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Abstract. Let {ξ1, ξ2, . . . } be a sequence of independent real-valued and possibly nonidentically
distributed random variables. Suppose that η is a nonnegative, nondegenerate at 0 and integer-valued
random variable, which is independent of {ξ1, ξ2, . . . }. In this paper, we consider conditions for
{ξ1, ξ2, . . . } and η under which the distributions of the randomly stopped maxima and minima, as
well as randomly stopped maxima of sums and randomly stopped minima of sums, belong to the
class of exponential distributions.

Keywords: class of exponential distributions, counting random variable, randomly stopped
maxima, randomly stopped minima, maximum of sums, minimum of sums, closure property.

1 Introduction

Let {ξ1, ξ2, . . .} be a sequence of independent random variables (r.v.s) with distribution
functions (d.f.s) {Fξ1 , Fξ2 , . . .}, and let η be a counting random variable (c.r.v.), i.e.
a nonnegative, nondegenerate at 0 and integer-valued r.v. In addition, we suppose that
the r.v. η and the sequence {ξ1, ξ2, . . .} are independent.

• Let S0 := 0, Sn := ξ1 + ξ2 + · · ·+ ξn for n ∈ N, and let

Sη =

η∑
k=1

ξk

be the randomly stopped sum of the r.v.s ξ1, ξ2, . . . .
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• Next, let ξ(0) := 0, ξ(n) := max{0, ξ1, . . . , ξn} for n ∈ N, and let

ξ(η) :=

{
0 if η = 0,

max{0, ξ1, ξ2, . . . , ξη} if η > 1

be the randomly stopped maxima of the r.v.s ξ1, ξ2, . . . .
• Similarly, let ξ(0) := 0, ξ(n) := min{ξ1, ξ1, . . . , ξn} for n ∈ N, and let

ξ(η) :=

{
0 if η = 0,

min{ξ1, ξ2, . . . , ξη} if η > 1

be the randomly stopped minima of the r.v.s ξ1, ξ2, . . . .
• Next, let S(n) := max{S0, S1, . . . , Sn} for n > 0, and let

S(η) := max{S0, S1, . . . , Sη}

be the randomly stopped maxima of the sums S0, S1, S2, . . . .
• Similarly, let S(0) = 0, S(n) := min{S1, S2, . . . , Sn} for n > 1, and let

S(η) :=

{
0 if η = 0,

min{S1, S2, . . . , Sη} if η > 1

be the randomly stopped minima of the sums S0, S1, S2, . . . .

We denote by Fξ(η) , Fξ(η) , FSη , FS(η)
and FS(η) the d.f.s of ξ(η), ξ(η), Sη , S(η) and

S(η), respectively. Moreover, we denote by F the tail of any d.f. F , i.e. F (x) = 1−F (x)
for all x ∈ R. It is obvious that the following equalities hold for all x > 0:

F ξ(η)(x) =

∞∑
n=1

P(η = n)P
(
ξ(n) > x

)
, F ξ(η)(x) =

∞∑
n=1

P(η = n)P
(
ξ(n) > x

)
,

FSη (x) =

∞∑
n=1

P(η = n)P
(
Sn > x

)
, FS(η)

(x) =

∞∑
n=1

P(η = n)P
(
S(n) > x

)
,

FS(η)(x) =

∞∑
n=1

P(η = n)P
(
S(n) > x

)
.

In this paper, we consider a sequence of possibly nonidentically distributed r.v.s
{ξ1, ξ2, . . .}. We suppose that the majority of these r.v.s belong to the class of exponential
distributions and find conditions under which the d.f.s Fξ(η) , Fξ(η) , FSη , FS(η)

and FS(η)

belong to the same class. If d.f.s Fξ1 , Fξ2 , . . . are different, then the various properties
of these d.f.s and the c.r.v. η imply exponentiality of the described randomly stopped
structures. Before discussing the properties of the d.f.s Fξ(η) , Fξ(η) , FSη , FS(η)

and FS(η) ,
we recall the notion of exponentiality.
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• For any γ > 0, we denote by L(γ) the class of exponential-type d.f.s. It is said that
F ∈ L(γ) if

lim
x→∞

F (x+ y)

F (x)
= e−γy for any y > 0.

• For γ = 0, the classL(0) is called the class of long-tailed distributions and denoted
by L. Consequently, F ∈ L if and only if

lim sup
x→∞

F (x− 1)

F (x)
6 1.

By Proposition 2.6 from [2], an absolutely continuous d.f. F belongs to the classL(γ),
γ > 0, if and only if

F (x) = exp

{
−

x∫
−∞

(
α(u) + β(u)

)
du

}
, x ∈ R,

for some measurable functions α and β with α(x) + β(x) > 0 for all x ∈ R such that

lim
x→∞

α(x) = γ, lim
x→∞

x∫
−∞

α(u) du =∞ and lim
x→∞

x∫
−∞

β(u) du exists.

