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1 Introduction

In order to unveil the detailed mechanism of electroweak symmetry breaking it is crucial

to measure the self-couplings of the boson with mass 125 GeV discovered in 2012 at the

LHC [1, 2]. In this paper we call that boson h1. The Standard Model (SM) predicts h1 to

be a scalar and predicts its cubic and quartic couplings g3 and g4, which we define through

L = · · · − g3 (h1)
3 − g4 (h1)

4 , (1.1)
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to be gSM3 ≈ 32 GeV and gSM4 ≈ 0.032, respectively. However, in Nature the scalar sector

may be more complicated than in the SM [3] and then g3 and g4 might have very different

values. In this paper we survey the allowed values of g3 and g4 in three extensions of the SM:

• The SM plus two real, neutral scalar singlets and with a reflection symmetry on each

of those singlets. Let SM2S denote this model, which we treat in section 2.

• The two-Higgs-doublet model (2HDM), which is the focus object of section 3.

• The 2HDM with the addition of one real, neutral scalar singlet and with a reflection

symmetry of that singlet. This model, which we dubb the 2HDM1S, is dealt with in

section 4.

Our ingredients for bounding g3 and g4 in each of these models are:

• The bounded-from-below (BFB) and the unitarity conditions on the quartic part of

the scalar potential of each model. We apply those conditions directly in the basis

for the scalar doublets where only one of them has vacuum expectation value (VEV).

• The experimental bound on the oblique parameter T [4].

• The (approximate) bound cos ϑ > 0.9 on the h1 component cosϑ of the scalar doublet

with nonzero VEV.

Other authors before us [5]–[9–12] have used the BFB and unitarity constraints in order to

bound the scalar masses and couplings of the 2HDM. However, they have done it in the con-

text of a constrained version of the model, viz. the 2HDM with a reflection symmetry acting

on one of the scalar doublets, leading to λ6 = λ7 = 0 in the scalar potential of equation (3.1).

In this paper we deal on the fully general 2HDM. We enforce the BFB and unitarity con-

straints in the so-called Higgs basis, i.e. the basis where only one of the doublets has VEV.

Since that basis exists for every 2HDM, we thus obtain results that apply to every 2HDM.

At present there are only indirect, very rough bounds on g3. Using the Standard Model

Effective Theory developed in refs. [13, 14] and experimental data [15], ref. [16] has found

that −8.4 < g3
/
gSM3 < 13.4. From the contribution of g3 to the oblique parameters S

and T , ref. [17] derived −14.0 < g3
/
gSM3 < 17.4. The authors of ref. [18] obtained firstly

−9.4 < g3
/
gSM3 < 17.0 and then [19] −8.2 < g3

/
gSM3 < 13.7. The partial-wave unitarity of

h1h1 → h1h1 scattering has been used [20] to obtain
∣∣g3 /gSM3 ∣∣ . 6.5 and

∣∣g4 /gSM4 ∣∣ . 65.

In an analysis of a specific three-Higgs-doublet model, ref. [21] has found that in that model

−1.3 < g3
/
gSM3 < 20.0 and 1.05 < g4

/
gSM4 < 1.6.

The measurement of g3 should be possible at future colliders, and may even eventually

become possible at the LHC [22, 23]. Reference [24] concluded that one may be able to

measure g3 provided −0.72 < g3
/
gSM3 < 7.05. Unfortunately, measuring g4 is probably

more challenging [25, 26].
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1.1 g3 and g4 in the SM

The Standard Model has only one scalar doublet φ1. We write it

φ1 =

(
G+

v +
(
H + iG0

) /√
2

)
, (1.2)

where v is the VEV, which is real and positive, and G+ and G0 are (unphysical) Goldstone

bosons. In the SM H coincides with the observed scalar h1. The scalar potential is

V = µ1φ
†
1φ1 +

λ1
2

(
φ†1φ1

)2
. (1.3)

The minimization condition of V is µ1 = −λ1v2. Therefore, in the unitary gauge where

G± and G0 do not exist,

V = −λ1v
4

2
+ λ1v

2H2 +
λ1v√

2
H3 +

λ1
8
H4. (1.4)

The second term in the right-hand side of equation (1.4) indicates that the squared mass

M1 of the observed scalar is given by M1 = 2λ1v
2. Therefore,

V = −M1v
2

4
+
M1

2
(h1)

2 +
M1

2
√

2v
(h1)

3 +
M1

16v2
(h1)

4 (1.5a)

= · · ·+ gSM3 (h1)
3 + gSM4 (h1)

4 . (1.5b)

Using the approximate experimental values

M1 = (125 GeV)2 , (1.6a)

v = 174 GeV, (1.6b)

one gathers from equation (1.5a) that

gSM3 =
M1

2
√

2v
= 31.7 GeV, (1.7a)

gSM4 =
M1

16v2
= 0.0323. (1.7b)

It should be noted that the sign of g3 implicitly depends on the sign of h1. We fix that

sign by noting that the covariant derivative of φ1 gives rise to a term

L = · · ·+ g2

2
W+
µ W

µ−
(
v +

H√
2

)2

(1.8a)

= · · ·+ g2v√
2
W+
µ W

µ−H. (1.8b)

Thus, the coupling W+
µ W

µ−h1, viz. g2v
/√

2, is positive.
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2 The Standard Model plus two singlets

We consider the Standard Model with the addition of two real SU(2)×U(1)-invariant scalar

fields S1 and S2.
1 We assume two symmetries S1 → −S1 and S2 → −S2. We call this

model the SM2S.2 The scalar potential is

V = V2 + V4, (2.1a)

V2 = µ1φ
†
1φ1 +m2

1S
2
1 +m2

2S
2
2 , (2.1b)

V4 =
λ1
2

(
φ†1φ1

)2
+
ψ1

2
S4
1 +

ψ2

2
S4
2 + ψ3S

2
1S

2
2 + φ†1φ1

(
ξ1S

2
1 + ξ2S

2
2

)
. (2.1c)

2.1 Unitarity condidions

We derive the unitarity conditions on the parameters of V4.
3 We follow closely the method

of ref. [33]. We write

φ1 =

(
a

b

)
, φ†1 =

(
a∗ b∗

)
, S∗1 = S1, S∗2 = S2, (2.2)

where a and b are complex fields. Then,

V4 =
λ1
2

(a∗a∗aa+ b∗b∗bb+ 2a∗b∗ab) +
ψ1

2
S4
1 +

ψ2

2
S4
2 + ψ3S

2
1S

2
2 (2.3a)

+ (a∗a+ b∗b)
(
ξ1S

2
1 + ξ2S

2
2

)
. (2.3b)

There are seven two-particle scattering channels (Q is the electric charge, T3 is the third

component of weak isospin):

1. The channel Q = 2, T3 = 1, with one state aa.

2. The channel Q = 0, T3 = −1, with one state bb.

3. The channel Q = 1, T3 = 0, with one state ab.

4. The channel Q = 1, T3 = 1, with one state ab∗.

5. The channel Q = 1, T3 = 1/2, with two states aS1 and aS2.

6. The channel Q = 0, T3 = −1/2, with two states bS1 and bS2.

7. The channel Q = 0, T3 = 0, with five states S2
1 , S2

2 , S1S2, a
∗a, and b∗b.

1In appendix A we treat the simpler case of the HSM, viz. the Standard Model with the addition of only

one real gauge singlet.
2The SM2S has already been mentioned in the literature as a model for Dark Matter, see refs. [27–30].
3Strictly speaking, the unitarity conditions derived and utilized in this paper are the ones valid in the

limit of infinite Mandelstam parameter s. For finite s one must take into account the trilinear vertices that

are induced from the quartic vertices when one substitutes one of the fields by its VEV. The unitarity

conditions then become s-dependent and may be either more or less restrictive than the conditions in the

limit of infinite s. See refs. [31, 32].
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In order to derive the unitarity conditions one must write the scattering matrices for pairs

of one incoming state and one outgoing state with the same Q and T3. Let the incoming

state be xy and let the outgoing state by zw, where x, y, z, and w may be either a, a∗, b,

b∗, S1, or S2. The corresponding entry in the scattering matrix is the coefficient of xyz∗w∗

in V4, with the following additions:

For each n identical operators in xyz∗w∗ there is an additional factor n! in the entry.

If x = y there is additional factor 2−1/2 in the entry.

If z = w there is additional factor 2−1/2 in the entry.

One finds in this way that the scattering matrices for the channels 1, 2, 3, and 4 are(
λ1

)
. (2.4)

The scattering matrices for the channels 5 and 6 are(
2ξ1 0

0 2ξ2

)
. (2.5)

The scattering matrix for channel 7 is
6ψ1 2ψ3 0

√
2ξ1
√

2ξ1
2ψ3 6ψ2 0

√
2ξ2
√

2ξ2
0 0 4ψ3 0 0√
2ξ1
√

2ξ2 0 2λ1 λ1√
2ξ1
√

2ξ2 0 λ1 2λ1

 . (2.6)

The matrix (2.6) is similar to the matrix
6ψ1 2ψ3 2ξ1 0 0

2ψ3 6ψ2 2ξ2 0 0

2ξ1 2ξ2 3λ1 0 0

0 0 0 4ψ3 0

0 0 0 0 λ1

 . (2.7)

The unitarity conditions are the following: the eigenvalues of all the scattering matrices

should be smaller, in modulus, than 4π. Thus, in our case,

|λ1| < 4π, (2.8a)

|ξ1| < 2π, (2.8b)

|ξ2| < 2π, (2.8c)

|ψ3| < π, (2.8d)

and the eigenvalues of  6ψ1 2ψ3 2ξ1
2ψ3 6ψ2 2ξ2
2ξ1 2ξ2 3λ1

 (2.9)

should have moduli smaller than 4π.

