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1 Introduction

Borwein’s method [3] to compute the Riemann zeta-function is based on the alternating series (1.2) conver-
gence. It applies to complex numbers s = σ + it with σ > 1/2.

Let

dnk = n

k∑
i=0

(n+ i− 1)!4i

(n− i)!(2i)!
, n ∈ N, k = 0, . . . , n, (1.1)

then the Riemann zeta-function

ζ(s) =
1

dnn(1− 21−s)

n−1∑
k=0

(−1)k(dnn − dnk)
(k + 1)s

+ γn(s). (1.2)

Here

|γn(s)| 6
3

(3 +
√
8)n

(1 + 2|t|)e
π|t|
2

|1− 21−s|
.

It is difficult to compute coefficients dnk for large n directly (note factorials in definition (1.1)), hence
in [1] we have introduced a modification of the algorithm (1.3)-(1.5) and proposed an asymptotic expression
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for the coefficients of the method. The asymptotic modification of the Borwein algorithm proved to be more
than three times faster than the original one (see [1]).

Let cnk = 1− dnk/dnn, k = 0, . . . , n− 1. Now

ζ(s) =

n−1∑
k=0

(−1)kcnk
(k + 1)s

+ γn(s). (1.3)

Let us define

uni = n
(n+ i− 1)!4i

(n− i)!(2i)!
, n ∈ N, i = 0, . . . , n. (1.4)

Now we can calculate dnk recurrently, i.e. dnk = dn,k−1 + unk, dn0 = 1. This way we obtain that

cnk = 1−
∑k

i=0 uni∑n
i=0 uni

= 1−
k∑
i=0

ani,

where

ank =
unk∑n
i=0 uni

. (1.5)

Let An be an integral random variable with the probability mass function

P (An = k) = ank, k = 0, . . . , n. (1.6)

and the cumulative distribution function Fn(x). In [1] we have established limit theorems for ank coefficients.
Let us denote by Φ(x) the cumulative distribution function of the standard normal distribution, and by

Φµ,σ(x) the cumulative distribution function of the normal distribution with the mean µ and the standard
deviation σ,

Φ(x) =
1√
2π

∫ x

−∞
e−

1

2
t2dt, Φµ,σ(x) = Φ

(
x− µ
σ

)
, x ∈ R.

This paper is organized as follows. The first part is the introduction. In Section 2, we introduce limit
theorems for coefficients of the modified Borwein method. Section 3 is devoted to the presentation of the
alternative proof of the limit theorem.

Throughout this paper, all limits, whenever unspecified, will be taken as n→∞.

2 Limit theorems for coefficients of the modified Borwein method

In [1] we have received the following central limit theorem for coefficients of the modified Borwein method.

Theorem 1. (I. Belovas, L. Sakalauskas) Suppose that Fn(x) is the cumulative distribution function of the
random variable An (1.6), then

|Fn(x)− Φµn,σn(x)| = O

(
1√
n

)
,

uniformly with respect to x, x ∈ R.

µn =
n√
2

(
1 +

33

144n2
+O

(
1

n3

))
, σ2n =

√
2

8
n

(
1 +O

(
1

n3

))
.
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The theorem was proved in a ”straightforward” way, using the Laplace method, plus it involved the Hwang
lemma [1, 4]. Alternative perspective on the coefficeints of the modified Borwein method reveals the con-
nection with combinatorial numbers and calls for more subtle approach, taking benefits from the results of
asymptotic enumeration theory [5]. We will use a general central limit theorem by E. A. Bender (Theorem
2), based on the nature of the generating function

∑
unkz

nwk, to obtain a different proof of the central limit
theorem for coefficients (1.5) of the modified Borwein method (Theorem 3, (3.10)).

Theorem 2. (E. A. Bender [2]) Let f(z, w) have a power series expansion

f(z, w) =
∑
n,k>0

unkz
nwk (2.1)

with non-negative coefficients. Suppose there exists

(i) an A(s) continuous and non-zero near 0,

(ii) an r(s) with bounded third derivative near 0,

(iii) a non-negative integer m, and

(iv) ε, δ > 0 such that

(
1− z

r(s)

)m
f(z, es)− A(s)

1− z/r(s)
(2.2)

is analytic and bounded for

|s| < ε, |z| < |r(0)|+ δ. (2.3)

Define

η = −r
′(0)

r(0)
, θ2 = η2 − r′′(0)

r(0)
. (2.4)

If θ 6= 0, then

lim
n→∞

sup
x

∣∣∣∣∣∣
∑

k6ϑnx+ηn

ank − Φ(x)

∣∣∣∣∣∣ = 0 (2.5)

holds with ηn = nη and ϑ2n = nϑ2.