Another representation formula, which does not require the absolute continuity of F ,
can be found in [27]. It states that F ∈ L(γ) with γ > 0 if and only if

F (x) = β̄(x) exp

{
−

x∫
0

ᾱ(u) du

}
, x > 0, (1)

for some positive measurable functions ᾱ and β̄ such that

lim
x→∞

ᾱ(x) = γ and lim
x→∞

β̄(x) = β̄0 > 0.

We note here that any gamma distribution belongs to the class L(γ) with some γ > 0.
In particular, any exponential or Erlang distribution belongs to this class.

In addition, a d.f. from the class L(γ) can be stepped, i.e. there is such a function that
describes a distribution of a discrete r.v. To be more precise, if γ > 0, we define F (x) =
exp(−γ logbexc) for all x > 0, where bac denotes the integer part of a real number a. It
is obvious that this function F is a d.f. of a nonnegative discrete r.v. Moreover, F ∈ L(γ)
because for any y > 0, we have

F (x+ y)

F (x)
= exp

(
−γ
(
log
⌊
ex+y

⌋
− log

⌊
ex
⌋))

= exp

(
−γ log

ex+y − {ex+y}
ex − {ex}

)
−→
x→∞

e−γy,

where {a} = a− bac denotes the fractional part of a real number a.
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The class of long-tailed distributions L (but not the term itself) was introduced by
Chistyakov [7] in the context of branching processes, whereas for γ > 0, the class L(γ)
was introduced by Chover et al. [8, 9]. In this paper, we suppose that the d.f.s of the r.v.s
under consideration belong to either of the following four classes:

L, L(γ) with some γ > 0, L∞ =
⋃
γ>0

L(γ) or L∞+ =
⋃
γ>0

L(γ).

A number of interesting and important properties of distributions from these classes
can be found in the book by Foss et al. [19] and in the papers by Albin and Sundén
[2], Beck et al. [4], Cheng et al. [6], Chover et al. [8, 9], Cline [10, 11], Cui et al. [12],
Embrechts and Goldie [18], Klüppelberg [20], Omey et al. [23], Pakes [24, 25], Shimura
and Watanabe [26], Watanabe [28], Watanabe and Yamamuro [29] and Xu et al. [30–32],
Yang et al. [33], among others.

In [10,11], Cline claimed that the d.f. FSη belongs to the class L(γ) for some γ > 0 if
the r.v.s ξ1, ξ2, . . . are independent and identically distributed (i.i.d.) with d.f. Fξ ∈ L(γ)
and η is an arbitrary c.r.v. Albin [1] constructed a counterexample and showed that Cline’s
result is false in general. In his paper [1], Albin stated that the d.f. FSη remains in the
class L(γ) for some γ > 0 if the r.v.s {ξ1, ξ2, . . .} are identically distributed with d.f.
Fξ ∈ L(γ) and E eδη < ∞ for all δ > 0. Watanabe and Yamamuro showed that this
assertion is incorrect in the case of γ > 0 (see [29, Remark 6.1]). For γ > 0, Watanabe
and Yamamuro proved the following theorem (see proof of Proposition 6.1 in [29]).

Theorem 1. Let {ξ1, ξ2, . . .} be a sequence of i.i.d. r.v.s distributed on R with d.f. Fξ. If
Fξ ∈ L(γ) for some γ > 0, then FSη belongs to the class L(γ) for any c.r.v. η distributed
according to the Poisson law.

A similar assertion but for the case γ = 0 was obtained by Leipus and Šiaulys (see [21,
Thm. 6]). In such a case, the restriction on the c.r.v. η is substantially weaker. We present
their result below.

Theorem 2. Let {ξ1, ξ2, . . .} be a sequence of i.i.d. r.v.s distributed on R with d.f. Fξ.
If Fξ ∈ L, then FSη belongs to the class L for any c.r.v. η satisfying the condition
P(η > δx) = o(

√
xF ξ(x)) for each δ ∈ (0, 1).

In the original paper, the assertion of the theorem above is formulated for nonnegative
r.v.s only. But it is easy to check that the proof is identical for a more general situation.
Also we should note that d.f. FSη can be exponential without requirement of exponential-
ity for Fξ. The following assertion was proved by Xu et al. (see [31, Cor. 2.1(3)]).

Theorem 3. Let {ξ1, ξ2, . . .} be a sequence of i.i.d. r.v.s distributed on R with d.f. Fξ.
D.f. FSη belongs to the class L if FSn ∈ L and P(η > n) > 0 for some n ∈ N and, in
addition, P(η > δx) = o(

√
xFSn(x)) for each δ ∈ (0, 1).

If the sequence of r.v.s {ξ1, ξ2, . . .} consists of independent but not necessarily iden-
tically distributed r.v.s, then the following generalization of Theorem 2 was obtained by
Danilenko et al. (see [13, Thm. 4]).
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Theorem 4. Let {ξ1, ξ2, . . .} be a sequence of independent r.v.s distributed on R such
that

sup
k>1

∣∣∣∣F ξk(x+ y)

F ξk(x)
− e−γy

∣∣∣∣ −→x→∞ 0 (2)

for some γ > 0 and each y > 0. In addition, let η be a c.r.v. independent of {ξ1, ξ2, . . .}
and such that

P(η = k + 1)

P(η = k)
−→
k→∞

0. (3)

Then FSη ∈ L(γ).

