The Joint Universality for L-Functions of Elliptic Curves*

V. Garbaliauskiene ${ }^{1}$, R.Kačinskaitè ${ }^{1}$, A. Laurinčikas ${ }^{2}$
${ }^{1}$ Šiauliai University, P. Višinnskio st. 19, LT-77156 Šiauliai, Lithuania
${ }^{2}$ Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania antanas.laurincikas@maf.vu.lt

Received: 15.09.2004
Accepted: 13.10.2004
Abstract. A joint universality theorem in the Voronin sense for L-functions of elliptic curves over the field of rational numbers is proved.

Keywords: elliptic curve, function of exponential type, limit theorem, probability measure, random element, universality.

1 Introduction

Let E be an elliptic curve over the field of rational numbers given by the Weierstrass equation

$$
y^{2}=x^{3}+a x+b
$$

where a and b are rational integers. Suppose that the discriminant of $E \Delta=$ $-16\left(4 a^{3}+27 b^{2}\right) \neq 0$. It is known that then E is non-singular.

For each prime p, denote by $\nu(p)$ the number of solutions of the congruence

$$
y^{2} \equiv x^{3}+a x+b(\bmod p)
$$

and denote $\lambda(p)=p-\nu(p)$. By the classical result of H . Hasse

$$
\begin{equation*}
|\lambda(p)| \leq 2 \sqrt{p} \tag{1}
\end{equation*}
$$

[^0]To study the numbers $\lambda(p), \mathrm{H}$. Hasse and H . Weil introduced and studied the L function attached to E. Let $s=\sigma+i t$ be a complex variable. Then the later L-function is defined by

$$
L_{E}(s)=\prod_{p \nmid \Delta}\left(1-\frac{\lambda(p)}{p^{s}}+\frac{1}{p^{2 s-1}}\right)^{-1} \prod_{p \mid \Delta}\left(1-\frac{\lambda(p)}{p^{s}}\right)^{-1},
$$

in view of (1) the product being absolutely convergent for $\sigma>\frac{3}{2}$. By the ShimuraTaniyama theorem proved in [1] the function $L_{E}(s)$ is analytically continuable to an entire function and satisfies the functional equation

$$
\left(\frac{\sqrt{q}}{2 \pi}\right)^{s} \Gamma(s) L_{E}(s)=\eta\left(\frac{\sqrt{q}}{2 \pi}\right)^{2-s} \Gamma(2-s) L_{E}(2-s),
$$

where q is a positive integer composed of prime factors of the discriminant Δ, $\eta= \pm 1$ is the root number, and $\Gamma(s)$ denotes the Euler gamma-function.

In [2] the universality in the Voronin sense of the function $L_{E}(s)$ has been obtained. Denote by meas $\{A\}$ the Lebesque measure of the set A, and let, for $T>0$,

$$
\nu_{T}(\ldots)=\frac{1}{T} \operatorname{meas}\{\tau \in[0, T]: \ldots\},
$$

where in place of dots a conditinion satisfied by τ is to be written. Let \mathbb{C} be the complex plane, and $D=\left\{s \in \mathbb{C}: 1<\sigma<\frac{3}{2}\right\}$.

Theorem A. Suppose that E is a non-singular elliptic curve over the field of rational numbers. Let K be a compact subset of the strip D with connected complement, and let $f(s)$ be a continuous non-vanishing on K function which is analytic in the interior of K. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \nu_{T}\left(\sup _{s \in K}\left|L_{E}(s+i \tau)-f(s)\right|<\varepsilon\right)>0 .
$$

In [2] also the universality of $L_{E}^{k}(s), k=2,3, \ldots$, and, under the analogue of the Riemann hypothesis for $L_{E}(s)$, of $L_{E}^{-k}(s), k=1,2, \ldots$, was considered.

The aim of this paper is to obtain the joint universality for L-functions of elliptic curves.

Let $n>1$ be an positive integer. Consider n elliptic curves E_{1}, \ldots, E_{n} given by the Weierstrass equations

$$
y^{2}=x^{3}+a_{j} x+b_{j},
$$

with $\Delta_{j}=-16\left(4 a_{j}^{3}+27 b_{j}^{2}\right) \neq 0, j=1, \ldots, n$. Let, as above,

$$
\lambda_{j}(p)=p-\nu_{j}(p),
$$

where $\nu_{j}(p)$ is the number of solutions of the congruence

$$
y^{2} \equiv x^{3}+a_{j} x+b_{j}(\bmod p), \quad j=1, \ldots, n .
$$

Define

$$
L_{E_{j}}(s)=\prod_{p \nmid \Delta_{j}}\left(1-\frac{\lambda_{j}(p)}{p^{s}}+\frac{1}{p^{2 s-1}}\right)^{-1} \prod_{p \mid \Delta_{j}}\left(1-\frac{\lambda_{j}(p)}{p^{s}}\right)^{-1} \quad j=1, \ldots, n .
$$