– 5 –
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2.2 Bounded-from-below conditions

One may write

V4 =
1

2

(
X Y Z

) λ1 ξ1 ξ2
ξ1 ψ1 ψ3

ξ2 ψ3 ψ2


X

Y

Z

 (2.10)

where X = φ†1φ1, Y = S2
1 , and Z = S2

2 are positive definite quantities independent of

each other. In order for V4 to be positive the square matrix in equation (2.10) must be

copositive [34]. A real symmetric matrix M is copositive if xTMx > 0 for any vector x with

non-negative components. A necessary condition for a real n×n matrix to be copositive is

that all its (n− 1)× (n− 1) principal submatrices are copositive too.4 Thus, the matrices

(
λ1

)
,
(
ψ1

)
,
(
ψ2

)
,

(
λ1 ξ1
ξ1 ψ1

)
,

(
λ1 ξ2
ξ2 ψ2

)
,

(
ψ1 ψ3

ψ3 ψ2

)
(2.11)

must be copositive. A real 1 × 1 matrix
(
a
)

is copositive if a > 0; a real 2 × 2 matrix(
a c

c b

)
is copositive if a > 0, b > 0, and c > −

√
ab. This leads to the six necessary BFB

conditions

λ1 > 0, (2.12a)

ψ1 > 0, (2.12b)

ψ2 > 0, (2.12c)

a1 ≡ ξ1 +
√
λ1ψ1 > 0, (2.12d)

a2 ≡ ξ2 +
√
λ1ψ2 > 0, (2.12e)

a3 ≡ ψ3 +
√
ψ1ψ2 > 0. (2.12f)

In order for the full 3 × 3 matrix in equation (2.10) to be copositive an additional BFB

condition is required [35]:√
λ1ψ1ψ2 + ξ1

√
ψ2 + ξ2

√
ψ1 + ψ3

√
λ1 +

√
2a1a2a3 > 0. (2.13)

2.3 Procedure

Let the VEV of S1 be w1 and let the VEV of S2 be w2.
5 Then, the vacuum stability

conditions are

µ1 = −λ1v2 − ξ1w2
1 − ξ2w2

2, (2.14a)

m2
1 = −ψ1w

2
1 − ψ3w

2
2 − ξ1v2, (2.14b)

m2
2 = −ψ2w

2
2 − ψ3w

2
1 − ξ2v2. (2.14c)

4The principal submatrices are obtained by deleting rows and columns of the original matrix in a

symmetric way, i.e. when one deletes the i1, i2, . . . , ik rows one also deletes the i1, i2, . . . , ik columns.
5In appendix B we demonstrate that stability points of the potential with either w1 = 0 or w2 = 0 have

a higher value of the potential and cannot therefore be the vacuum.

– 6 –



J
H
E
P
1
2
(
2
0
1
8
)
0
0
4

Using equation (1.2) with G+ = 0 and G0 = 0, i.e. in the unitary gauge, together with

S1 = w1 + σ1 and S2 = w2 + σ2, one obtains

V = −λ1
2
v4 − ψ1

2
w4
1 −

ψ2

2
w4
2 − ψ3w

2
1w

2
2 − v2

(
ξ1w

2
1 + ξ2w

2
2

)
(2.15a)

+
1

2

(
H σ1 σ2

)
M

H

σ1
σ2

 (2.15b)

+
λ1v√

2
H3 + 2ψ1w1σ

3
1 + 2ψ2w2σ

3
2 (2.15c)

+ ξ1Hσ1

(√
2vσ1 + w1H

)
+ ξ2Hσ2

(√
2vσ2 + w2H

)
(2.15d)

+ 2ψ3σ1σ2 (w1σ2 + w2σ1) (2.15e)

+
λ1
8
H4 +

ψ1

2
σ41 +

ψ2

2
σ42 +

ξ1
2
H2σ21 +

ξ2
2
H2σ22 + ψ3σ

2
1σ

2
2, (2.15f)

where

M = 2

 λ1v
2
√

2ξ1vw1

√
2ξ2vw2√

2ξ1vw1 2ψ1w
2
1 2ψ3w1w2√

2ξ2vw2 2ψ3w1w2 2ψ2w
2
2

 . (2.16)

One diagonalizes the real symmetric matrix M as

M = RT diag (M1, M2, M3)R, (2.17)

where R is a 3× 3 orthogonal matrix that may be parameterized as

R =

 c1 s1c3 s1s3
−s1c2 c1c2c3 + s2s3 c1c2s3 − s2c3
−s1s2 c1s2c3 − c2s3 c1s2s3 + c2c3

 . (2.18)

Here, cj = cosϑj and sj = sinϑj for j = 1, 2, 3. One hasH

σ1
σ2

 = RT

 h1
h2
h3

 , (2.19)

where the hj are the physical scalars, i.e. the eigenstates of mass; the scalar hj has squared

mass Mj . We assume that h1 is the already-observed scalar. The interactions of the scalars

with W+W− are given by equation (1.8b), i.e.

L = · · ·+ g2v√
2
W−µ W

µ+ (c1h1 − s1c2h2 − s1s2h3) . (2.20)

We define the sign of the field h1 to be such that the coupling of h1 to W+W− has the

same sign as in the Standard Model. Thus, we choose −π/2 < ϑ1 < π/2.

– 7 –
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According to equation (2.15),

g3 =
λ1v√

2
c31 + 2ψ1w1s

3
1c

3
3 + 2ψ2w2s

3
1s

3
3 (2.21a)

+ ξ1c1s1c3

(√
2vs1c3 + w1c1

)
+ ξ2c1s1s3

(√
2vs1s3 + w2c1

)
(2.21b)

+ 2ψ3s
3
1c3s3 (w1s3 + w2c3) (2.21c)

=
M1

2
√

2v

(
c31 +

√
2v

w1
s31c

3
3 +

√
2v

w2
s31s

3
3

)
(2.21d)

= gSM3

(
c31 +

√
2v

w1
s31c

3
3 +

√
2v

w2
s31s

3
3

)
, (2.21e)

and

g4 =
λ1
8
c41 +

ψ1

2
s41c

4
3 +

ψ2

2
s41s

4
3 +

ξ1
2
c21s

2
1c

2
3 +

ξ2
2
c21s

2
1s

2
3 + ψ3s

4
1c

2
3s

2
3. (2.22)

The oblique parameter T is given by [36]

T = Tsinglets =
3s21

16πs2wm
2
W

{
F
(
M1, m

2
W

)
− F

(
M1, m

2
Z

)
(2.23a)

− c22
[
F
(
M2, m

2
W

)
− F

(
M2, m

2
Z

)]
(2.23b)

−s22
[
F
(
M3, m

2
W

)
− F

(
M3, m

2
Z

)]}
, (2.23c)

where

F (x, y) =


x+ y

2
− xy

x− y
ln
x

y
⇐ x 6= y,

0 ⇐ x = y.
(2.24)

In our numerical work we use as input the nine quantities v, w1, w2, M1, M2, M3, ϑ1,

ϑ2, and ϑ3, which are equivalent to the nine parameters of the scalar potential µ1, m
2
1, m

2
2,

λ1, ψ1, ψ2, ψ3, ξ1, and ξ2. We input equations (1.6) and choose arbitrary values for M2 > 0

and M3 > 0 such that M2 ≤M3 (this represents no lack of generality, it is just the naming

convention for h2 and h3). We enforce no lower bound on M2 and M3, in particular we

allow them to be lower than M1 = (125 GeV)2. The VEVs w1 and w2 are chosen positive;

this corresponds to the freedom of choice of the signs of S1 and S2. The angle ϑ1 is in

either the first or the fourth quadrant, with

cosϑ1 > 0.9, (2.25)

so that the h1W
+W− coupling is within 10% of its Standard Model value. The angle ϑ2 is in

the first quadrant; this corresponds to a choice of the signs of the fields h2 and h3. The angle

ϑ3 may be in any quadrant. We firstly compute T according to equation (2.23) and check

– 8 –
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Figure 1. The upper bound on the mass of the second-lightest scalar
√
M2 versus cosϑ1 in

the SM2S.

that it is inside its experimentally allowed domain [4] −0.04 < T < 0.20. We then compute

λ1 =
1

2v2
(
M1c

2
1 +M2s

2
1c

2
2 +M3s

2
1s

2
2

)
, (2.26a)

ψ1 =
1

4w2
1

[
M1s

2
1c

2
3 +M2 (c1c2c3 + s2s3)

2 +M3 (c1s2c3 − c2s3)2
]
, (2.26b)

ψ2 =
1

4w2
2

[
M1s

2
1s

2
3 +M2 (c1c2s3 − s2c3)2 +M3 (c1s2s3 + c2c3)

2
]
, (2.26c)

ξ1 =
1

2
√

2vw1

[
M1c1s1c3 −M2c1s1c

2
2c3 −M3c1s1s

2
2c3

+ (M3 −M2) s1c2s2s3] , (2.26d)

ξ2 =
1

2
√

2vw2

[
M1c1s1s3 −M2c1s1c

2
2s3 −M3c1s1s

2
2s3

+ (M2 −M3) s1c2s2c3] , (2.26e)

ψ3 =
1

4w1w2

[
M1s

2
1c3s3 +M2

(
c21c

2
2 − s22

)
c3s3 +M3

(
c21s

2
2 − c22

)
c3s3

+ (M3 −M2) c1c2s2
(
c23 − s23

)]
. (2.26f)

We validate the input if the inequalities (2.8), (2.12), and (2.13) hold and if the moduli of

all three eigenvalues of the matrix (2.9) are smaller than 4π.

2.4 Results

A remarkable result of our numerical work is that there is an upper bound on the mass
√
M2;

even if the VEVs w1 and w2 are allowed to be as high as 100 TeV — and, correspondingly,

the mass
√
M3 also grows to a value of that order — the mass

√
M2 remains much smaller.

In figure 1 we depict the upper bound on
√
M2 as a function of c1; when c1 → 1 the upper

bound disappears, i.e. it tends to infinity. We emphasize that the bound depicted by the

– 9 –
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Figure 2. Scatter plots of the four-Higgs coupling g4 versus the three-Higgs coupling g3 in the

SM2S. This figure was produced by randomly generating
√
M2,

√
M3, w1, w2 ∈ [0 TeV, 10 TeV].

The dashed lines mark the values of g3 and g4 in the SM. The left panel includes both red points

with M2 < M1 and grey points with M2 > M1; the right panel depicts points that have
√
M2 larger

than either 1, 3, or 5 TeV. (In order not to overcrowd the left panel, we have used in it just a subset

of the set of large-M2 points that we have generated.)

Figure 3. Scatter plots of the three-Higgs coupling g3 (left panel) and of the four-Higgs coupling

g4 (right panel) versus cosϑ1 in the SM2S. The dashed lines mark the values of the couplings in

the SM.

solid line in figure 1 was obtained through a random scan of the parameter space; it is not

an analytical bound.

In figure 2 we display the predictions for g3 and g4. In order to produce that figure we

have randomly generated
√
M2,

√
M3, and the VEVs w1 and w2 in the range 0 to 10 TeV.

One sees that g3 is always positive but below its SM value when M2 > M1; when M2 < M1

the allowed range for g3 becomes much wider. When the masses of the new scalars get

higher, g3 takes values closer to the SM value. An important point is that g3 remains of

the same order of magnitude as in the SM, but g4 may reach 15 times its SM value.

