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A LOCAL LIMIT THEOREM FOR COEFFICIENTS OF
MODIFIED BORWEIN’S METHOD

IGORIS BELOVAS

Vilnius University, Lithuania

ABSTRACT. The paper extends the study of the modified Borwein
method for the calculation of the Riemann zeta-function. It presents an
alternative perspective on the proof of a local limit theorem for coefficients
of the method. The new approach is based on the connection with the
limit theorem applied to asymptotic enumeration.

1. INTRODUCTION

In [1] we introduced a modification of Borwein’s method for the calcu-
lation of the Riemann zeta-function and proposed an asymptotic expression
for the coefficients of the method. The asymptotic modification of the algo-
rithm proved to be more than three times faster than the original one [1].
Borwein’s method for calculating Riemann zeta-function is based on the al-
ternating series convergence [4]. It applies to complex numbers s = o + it
with o > 1/2.
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here
3 (1+20)e™
(B+V8)r |1 -2
It is challenging to compute coefficients dj for large n directly (because

of factorials in the definition). Therefore we have introduced a modification
of the method. Let ¢ =1 — dpi/dnn, 0<k <n—1. Now
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Now we can calculate d,j recurrently, i.e. dni = dp k-1 + Unk, dno = 1,
and
k
Cnk =1 — Z s
i=0
here
(1.2) g = =k

D ieo Uni
In [1] we received a local limit theorem for coefficients of modified Bor-

wein’s method. Note that throughout the paper, all limits, whenever unspec-
ified, will be taken as n — oo.

THEOREM 1.1. (L. Belovas, L. Sakalauskas [1]) Let p,, = %, on = T\{‘/ﬁi

Numbers a,j. satisfy a local limit theorem

Am SUpank = @y o, ()| = 0,
where @, ,(x) is the probability density function of the normal distribution
with the mean p and the standard deviation o.

The theorem was proved in a ”straightforward” way, using Stirling’s for-
mula. However, alternative perspective reveals the connection with combina-
torial numbers and calls for application of the results of asymptotic enumer-
ation theory [6]. We will use a general local limit theorem by E. A. Bender,

based on the nature of the generating function 3 w,;2"w".

THEOREM 1.2. (E. A. Bender [3]) Let f(z,w) have a power series expan-
sion

(1.3) flz,w) = Z Up 2" Ww"
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with non-negative coefficients and let a < b be real numbers. Define
Re)={z:a<Rz<b, [Sz]<e}.

Suppose there exists € > 0,6 > 0, a non-negative integer m, and functions

A(s), r(s) such that

(i) an A(s) is continuous and non-zero for s € R(e),
(ii) an r(s) is non-zero and has a bounded third derivative for s € R(g),
(iii) for s € R(e) and |z| < |r(s)|(1 4 ¢) function

(1.4) (1 - T(Zs))m Fz,e®) — %

is analytic and bounded,
(iv) (r'(a)/r(e))? —7"(a) /() # 0 for a <a < b,
(v) f(z,e®) is analytic and bounded for
|z] < |r(Rs)|(1+9), e < |Ss] < 7.
Then we have
n™e= A(a)

1.5 Unpk ~
(1:5) g mlr?(a)¥av2mn

uniformly for a < a < b, where

(1.6) g ey (’f)2 (@)

n

2. LOCAL LIMIT THEOREM FOR THE COEFFICIENTS Up}k

First, we prove an auxiliary lemma, identifing the generating function
(1.3) of coefficients wu, (1.1).

LEMMA 2.1. Suppose that

1 n=k=0,
(27) Upp = < 0 k>mn,

% otherwise,

then the generating function

w1 1 1
(2:8) D wnayt = 2 <1 T e — 1 20(y) - 1) '

n,k>0

Here

Oy) =y+Vy+y>+1/2.
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PROOF. By definition (2.7), we have the recurrent expression
dn+k—-1)(n—k+1)

(2k — 1)(2k)
Let us consider the generating function (2.8),

o0 o0
= Z Z Unpx"y".