To state a joint universality theorem for the functions $L_{E_{j}}(s)$ we need some additional conditions. Let P be the set of all prime numbers and let $P_{l}, l=$ $1, \ldots, r, r \geq n$, be sets of prime numbers such that $P_{l_{1}} \cap P_{l_{2}}=\varnothing$ for $l_{1} \neq l_{2}$, and

$$
P=\bigcup_{l=1}^{r} P_{l} .
$$

Moreover, we suppose that, for $x \rightarrow \infty$,

$$
\begin{equation*}
\sum_{\substack{p \leq x \\ p \in P_{l}}} \frac{1}{p}=\varkappa_{l} \log \log x+b_{l}+\rho_{l}(x), \tag{2}
\end{equation*}
$$

where $\varkappa_{1}+\ldots+\varkappa_{r}=1, \varkappa_{l}>0, \rho_{l}(x)=O\left(\log ^{-\theta_{l}} x\right)$ with $\theta_{l}>1$, and b_{l} is some real number, $l=1, \ldots, r$. Denote

$$
B_{j}(p)=\frac{\lambda_{j}(p)}{\sqrt{p}},
$$

and suppose that $B_{j}(p)$ is constant for $p \in P_{l}$, i. e., for $p \in P_{l}$

$$
\begin{gathered}
B_{1}(p)=B_{l 1}, \\
\ldots \ldots \ldots \ldots \\
B_{n}(p)=B_{l n} .
\end{gathered}
$$

Let

$$
B_{r n}=\left(\begin{array}{ccc}
B_{11} & \ldots & B_{1 n} \\
\ldots & \ldots & \ldots \\
B_{r 1} & \ldots & B_{r n}
\end{array}\right) .
$$

Theorem 1. Suppose that $\operatorname{rank}\left(B_{r n}\right)=n$. Let K_{j} be a compact subset of the strip D with connected complement, and let $f_{j}(s)$ be a continuous non-vanishing on K_{j} function which is analytic in the interior of $K_{j}, j=1, \ldots, n$. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \nu_{T}\left(\sup _{l \leq j \leq n} \sup _{s \in K_{j}}\left|L_{E_{j}}(s+i \tau)-f_{j}(s)\right|<\varepsilon\right)>0 .
$$

Joint universality theorems for Dirichlet L-functions independently were proved by S.M. Voronin [3], S.M. Gonek [4] and B.Bagchi [5], [6]. For Dirichlet series with multiplicative coefficients they were obtained in [7]. The joint universality for Lerch zeta-functions, for Matsumoto zeta-functions, and for zeta-functions attached to certain cusp forms were proved in [8], [9] and [10], respectively. Joint universality theorems for twists of Dirichlet series with Dirichlet characters were investigated in [11] and [12]. Finally, theorems of a such type for some classes of general Dirichlet series were obtained in [13] and [14]. A survey on universality is given in [15] and [16]. A large part of the work [17] is also devoted to universality of Dirichlet series.

2 A limit theorem

Let $V>0$, and

$$
D_{V}=\left\{s \in \mathbb{C}: 1<\sigma<\frac{3}{2}, \quad|t|<V\right\} .
$$

In this section we state a joint limit theorem for functions $L_{E_{1}}, \ldots, L_{E_{n}}$ on the space of analytic on D_{V} functions. Denote by $H(G)$ the space of analytic on the region G functions equipped with the topology of uniform convergence on compacta, and let

$$
H^{m}(G)=\underbrace{H(G) \times \ldots \times H(G)}_{m}, \quad m \geq 2 .
$$

Moreover, by $\mathcal{B}(S)$ we denote the class of Borel sets of the space S. We will consider the weak convergence of the probability measure

$$
P_{T}(A)=\nu_{T}\left(\left(L_{E_{1}}(s+i \tau), \ldots, L_{E_{n}}(s+i \tau)\right) \in A\right), \quad A \in \mathcal{B}\left(H^{n}\left(D_{V}\right)\right),
$$

as $T \rightarrow \infty$.
Let $\gamma=\{s \in \mathbb{C}:|s|=1\}$ be the unit circle on the complex plane, and

$$
\Omega=\prod_{p} \gamma_{p},
$$

where $\gamma_{p}=\gamma$ for any prime p. With the product topology and operation of pointwise multiplication the set Ω is a compact topological Abelian group, therefore the probability Haar measure m_{H} on $(\Omega, \mathcal{B}(\Omega))$ exists. This gives a probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. Denote by $\omega(p)$ the projection of $\omega \in \Omega$ to the coordinate space γ_{p}, and define on the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$ the $H^{n}\left(D_{V}\right)$-valued random element $L(s, \omega)$ by

$$
\begin{equation*}
L(s, \omega)=\left(L_{E_{1}}(s, \omega), \ldots, L_{E_{n}}(s, \omega)\right), \tag{3}
\end{equation*}
$$

where

$$
L_{E_{j}}(s, \omega)=\prod_{p \nmid \Delta_{j}}\left(1-\frac{\lambda_{j}(p) \omega(p)}{p^{s}}+\frac{\omega^{2}(p)}{p^{2 s-1}}\right)^{-1} \prod_{p \mid \Delta_{j}}\left(1-\frac{\lambda_{j}(p) \omega(p)}{p^{s}}\right)^{-1},
$$

$j=1, \ldots, n$. Let P_{L} be the distribution of the random element $L(s, \omega)$, i. e.,

$$
P_{L}(A)=m_{H}(\omega \in \Omega: L(s, \omega) \in A), \quad A \in \mathcal{B}\left(H^{n}\left(D_{V}\right)\right) .
$$