In the left panel of figure 3 one sees that when cosϑ1 → 1 the coupling g3 necessarily

approaches its SM value. This behaviour is because of equation (2.21e) and c1 > 0.9, which

implies |s1| � c1. On the other hand, g4 is not correlated with cos ϑ1, as one sees in the

right panel of figure 3.
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3 The two-Higgs-doublet model

We next consider the model with two scalar gauge-SU(2) doublets φ1 and φ2 having the

same weak hypercharge. This is usually known as 2HDM. The scalar potential is given by

equation (2.1a), where

V2 = µ1φ
†
1φ1 + µ2φ

†
2φ2 +

(
µ3φ

†
1φ2 + H.c.

)
, (3.1a)

V4 =
λ1
2

(
φ†1φ1

)2
+
λ2
2

(
φ†2φ2

)2
+ λ3 φ

†
1φ1 φ

†
2φ2 + λ4 φ

†
1φ2 φ

†
2φ1 (3.1b)

+

[
λ5
2

(
φ†1φ2

)2
+ λ6 φ

†
1φ1 φ

†
1φ2 + λ7 φ

†
2φ2 φ

†
1φ2 + H.c.

]
, (3.1c)

where µ1,2 and λ1,2,3,4 are real. The ten (real) coefficients in V4 may be grouped as [37]

η00 = λ1 + λ2 + 2λ3, (3.2a)

η =

 η1
η2
η3

 =

 2<(λ6 + λ7)

−2=(λ6 + λ7)

λ1 − λ2

 , (3.2b)

E =

 η11 η12 η13
η12 η22 η23
η13 η23 η33

 =

 2λ4 + 2<λ5 −2=λ5 2<(λ6 − λ7)
−2=λ5 2λ4 − 2<λ5 −2=(λ6 − λ7)

2<(λ6 − λ7) −2=(λ6 − λ7) λ1 + λ2 − 2λ3

 . (3.2c)

Under a (unitary) change of basis of the scalar doublets, η00 is invariant while

η → Oη, E → OEOT , (3.3)

where O is an SO(3) matrix. Only quantities and procedures that are invariant under the

transformation (3.3) are meaningful.

3.1 Unitarity conditions

We write

φ1 =

(
a

b

)
, φ2 =

(
c

d

)
, φ†1 =

(
a∗ b∗

)
, φ†2 =

(
c∗ d∗

)
. (3.4)
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Then,

V4 = λ1

(
a∗a∗aa+ b∗b∗bb

2
+ a∗b∗ab

)
(3.5a)

+ λ2

(
c∗c∗cc+ d∗d∗dd

2
+ c∗d∗cd

)
(3.5b)

+ (λ3 + λ4) (a∗c∗ac+ b∗d∗bd) (3.5c)

+ λ3 (a∗d∗ad+ b∗c∗bc) (3.5d)

+ λ4 (a∗d∗bc+ b∗c∗ad) (3.5e)

+ λ5

(
a∗a∗cc+ b∗b∗dd

2
+ a∗b∗cd

)
(3.5f)

+ λ∗5

(
c∗c∗aa+ d∗d∗bb

2
+ c∗d∗ab

)
(3.5g)

+ λ6 (a∗a∗ac+ b∗b∗bd+ a∗b∗ad+ a∗b∗bc) (3.5h)

+ λ∗6 (a∗c∗aa+ b∗d∗bb+ a∗d∗ab+ b∗c∗ab) (3.5i)

+ λ7 (a∗c∗cc+ b∗d∗dd+ b∗c∗cd+ a∗d∗cd) (3.5j)

+ λ∗7 (c∗c∗ac+ d∗d∗bd+ c∗d∗bc+ c∗d∗ad) . (3.5k)

The relevant scattering channels are [33]:

1. The channel Q = 2, T3 = 1, with three states aa, cc, and ac.

2. The channel Q = 0, T3 = −1, with three states bb, dd, and bd.

3. The channel Q = 1, T3 = 0, with four states ab, cd, ad, and bc.

4. The channel Q = 1, T3 = 1, with four states ab∗, cd∗, ad∗, and cb∗.

5. The channel Q = 0, T3 = 0, with eight states aa∗, bb∗, cc∗, dd∗, ac∗, bd∗, ca∗, and db∗.

Channel 5 produces the scattering matrix

2λ1 λ1 λ3 + λ4 λ3 2λ∗6 λ∗6 2λ6 λ6
λ1 2λ1 λ3 λ3 + λ4 λ∗6 2λ∗6 λ6 2λ6

λ3 + λ4 λ3 2λ2 λ2 2λ∗7 λ∗7 2λ7 λ7
λ3 λ3 + λ4 λ2 2λ2 λ∗7 2λ∗7 λ7 2λ7
2λ6 λ6 2λ7 λ7 λ3 + λ4 λ4 2λ5 λ5
λ6 2λ6 λ7 2λ7 λ4 λ3 + λ4 λ5 2λ5
2λ∗6 λ∗6 2λ∗7 λ∗7 2λ∗5 λ∗5 λ3 + λ4 λ4
λ∗6 2λ∗6 λ∗7 2λ∗7 λ∗5 2λ∗5 λ4 λ3 + λ4


. (3.6)

A similarity transformation transforms the matrix (3.6) into the direct sum of two 4 × 4

matrices

M1 =
1

2

(
η00 − 2I ηT

η E + 2I × 13×3

)
, (3.7a)

M2 =
1

2

(
3η00 − 2I 3ηT

3η 3E + 2I × 13×3

)
. (3.7b)
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Here,

I = λ3 − λ4 =
η00 − trE

4
(3.8)

is invariant under a change of basis of the doublets. It is obvious that the eigenvalues of

the matrices (3.7) are invariant under such a change too.

Channel 4 produces the scattering matrix


λ1 λ4 λ

∗
6 λ6

λ4 λ2 λ
∗
7 λ7

λ6 λ7 λ3 λ5
λ∗6 λ

∗
7 λ
∗
5 λ3

 , (3.9)

which may readily be shown to be similar toM1. Channel 3 produces the scattering matrix


λ1 λ5 λ6 λ6
λ∗5 λ2 λ

∗
7 λ
∗
7

λ∗6 λ7 λ3 λ4
λ∗6 λ7 λ4 λ3

 . (3.10)

The matrix (3.10) is similar to 
0

M3 0

0

0 0 0 I

 , (3.11)

where

M3 =

 λ1 λ5
√

2λ6
λ∗5 λ2

√
2λ∗7√

2λ∗6
√

2λ7 λ3 + λ4

 . (3.12)

Channels 1 and 2 also lead to the matrix M3. Direct computation demonstrates that the

eigenvalues of M3 are invariant under the transformation (3.3).

Thus, the unitarity conditions for the scalar potential of the 2HDM are the following:

the eigenvalues of the two 4 × 4 matrices (3.7) and of the 3 × 3 matrix (3.12), and I in

equation (3.8), should have moduli smaller than 4π. These conditions were first derived

in refs. [38, 39]. We emphasize that they are, as they should, invariant under a change of

basis of the two doublets.
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3.1.1 The case λ6 = λ7 = 0

If λ6 = λ7 = 0, then η1 = η2 = η13 = η23 = 0 and this simplifies things considerably. The

unitarity conditions are then

|λ3 + λ4| < 4π, (3.13a)

|λ3 − λ4| < 4π, (3.13b)

|λ3 + |λ5|| < 4π, (3.13c)

|λ3 − |λ5|| < 4π, (3.13d)

a+ ≡ |λ3 + 2λ4 + 3 |λ5|| < 4π, (3.13e)

a− ≡ |λ3 + 2λ4 − 3 |λ5|| < 4π, (3.13f)∣∣∣∣λ1 + λ2 +

√
(λ1 − λ2)2 + 4 |λ5|2

∣∣∣∣ < 8π, (3.13g)∣∣∣∣λ1 + λ2 −
√

(λ1 − λ2)2 + 4 |λ5|2
∣∣∣∣ < 8π, (3.13h)∣∣∣∣λ1 + λ2 +

√
(λ1 − λ2)2 + 4λ24

∣∣∣∣ < 8π, (3.13i)∣∣∣∣λ1 + λ2 −
√

(λ1 − λ2)2 + 4λ24

∣∣∣∣ < 8π, (3.13j)

b+ ≡
∣∣∣∣3λ1 + 3λ2 +

√
9 (λ1 − λ2)2 + 4 (2λ3 + λ4)

2

∣∣∣∣ < 8π, (3.13k)

b− ≡
∣∣∣∣3λ1 + 3λ2 −

√
9 (λ1 − λ2)2 + 4 (2λ3 + λ4)

2

∣∣∣∣ < 8π. (3.13l)

3.1.2 The case λ1 = λ2 = λ3 = λ4 = λ5 = 0

The case λ1 = λ2 = λ3 = λ4 = λ5 = 0 is not realistic because it produces a potential

unbounded from below. Still, one may compute the unitarity conditions in that case and

one obtains √
|λ6|2 + |λ7|2 < 2

√
2π, (3.14a)√

|λ6|2 + |λ7|2 +
∣∣λ26 + λ27

∣∣ < 4π

3
. (3.14b)

3.1.3 Consequences

We have numerically analyzed the unitarity conditions by giving random values to λ1,

λ2, λ3, λ4, |λ5|, |λ6|, |λ7|, arg (λ∗5λ6λ7), and arg (λ∗6λ7) and then checking whether all the

unitarity conditions are met. We present in figures 4–6 scatter plots with more than 8,000

allowed points each. We have found that all the conditions (3.13) still hold even when λ6 =

λ7 = 0 is not true; also, the conditions (3.14) still hold even when λ1 = λ2 = λ3 = λ4 =

λ5 = 0 does not apply. In particular, the upper bounds (3.13b), (3.13e), (3.13f), (3.13k),

and (3.13l) are sometimes attained, as illustrated in figures 6 and 5, respectively. For the
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Figure 4. Scatter plots of |λ1| versus |λ5| and of |λ6| versus |λ7| with the unitarity conditions

enforced. The dashed red lines indicate the bounds |λ1,5| < 4π/3 and |λ6,7| < 2
√

2π/3, respectively.

Figure 5. Scatter plots of a± and b± — see equations (3.13e), (3.13f), (3.13k), and (3.13l) — with

the unitarity conditions enforced. The red dashed lines indicate the bounds a± < 4π in the left

plot and b± < 8π in the right plot.
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Figure 6. Scatter plots of λ3 versus λ4 with the unitarity conditions enforced. The dashed red

lines are given by the equations |λ3 − λ4| = 4π, |2λ3 + λ4| = 4π, and |λ3 + 2λ4| = 4π.

individual parameters, the bounds

|λ1,2| <
4π

3
, (3.15a)

|λ5| <
4π

3
, (3.15b)

|λ6,7| <
2
√

2π

3
(3.15c)

hold and are illustrated in figure 4; the bound (3.15a) is suggested by inequality (3.13k)

when λ3, λ4, and either λ1 or λ2 vanish; the bound (3.15b) is suggested by inequality (3.13e)

when λ3 = λ4 = 0, and the bound (3.15c) is suggested by inequality (3.14b) when either

λ6 or λ7 vanishes. Finally, (λ3, λ4) is always within the hexagon with sides |λ3 − λ4| = 4π,

|2λ3 + λ4| = 4π, and |λ3 + 2λ4| = 4π, as illustrated in figure 6.