n=0 k=0

(2.9) Unk = Un,k—1

Taking into account that u,o = 1 and (2.9), we obtain the expresion

dn+k-—1n—-k+1) ,
Z“nox +ZZ“"’€ T T R A

n=0 k=1

(2.10)
7’L + k k) n, k+1

Uk ok 1 (2k+2)$ oo

n=0 k=0
yielding the integral equation

flz,y) = %—yfacy /fxtdt—i—

+/ / 42 fo (2, 1%) + 422 frp(z,t2) — f(z, t?)dtdu.
0 0
It gives us the linear partial differential equation of the second order,

2 foa — (y + yQ)fyy +afs —(1/2+y)fy =0.
Note that, in view of (2.10), we have initial conditions

f(xao):ﬁ, fy(z,0) =0.

Solving the equation (e.g., by the method of characteristics), we obtain

1 1 !
flay) =5 <1 o) —1 240(y) = 1) ’

which yields us the statement of the lemma. |

Now we can proceed with the local limit theorem for coefficients u,x (2.7).

THEOREM 2.2. Let

(2.11) i = % o2 = %ﬁ’
then for all k, such that

(2.12) e — pinl = 0(¥/%),
we have

Unk ~

n
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PrOOF. By Lemma 2.1, the generating function

S J— 1 1 1 =
f(z,€e%) = By (1 + 2:710(s) — 1 220(s) — 1> a
_40%(s) —427'O(s) + 1
©2(22710(s) — 1)(220(s) — 1)

where we write O(s) in place of O(e®).
Let 7(s) (cf. Theorem 1.2) be a root of the function

h(z,e®) = (22710(s) — 1)(220(s) — 1).
This function has two roots, z; = 20(s) and 2o = (20(s))~!. Let us denote

1
(2.13) ri(s) =20(s), ro(s) = 50(s)
Calculating derivatives, we obtain
) 1 r5(0) 1
= 0, —= =—-——<0.
r(0)  v2 r2(0) V2

By Theorem 1 (Bender [3]), the mean u, = nu and p = —r'(0)/r(0). Note
that by definitions (1.1)-(1.2), numbers wu,; and a,j are positive. Thus, to
obtain positive i, we choose the root ro(s), corresponding the negative ratio.
Hence, by (2.13), we have

1 1
@1 =)= e S e e r 1)
Thus,

TI(S) . es 7'/(0) _ _i
(2.15) rs) \/; r(0) V2
and
M) e 1 ) 1 V2
(216) 7"(8) - es+1 N 2m’ T(O) a 2 8

Next, consider the function A(s) (cf. (1.4) of Theorem 1.2) as the limit

A(s) = lim f(z,e%) (1_Z>m+1.

z—r(s) 7’(8)

Here m + 1 is the order of the pole. Note that, if the pole is simple, then
m = 0. Calculating A(s) we obtain

Als) = ZE%% (1 + 22*1@1(5) —1 229(; - 1) (1 N T(Zs)) -

I 1 14 1 1 1 z 1
= lim = — —— ] ==
z—r(s) 2 z7hr=1(s) =1  2r71(s)—1 r(s) 2
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The function (1.4)
z \" A(s) O(s)
1-— ) — =
( r(s)) f(z€) 1—2z/r(s) 20(s)—=z
is analytic and bounded for
|s| < e, |z| < |r(0)] +0 =3 —2V2+56.

Thus, conditions (i)-(iii) and (v) of Theorem 1.2 are satisfied. To verify the
condition (iv), we must calculate the expression (r'(a)/r(a))? — 7" (a) /7 ().
By (2.15) and (2.16) we have

(@) 2 B () _ 1 ex 40

r(a) r(a) 2V (e*+1)3

We obtain the parameter a by solving the equation

)
n r(a)’
Using (2.15) we get
E__ 1
no Vlite o
Hence,
k‘2
e* = FOREE

Next (cf. (1.6) and (2.14)),

pol e L e N
@2V (e +1)3 2ex \ex+1 ’
r(a) = (2(e” + Ve + €20 +1/2)) 7"
Now we can calculate (1.5) of Theorem 1.2,
—akl
€ 3

(@) 2mn -

(2(e* +Ver f e +1/2))" (m

- e\ , \k—1/2
2\/ﬁe°‘(k_1/2) (m) QW (ﬁ)

k

e gy (B) -k
(

Unk ~

W 2ro, 2 (14 /2)2n

Qava (s m
2270y, \/(1 By 4By E o (14v/2)n (5™

=0nk

=0nk
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Note that by (2.11) and (2.12), we have

k

n

1

(2.18) %

7= ()

hence k/n — 1//2, while n — oo. Thus, 0, — 1 .