Lemma 1. The probability measure P_{T} converges weakly to P_{L} as $T \rightarrow \infty$.
Proof. The function $L_{E_{j}}(s)$, for $\sigma>\frac{3}{2}$, can be written in the form

$$
L_{E_{j}}(s)=\prod_{p \mid \Delta_{j}}\left(1-\frac{\lambda_{j}(p)}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta_{j}}\left(1-\frac{\alpha_{j}(p)}{p^{s}}\right)^{-1}\left(1-\frac{\beta_{j}(p)}{p^{s}}\right)^{-1},
$$

where

$$
\alpha_{j}(p)+\beta_{j}(p)=\lambda_{j}(p),
$$

and by (2)

$$
\left|\alpha_{j}(p)\right| \leq 2 \sqrt{p}, \quad\left|\beta_{j}(p)\right| \leq 2 \sqrt{p} \quad j=1, \ldots, n
$$

Therefore, $L_{E_{j}}(s)$ is the Matsumoto zeta-function with $\alpha=0$ and $\beta=\frac{1}{2}$, for definitions, see [18] and [19]. Since by the Shimura-Taniyama theorem $L_{E_{j}}(s)$ coincides with L-function attached to a newform of level 2, we have that, for $\sigma>1$, the estimates

$$
L_{E_{j}}(\sigma+i t)=O\left(|t|^{\alpha_{j}}\right), \quad|t| \geq t_{0}, \quad \alpha_{j}>0
$$

and

$$
\int_{0}^{T}\left|L_{E_{j}}(\sigma+i t)\right|^{2} \mathrm{~d} t=O(T), \quad T \rightarrow \infty
$$

are satisfied. Therefore, by Theorem 2 of [9] we have that the probability measure

$$
\nu_{T}\left(\left(L_{E_{1}}(s+i \tau), \ldots, L_{E_{n}}(s+i \tau)\right) \in A\right), \quad A \in \mathcal{B}\left(H^{n}(D)\right)
$$

weakly converges to the distribution of the $H^{n}(D)$-valued random element defined by (3) as $T \rightarrow \infty$. The function $h: H^{n}(D) \rightarrow H^{n}\left(D_{V}\right)$ defined by the coordinatewise restriction is continuous, therefore by Theorem 5.1 of [20] hence we obtain the lemma.

3 A denseness lemma

To prove Theorem 1 we need the support of the measure P_{L} in Lemma 1. For this we will consider the random element $L(s, \omega)$ and its support.

Let $a_{p} \in \gamma$. For $j=1, \ldots, n$, we define

$$
f_{j p}\left(s, a_{p}\right)= \begin{cases}-\log \left(1-\frac{\lambda_{j}(p) a_{p}}{p^{s}}+\frac{a_{p}^{2}}{p^{2 s-1}}\right), & \text { if } p \nmid \Delta_{j} \\ -\log \left(1-\frac{\lambda_{j}(p) a_{p}}{p^{s}}\right), & \text { if } p \mid \Delta_{j}\end{cases}
$$

and

$$
\underline{f}_{p}\left(s, a_{p}\right)=\left(f_{1 p}\left(s, a_{p}\right), \ldots, f_{n p}\left(s, a_{p}\right)\right)
$$

Lemma 2. Suppose that $\operatorname{rank}\left(B_{r n}\right)=n$. Then the set of all convergent series $\sum_{p} \underline{f}\left(s, a_{p}\right)$ is dense in $H^{n}\left(D_{V}\right)$.

For the proof of the lemma we will use the following statements.
Lemma 3. Let μ be a complex Borel measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with compact support contained in $\left\{s \in \mathbb{C}: \sigma>\sigma_{0}\right\}$, and let
$f(z)=\int_{\mathbb{C}} \mathrm{e}^{s z} \mathrm{~d} \mu(s), \quad z \in \mathbb{C}$.
If $f(z) \not \equiv 0, \quad$ then $\quad \limsup _{x \rightarrow \infty} \frac{\log |f(x)|}{x}>\sigma_{0}$.
The lemma is Lemma 5.2.2 of [5]. Its proof is also given [21], Lemma 6.4.10.
Lemma 4. Let $f(s)$ be a function of exponential type such that

$$
\limsup _{x \rightarrow \infty} \frac{\log |f(x)|}{x}>-1
$$

Then, for $l=1, \ldots, r$,

$$
\sum_{p \in P_{l}}|f(\log p)|=\infty
$$

The proof is based on the property (2) of the sets P_{l} as well as on the following lemma.

Lemma 5. Let $f(s)$ be an entire function of exponential type, and let $\left\{\lambda_{m}\right\}$ be a sequence of complex numbers. Let α, β and δ be positive real numbers such that
(i) $\limsup _{x \rightarrow \infty} \frac{\log |f(\pm i x)|}{x} \leq \alpha$;
(ii) $\left|\lambda_{m}-\lambda_{n}\right| \geq \delta|m-n|$;
(iii) $\lim _{m \rightarrow \infty} \frac{\lambda_{m}}{m}=\beta$;
(iv) $\alpha \beta<\pi$.

Then $\quad \limsup _{m \rightarrow \infty} \frac{\log \left|f\left(\lambda_{m}\right)\right|}{\left|\lambda_{m}\right|}=\limsup _{r \rightarrow \infty} \frac{\log |f(r)|}{r}$.

The lemma is a special version of the Bernstein theorem. The proof is given in [21].