3.2 Bounded-from-below conditions

Necessary and sufficient conditions for the scalar potential of the 2HDM to be BFB were

first derived in ref. [37]. Ivanov [40] and Silva [41] later produced other, equivalent condi-

tions to the same effect. We have implemented numerically both the conditions of ref. [37]

and those of ref. [41]. We have found that the Ivanov-Silva algorithm runs several times

faster than the one of ref. [37]. We have also checked that all the points produced by either

algorithm were validated by the other one.
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The points in our scatter plots were produced by using the algorithm of ref. [41]. That

algorithm runs as follows. One constructs the 4 × 4 matrix

ΛE =

(
η00 ηT

−η −E

)
(3.16)

and one computes its four eigenvalues. Then the potential is BFB if all the following

conditions apply:

• All four eigenvalues are real.

• All four eigenvalues are different from each other.

• Call Λ0 the largest eigenvalue. Call the other three eigenvalues Λ1,2,3. The eigenvalue

Λ0 is positive; thus,

Λ0 > Λ1,2,3, Λ0 > 0. (3.17)

(Each of Λ1, Λ2, and Λ3 may be either positive or negative.)

•
[(ΛE − Λ1 × 14×4)× (ΛE − Λ2 × 14×4)× (ΛE − Λ3 × 14×4)]11

(Λ0 − Λ1) (Λ0 − Λ2) (Λ0 − Λ3)
> 0. (3.18)

It is possible to derive analytically some necessary conditions for boundedness-from-

below. Let us parameterize

φ†1φ1 = r2 sin2 θ, φ†2φ2 = r2 cos2 θ, φ†1φ2 = eiαr2h sin θ cos θ, (3.19)

where 0 ≤ θ ≤ π/2 without loss of generality. Since, in the notation of equations (3.4),

r4
(
1− h2

)
sin2 θ cos2 θ = φ†1φ1 φ

†
2φ2 − φ

†
1φ2 φ

†
2φ1 = |ad− bc|2 ≥ 0, (3.20)

one concludes that h2 ≤ 1. Thus, without loss of generality 0 ≤ h ≤ 1 while the phase α

is arbitrary. Boundedness from below of V4 means that

λ1
2

sin4 θ +
λ2
2

cos4 θ +
[
λ3 + λ4h

2 + <
(
λ5e

2iα
)
h2
]

sin2 θ cos2 θ (3.21a)

+2h<
(
λ6e

iα
)

sin3 θ cos θ + 2h<
(
λ7e

iα
)

sin θ cos3 θ > 0 (3.21b)

for any θ, h, and α. From the cases θ = 0 and θ = π/2 one derives

λ1 > 0, λ2 > 0. (3.22)

Making α→ π + α in inequality (3.21), one concludes that

2h sin θ cos θ
∣∣<[(λ6 sin2 θ + λ7 cos2 θ

)
eiα
]∣∣ < λ1

2
sin4 θ +

λ2
2

cos4 θ (3.23a)

+
[
λ3 + λ4h

2 (3.23b)

+<
(
λ5e

2iα
)
h2
]

sin2 θ cos2 θ. (3.23c)
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Therefore, the quantity in the right-hand side of inequality (3.23) must be positive for any

θ, h, and α. It is easy to see that

% sin4 θ + ς cos4 θ + ε sin2 θ cos2 θ > 0 ∀θ ∈
[
0,

π

2

]
⇔ % > 0, ς > 0, ε > −2

√
%ς. (3.24)

Applying the statement (3.24) to the case % = λ1/2, ς = λ2/2, ε = λ3 +λ4h
2 +<

(
λ5e

2iα
)
h2

for any h ∈ [0, 1] and α, one concludes that

λ3 > −
√
λ1λ2, λ3 + λ4 − |λ5| > −

√
λ1λ2. (3.25)

Inequalities (3.22) and (3.25) are necessary and sufficient conditions for boundedness-from-

below when λ6 = λ7 = 0 [42, 43]; they are necessary conditions when λ6 and λ7 are nonzero.

We may now return to inequality (3.23), which implies, in principle, many more nec-

essary conditions for boundedness-from-below. Setting for instance sin θ = cos θ one con-

cludes that

2h
∣∣<[(λ6 + λ7) e

iα
]∣∣ < λ1 + λ2

2
+ λ3 + λ4h

2 + <
(
λ5e

2iα
)
h2, (3.26)

which must hold for any h and α. Therefore [44],

2 |λ6 + λ7| <
λ1 + λ2

2
+ λ3 + λ4 + |λ5| . (3.27)

We have numerically analyzed the BFB conditions by giving random values to λ1,

λ2, λ3, λ4, |λ5|, |λ6|, |λ7|, arg (λ∗5λ6λ7), and arg (λ∗6λ7) and then checking whether the

BFB conditions are met. We have confirmed that the conditions (3.22), (3.25), and (3.27)

always hold.6

3.3 Procedure

We consider the most general 2HDM and purport to find out its ranges for g3 and g4. We

use the Higgs basis for the scalar doublets; in that basis only φ01 has VEV and therefore

φ1 has the expression (1.2), while

φ2 =

(
C+

(σ1 + iσ2)
/√

2

)
. (3.28)

In equation (3.28), σ1 and σ2 are real fields and C+ is the physical charged scalar of the

2HDM. We emphasize that using the Higgs basis represents no lack of generality, because

both the unitarity and the BFB conditions are the same in any basis.

Since only φ1 has VEV, the vacuum stability conditions are µ1 = −λ1v2 and µ3 =

−λ6v2 [46]. The coupling µ2 in equation (3.1a) is unrelated to the parameters of V4; one

may trade it for the charged-Higgs squared mass MC = µ2 + λ3v
2. The mass terms of H,

σ1, and σ2 are given by line (2.15b), with [46]

M =

 2λ1v
2 2v2<λ6 −2v2=λ6

2v2<λ6 MC + (λ4 + <λ5) v2 −v2=λ5
−2v2=λ6 −v2=λ5 MC + (λ4 −<λ5) v2

 . (3.29)

The matrix M is diagonalized through equations (2.17)–(2.19).

6The BFB conditions worked out in this subsection are, clearly, the ones valid at tree level. At loop

level the BFB conditions change, see ref. [45].
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The three invariants of M are

I1(M) = 2MC + 2 (λ1 + λ4) v
2, (3.30a)

I2(M) = M2
C + 2 (2λ1 + λ4) v

2MC +
(

4λ1λ4 + λ24 − |λ5|
2 − 4 |λ6|2

)
v4, (3.30b)

I3(M) = 2λ1v
2M2

C + 4
(
λ1λ4 − |λ6|2

)
v4MC

+ 2
[
λ1λ

2
4 − λ1 |λ5|

2 − 2λ4 |λ6|2 + 2<
(
λ∗5λ

2
6

)]
v6. (3.30c)

We input parameters λ1,2,··· ,7 that satisfy both the unitarity conditions and the BFB con-

ditions of subsections 3.1 and 3.2, respectively.7 We also use the values of M1 and v in

equations (1.6). The two equations

M3
1 −M2

1 I1(M) +M1I2(M)− I3(M) = 0, (3.31a)[
M2

1 I1(M)− 2M1I2(M) + 3I3(M)
]

cos2 ϑ1

+M11

[
M1I1(M)−M2

1

]
−
(
M2
)
11
M1 − I3(M) = 0 (3.31b)

are quadratic in MC . By affirming the fact that both quadratic equations (3.31) must hold

for the same value of MC , one is able to compute both MC and cos2 ϑ1. We thus get to

know the full matrix M , hence its eigenvalues M2 and M3 and its diagonalizing matrix R.

We require cosϑ1 > 0.9. We also compute the oblique parameter

T =
1

16πs2wm
2
W

[
s21F (MC ,M1)+

(
1−s21c22

)
F (MC ,M2)+

(
1−s21s22

)
F (MC ,M3) (3.32a)

−c21F (M2,M3)−s21c22F (M1,M3)−s21s22F (M1,M2)
]
+Tsinglets, (3.32b)

where Tsinglets is given by equation (2.23). We require −0.04 < T < 0.20.

We have applied the method devised in ref. [41] to guarantee that our assumed vacuum

state is indeed the state with the lowest possible value of the potential. The method may be

described as follows. Let the matrix ΛE in equation (3.16) have four eigenvalues Λ0,1,2,3. We

already know, from the BFB conditions, that those eigenvalues must be real and different

from each other; let us order them as Λ0 > Λ1 > Λ2 > Λ3. Let the charged-Higgs squared

mass be MC ; define ζ ≡ 2MC

/
v2 . Then, the assumed vacuum state is the global minimum

of the potential if either ζ > Λ0, or Λ0 > ζ > Λ1, or Λ2 > ζ > Λ3. This test led us to

discard about 10% of our previous set of points.

The four-Higgs vertex is given by

g4 =
λ1c

4
1

8
+
λ2s

4
1

8
+

(λ3 + λ4) c
2
1s

2
1

4
+
s21c

2
1

(
c23 − s23

)
<λ5

4
− s21c

2
1c3s3=λ5

2
(3.33a)

+
s1c

3
1 (c3<λ6 − s3=λ6)

2
+
s31c1 (c3<λ7 − s3=λ7)

2
. (3.33b)

7This method, where λ1,2,··· ,7 are used as input, tends to produce few points with either very low or

very high scalar masses. Therefore we have supplemented it by another search in which we have directly

used as input M1,2,3,C .
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Figure 7. Scatter plots of λ1 versus cosϑ1 in the 2HDM. The dashed line marks the value of λ1
in the SM. The red points have M2 < M1.

The three-Higgs vertex is given by

g3 =
v√
2

[
λ1c

3
1 + (λ3 + λ4) s

2
1c1 + s21c1

(
c23 − s23

)
<λ5 − 2s21c1c3s3=λ5 (3.34a)

+3s1c
2
1 (c3<λ6 − s3=λ6) + s31 (c3<λ7 − s3=λ7)

]
. (3.34b)

We also want to consider the h1C
+C− vertex, which may be relevant in the discovery

of the charged scalar. That vertex is given by

V4 = · · ·+ h1C
+C−g1CC , (3.35)

where, in the 2HDM,

g1CC =
√

2v (c1λ3 + s1c3<λ7 − s1s3=λ7) . (3.36)

3.4 Results

As we know from subsections 3.1 and 3.2, in general λ1 can take any value in between 0

and 4π/3. Once the constraint cos ϑ1 > 0.9 is imposed, however, λ1 can be no larger than

∼ 1; this is illustrated in figure 7. The closer cosϑ1 is to 1, the closer λ1 must be to its

SM value M1

/(
2v2
)

= 0.258; note that λ1 is almost always larger than its SM value when

cosϑ1 > 0.9; the minimum value that we have obtained for λ1 is 0.2135.

