n(D_V)$ for almost all $\omega \in \Omega$. Consequently, there exists a sequence $\{\hat{a}_p \colon \hat{a}_p \in \gamma\}$ such that the series (11) converges in $H^n(D_V)$.

Now we will prove that the set all convergent series

$$\sum_{p} a_{p} \underline{f}_{p}, \quad a_{p} \in \gamma, \tag{12}$$

is dense in $H^n(D_V)$. To prove this, it suffices to show that the set of all convergent series

$$\sum_{p} b_{p} \underline{g}_{p}, \quad b_{p} \in \gamma, \tag{13}$$

where $g_p = \hat{a}_p \underline{f}_p$, is dense in $H^n(D_V)$. For this we will apply Lemma 6 for the sequence $\{\underline{g}_p\}$.

By the definition of \underline{g}_p we have that the series $\sum_p \underline{g}_p$ converges in $H^n(D_V)$. Moreover, in virtue of (1), for any compacts $K_1, \ldots, K_n \subset D_V$,

$$\sum_{p} \sum_{j=1}^{n} \sup_{s \in K_j} |g_{jp}(s)|^2 < \infty.$$

Therefore, the hypotheses ii) and iii) of Lemma 6 are satisfied, and it remains to verify the hypothesis i).

Let μ_1, \ldots, μ_n be complex Borel measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with compact supports contained in D_V such that

$$\sum_{p} \left| \sum_{j=1}^{n} \int_{\mathbb{C}} b_{p} g_{jp} \,\mathrm{d}\, \mu_{j} \right| < \infty.$$
(14)

Let $D_{0V} = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1, |t| < V\}$, and let $h(s) = s - \frac{1}{2}$. Define $\mu_j h^{-1}(A) = \mu_j(h^{-1}A), A \in \mathcal{B}(\mathbb{C}), j = 1, ..., n$. Then, clearly, $\mu_j h^{-1}$ is a complex measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with compact support contained in $D_{0V}, j = 1, ..., n$. This and (14) show that, for every l = 1, ..., r,

$$\sum_{p \in P_l} \left| \sum_{j=1}^n b_{lj} \int_{\mathbb{C}} p^{-s} \,\mathrm{d}\,\mu_j h^{-1}(s) \right| < \infty.$$
(15)

We put

$$\nu_l(s) = \sum_{j=1}^n b_{lj} \mu_j h^{-1}(s).$$

Then (15) yields, for every $l = 1, \ldots, r$,

$$\sum_{p \in P_l} \left| \rho_l(\log p) \right| < \infty,$$

where

$$\rho_l(z) = \int_{\mathbb{C}} e^{-sz} d\nu_l(s), \quad z \in \mathbb{C}.$$

Clearly, we have that, for r > 0,

$$\left|\rho_l(r e^{i\varphi})\right| \leq e^{Vr} \int_{\mathbb{C}} \left| d \nu_l(s) \right|.$$

Hence

$$\limsup_{r \to \infty} \frac{\log \left| \rho_l(r e^{i\varphi}) \right|}{r} \le V$$

uniformly in φ , $0 < \varphi \leq \pi$. This shows that $\rho_l(z)$, $l = 1, \ldots, r$, is a function of exponential type.

In view of Lemmas 3 and 4 we find that $\rho(z) \equiv 0$ for every $l = 1, \ldots, r$. Hence it follows by differentiation that

$$\int_{\mathbb{C}} s^k \,\mathrm{d}\,\nu_l(s) = 0 \tag{16}$$

for all $l = 1, \ldots, r$ and $k = 0, 1, 2, \ldots$. Now let

$$x_j = x_j(k) = \int_{\mathbb{C}} s^k \,\mathrm{d}\,\mu_j h^{-1}(s).$$

Then the definition of $\nu_i(s)$ and (16) give the following system of equations

$$\sum_{j=1}^{n} b_{lj} x_j = 0, \quad l = 1, \dots, r.$$

Since rank $(B_{rn}) = n$, the later system has only a solution $x_j = 0, j = 1, ..., n$. Thus we have that

$$\int\limits_{\mathbb{C}} s^k \,\mathrm{d}\,\mu_j h^{-1}(s) = 0$$

for all j = 1, ..., n and k = 0, 1, 2, ... From this it follows that

$$\int_{\mathbb{C}} s^k \, \mathrm{d}\, \mu_j(s) = 0$$

for all j = 1, ..., n and k = 0, 1, 2, ... This shows that all hypotheses of Lemma 6 hold, therefore the set of all convergent series (13) is dense in $H^n(D_V)$, hence the same is true for the set of all convergent series (12).