Proof of Lemma 4. Since $f(s)$ is a function of exponential type, there exists an $\alpha>0$ such that

$$
\limsup _{x \rightarrow \infty} \frac{\log |f(\pm i x)|}{x} \leq \alpha .
$$

We fix a postitive number β such that $\alpha \beta<\pi$. Suppose, on the contrary, that for some $l, 1 \leq l \leq r$, the series

$$
\begin{equation*}
\sum_{p \in P_{l}}|f(\log p)| \tag{4}
\end{equation*}
$$

converges.
Define the subset A of the set \mathbb{N} of positive integers by

$$
A=\left\{m \in \mathbb{N}: \exists r \in\left(\left(m-\frac{1}{4}\right) \beta,\left(m+\frac{1}{4}\right) \beta\right] \quad \text { and } \quad|f(r)| \leq \mathrm{e}^{-r}\right\}
$$

Then we have that

$$
\begin{equation*}
\sum_{p \in P_{l}}|f(\log p)| \geq \sum_{m \notin A} \sum_{m}^{\prime}|f(\log p)| \geq \sum_{m \notin A} \sum_{m}^{\prime} \frac{1}{p} \tag{5}
\end{equation*}
$$

where \sum_{m}^{\prime} denotes a sum over prime numbers $p \in P_{l}$ such that

$$
\left(m-\frac{1}{4}\right) \beta<\log p \leq\left(m+\frac{1}{4}\right) \beta .
$$

In view of (2) we find

$$
\left.\begin{array}{rl}
\sum_{m}^{\prime} \frac{1}{p} & =\sum_{\substack{p \in P_{l}}} \frac{1}{p}-\sum_{\substack{p \in P_{l}}} \frac{1}{p} \\
& =\varkappa_{l} \log \left\{\frac{m+\frac{1}{4}}{m-\frac{1}{4}}+O\left(\left(m+\frac{1}{4}\right) \beta\right\} \quad p \leq \exp \left\{\left(m-\frac{1}{4}\right) \beta\right\}\right. \\
4
\end{array}\right)=\frac{\varkappa_{l}}{2 m}+O\left(\frac{1}{m^{\theta_{l}}}\right) .
$$

This, the convergence of the series (4) and (5) yield

$$
\sum_{m \notin A}\left(\frac{\varkappa_{l}}{2 m}+O\left(\frac{1}{m^{\theta_{l}}}\right)\right)=\sum_{m \notin A} \sum_{m}^{\prime} \frac{1}{p} \leq \sum_{p \in P_{l}}|f(\log p)|<\infty
$$

Hence, clearly, since $\varkappa_{l}>0$,

$$
\begin{equation*}
\sum_{m \notin A} \frac{1}{m}<\infty . \tag{6}
\end{equation*}
$$

Suppose that $A=\left\{a_{m} \in \mathbb{N}: a_{1}<a_{2}<\ldots\right\}$. Then (6) shows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{a_{m}}{m}=1 . \tag{7}
\end{equation*}
$$

Moreover, by the definition of the set A, there exists a sequence $\left\{\lambda_{m}\right\}$ such that

$$
\begin{equation*}
\left(a_{m}-\frac{1}{4}\right) \beta<\lambda_{m} \leq\left(a_{m}+\frac{1}{4}\right) \beta, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f\left(\lambda_{m}\right)\right| \leq \mathrm{e}^{-\lambda_{m}} . \tag{9}
\end{equation*}
$$

Therefore, by (7) and (8)

$$
\lim _{m \rightarrow \infty} \frac{\lambda_{m}}{m}=\beta
$$

and

$$
\left|\lambda_{m}-\lambda_{n}\right| \geq \beta\left|a_{m}-a_{n}\right|-\frac{1}{2} \beta \geq \delta|m-n|
$$

with some $\delta>0$, and in view of (9)

$$
\begin{equation*}
\limsup _{m \rightarrow \infty} \frac{\log \left|f\left(\lambda_{m}\right)\right|}{\left|\lambda_{m}\right|} \leq-1 . \tag{10}
\end{equation*}
$$

So, all hypotheses of Lemma 5 are satisfied, and we have by (10) that

$$
\limsup _{r \rightarrow \infty} \frac{\log |f(r)|}{r} \leq-1
$$

Howewer, this contradicts the hypothesis of the lemma. Hence, the series (4) must be divergent, and the lemma is proved.

Lemma 6. Let $\left\{\underline{f}_{m}\right\}=\left\{\left(f_{1 m}, \ldots, f_{n m}\right)\right\}$ be a sequence in $H^{n}\left(D_{V}\right)$ which satisfies:
(i) If μ_{1}, \ldots, μ_{n} are complex Borel measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with compact supports contained in D_{V} such that

$$
\sum_{m=1}^{\infty}\left|\sum_{j=1}^{n} \int_{\mathbb{C}} f_{j m} \mathrm{~d} \mu_{j}\right|<\infty
$$

then

$$
\int_{\mathbb{C}} s^{r} \mathrm{~d} \mu_{j}(s)=0 \quad \text { for } \quad j=1, \ldots, n \quad \text { and } \quad r=0,1,2, \ldots ;
$$

(ii) The series $\sum_{m=1}^{\infty} \underline{f}_{m}$ converges in $H^{n}\left(D_{V}\right)$;
(iii) For any compacts $K_{1}, \ldots, K_{n} \subset D_{V}$,

$$
\sum_{m=1}^{\infty} \sum_{j=1}^{n} \sup _{s \in K_{j}}\left|f_{j m}(s)\right|^{2}<\infty
$$

Then the set of all convergent series $\sum_{m=1}^{\infty} a_{m} \underline{f}_{m}$ with $a_{m} \in \gamma$ is dense in $H^{n}\left(D_{V}\right)$. The lemma is a special case of Lemma 5 from [10], where its proof is given. Now we are ready to prove Lemma 2.