If cosϑ1 . 0.99, then the masses of the new scalar particles of the 2HDM, namely√
MC ,

√
M2, and

√
M3 can be no larger than ∼ 700 GeV; if cosϑ1 . 0.95, they can be

no larger than ∼ 550 GeV. When cosϑ1 becomes close to 1, the masses of the new scalar

particles may reach O(TeV); this is illustrated in figure 8.

One sees in figure 9 that
√
MC and

√
M2 differ by at most ∼100 GeV unless 200 GeV <√

MC < 500 GeV. (Remember that by convention M2 is always smaller than M3, but they

may be smaller than M1.)
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Figure 8. Scatter plots of the masses of the extra scalars of the 2HDM versus cosϑ1.

Figure 9. The difference between the mass of the charged scalar and the mass of the lightest

non-SM neutral scalar versus the mass of the charged scalar in the 2HDM.

We now come to the predictions for g3 and g4 in the 2HDM, which are depicted in

figure 10. One sees that g3 in the 2HDM has a range only slightly larger than in the SM2S,

while g4 in the 2HDM is much more restricted than in the SM2S; g4
/
gSM4 . 4 in the

2HDM but g4
/
gSM4 . 15 in the SM2S. An interesting feature is that g3 may be zero or

even negative, i.e. it may have sign opposite to the one in the SM. (We recall that the sign

of g3 is measured relative to the sign of c1; we arrange that c1 is always positive.) On the

other hand, g4 is always positive because of the boundedness from below of the potential.

In figure 11 we depict the coupling g1CC of the 125 GeV neutral scalar to a pair of

charged scalars in the 2HDM. One sees that that coupling is in between −200 GeV and

1,700 GeV. The expression for g1CC in equation (3.36) is strongly dominated by the first

term in the right-hand side because c1 � s1. The preference for positive values of g1CC
observed in figure 11 occurs because −2 . λ3 . 7 in the 2HDM with the constraint

c1 > 0.9 enforced.
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Figure 10. Scatter plot of the four-Higgs coupling g4 versus the three-Higgs coupling g3 in the

2HDM, for various values of c1. The dashed lines mark the values of both couplings in the SM.

Figure 11. Scatter plot of the h1C
+C− coupling g1CC versus the mass of the charged scalars

C± in the 2HDM. The blue line with equation g1CC/GeV = 48.5 + 0.54
(√
MC/GeV

)
+

0.0063
(
MC

/
GeV2

)
marks the approximate boundary of the allowed region.

4 The two-Higgs-doublet model plus one singlet

We consider in this section the two-Higgs-doublet model with the addition of one real

SU(2) × U(1)-invariant scalar field S. We assume a symmetry S → −S. As a shorthand,

we shall dub this model the 2HDM1S (other authors use just 2HDMS [47]). The quartic

part of the scalar potential is

V4 =
λ1
2

(
φ†1φ1

)2
+
λ2
2

(
φ†2φ2

)2
+ λ3 φ

†
1φ1 φ

†
2φ2 + λ4 φ

†
1φ2 φ

†
2φ1 (4.1a)

+

[
λ5
2

(
φ†1φ2

)2
+ λ6 φ

†
1φ1 φ

†
1φ2 + λ7 φ

†
2φ2 φ

†
1φ2 + H.c.

]
(4.1b)

+
ψ

2
S4 (4.1c)

+ S2
(
ξ1 φ

†
1φ1 + ξ2 φ

†
2φ2 + ξ3 φ

†
1φ2 + ξ∗3 φ

†
2φ1

)
. (4.1d)

– 22 –



J
H
E
P
1
2
(
2
0
1
8
)
0
0
4

4.1 Bounded-from-below conditions

Deriving necessary and sufficient BFB conditions for even a rather simple potential like the

one in equation (4.1) is a notoriously difficult problem [48]. If V4 were negative for some

possible values of S2, φ†1φ1, φ
†
2φ2, and φ†1φ2, then V4 would tend to −∞ upon multiplication

of those four values by an ever-larger positive constant. Therefore, we want V4 to be positive

for all possible values of S2, φ†1φ1, φ
†
2φ2, and φ†1φ2. In order to guarantee this, we proceed

in the following fashion.

Necessary condition 1. When S2 = 0, equation (4.1) reduces to its first two lines, i.e.

to the quartic potential of the 2HDM. Therefore, one must require the fulfilment of the

conditions of subsection 3.2, viz. the four conditions in between equations (3.16) and (3.18).

Necessary condition 2. When φ†1φ2 = 0,

V4 =
1

2

(
φ†1φ1 φ

†
2φ2 S

2
) λ1 λ3 ξ1

λ3 λ2 ξ2
ξ1 ξ2 ψ


 φ†1φ1

φ†2φ2
S2

 . (4.2)

Since φ†1φ1, φ
†
2φ2, and S2 are positive definite quantites, we must require [34, 35]

ψ > 0, (4.3a)

λ1 > 0, (4.3b)

λ2 > 0, (4.3c)

A1 ≡ ξ1 +
√
λ1ψ > 0, (4.3d)

A2 ≡ ξ2 +
√
λ2ψ > 0, (4.3e)

A3 ≡ λ3 +
√
λ1λ2 > 0, (4.3f)√

λ1λ2ψ + ξ2
√
λ1 + ξ1

√
λ2 + λ3

√
ψ +

√
2A1A2A3 > 0. (4.3g)

After enforcing the necessary condition 1, we know that V4 > 0 when only the first two

lines of the potential (4.1) exist; after enforcing the inequality (4.3a), we know that V4 > 0

when only the third line exists. If we guarantee that the fourth line of the potential (4.1)

is always positive too, then we will be sure that V4 is always positive. We therefore have

the following8

Sufficient condition. If, besides the two necessary conditions,

ξ1 + ξ2 > 0, (4.4a)

ξ1ξ2 − |ξ3|2 > 0, (4.4b)

then V4 is BFB.

Among the sets of parameters of the potential (4.1) that we have randomly gener-

ated, there were some that met both the two necessary conditions and the sufficient con-

ditions (4.4); we have used those sets of parameters. There were many other sets that

8We thank Igor Ivanov for pointing out this sufficient condition to us.
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satisfied the two necessary conditions but did not meet the sufficient conditions (4.4); for

those sets, we have numerically found the absolute minimum of V4. We have done this by

using S2 = 1 together with equations (3.19) and by minimizing V4 in the domain r2 > 0,

0 ≤ θ ≤ π/2, 0 ≤ h ≤ 1, and 0 ≤ α < 2π. If the minimum of V4 is positive, then the set of

input parameters is good, else the set of input parameters is bad and one must discard it.

4.2 Unitarity conditions

There are the same five scattering channels as in the 2HDM, cf. subsection 3.1; but the

channel Q = T3 = 0 has an additional scattering state S2. Additionally, there are two

extra scattering channels:

• The channel Q = 1, T3 = 1/2 with the two states aS and cS.

• The channel Q = 0, T3 = −1/2 with the two states bS and dS.

Both these channels produce a scattering matrix

M4 = 2

(
ξ1 ξ3
ξ∗3 ξ2

)
. (4.5)

Channels 1 and 2 of subsection 3.1 again produce the scattering matrix (3.12). Channel 3

produces that matrix together with the additional eigenvalue I of equation (3.8). Channel 2

produces the scattering matrix (3.7a). Finally, channel 5 has the additional scattering state

S2 and therefore, instead of producing both the matrix M1 of equation (3.7a) and the

matrix M2 of equation (3.7b), it produces M1 together with

M′2 =

(
6ψ
√

2 ξ̄T√
2 ξ̄ M2

)
, where ξ̄ =


ξ1 + ξ2
2<ξ3
−2=ξ3
ξ1 − ξ2

 . (4.6)

Thus, the unitarity conditions for the 2HDM1S are the following: both |I| and the moduli

of all the eigenvalues of the 2×2 matrixM4, of the 3×3 matrixM3, of the 4×4 matrixM1,

and of the 5× 5 matrix M′2 must be smaller than 4π.

4.3 Procedure

Just as in the previous section, we utilize the Higgs basis for the two doublets, i.e. equa-

tions (1.2) and (3.28). We also write S = w + σ, where w is the VEV of the scalar S and

σ is a field. The mass terms of the scalars are

V = · · ·+MCC
−C+ +

1

2

(
H σ1 σ2 σ

)
M


H

σ1
σ2
σ

 , (4.7)
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with

M =


2λ1v

2 2v2<λ6 −2v2=λ6 2
√

2vwξ1
2v2<λ6 MC + (λ4 + <λ5) v2 −v2=λ5 2

√
2vw<ξ3

−2v2=λ6 −v2=λ5 MC + (λ4 −<λ5) v2 −2
√

2vw=ξ3
2
√

2vwξ1 2
√

2vw<ξ3 −2
√

2vw=ξ3 4ψw2

 , (4.8)

cf. equation (3.29). One diagonalizes M as

M = RT diag (M1, M2, M3, M4)R, (4.9a)
H

σ1
σ2
σ

 = RT


h1
h2
h3
h4

 , (4.9b)

where R is a 4 × 4 orthogonal matrix. The squared mass M1 is given by equation (1.6a).

Without loss of generality, M2 < M3 < M4. Just as in the previous sections, we require

R11 ≡ c1 > 0.9. (4.10)

The expression for the oblique parameter T is [36]

T =
1

16πs2wm
2
W

{
4∑

k=1

[
(Rk2)

2 + (Rk3)
2
]
F (MC , Mk) (4.11a)

−
3∑

k=1

4∑
k′=k+1

(Rk2Rk′3 −Rk′2Rk3)2 F (Mk, Mk′) (4.11b)

+ 3

4∑
k=2

(Rk1)
2 [F (Mk, m

2
Z

)
− F

(
Mk, m

2
W

)]
(4.11c)

+3
(
c21 − 1

) [
F
(
M1, m

2
Z

)
− F

(
M1, m

2
W

)]}
, (4.11d)

and we demand −0.04 < T < 0.20.