Now let $\underline{x}(s) = (x_1(s), \ldots, x_n(s))$ be an arbitrary element of $H^n(D_V)$, K_1, \ldots, K_n be compact subsets of D_V , and let ε be an arbitrary positive number. We fix p_0 such that

$$\sum_{j=1}^{n} \sup_{s \in K_j} \sum_{p > p_0} \sum_{k=2}^{\infty} \frac{\left|\lambda_j(p)\right|^k}{kp^{k\sigma}} < \frac{\varepsilon}{4}.$$
(17)

The denseness of all convergent series implies the existence of the sequence $\{\widetilde{a}_m : \widetilde{a}_m \in \gamma\}$ such that

$$\sup_{1 \le j \le n} \sup_{s \in K_j} \left| \underline{x}(s) - \sum_{p \le p_0} \underline{f}_p(s) - \sum_{p \ge p_0} \widetilde{a}_p \underline{f}_p(s) \right| < \frac{\varepsilon}{2}.$$
 (18)

We take

$$a_p = \begin{cases} 1, & \text{if } p \le p_0, \\ \widetilde{a}_p, & \text{if } p > p_0. \end{cases}$$

Then (17) and (18) yield

$$\begin{split} \sup_{1 \le j \le n} \sup_{s \in K_j} \left| \underline{x}(s) - \sum_p \underline{f}_p(s, a_p) \right| \\ &= \sup_{1 \le j \le n} \sup_{s \in K_j} \left| \underline{x}(s) - \sum_{p \le p_0} \underline{f}_p(s, a_p) - \sum_{p > p_0} \underline{f}_p(s, a_p) \right| \\ &\leq \sup_{1 \le j \le n} \sup_{s \in K_j} \left| \underline{x}(s) - \sum_{p \le p_0} \underline{f}_p(s) - \sum_{p \ge p_0} \widetilde{a}_p \underline{f}_p(s) \right| \\ &+ \sup_{1 \le j \le n} \sup_{s \in K_j} \left| \sum_{p > p_0} \widetilde{a}_p \underline{f}_p(s) - \sum_{p \ge p_0} \underline{f}_p(s, \widetilde{a}_p) \right| < \varepsilon. \end{split}$$

Since $\underline{x}(s), K_1, \ldots, K_n$ and ε are arbitrary, the lemma is proved.

The support of P_L

Let

4

$$S = \{ f \in H(D_V) \colon f(s) \neq 0 \quad \text{or} \quad f(s) \equiv 0 \}.$$

Lemma 7. The support of the measure P_L is the set S^n .

The proof of Lemma 7 relies on Lemma 2, the Hurwitz theorem and the following statement. We denote by S_X the support of the random element X.

Lemma 8. Let $\{X_n\}$ be a sequence of independent $H^n(D_V)$ -valued random elements such that the series $\sum_{m=1}^{\infty} X_m$ converges almost surely. Then the support

of the sum of the later series is the closure of the set of all $\underline{f} \in H^n(D_V)$ which may be written as a convergent series

$$\underline{f} = \sum_{m=1}^{\infty} \underline{f}_m, \quad \underline{f}_m \in S_{X_m}.$$

The lemma is a special case of Lemma 4 from [10], where its proof can be find.

Proof of Lemma 7. Since $\{\omega(p)\}$ is a sequence of independent random variables, $\{\underline{f}_p(s, \omega(p))\}\$ is a sequence of independent $H^n(D_V)$ -valued random elements defined on the probability space $(\mathbb{C}, \mathcal{B}(\mathbb{C}), m_H)$. The support of each $\omega(p)$ is the unit circle γ . Therefore, the support of $\underline{f}_p(s, \omega(p))$ is the set

$$\left\{ \underline{f} \in H(D_V) \colon \underline{f}(s) = \underline{f}(s, a), a \in \gamma \right\}$$