Proof of Lemma 2. Let p_{0} be a fixed positive number. We define

$$
\underline{f}_{p}(s)= \begin{cases}\underline{f}_{p}(s, 1), & \text { if } \quad p>p_{0} \\ 0, & \text { if } \quad p \leq p_{0}\end{cases}
$$

First we observe that there exists a sequence $\left\{\hat{a}_{p}: \hat{a}_{p} \in \gamma\right\}$ such that the series

$$
\begin{equation*}
\sum_{p} \hat{a}_{p} \underline{f}_{p} \tag{11}
\end{equation*}
$$

converges in $H^{n}\left(D_{V}\right)$. Really, in view of (1)

$$
f_{j p}(s, 1)=\frac{\lambda_{j}(p)}{p^{s}}+r_{j p}(s)
$$

where $r_{j p}(s)=O\left(p^{1-2 \sigma}\right), j=1, \ldots, n$. Hence we have that for compact subsets K_{1}, \ldots, K_{n} of D_{V},

$$
\sum_{j=1}^{n} \sum_{p} \sup _{s \in K_{j}}\left|r_{j p}(s)\right|<\infty .
$$

In the proof that $L_{E_{j}}(s, \omega), j=1, \ldots, n$, is an $H\left(D_{V}\right)$-valued random element it is proved that the series

$$
\sum_{p} \frac{\lambda_{j}(p) \omega(p)}{p^{s}}, \quad j=1, \ldots, n
$$

converges uniformly on compact subsets of D_{V} for almost all $\omega \in \Omega$, see, for example, [19], where the Matsumoto zeta-functions were considered. Hence the series

$$
\sum_{p}\left(\frac{\lambda_{1}(p) \omega(p)}{p^{s}}, \ldots, \frac{\lambda_{n}(p) \omega(p)}{p^{s}}\right)
$$

converges in $H^{n}\left(D_{V}\right)$ for almost all $\omega \in \Omega$. Consequently, there exists a sequence $\left\{\hat{a}_{p}: \hat{a}_{p} \in \gamma\right\}$ such that the series (11) converges in $H^{n}\left(D_{V}\right)$.

Now we will prove that the set all convergent series

$$
\begin{equation*}
\sum_{p} a_{p} \underline{f}_{p}, \quad a_{p} \in \gamma, \tag{12}
\end{equation*}
$$

is dense in $H^{n}\left(D_{V}\right)$. To prove this, it suffices to show that the set of all convergent series

$$
\begin{equation*}
\sum_{p} b_{p} \underline{g}_{p}, \quad b_{p} \in \gamma, \tag{13}
\end{equation*}
$$

where $g_{p}=\hat{a}_{p} \underline{f}_{p}$, is dense in $H^{n}\left(D_{V}\right)$. For this we will apply Lemma 6 for the sequence $\left\{\underline{g}_{p}\right\}$.

By the definition of \underline{g}_{p} we have that the series $\sum_{p} \underline{g}_{p}$ converges in $H^{n}\left(D_{V}\right)$. Moreover, in virtue of (1), for any compacts $K_{1}, \ldots, K_{n} \subset D_{V}$,

$$
\sum_{p} \sum_{j=1}^{n} \sup _{s \in K_{j}}\left|g_{j p}(s)\right|^{2}<\infty .
$$

Therefore, the hypotheses ii) and iii) of Lemma 6 are satisfied, and it remains to verify the hypothesis i).

Let μ_{1}, \ldots, μ_{n} be complex Borel measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with compact supports contained in D_{V} such that

$$
\begin{equation*}
\sum_{p}\left|\sum_{j=1}^{n} \int_{\mathbb{C}} b_{p} g_{j p} \mathrm{~d} \mu_{j}\right|<\infty \tag{14}
\end{equation*}
$$

Let $D_{0 V}=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1, \quad|t|<V\right\}$, and let $h(s)=s-\frac{1}{2}$. Define $\mu_{j} h^{-1}(A)=\mu_{j}\left(h^{-1} A\right), A \in \mathcal{B}(\mathbb{C}), j=1, \ldots, n$. Then, clearly, $\mu_{j} h^{-1}$ is a complex measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with compact support contained in $D_{0 V}, j=$ $1, \ldots, n$. This and (14) show that, for every $l=1, \ldots, r$,

$$
\begin{equation*}
\sum_{p \in P_{l}}\left|\sum_{j=1}^{n} b_{l j} \int_{\mathbb{C}} p^{-s} \mathrm{~d} \mu_{j} h^{-1}(s)\right|<\infty \tag{15}
\end{equation*}
$$

We put

$$
\nu_{l}(s)=\sum_{j=1}^{n} b_{l j} \mu_{j} h^{-1}(s)
$$

Then (15) yields, for every $l=1, \ldots, r$,

$$
\sum_{p \in P_{l}}\left|\rho_{l}(\log p)\right|<\infty
$$

where

$$
\rho_{l}(z)=\int_{\mathbb{C}} \mathrm{e}^{-s z} \mathrm{~d} \nu_{l}(s), \quad z \in \mathbb{C} .
$$

Clearly, we have that, for $r>0$,

$$
\left|\rho_{l}\left(r \mathrm{e}^{i \varphi}\right)\right| \leq \mathrm{e}^{V r} \int_{\mathbb{C}}\left|\mathrm{d} \nu_{l}(s)\right|
$$

Hence

$$
\limsup _{r \rightarrow \infty} \frac{\log \left|\rho_{l}\left(r \mathrm{e}^{i \varphi}\right)\right|}{r} \leq V
$$

uniformly in $\varphi, 0<\varphi \leq \pi$. This shows that $\rho_{l}(z), l=1, \ldots, r$, is a function of exponential type.