We input random values for the 15 real parameters MC , λ1,2,3,4, |λ5,6,7|, ψ, ξ1,2, |ξ3|,
arg (λ∗5λ6λ7), arg (λ∗6λ7), and arg (λ∗6ξ3). We moreover input M1 and v2 given in equa-

tions (1.6). Then,

1. We require the input parameters to satisfy the BFB conditions of subsection 4.1 —

this may imply a numerical minimization of V4 to check that V4 > 0.

2. We require the input parameters to satisfy the unitarity conditions written after

equation (4.6).

3. We compute the VEV w from the condition that M1 should be an eigenvalue of the

matrix M .

– 25 –



J
H
E
P
1
2
(
2
0
1
8
)
0
0
4

4. We enforce the conditions in appendix C. They guarantee that the vacuum state with

v = 174 GeV and w 6= 0 has a lower value of the potential than all the other possible

stability points of the potential.

5. We compute the full matrix M , its eigenvalues M2,3,4, and its diagonalizing matrix

R; we choose the overall sign of R such that R11 ≡ c1 > 0.

6. We impose both the condition (4.10) and the condition that the oblique parameter

T is within its experimental bounds.

7. We compute the couplings

g3 =
v√
2

{
λ1c

3
1+(λ3+λ4)c1

[
(R12)

2+(R13)
2
]

(4.12a)

+c1

[
(R12)

2−(R13)
2
]
<λ5−2c1R12R13=λ5 (4.12b)

+3c21 (R12<λ6−R13=λ6)+
[
(R12)

2+(R13)
2
]

(R12<λ7−R13=λ7)
}

(4.12c)

+2ψw (R14)
3+ξ1c1R14

(
wc1+

√
2vR14

)
+ξ2wR14

[
(R12)

2+(R13)
2
]

(4.12d)

+
√

2R14

(
vR14+

√
2wc1

)
(R12<ξ3−R13=ξ3) , (4.12e)

g4 =
λ1c

4
1

8
+
λ2
8

[
(R12)

2+(R13)
2
]2

+
λ3+λ4

4
c21

[
(R12)

2+(R13)
2
]

(4.13a)

+
<λ5

4
c21

[
(R12)

2−(R13)
2
]
−=λ5

2
c21R12R13 (4.13b)

+
c31
2

(R12<λ6−R13=λ6)+
c1

[
(R12)

2+(R13)
2
]

2
(R12<λ7−R13=λ7) (4.13c)

+
ψ

2
(R14)

4 (4.13d)

+(R14)
2

{
ξ1c

2
1

2
+
ξ2
2

[
(R12)

2+(R13)
2
]
+c1 (R12<ξ3−R13=ξ3)

}
, (4.13e)

g1CC =
√

2v (c1λ3 +R12<λ7 −R13=λ7) + 2wξ2R14. (4.14)

4.4 Results

In figure 12 we have plotted the differences among the masses of the scalars against the

mass of the charged scalar. One sees that
√
MC and

√
M3 cannot be more than ∼ 300 GeV

from each other, but
√
M2 may be much smaller than both of them.

In figure 13 we present a scatter plot of the mass of the lightest non-SM neutral scalar

against c1. One sees that, contrary to what happens in the 2HDM (cf. figure 8),
√
M2 may

reach 1 TeV even when c1 is as low as 0.9.

We depict in figure 14 the three- and four-Higgs couplings g3 and g4 in the 2HDM1S.

The main difference relative to the 2HDM (cf. figure 10) is that g4 may be much higher,

just as in the SM2S. In the 2HDM1S there is no clear correlation between g3 and g4.
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Figure 12. The differences between the masses of the two lightest non-SM neutral scalars and the

mass of the charged scalar versus the mass of the charged scalar in the 2HDM1S. Green points

have all the scalars with mass larger than 500 GeV; magenta points have all the scalars with mass

larger than 1 TeV.

Figure 13. The mass of the lightest non-SM neutral scalar versus R11 in the 2HDM1S. Green

points have all the scalars with mass larger than 500 GeV; magenta points have all the scalars with

mass larger than 1 TeV.

In figure 15 we have plotted the h1C
+C− coupling g1CC . That coupling in the 2HDM1S

may be more than two times larger than in the 2HDM; very large values of g1CC occur

even for c1 very close to 1. This is because the right-hand side of equation (4.14) may be

dominated by its fourth term when w � v. The first term displays the same behaviour

as the corresponding term in the 2HDM, viz. it is usually positive and no larger than

1,500 GeV, but it is often overwhelmed by the fourth term.

5 Conclusions

In this paper we have emphasized that both the bounded-from-below (BFB) conditions

and the unitarity conditions for the two-Higgs-doublet model (2HDM) are invariant under
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Figure 14. In the left panel, the four-Higgs coupling g4 versus the three-Higgs coupling g3 in the

2HDM1S for various values of c1. The right panel contains the same points as the left panel but

with different colours depending on whether M2 is larger or smaller than M1. The dashed lines

mark the values of the couplings in the SM.

Figure 15. Scatter plot of g1CC versus the mass of the charged scalars C± in the 2HDM1S. The

blue line with equation g1CC/GeV = 174.9 + 0.138
(√
MC/GeV

)
+ 0.0073

(
MC

/
GeV2

)
marks the

approximate boundary of the allowed region when
√
MC < 400 GeV.

a change of the basis used for the two doublets. Therefore, one may implement those

conditions directly in the Higgs basis, viz. the basis where only one doublet has vacuum

expectation value. This procedure allows one to extract bounds on the masses and cou-

plings of the scalar particles of the most general 2HDM, disregarding any symmetry that a

particular 2HDM may possess. We have focussed on the three couplings g3 (h1)
3, g4 (h1)

4,

and g1CCh1C
+C−, where h1 is the observed neutral scalar with mass 125 GeV and C± are

the charged scalars of the 2HDM.

We have utilized the same procedure for two other models, namely the Standard Model

with the addition of two real singlets (SM2S) and the two-Higgs-doublet model with the

addition of one real singlet (2HDM1S), in both cases with reflection symmetries acting on

– 28 –



J
H
E
P
1
2
(
2
0
1
8
)
0
0
4

Figure 16. Scatter plot of g4
/
gSM4 versus g3

/
gSM3 in the three models that we have studied.

The dashed lines mark the SM values g3
/
gSM3 = g4

/
gSM4 = 1. The dotted line, with equation

g4
/
gSM4 = 2.06

(
g3
/
gSM3

)2 − 2.84
(
g3
/
gSM3

)3
+ 2.44

(
g3
/
gSM3

)4 − 0.67
(
g3
/
gSM3

)5
, marks the ap-

proximate boundary of the allowed region for −0.6 < g3
/
gSM3 < 1.6.

each of the singlets. We have found, for instance, that:

• The coupling g3 may, in both the 2HDM and the 2HDM1S, have sign opposite to the

one in the SM. On the other hand, in any of the three models that we have studied,

|g3| can hardly be much larger than in the SM.

• The coupling g4, which is always positive because of BFB, may for all practical

purposes be equal to zero in all the three models. (As a matter of fact, g3 = g4 = 0

is possible in all three models.) But it may also be much larger than in the SM. A

distinguished feature is that g4 may be much larger (up to g4 ∼ 0.5) in the models

containing singlets than in the 2HDM, wherein it can at best reach g4 ∼ 0.13.

• The coupling g1CC may be of order TeV, but only when the mass of C± exceeds

300 GeV; in general, a positive g1CC may be larger for higher masses of C±, but g1CC
may also be negative for any C± mass. Moreover, g1CC may be more than two times

larger (either positive or negative) in the 2HDM1S than in the 2HDM.

A comparison of the predictions of the three models for g3 and g4 is depicted in figure 16.

We emphasize that our method may be used to obtain bounds and/or correlations

among other parameters and/or observables of these models. Unfortunately, it may be

difficult to generalize our work to more complicated models, both because they may contain

too many parameters and because it is very difficult to derive full BFB conditions for even

rather simple models.
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A The Higgs Singlet Model

The Higgs Singlet Model (HSM) is the Standard Model with the addition of one real scalar

singlet S. We furthermore assume a symmetry S → −S. The scalar potential

V = µφ†1φ1 +m2S2 +
λ

2

(
φ†1φ1

)2
+
ψ

2
S4 + ξS2φ†1φ1 (A.1)

has just five parameters µ, m2, λ, ψ, and ξ. The bounded-from-below (BFB) conditions are

λ > 0, ψ > 0, ξ > −
√
λψ. (A.2)

The unitarity conditions are

|λ| < 4π, |ξ| < 2π,

∣∣∣∣3λ+ 6ψ +

√
(3λ− 6ψ)2 + 16ξ2

∣∣∣∣ < 8π. (A.3)

We assume that φ1 has VEV v and S has VEV w. We write S = w+ σ together with

equation (1.2). The mass matrix for H and σ is(
2λv2 2

√
2ξvw

2
√

2ξvw 4ψw2

)
=

(
c −s
s c

)(
M1 0

0 M2

)(
c s

−s c

)
, (A.4)

where c ≡ cosϑ and s ≡ sinϑ. We assume |c| > 0.9. The oblique parameter

T =
3s2

16πs2wm
2
W

[
F
(
M1,m

2
W

)
− F

(
M1,m

2
Z

)
− F

(
M2,m

2
W

)
+ F

(
M2,m

2
Z

)]
(A.5)

must satisfy −0.04 < T < 0.20. The three- and four-Higgs couplings are given by

g3

gSM3
= c3 +

√
2v

w
s3, (A.6a)

g4 =
λ

8
c4 +

ψ

2
s4 +

ξ

2
c2s2. (A.6b)

In figure 17 we compare the predictions of the HSM and of the SM2S for g3 and g4. One

sees that there is no substantial difference between the two models.
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Figure 17. Scatter plot of g4
/
gSM4 versus g3

/
gSM3 in the HSM and in the SM2S. The dashed

lines mark the Standard Model values g3
/
gSM3 = g4

/
gSM4 = 1.

B Other stability points of the SM2S potential

In this appendix we consider more carefully the various stability points of the potential of

the SM2S in equation (2.1). The vacuum value of that potential is given by

V0 ≡ 〈0 |V | 0〉 = µ1v
2 +m2

1w
2
1 +m2

2w
2
2 (B.1a)

+
λ1v

4

2
+
ψ1w

4
1

2
+
ψ2w

4
2

2
(B.1b)

+ ψ3w
2
1w

2
2 + ξ1v

2w2
1 + ξ2v

2w2
2. (B.1c)

Equations (2.14) follow from the assumption that v, w1, and w2 are not zero. Defining

d ≡ λ1ψ1ψ2 + 2ψ3ξ1ξ2 − λ1ψ2
3 − ψ1ξ

2
2 − ψ2ξ

2
1 , (B.2)

one obtains

V0 = −λ1v
4

2
− ψ1w

4
1

2
− ψ2w

4
2

2
− ψ3w

2
1w

2
2 − ξ1v2w2

1 − ξ2v2w2
2 (B.3a)

=
1

2d

[(
ψ2
3 − ψ1ψ2

)
µ21 +

(
ξ22 − λ1ψ2

) (
m2

1

)2
+
(
ξ21 − λ1ψ1

) (
m2

2

)2
(B.3b)

+ 2 (ξ1ψ2 − ψ3ξ2)µ1m
2
1 + 2 (ξ2ψ1 − ψ3ξ1)µ1m

2
2 (B.3c)

+2 (λ1ψ3 − ξ1ξ2)m2
1m

2
2

]
. (B.3d)

The mass matrix M of the scalars is real and symmetric and is given in equation (2.16).