Hence by Lemma 8 the support of the $H^n(D_V)$ -valued random element

$$\left(\log L_{E_1}(s,\omega),\ldots,\log L_{E_n}(s,\omega)\right) \tag{19}$$

is the closure of the set of all convergent series $\sum_{p} \underline{f}_{p}(s, a_{p})$. However, by Lemma 2, the latter set is dense in $H^{n}(D_{V})$. Hence the support of the random element (19) is $H^{n}(D_{V})$. The map $h: H^{n}(D_{V}) \to H^{n}(D_{V})$ given by the formula

$$h(f_1(s),\ldots,f_n(s)) = \left(e^{f_1(s)},\ldots,e^{f_n(s)}\right), \quad f_1,\ldots,f_n \in H^n(D_V),$$

is a continuous function which sends the element (19) to $L(s, \omega)$, and $H^n(D_V)$ to $(S \setminus \{0\})^n$. Therefore, the support S_L of the random element $L(s, \omega)$ contains the set $(S \setminus \{0\})^n$. However, the support of a random element is a closed set. In view of the Hurwitz theorem, see, for example, [22], Section 3.4.5, the closure of $S \setminus \{0\}$ is S. Thus, $S_L \supseteq S^n$. On the other the factors of the product defining $L_{E_j}(s, \omega)$, $j = 1, \ldots, n$, do not vanish for $s \in D_V$. Hence $L_{E_j}(s, \omega)$, $j = 1, \ldots, n$, is an almost surely convergent product of non-vanishing factors, and therefore, the Hurwitz theorem shows that $L_{E_j}(s, \omega) \in S$, $j = 1, \ldots, s$, almost surely. Hence the relation $S_L \subset S^n$ holds, and we have that $S_L = S^n$.

5 **Proof of Theorem 1**

Proof of Theorem 1 is based on Lemmas 1 and 7 as well as on the Mergelyan theorem which is the following lemma.

Lemma 9. Let $K \subset \mathbb{C}$ be a compact subset with connected complement, and let f(s) be a continuous on K function which is analytic in the interior of K. Then f(s) can be approximated uniformly on K by polynomials in s.

Proof of the lemma can be found in [23].

Proof of Theorem 1. Clearly, there exists V > 0 such that the sets K_1, \ldots, K_n are contained in D_V . First we suppose that the functions $f_1(s), \ldots, f_n(s)$ are non-zero analytically continuable to D_V . Let $G = \{(g_1, \ldots, g_n) : (g_1, \ldots, g_n) \in H^n(D_V)\}$, and

$$\sup_{1 \le j \le n} \sup_{s \in K_j} \left| g_j(s) - f_j(s) \right| < \varepsilon.$$

The set G is open. Therefore, the properties of the weak convergence of probability measures [20] and Lemma 1 show that

$$\liminf_{T \to \infty} \nu_T \left(\left(L_{E_1}(s+i\tau), \dots, L_{E_n}(s+i\tau) \right) \in 0 \right) \ge P_L(G).$$

However, the properties of the support and Lemma 7 show that $P_L(G) > 0$. Therefore, in this case

$$\liminf_{T \to \infty} \nu_T \left(\sup_{1 \le j \le n} \sup_{s \in K_j} \left| L_{E_j}(s + i\tau) - f_j(s) \right| < \varepsilon \right) > 0.$$
⁽²⁰⁾

Now we suppose that the functions $f_1(s), \ldots, f_n(s)$ satisfy the hypotheses of Theorem 1. By Lemma 9 there exist polynomials $p_1(s), \ldots, p_n(s)$ which are non-vanishing on K_1, \ldots, K_n , respectively, such that

$$\sup_{1 \le j \le n} \sup_{s \in K_j} \left| p_j(s) - f_j(s) \right| < \frac{\varepsilon}{4}.$$
(21)

Each polynomial $p_j(s)$, j = 1, ..., n, has finitely many zeros. Therefore, there exits a region G_j with connected complement such $K_j \subset G_j$ and $p_j(s) \neq 0$ for $s \in G_j$, j = 1, ..., n. Thus we can consider a continuous branch of $\log p_j(s)$

on G_j , and $\log p_j(s)$ is analytic function in the interior of G_j , j = 1, ..., n. By Lemma 9 again there exist polynomials $g_1(s), ..., g_n(s)$ such that

$$\sup_{1 \le j \le n} \sup_{s \in K_j} \left| p_j(s) - \mathrm{e}^{\,q_j(s)} \right| < \frac{\varepsilon}{4}.$$

This and (21) show that

$$\sup_{1 \le j \le n} \sup_{s \in K_j} \left| f_j(s) - e^{q_j(s)} \right| < \frac{\varepsilon}{2}.$$
(22)

However, $e^{q_j(s)}$, j = 1, ..., s. Therefore, in view of (20),

$$\liminf_{T \to \infty} \nu_T \left(\sup_{1 \le j \le n} \sup_{s \in K_j} \left| L_{E_j}(s + i\tau) - \mathrm{e}^{q_j(s)} \right| < \frac{\varepsilon}{2} \right) > 0.$$

This together with (22) proves the theorem.