Let us denote

k — Hn
x = .
On
By (2.11), we have
E_L .z
no V2 2v2yn’
and by (2.18), we have
(2.19) |z| = o(¥/n).

Calculating the logarithm of §,; (2.17), we get

logé,Lk:—anog(l+\@)—(n\/§+x€\//§> g(} fo)
o H )
+<"+\f+2\§> <1 V2 wf\r)
= —2nlog(l + V2)—
(2 f)@%i+m( )t
+<11\L/§\fn+2:;> (log < \[\2[_\;>>+
(2]
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Using Taylor series expansions for logarithms, we obtain for large enough n,
) (e
x x 3 1+ \@
~vava v )t (T

M) (log V2+1 N e(V2-1) 2*(V2- 1)2Jr

23 V2 VavEe | aven

S () (2
nyn V2 2v2 V2
r(vV24+1)  22(vV/2+1)? z3
e avm Olw)
By multiplying factors and combining like terms, we obtain
x? 23
log 0,1 = ) + 0 <\/ﬁ) ,

which, combined with (2.17) and (2.19), yields us the statement of the theo-
rem. ]

log 6nx = —2nlog(1 4+ V2) + (nx/i—i—

2

n+0( n+

+

+0(

REMARK 2.3. Theorem 2.2 yields us the asymptotic equivalence
- 1
> i~ S+ VR
k=0

(cf. Lemma 2.1 of I. Belovas and L. Sakalauskas in [1])

REMARK 2.4. A central limit theorem for the coefficients of modified
Borwein’s method can be proved analogically, using Bender’s central limit
theorem applied to asymptotic enumeration (Theorem 1, [3]) [2]. However,
the approach, based on Hwang’s limit theorem [5], yields more strong result,
enabling us to evaluate the rate of convergence to normal distribution (cf.
Theorem 3.1 in [1]).

ACKNOWLEDGEMENTS.

The author would like to thank the anonymous reviewer for careful read-
ing of the manuscript and providing constructive comments and suggestions,
which have helped him to improve the quality of the paper.

REFERENCES

[1] I. Belovas, L. Sakalauskas, Limit theorems for the coefficients of the modified Borwein
method for the calculation of the Riemann zeta-function values. Colloq. Math. 151
(2018), No. 2, 217-227
https://doi.org/10.4064/cm7086-2-2017

[2] I. Belovas, A central limit theorem for coefficients of the modified Borwein method
for the calculation of the Riemann zeta-function. Lith. Math. J. 59 (2019), No. 1



(3]

(4]

(5]

A LOCAL LIMIT THEOREM ... 9

E. A. Bender, Central and local limit theorems applied to asymptotic enumeration.
J. Comb. Theory A. 15 (1973), 91-111
https://doi.org/10.1016/0097-3165(73)90038-1

P. Borwein, An efficient algorithm for the Riemann Zeta function. In: Constructive,
Experimental, and Nonlinear Analysis (Limoges, 1999), Canadian Mathematical So-
ciety Conference Proceedings, American Mathematical Society, Providence, RI, 2000,
29-34

H.-K. Hwang, On Convergence rates in the central limit theorems for combinatorial
structures. Eur. J. Combin., 19 (1998), No. 3, 329-343
https://doi.org/10.1006/eujc.1997.0179

A. M. Odlyzko, Asymptotic enumeration methods. In: Handbook of Combinatorics,
vol. 2, R. L. Graham, M. Groetschel, and L. Lovasz, eds., Elsevier, 1995, 1063—1229

I. Belovas

Vilnius University Institute of Data Science and Digital Technologies
04812 Vilnius, Lithuania

Vilnius Gediminas Technical University

10223 Vilnius, Lithuania

E-mail: Igoris.Belovas@mii.vu.lt