We assume that M has three positive eigenvalues M1, M2, and M3. It follows that all the
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principal minors of M are positive.9 (This is called ‘Sylvester’s criterion’ [49].) Thus,

λ1 > 0, (B.4a)

ψ1 > 0, (B.4b)

ψ2 > 0, (B.4c)

λ1ψ1 − ξ21 > 0, (B.4d)

λ1ψ2 − ξ22 > 0, (B.4e)

ψ1ψ2 − ψ2
3 > 0, (B.4f)

d > 0. (B.4g)

These inequalities display some resemblance to the BFB conditions (2.12), (2.13).

We now consider other stability points of the potential where either v or w1 or

w2 vanish.

1. There is a stability point where w1 = w2 = 0. At that point the potential has

the value

V (1) ≡ − µ21
2λ1

. (B.5)

2. Similarly, there are stability points where either v = w1 = 0 or v = w2 = 0. At those

two points the values of the potential are, respectively,

V (2) ≡ −
(
m2

2

)2
2ψ2

, (B.6a)

V (3) ≡ −
(
m2

1

)2
2ψ1

. (B.6b)

3. There is a stability point of the potential where v = 0 but w1 and w2 are nonzero.

At that point the potential takes the value

V (4) ≡
−ψ2

(
m2

1

)2 − ψ1

(
m2

2

)2
+ 2ψ3m

2
1m

2
2

2
(
ψ1ψ2 − ψ2

3

) . (B.7)

4. Similarly, there is a stability point where w1 = 0 but v 6= 0 and w2 6= 0. At that

point the value of the potential is

V (5) ≡
−ψ2µ

2
1 − λ1

(
m2

2

)2
+ 2ξ2µ1m

2
2

2
(
λ1ψ2 − ξ22

) . (B.8)

5. Finally, there is another stability point with value

V (6) ≡
−ψ1µ

2
1 − λ1

(
m2

1

)2
+ 2ξ1µ1m

2
1

2
(
λ1ψ1 − ξ21

) (B.9)

of the potential.

9The principal minors of a square matrix are the determinants of its principal submatrices.
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From inequalities (B.4c) and (B.4f) it follows that V (4) ≤ V (2) is equivalent to

ψ2

[
−ψ2

(
m2

1

)2 − ψ1

(
m2

2

)2
+ 2ψ3m

2
1m

2
2

]
≤
(
ψ2
3 − ψ1ψ2

) (
m2

2

)2
, (B.10)

which in turn is equivalent to

−
(
ψ2m

2
1 − ψ3m

2
2

)2 ≤ 0, (B.11)

and this is obvioulsy true. One thus concludes that V (4) can never be larger than V (2). In

similar fashion one finds that

V (4) ≤ V (2), (B.12a)

V (4) ≤ V (3), (B.12b)

V (5) ≤ V (1), (B.12c)

V (5) ≤ V (2), (B.12d)

V (6) ≤ V (1), (B.12e)

V (6) ≤ V (3). (B.12f)

Next consider the inequality V0 ≤ V (4). Because of (B.4f) and (B.4g), it is equivalent to(
ψ1ψ2 − ψ2

3

) [(
ψ2
3 − ψ1ψ2

)
µ21 +

(
ξ22 − λ1ψ2

) (
m2

1

)2
(B.13a)

+
(
ξ21 − λ1ψ1

) (
m2

2

)2
+ 2 (ξ1ψ2 − ψ3ξ2)µ1m

2
1 (B.13b)

+2 (ξ2ψ1 − ψ3ξ1)µ1m
2
2 + 2 (λ1ψ3 − ξ1ξ2)m2

1m
2
2

]
≤ d

[
−ψ2

(
m2

1

)2
(B.13c)

− ψ1

(
m2

2

)2
(B.13d)

+2ψ3m
2
1m

2
2

]
. (B.13e)

Introducing the expression for d in equation (B.2), one finds that the inequality (B.13) is

equivalent to(
ψ1ψ1 − ψ2

3

) [(
ψ2
3 − ψ1ψ2

)
µ21 + 2 (ξ1ψ2 − ψ3ξ2)µ1m

2
1 (B.14a)

+2 (ξ2ψ1 − ψ3ξ1)µ1m
2
2

]
−
(
m2

1

)2
(ψ2ξ1 − ψ3ξ2)

2 (B.14b)

−
(
m2

2

)2
(ψ1ξ2 − ψ3ξ1)

2 − 2m2
1m

2
2 (ψ2ξ1 − ψ3ξ2) (ψ1ξ2 − ψ3ξ1) ≤ 0. (B.14c)

This may be written as[(
ψ2
3 − ψ1ψ2

)
µ1 + (ψ2ξ1 − ψ3ξ2)m

2
1 + (ψ1ξ2 − ψ3ξ1)m

2
2

]2 ≥ 0, (B.15)

which is of course true. In similar fashion one obtains that

V0 ≤ V (4), (B.16a)

V0 ≤ V (5), (B.16b)

V0 ≤ V (6). (B.16c)
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We have thus demonstrated that, because of our assumption that all three eigenvalues

of the matrix M are positive, V0 is smaller than V 1,2,3,4,5,6, viz. the stability point of V

with nonzero v, w1, and w2 is the vacuum.

This result may be easily understood in the following way. The potential (2.1) of the

SM2S may be rewritten

V =
1

2
XTΛX + V0, (B.17)

where V0 is the vacuum expectation value of the potential given in equation (B.3a) and

X =

 φ†1φ1 − v2

S2
1 − w2

1

S2
2 − w2

2

 , Λ =

 λ1 ξ1 ξ2
ξ1 ψ1 ψ3

ξ2 ψ3 ψ2

 . (B.18)

We assume that the point X =
(

0, 0, 0
)T

is a local minimum of the potential V . Then,

since the potential in equation (B.17) is a quadratic form is X, the point X =
(

0, 0, 0
)T

must also be the global minimum of V .10

C Global minimum conditions for the 2HDM1S

In the 2HDM1S, we define q1 ≡ φ†1φ1, q2 ≡ φ†2φ2, z ≡ φ†1φ2, z
∗ ≡ φ†2φ1,

11 and q3 ≡ S2.

Note that

q1 ≥ 0, q2 ≥ 0, |z|2 ≤ q1q2, q3 ≥ 0. (C.1)

We define the column vector X =
(
q1, q2, z, z

∗, q3

)T
. The scalar potential of the

2HDM1S may then be written as

V = Y TX +
1

2
XTΛX, (C.2)

where

Y =


µ1
µ2
µ3
µ∗3
µ4

 , Λ =


λ1 λ3 λ6 λ

∗
6 ξ1

λ3 λ2 λ7 λ
∗
7 ξ2

λ6 λ7 λ5 λ4 ξ3
λ∗6 λ

∗
7 λ4 λ

∗
5 ξ
∗
3

ξ1 ξ2 ξ3 ξ∗3 ψ

 . (C.3)

The coefficients µ1, µ2, µ3, and µ4 contained in the column vector Y have squared-mass

dimension; µ3 is in general complex while µ1, µ2, and µ4 are real. The coefficients contained

in the symmetric matrix Λ are treated by us as an input, cf. section 4.3. Since we study

the 2HDM1S in the Higgs basis, where φ2 has zero VEV, in the vacuum one has q2 = z =

z∗ = 0, q1 = v2, and q3 = w2; the vacuum expectation value of the potential is

V0 ≡ 〈0 |V | 0〉 = µ1v
2 + µ4w

2 +
λ1v

4

2
+
ψw4

2
+ ξ1v

2w2. (C.4)

10We thank Igor Ivanov for presenting this argument to us.
11Since we only analyze the potential at the classical level, we simplify the notation by treating the fields

as c-numbers instead of q-numbers.
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It follows that

µ1 = −λ1v2 − ξ1w2, (C.5a)

µ4 = −ξ1v2 − ψw2. (C.5b)

Solving for v2 and w2 the system (C.5) and plugging the solution into equation (C.4), one

obtains

V0 =
−ψ (µ1)

2 − λ1 (µ4)
2 + 2ξ1µ1µ4

2
[
ψλ1 − (ξ1)

2
] . (C.6)

Moreover, in the Higgs basis

µ2 = MC − λ3v2 − ξ2w2, (C.7a)

µ3 = −λ6v2 − ξ3w2. (C.7b)

In equation (C.7a), MC is the mass of the charged scalar; we treat it as an input, just as v

and w.12 By using equations (C.5) and (C.7) we find the values of µ1, µ2, µ3, and µ4 from

the input.

We want to check that, for each set of input parameters (i.e. λ1,...,7, ξ1,2,3, ψ, v, w,

and MC) in our data set, the state that we assume to be the vacuum, characterized by

q2 = z = z∗ = 0, is indeed the global minimum of the potential. In order to do this we must

consider all the other possible stability points of the potential and check that the value

of the potential at each of those points is larger than V0 in equation (C.6). The stability

points may either be inside the domain defined by equations (C.1) or they may lie on a

boundary of that domain. There is only one possible stability point inside the domain;

deriving equation (C.2) relative to X, we find that it is given by

X ≡ X(1) = −Λ−1Y, (C.8a)

V ≡ V (1) = −1

2
Y TΛ−1Y. (C.8b)

For each set of input parameters, we have computed the column vector X(1) by using

equation (C.8a). If that vector happened to be inside the domain, viz. if X
(1)
1 > 0, X

(1)
2 > 0,∣∣∣X(1)

3

∣∣∣2 < X
(1)
1 X

(1)
2 , and X

(1)
4 > 0, then we computed V (1) by using equation (C.8b). We

checked whether V (1) > V0; if the latter condition did not hold, then we discarded that set

of input parameters.