In view of Lemmas 3 and 4 we find that $\rho(z) \equiv 0$ for every $l=1, \ldots, r$. Hence it follows by differentiation that

$$
\begin{equation*}
\int_{\mathbb{C}} s^{k} \mathrm{~d} \nu_{l}(s)=0 \tag{16}
\end{equation*}
$$

for all $l=1, \ldots, r$ and $k=0,1,2, \ldots$. Now let

$$
x_{j}=x_{j}(k)=\int_{\mathbb{C}} s^{k} \mathrm{~d} \mu_{j} h^{-1}(s) .
$$

Then the definition of $\nu_{j}(s)$ and (16) give the following system of equations

$$
\sum_{j=1}^{n} b_{l j} x_{j}=0, \quad l=1, \ldots, r .
$$

Since $\operatorname{rank}\left(B_{r n}\right)=n$, the later system has only a solution $x_{j}=0, j=1, \ldots, n$. Thus we have that

$$
\int_{\mathbb{C}} s^{k} \mathrm{~d} \mu_{j} h^{-1}(s)=0
$$

for all $j=1, \ldots, n$ and $k=0,1,2, \ldots$. From this it follows that

$$
\int_{\mathbb{C}} s^{k} \mathrm{~d} \mu_{j}(s)=0
$$

for all $j=1, \ldots, n$ and $k=0,1,2, \ldots$. This shows that all hypotheses of Lemma 6 hold, therefore the set of all convergent series (13) is dense in $H^{n}\left(D_{V}\right)$, hence the same is true for the set of all convergent series (12).

Now let $\underline{x}(s)=\left(x_{1}(s), \ldots, x_{n}(s)\right)$ be an arbitrary element of $H^{n}\left(D_{V}\right)$, K_{1}, \ldots, K_{n} be compact subsets of D_{V}, and let ε be an arbitrary positive number. We fix p_{0} such that

$$
\begin{equation*}
\sum_{j=1}^{n} \sup _{s \in K_{j}} \sum_{p>p_{0}} \sum_{k=2}^{\infty} \frac{\left|\lambda_{j}(p)\right|^{k}}{k p^{k \sigma}}<\frac{\varepsilon}{4} . \tag{17}
\end{equation*}
$$

The denseness of all convergent series implies the existence of the sequence $\left\{\widetilde{a}_{m}\right.$: $\left.\widetilde{a}_{m} \in \gamma\right\}$ such that

$$
\begin{equation*}
\sup _{1 \leq j \leq n} \sup _{s \in K_{j}}\left|\underline{x}(s)-\sum_{p \leq p_{0}} \underline{f}_{p}(s)-\sum_{p \geq p_{0}} \widetilde{a}_{p} \underline{f}_{p}(s)\right|<\frac{\varepsilon}{2} \tag{18}
\end{equation*}
$$

We take

$$
a_{p}= \begin{cases}1, & \text { if } \quad p \leq p_{0} \\ \widetilde{a}_{p}, & \text { if } \quad p>p_{0}\end{cases}
$$

Then (17) and (18) yield

$$
\begin{aligned}
\sup _{1 \leq j \leq n} & \sup _{s \in K_{j}}\left|\underline{x}(s)-\sum_{p} \underline{f}_{p}\left(s, a_{p}\right)\right| \\
& =\sup _{1 \leq j \leq n} \sup _{s \in K_{j}}\left|\underline{x}(s)-\sum_{p \leq p_{0}} \underline{f}_{p}\left(s, a_{p}\right)-\sum_{p>p_{0}} \underline{f}_{p}\left(s, a_{p}\right)\right| \\
\leq & \sup _{1 \leq j \leq n} \sup _{s \in K_{j}}\left|\underline{x}(s)-\sum_{p \leq p_{0}} \underline{f}_{p}(s)-\sum_{p \geq p_{0}} \widetilde{a}_{p} \underline{f}_{p}(s)\right| \\
& +\sup _{1 \leq j \leq n} \sup _{s \in K_{j}}\left|\sum_{p>p_{0}} \widetilde{a}_{p} \underline{f}_{p}(s)-\sum_{p>p_{0}} \underline{f}_{p}\left(s, \widetilde{a}_{p}\right)\right|<\varepsilon .
\end{aligned}
$$

Since $\underline{x}(s), K_{1}, \ldots, K_{n}$ and ε are arbitrary, the lemma is proved.

4 The support of P_{L}

Let

$$
S=\left\{f \in H\left(D_{V}\right): f(s) \neq 0 \quad \text { or } \quad f(s) \equiv 0\right\}
$$

Lemma 7. The support of the measure P_{L} is the set S^{n}.
The proof of Lemma 7 relies on Lemma 2, the Hurwitz theorem and the following statement. We denote by S_{X} the support of the random element X.