References

- 1. Breuil C., Conrad B., Diamond F., Taylor R. "On the modularity of ellipitic curves over Q: wild 3-adic exercises", *J. Amer. Math. Soc.*, **14**, p. 843–939, 2001
- Garbaliauskienė V., Laurinčikas A. Some analytic properties for L-functions of elliptic curves, Preprint 16, Vilnius University, Department of Math. and Inform., 2003
- Voronin S.M. "On functional independence of Dirichlet *L*-functions", *Acta Arith.*, 27, p. 493–503, 1975 (in Russian)
- 4. Gonek S.M. Analytic properties of zeta and L-functions, Ph.D. Thesis, University of Michigan, 1979
- 5. Bagchi B. *The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series*, Ph.D. Thesis, Calcutta, Indian Statistical Institute, 1981
- 6. Bagchi B. "A joint universality theorem for Dirichlet *L*-functions," *Math. Z.*, **181**, p. 319–334, 1982
- 7. Laurinčikas A. "On zeros of linear combinations of Dirichlet series", *Liet. Matem. Rink.*, **26**, p. 468–477, 1986 (in Russian); *Lith. Math. J.*, **26**, p. 244–251, 1986
- 8. Laurinčikas A., Matsumoto K. "The joint universality and the functional independence for Lerch zeta-functions", *Nagoya Math. J.*, **157**, p. 211–227, 2000

- Laurinčikas A. "On the zeros of linear combinations of Matsumoto zetafunctions", *Liet. Matem. Rink.*, 38, p.185–204, 1998 (in Russian); *Lith. Math. J.*, 38, p. 144–159, 1998
- Laurinčikas A., Matsumoto K. "The joint universality of zeta-functions attached to certain cusp forms", *Fiz. matem. fak. moksl. sem. darbai*, 5, p. 58–75, Šiauliai University, 2002
- Šleževičienė R. "The joint universality for twists of Dirichlet series with multiplicative coefficients", In: Analytic and Probab. Methods in Number Theory, Proc. of third Intern. Conf. in konow of J. Kubilius, Palanga 2001, Dubickas A. et al. (Eds.), TEV, Vilnius, p. 303–319, 2002
- 12. Laurinčikas A., Matsumoto K. "The joint universality of twisted automorphic *L*-functions", *J. Math. Soc. Japan*, **56**(3), p. 923–939, 2004 (to appear)
- 13. Laurinčikas A. "The joint universality for general Dirichlet series", *Annales Univ. Sci. Budapest., Sect. Comp.*, **22**, p. 235–251, 2003
- 14. Laurinčikas A. "The joint universality of general Dirichlet series", *Izv. ANR, ser. matem.* (in Russian) (to appear)
- Laurinčikas A. "The universality of zeta-functions", Acta Appl. Math., 78, p. 251– 271, 2003
- 16. Grosse-Erdmann K.-G. "Universal families and hypercyclic operators", *Bull Amer. Math. Soc.*, **36**, p. 345–381, 1999
- 17. Steuding J. Value-distribution of L-functions and allied zeta-functions with an emphasis on aspects of universality, Habilitationsschift, J.W.Goethe-Universitat Frankfurt, 2003
- Matsumoto K. "Value-distribution of zeta-functions", *Lecture Notes in Math.*, 1434, p. 178–187, Springer, 1990
- 19. Laurinčikas A. "On the Matsumoto zeta-function", Acta Arith., 84, p. 1-16, 1998
- 20. Billingsley P. Convergence of probability measures, New York, John Wiley, 1968
- 21. Laurincikas A. *Limit Theorems for the Riemann Zeta-Function*, Kluwer, Dordrecht, Boston, London, 1996
- 22. Titchmarsh E.C. The Theory of Functions, Oxford University Press, Oxford, 1939
- 23. Walsh J.L. "Interpolation and Approximation by Rational Functions in the Complex Domain", *Amer. Math. Soc. Collog. Publ.*, **20**, 1960