Next we have considered the various possible stability points on boundaries of the

domain. Firstly there is the boundary with q3 = 0 but q1 > 0, q2 > 0, and |z|2 < q1q2. In

that case one has

V = Ȳ T X̄ +
1

2
X̄T Λ̄ X̄, (C.9)

12More exactly, we input v = 174 GeV and the squared mass M1 = (125 GeV)2 of one of the scalars, and

we derive the value of w therefrom.
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where

X̄ =


q1
q2
z

z∗

 , Ȳ =


µ1
µ2
µ3
µ∗3

 , Λ̄ =


λ1 λ3 λ6 λ

∗
6

λ3 λ2 λ7 λ
∗
7

λ6 λ7 λ5 λ4
λ∗6 λ

∗
7 λ4 λ

∗
5

 . (C.10)

There is one possible stability point with

X̄ ≡ X̄(2) = −Λ̄−1Ȳ , (C.11a)

V ≡ V (2) = −1

2
Ȳ T Λ̄−1Ȳ . (C.11b)

For each set of input parameters, we have computed the column vector X̄(2) by using

equation (C.11a). Whenever that vector happened to fulfil X̄
(2)
1 > 0, X̄

(2)
2 > 0, and∣∣∣X̄(2)

3

∣∣∣2 < X̄
(2)
1 X̄

(2)
2 , we computed V (2) by using equation (C.11b). We checked whether

V (2) > V0; if that condition did not hold, then we discarded the set of input parameters.

Secondly we have checked a possible stability point with null q1 (and z) instead of null

q2 (and z). In analogy with equations (C.5) and (C.6), in that case one has

q2 =
−ψµ2 + ξ2µ4

ψλ2 − (ξ2)
2 , (C.12a)

q3 =
ξ2µ2 − λ2µ4
ψλ2 − (ξ2)

2 , (C.12b)

V ≡ V (3) =
−ψ (µ2)

2 − λ2 (µ4)
2 + 2ξ2µ2µ4

2
[
ψλ2 − (ξ2)

2
] . (C.12c)

For each set of parameters, we have computed q2 and q3 through equations (C.12a)

and (C.12b), respectively. Whenever q2 and q3 were both positive, we have computed

V (3) through equation (C.12c); if V (3) < V0, then we discarded the set of parameters.

Thirdly, we have considered the following possible stability points on boundaries of

the domain:

1. The point q1 = q2 = z = q3 = 0 has V = 0, Therefore, when V0 > 0 we have discarded

the set of parameters.

2. When q1 = q2 = z = 0 but q3 6= 0, there is a stability point featuring

q3 = −µ4
ψ
, (C.13a)

V ≡ V (4) = −(µ4)
2

2ψ
. (C.13b)

Whenever q3 in equation (C.13a) happened to be positive and simultaneously V (4)

in equation (C.13b) was smaller then V0, we have discarded the set of parameters.

– 36 –



J
H
E
P
1
2
(
2
0
1
8
)
0
0
4

3. When q1 = q3 = z = 0 but q2 6= 0, there is a stability point featuring

q2 = −µ2
λ2
, (C.14a)

V ≡ V (5) = −(µ2)
2

2λ2
. (C.14b)

Whenever q2 in equation (C.14a) happened to be positive and simultaneously V (5)

in equation (C.14b) was smaller then V0, we have discarded the set of parameters.

4. When q2 = q3 = z = 0 but q1 6= 0, there is a stability point featuring

q1 = −µ1
λ1
, (C.15a)

V ≡ V (6) = −(µ1)
2

2λ1
. (C.15b)

Whenever q1 in equation (C.15a) happened to be positive and simultaneously V (6)

in equation (C.15b) was smaller then V0, we have discarded the set of parameters.

All the above tests are easily applied. The awkward tests involve the boundaries where

|z|2 = q1q2. In that case one writes z = eiθ
√
q1q2 to obtain

V ≡ V̂0 = µ1q1 + µ2q2 + 2<
(
µ3e

iθ
)√

q1q2 + µ4q3 (C.16a)

+
λ1
2

(q1)
2 +

λ2
2

(q2)
2 +

ψ

2
(q3)

2 +
[
λ3 + λ4 + <

(
λ5e

2iθ
)]
q1q2 (C.16b)

+ 2<
(
λ6e

iθ
)
q1
√
q1q2 + 2<

(
λ7e

iθ
)
q2
√
q1q2 (C.16c)

+ ξ1q1q3 + ξ2q2q3 + 2<
(
ξ3e

iθ
)
q3
√
q1q2. (C.16d)

Deriving V̂0 in equation (C.16) relative to q1, q2, q3, and θ one obtains the stability equations

0 = µ1 + <
(
µ3e

iθ
)√q2

q1
+ λ1q1 +

[
λ3 + λ4 + <

(
λ5e

2iθ
)]
q2 (C.17a)

+ 3<
(
λ6e

iθ
)√

q1q2 + <
(
λ7e

iθ
)
q2

√
q2
q1

(C.17b)

+ ξ1q3 + <
(
ξ3e

iθ
)
q3

√
q2
q1
, (C.17c)

0 = µ2 + <
(
µ3e

iθ
)√q1

q2
+ λ2q2 +

[
λ3 + λ4 + <

(
λ5e

2iθ
)]
q1 (C.17d)

+ <
(
λ6e

iθ
)
q1

√
q1
q2

+ 3<
(
λ7e

iθ
)√

q1q2 (C.17e)

+ ξ2q3 + <
(
ξ3e

iθ
)
q3

√
q1
q2
, (C.17f)

0 = µ4 + ψq3 + ξ1q1 + ξ2q2 + 2<
(
ξ3e

iθ
)√

q1q2, (C.17g)

0 = =
(
µ3e

iθ
)

+ =
(
λ5e

2iθ
)√

q1q2 (C.17h)

+ =
(
λ6e

iθ
)
q1 + =

(
λ7e

iθ
)
q2 + =

(
ξ3e

iθ
)
q3. (C.17i)
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For each set of parameters of the potential, we have searched for solutions, i.e. for q1 > 0,

q2 > 0, q3 > 0, and a phase θ satisfying the system (C.17) of four equations. (This proved

to be a highly nontrivial task.) Whenever we found a solution, we computed V̂0 through

equation (C.16) and checked whether V̂0 < V0; when that happened for at least one solution

of (C.17), we have discarded the corresponding set of parameters.

One must also consider the domain border |z|2 = q1q2 and q3 = 0. In that case one

must solve the simpler system of equations

0 = µ1 + <
(
µ3e

iθ
)√q2

q1
+ λ1q1 +

[
λ3 + λ4 + <

(
λ5e

2iθ
)]
q2 (C.18a)

+ 3<
(
λ6e

iθ
)√

q1q2 + <
(
λ7e

iθ
)
q2

√
q2
q1
, (C.18b)

0 = µ2 + <
(
µ3e

iθ
)√q1

q2
+ λ2q2 +

[
λ3 + λ4 + <

(
λ5e

2iθ
)]
q1 (C.18c)

+ <
(
λ6e

iθ
)
q1

√
q1
q2

+ 3<
(
λ7e

iθ
)√

q1q2, (C.18d)

0 = =
(
µ3e

iθ
)

+ =
(
λ5e

2iθ
)√

q1q2 + =
(
λ6e

iθ
)
q1 + =

(
λ7e

iθ
)
q2. (C.18e)

For each set of parameters, whenever we found a solution q1 > 0, q2 > 0, and θ of

equations (C.18) we computed

Ṽ0 = µ1q1 + µ2q2 + 2<
(
µ3e

iθ
)√

q1q2 (C.19a)

+
λ1
2

(q1)
2 +

λ2
2

(q2)
2 +

[
λ3 + λ4 + <

(
λ5e

2iθ
)]
q1q2 (C.19b)

+ 2<
(
λ6e

iθ
)
q1
√
q1q2 + 2<

(
λ7e

iθ
)
q2
√
q1q2. (C.19c)

If Ṽ0 < V0 for any solution of equations (C.18), then we discarded the set of input

parameters.

By applying all the tests in this appendix, we have eliminated about half of our initial

set of sets of input parameters. Thus, the tests in this appendix prove crucial in the correct

analysis of the 2HDM1S.

We have also applied the tests in this appendix, with the necessary simplifications, to

the case of the 2HDM [50]. In particular, in that case we do not have to solve the very

complicated system of four equations (C.17), we only have to solve the much easier system

of three equations (C.18). We have checked that the tests in this appendix yield, for the

2HDM, exactly the same result as the much simpler method described in the paragraph

between equations (3.32) and (3.33).

– 38 –



J
H
E
P
1
2
(
2
0
1
8
)
0
0
4

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[3] I.P. Ivanov, Building and testing models with extended Higgs sectors, Prog. Part. Nucl. Phys.

95 (2017) 160 [arXiv:1702.03776] [INSPIRE].

[4] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics,

Chin. Phys. C 40 (2016) 100001 [INSPIRE].

[5] J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Benchmarks for Higgs Pair

Production and Heavy Higgs boson Searches in the Two-Higgs-Doublet Model of Type II,

Phys. Rev. D 90 (2014) 015008 [arXiv:1403.1264] [INSPIRE].

[6] L. Wu, J.M. Yang, C.-P. Yuan and M. Zhang, Higgs self-coupling in the MSSM and NMSSM

after the LHC Run 1, Phys. Lett. B 747 (2015) 378 [arXiv:1504.06932] [INSPIRE].

[7] L. Bian and N. Chen, Higgs pair productions in the CP-violating two-Higgs-doublet model,

JHEP 09 (2016) 069 [arXiv:1607.02703] [INSPIRE].

[8] N. Chakrabarty and B. Mukhopadhyaya, High-scale validity of a two Higgs doublet scenario:

predicting collider signals, Phys. Rev. D 96 (2017) 035028 [arXiv:1702.08268] [INSPIRE].

[9] N.F. Bell, G. Busoni and I.W. Sanderson, Self-consistent Dark Matter Simplified Models with

an s-channel scalar mediator, JCAP 03 (2017) 015 [arXiv:1612.03475] [INSPIRE].

[10] N.F. Bell, G. Busoni and I.W. Sanderson, Two Higgs Doublet Dark Matter Portal, JCAP 01

(2018) 015 [arXiv:1710.10764] [INSPIRE].

[11] M. Bauer, U. Haisch and F. Kahlhoefer, Simplified dark matter models with two Higgs

doublets: I. Pseudoscalar mediators, JHEP 05 (2017) 138 [arXiv:1701.07427] [INSPIRE].

[12] C.-F. Chang, X.-G. He and J. Tandean, Two-Higgs-Doublet-Portal Dark-Matter Models in

Light of Direct Search and LHC Data, JHEP 04 (2017) 107 [arXiv:1702.02924] [INSPIRE].

[13] M. Gorbahn and U. Haisch, Indirect probes of the trilinear Higgs coupling: gg → h and

h→ γγ, JHEP 10 (2016) 094 [arXiv:1607.03773] [INSPIRE].
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