Lemma 8. Let $\left\{X_{n}\right\}$ be a sequence of independent $H^{n}\left(D_{V}\right)$-valued random elements such that the series $\sum_{m=1}^{\infty} X_{m}$ converges almost surely. Then the support
of the sum of the later series is the closure of the set of all $\underline{f} \in H^{n}\left(D_{V}\right)$ which may be written as a convergent series

$$
\underline{f}=\sum_{m=1}^{\infty} \underline{f}_{m}, \quad \underline{f}_{m} \in S_{X_{m}} .
$$

The lemma is a special case of Lemma 4 from [10], where its proof can be find.

Proof of Lemma 7. Since $\{\omega(p)\}$ is a sequence of independent random variables, $\left\{\underline{f}_{p}(s, \omega(p))\right\}$ is a sequence of independent $H^{n}\left(D_{V}\right)$-valued random elements defined on the probability space $\left(\mathbb{C}, \mathcal{B}(\mathbb{C}), m_{H}\right)$. The support of each $\omega(p)$ is the unit circle γ. Therefore, the support of $\underline{f}_{p}(s, \omega(p))$ is the set

$$
\left\{\underline{f} \in H\left(D_{V}\right): \underline{f}(s)=\underline{f}(s, a), a \in \gamma\right\} .
$$

Hence by Lemma 8 the support of the $H^{n}\left(D_{V}\right)$-valued random element

$$
\begin{equation*}
\left(\log L_{E_{1}}(s, \omega), \ldots, \log L_{E_{n}}(s, \omega)\right) \tag{19}
\end{equation*}
$$

is the closure of the set of all convergent series $\sum_{p} \underline{f}_{p}\left(s, a_{p}\right)$. However, by Lemma 2, the latter set is dense in $H^{n}\left(D_{V}\right)$. Hence the support of the random element (19) is $H^{n}\left(D_{V}\right)$. The map $h: H^{n}\left(D_{V}\right) \rightarrow H^{n}\left(D_{V}\right)$ given by the formula

$$
h\left(f_{1}(s), \ldots, f_{n}(s)\right)=\left(\mathrm{e}^{f_{1}(s)}, \ldots, \mathrm{e}^{f_{n}(s)}\right), \quad f_{1}, \ldots, f_{n} \in H^{n}\left(D_{V}\right)
$$

is a continuous function which sends the element (19) to $L(s, \omega)$, and $H^{n}\left(D_{V}\right)$ to $(S \backslash\{0\})^{n}$. Therefore, the support S_{L} of the random element $L(s, \omega)$ contains the set $(S \backslash\{0\})^{n}$. However, the support of a random element is a closed set. In view of the Hurwitz theorem, see, for example, [22], Section 3.4.5, the closure of $S \backslash\{0\}$ is S. Thus, $S_{L} \supseteq S^{n}$. On the other the factors of the product defining $L_{E_{j}}(s, \omega)$, $j=1, \ldots, n$, do not vanish for $s \in D_{V}$. Hence $L_{E_{j}}(s, \omega), j=1, \ldots, n$, is an almost surely convergent product of non-vanishing factors, and therefore, the Hurwitz theorem shows that $L_{E_{j}}(s, \omega) \in S, j=1, \ldots, s$, almost surely. Hence the relation $S_{L} \subset S^{n}$ holds, and we have that $S_{L}=S^{n}$.

5 Proof of Theorem 1

Proof of Theorem 1 is based on Lemmas 1 and 7 as well as on the Mergelyan theorem which is the following lemma.

Lemma 9. Let $K \subset \mathbb{C}$ be a compact subset with connected complement, and let $f(s)$ be a continuous on K function which is analytic in the interior of K. Then $f(s)$ can be approximated uniformly on K by polynomials in s.

Proof of the lemma can be found in [23].
Proof of Theorem 1. Clearly, there exists $V>0$ such that the sets K_{1}, \ldots, K_{n} are contained in D_{V}. First we suppose that the functions $f_{1}(s), \ldots, f_{n}(s)$ are non-zero analytically continuable to D_{V}. Let $G=\left\{\left(g_{1}, \ldots, g_{n}\right):\left(g_{1}, \ldots, g_{n}\right) \in\right.$ $\left.H^{n}\left(D_{V}\right)\right\}$, and

$$
\sup _{1 \leq j \leq n} \sup _{s \in K_{j}}\left|g_{j}(s)-f_{j}(s)\right|<\varepsilon .
$$

The set G is open. Therefore, the properties of the weak convergence of probability measures [20] and Lemma 1 show that

$$
\liminf _{T \rightarrow \infty} \nu_{T}\left(\left(L_{E_{1}}(s+i \tau), \ldots, L_{E_{n}}(s+i \tau)\right) \in 0\right) \geq P_{L}(G) .
$$

However, the properties of the support and Lemma 7 show that $P_{L}(G)>0$. Therefore, in this case

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \nu_{T}\left(\sup _{1 \leq j \leq n} \sup _{s \in K_{j}}\left|L_{E_{j}}(s+i \tau)-f_{j}(s)\right|<\varepsilon\right)>0 \tag{20}
\end{equation*}
$$

Now we suppose that the functions $f_{1}(s), \ldots, f_{n}(s)$ satisfy the hypotheses of Theorem 1. By Lemma 9 there exist polynomials $p_{1}(s), \ldots, p_{n}(s)$ which are non-vanishing on K_{1}, \ldots, K_{n}, respectively, such that

$$
\begin{equation*}
\sup _{1 \leq j \leq n} \sup _{s \in K_{j}}\left|p_{j}(s)-f_{j}(s)\right|<\frac{\varepsilon}{4} \tag{21}
\end{equation*}
$$