3 Alternative proof for the limit theorem for coefficients of the modified Borwein method

First we obtain an explicit formula (3.2) for the generating function for coefficients (1.4) of the modified
Borwein method,

∑
unkz

nwk (cf. (2.1)). To get this explicit formula, we construct and solve a certain linear
partial differential equation of the second order (3.6), satisfied by the generating function. Let us formulate an
auxiliary lemma identifying the generating function.

Lemma 1. Suppose that

unk =


1 n = k = 0,

0 k > n,

n (n+k−1)!4k
(n−k)!(2k)! otherwise,

(3.1)
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then the generating function of coefficients (3.1)

S(x, y) =
∑
n,k>0

unkx
nyk =

1

2

(
1 +

1

2x−1Θ(y)− 1
− 1

2xΘ(y)− 1

)
. (3.2)

Here

Θ(y) = y +
√
y + y2 + 1/2. (3.3)

Proof The definition (3.1) gives us the recurrent expression

unk = un,k−1
4(n+ k − 1)(n− k + 1)

(2k − 1)(2k)
. (3.4)

Consider the generating function (3.2),

S(x, y) =

∞∑
n=0

∞∑
k=0

unkx
nyk.

Taking into account that un0 = 1, we obtain

S(x, y) =

∞∑
n=0

un0x
n +

∞∑
n=0

∞∑
k=1

un,k−1
4(n+ k − 1)(n− k + 1)

(2k − 1)(2k)
xnyk =

=
1

1− x
+ 4

∞∑
n=0

∞∑
k=0

un,k
(n+ k)(n− k)
(2k + 1)(2k + 2)

xnyk+1.

(3.5)

Thus,

S(x, y) =
1

1− x
−
∞∑
n=0

∞∑
k=0

un,k
4k2 − 4n2

4k2 + 6k + 2
xnyk+1 =

=
1

1− x
−
∞∑
n=0

∞∑
k=0

un,kx
nyk+1 +

3

2

∞∑
n=0

∞∑
k=0

un,k
k + 1

xnyk+1 +

∞∑
n=0

∞∑
k=0

un,k(4n
2 − 1)

(2k + 1)(2k + 2)
xnyk+1

=
1

1− x
− yS(x, y) + 3

2

∫ y

0
S(x, t)dt+

∫ √y
0

∫ u

0
4xSx(x, t

2) + 4x2Sxx(x, t
2)− S(x, t2)dtdu.

It gives us the linear partial differential equation of the second order,

x2Sxx − (y + y2)Syy + xSx − (1/2 + y)Sy = 0. (3.6)

Note that, in view of (3.5), we have initial conditions

S(x, 0) =
1

1− x
, Sy(x, 0) = 0. (3.7)

Introducing new variables {
ρ = log x,

τ = logΘ(y) + log 2,
(3.8)
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and applying the chain rule,

Sx = Sρρx = Sρx
−1, Sxx = Sρρx

−2 − Sρx−2,

Sy = Sττy = Sτ
1√
y2 + y

, Syy = Sττ
1

y2 + y
− Sτ

y + 1/2√
(y2 + y)3

,

we reduce the original equation (3.6) to the wave equation Sττ = Sρρ with initial conditions

S(ρ, 0) =
1

1− eρ
, Sτ (ρ, 0) = 0 (3.9)

and d’Alembert’s solution

S(ρ, τ) =
1

2

(
1

1− eρ−τ
+

1

1− eρ+τ

)
.

By (3.8), we have

S(x, y) =
1

2

1

1− x/(2Θ(y))
+

1

2

1

1− 2xΘ(y)
=

1

2

(
2x−1Θ(y) + 1− 1

2x−1Θ(y)− 1
− 1

2xΘ(y)− 1

)
,

yielding us the statement of the lemma.
Now we can proceed with the alternative proof for the central limit theorem.

Theorem 3. Coefficients ank (1.5) satisfy a central limit theorem, i.e.,

lim
n→∞

sup
x

∣∣∣∣∣∣
∑

k6σnx+µn

ank − Φ(x)

∣∣∣∣∣∣ = 0 (3.10)

holds with µn = nµ and σ2n = nσ2. Here

µ = 1/
√
2, σ2 =

√
2/8. (3.11)

Proof By (3.2) of Lemma 1 and (2.1) of Theorem 2, the generating function of coefficients unk (1.4)

f(z, es) =
1

2

(
1 +

1

2z−1Θ(s)− 1
− 1

2zΘ(s)− 1

)
=

4Θ2(s)− 4z−1Θ(s) + 1

2(2z−1Θ(s)− 1)(2zΘ(s)− 1)
. (3.12)

Here

Θ(s) = es +
√
es + e2s + 1/2. (3.13)

Crucial part of the proof is the selection of r(s) and A(s) functions. Let r(s) (cf. Theorem 2) be a root of the
function

h(z, es) = (2z−1Θ(s)− 1)(2zΘ(s)− 1).