Each polynomial $p_{j}(s), j=1, \ldots, n$, has finitely many zeros. Therefore, there exitsts a region G_{j} with connected complement such $K_{j} \subset G_{j}$ and $p_{j}(s) \neq 0$ for $s \in G_{j}, j=1, \ldots, n$. Thus we can consider a continuouns branch of $\log p_{j}(s)$
on G_{j}, and $\log p_{j}(s)$ is analytic function in the interior of $G_{j}, j=1, \ldots, n$. By Lemma 9 again there exist polynomials $g_{1}(s), \ldots, g_{n}(s)$ such that

$$
\sup _{1 \leq j \leq n} \sup _{s \in K_{j}}\left|p_{j}(s)-\mathrm{e}^{q_{j}(s)}\right|<\frac{\varepsilon}{4} .
$$

This and (21) show that

$$
\begin{equation*}
\sup _{1 \leq j \leq n} \sup _{s \in K_{j}}\left|f_{j}(s)-\mathrm{e}^{q_{j}(s)}\right|<\frac{\varepsilon}{2} \tag{22}
\end{equation*}
$$

However, $\mathrm{e}^{q_{j}(s)}, j=1, \ldots, s$. Therefore, in view of (20),

$$
\liminf _{T \rightarrow \infty} \nu_{T}\left(\sup _{1 \leq j \leq n} \sup _{s \in K_{j}}\left|L_{E_{j}}(s+i \tau)-\mathrm{e}^{q_{j}(s)}\right|<\frac{\varepsilon}{2}\right)>0
$$

This together with (22) proves the theorem.

References

1. Breuil C., Conrad B., Diamond F., Taylor R. "On the modularity of ellipitic curves over \mathbb{Q} : wild 3-adic exercises", J. Amer. Math. Soc., 14, p. 843-939, 2001
2. Garbaliauskienė V., Laurinčikas A. Some analytic properties for L-functions of elliptic curves, Preprint 16, Vilnius University, Department of Math. and Inform., 2003
3. Voronin S.M. "On functional independence of Dirichlet L-functions", Acta Arith., 27, p. 493-503, 1975 (in Russian)
4. Gonek S.M. Analytic properties of zeta and L-functions, Ph.D. Thesis, University of Michigan, 1979
5. Bagchi B. The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph.D. Thesis, Calcutta, Indian Statistical Institute, 1981
6. Bagchi B. "A joint universality theorem for Dirichlet L-functions," Math. Z., 181, p. 319-334, 1982
7. Laurinčikas A. "On zeros of linear combinations of Dirichlet series", Liet. Matem. Rink., 26, p. 468-477, 1986 (in Russian); Lith. Math. J., 26, p. 244-251, 1986
8. Laurinčikas A., Matsumoto K. "The joint universality and the functional independence for Lerch zeta-functions", Nagoya Math. J., 157, p. 211-227, 2000
9. Laurinčikas A. "On the zeros of linear combinations of Matsumoto zetafunctions", Liet. Matem. Rink., 38, p.185-204, 1998 (in Russian); Lith. Math. J., 38, p. 144-159, 1998
10. Laurinčikas A., Matsumoto K. "The joint universality of zeta-functions attached to certain cusp forms", Fiz. matem. fak. moksl. sem. darbai, 5, p. 58-75, Šiauliai University, 2002
11. Šleževičiene R. "The joint universality for twists of Dirichlet series with multiplicative coefficients", In: Analytic and Probab. Methods in Number Theory, Proc. of third Intern. Conf. in konow of J. Kubilius, Palanga 2001, Dubickas A. et al. (Eds.), TEV, Vilnius, p. 303-319, 2002
12. Laurinčikas A., Matsumoto K. "The joint universality of twisted automorphic L functions", J. Math. Soc. Japan, 56(3), p. 923-939, 2004 (to appear)
13. Laurinčikas A. "The joint universality for general Dirichlet series", Annales Univ. Sci. Budapest., Sect. Comp., 22, p. 235-251, 2003
14. Laurinčikas A. "The joint universality of general Dirichlet series", Izv. ANR, ser. matem. (in Russian) (to appear)
15. Laurinčikas A. "The universality of zeta-functions", Acta Appl. Math., 78, p. 251271, 2003
16. Grosse-Erdmann K.-G. "Universal families and hypercyclic operators", Bull Amer. Math. Soc., 36, p. 345-381, 1999
17. Steuding J. Value-distribution of L-functions and allied zeta-functions - with an emphasis on aspects of universality, Habilitationsschift, J.W.Goethe-Universitat Frankfurt, 2003
18. Matsumoto K. "Value-distribution of zeta-functions", Lecture Notes in Math., 1434, p. 178-187, Springer, 1990
19. Laurinčikas A. "On the Matsumoto zeta-function", Acta Arith., 84, p. 1-16, 1998
20. Billingsley P. Convergence of probability measures, New York, John Wiley, 1968
21. Laurincikas A. Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, Boston, London, 1996
22. Titchmarsh E.C. The Theory of Functions, Oxford University Press, Oxford, 1939
23. Walsh J.L. "Interpolation and Approximation by Rational Functions in the Complex Domain", Amer. Math. Soc. Collog. Publ., 20, 1960

[^0]: *Partially supported by grant from Lithuanian Foundation of Studies and Science.