This function has two roots, at z1 = 2Θ(s) and z2 = (2Θ(s))−1.
Let us denote

r1(s) = 2Θ(s), r2(s) =
1

2Θ(s)
. (3.14)
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Calculating the first derivative, we obtain

r′1(s) =
2Θ(s)es√
es + e2s

,

and

r′1(s)

r1(s)
=

√
es

es + 1
. (3.15)

Thus,

r′1(0)

r1(0)
=

1√
2
> 0.

Noticing that

log r2(s) = − log r1(s),

we get

r′2(s)

r2(s)
= −r

′
1(s)

r1(s)
, (3.16)

and
r′2(0)

r2(0)
= − 1√

2
< 0. (3.17)

By Theorem 2, µn = nµ and µ = −r′(0)/r(0) (cf. (2.4))-(2.5)). Note that by definitions (1.4)-(1.5),
numbers unk and, hence, numbers ank are positive. Thus, to obtain positive mean µ, we choose the root r2(s),
corresponding the negative ratio (3.17).

By (3.13) and (3.14), we have

r(s) = r2(s) =
1

2Θ(s)
=

1

2(es +
√
es + e2s + 1/2)

. (3.18)

Next, by (3.15) and (3.16), we obtain

r′(s)

r(s)
= −

√
es

es + 1
. (3.19)

Thus,

r(0) = 3− 2
√
2,

r′(0)

r(0)
= − 1√

2
. (3.20)

Calculating the second derivative, we get

r′′(s) = −

(
r(s)

√
es

es + 1

)′
= −r′(s)

√
es

es + 1
− r(s)

(√
es

es + 1

)′
.

Hence,

r′′(s)

r(s)
= −r

′(s)

r(s)

√
es

es + 1
−

(√
es

es + 1

)′
=

es

es + 1
− 1

2

√
es

(es + 1)3
, (3.21)
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and

r′′(0)

r(0)
=

1

2
−
√
2

8
. (3.22)

As E. A. Bender indicates [2], the easiest way for verifying (2.2)-(2.3) condition of Theorem 2 is to show that
f(z, es) is continuous for s 6 ε and z in the set

{|z| 6 |r(0) + δ|} ∩ {|z − r(s)| > η} (3.23)

for some η. Since this is a compact set, f and hence (2.2) are bounded here. For |z−r(s)| 6 η we can expand
f(z, es) in a Laurent series about r(s) and show that the coefficient of the error term is bounded.

Let us consider the function A(s) from (2.2) of Theorem 2 as the limit

A(s) = lim
z→r(s)

f(z, es)

(
1− z

r(s)

)m+1

. (3.24)

Here m+ 1 is the order of the pole. So, if the pole is simple, then m = 0. Calculating A(s) we obtain

A(s) = lim
z→r(s)

1

2

(
1 +

1

2z−1Θ(s)− 1
− 1

2zΘ(s)− 1

)(
1− z

r(s)

)
=

= lim
z→r(s)

1

2

(
1 +

1

z−1r−1(s)− 1
− 1

zr−1(s)− 1

)(
1− z

r(s)

)
=

1

2
.

(3.25)

The function (
1− z

r(s)

)m
f(z, es)− A(s)

1− z/r(s)
=

Θ(s)

2Θ(s)− z
(3.26)

is analytic and bounded for

|s| < ε, |z| < |r(0)|+ δ = 3− 2
√
2 + δ. (3.27)

Thus, conditions (i)-(iv) of Theorem 2 are satisfied.
Next, let us calculate the mean and the variance. By (2.4),

µ = −r
′(0)

r(0)
, σ2 = µ2 − r′′(0)

r(0)
. (3.28)

Taking into account (3.20) and (3.22), we obtain

µ = 1/
√
2, σ2 =

√
2/8. (3.29)

We have σ 6= 0, hence (2.5) yields us the statement of the theorem.
Remark. The local limit theorem by E. A. Bender (Theorem 3 in [2]) allows us to prove corresponding

local limit theorem, for coefficients unk.
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