Motivated by the presented assertions and the results of papers [3, 5, 13–17, 22], we
continue to consider conditions under which the d.f.s Fξ(η) , Fξ(η) , FS(η)

or FS(η) belong to
either of the following classes: L, L(γ) with some γ > 0, L∞ or L∞+ . As we mentioned
above, we deal with the case where the sequence {ξ1, ξ2, . . .} consists of independent but
possibly nonidentically distributed r.v.s.

The rest of the paper is organized as follows. In Section 2, we present our main results.
Section 3 consists of two auxiliary lemmas. The proofs of the main results are given in
Section 4. Finally, in Section 5, we present two examples to expose the usefulness of our
results.

2 Main results

In this section, we present the main results of this paper.
In all the assertions below, we suppose that the sequence {ξ1, ξ2, . . . } consists of

independent r.v.s and the c.r.v. η is independent of this sequence. By default, we suppose
also that r.v.s ξ1, ξ2, . . . are distributed on R, i.e. they can take positive and negative values.

The first theorem describes properties of the randomly stopped minima.

Theorem 5. For the randomly stopped minima, the following assertions hold:

(i) If Fξk ∈ L∞+ for each k ∈ N, then Fξ(η) ∈ L∞+ for any c.r.v. η.
(ii) Fξk ∈ L∞

(
Fξk ∈ L

)
for all k ∈ N if and only if Fξ(η) ∈ L∞ (Fξ(η) ∈ L) for

any c.r.v. η.

The second theorem describes properties of the randomly stopped maxima. We note
that it gives only sufficient conditions.

Theorem 6. Let B denote one of d.f.s classes: L(γ) with some γ > 0, L∞+ , L∞. If
Fξk ∈ B for each k 6 κ and some κ ∈ supp η := {n: P(η = n) > 0}, and there is
a positive sequence ϕ(n), n ∈ N, such that

lim sup
x→∞

sup
n>κ

∣∣∣∣∣ 1

ϕ(n)F ξκ (x)

n∑
k=1

F ξk(x)− 1

∣∣∣∣∣ = 0 and E
(
ϕ(η)1{η>1}

)
<∞, (4)

then Fξ(η) ∈ B.

Nonlinear Anal. Model. Control, 24(2):297–313
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The following assertion gives sufficient conditions under which the randomly stopped
minima of sums preserves exponentiality.

Theorem 7. Suppose that B denotes the same object as in Theorem 6. For the randomly
stopped minima of sums, the following two assertions hold:

(i) If Fξ1 ∈ B and P(ξk > 0) = 1 for each k > κ and some κ > 1, then FS(η)
∈ B

for any c.r.v. η.
(ii) If Fξ1 ∈ B, then FS(η)

∈ B for any c.r.v. η with property (3).

The last assertion describes sufficient conditions under which the d.f. of the randomly
stopped maxima of sums remains in the class of exponential distributions. We note that
Theorem 8 below is related to the results of the paper by Danilenko et al. [13], where the
authors consider conditions under which the randomly stopped sums preserve exponen-
tiality.

Theorem 8. Suppose that B denotes the same object as in Theorem 6. Then the following
assertions hold:

(i) If Fξk ∈ B for each k 6 κ and some κ > 1, and P(ξk 6 0) = 1 for all k > κ,
then FS(η) ∈ B for any c.r.v. η.

(ii) If {ξ1, ξ2, . . .} is a sequence of nonnegative r.v.s such that condition (2) holds
for some γ > 0 and each y > 0, then FS(η) ∈ L(γ) for any c.r.v. satisfying
condition (3).

3 Auxiliary lemmas

In this section, we give two auxiliary assertions, which are used in the proofs of our main
results. The first lemma is an extension of Lemma 3.1 from [17].

Lemma 1. Let X and Y be two independent r.v.s with d.f.s F and G, respectively, and
let H be the d.f. of max(X,Y ). Then

H(x− t)
H(x)

6 max

{
F (x− t)
F (x)

,
G(x− t)
G(x)

}
if F (x) > 0, G(x) > 0 and t > 0.

In addition,

H(x− t)
H(x)

> min

{
G(x− t)
G(x)

F (x− t)
F (x)

,
G(x− t)
G(x)

}
if F (x) > 0, G(x) ∈ (0, 1) and t > 0.

Proof. The derivation of the upper bound can be found in the proof of Lemma 3.1 in [17].
For the lower bound, we observe that

H(x) = G(x)F (x) +G(x).

https://www.mii.vu.lt/NA
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If F (x) > 0, G(x) ∈ (0, 1) and t > 0, then

H(x− t)
H(x)

=
G(x− t)F (x− t) +G(x− t)

G(x)F (x) +G(x)

> min

{
G(x− t)
G(x)

F (x− t)
F (x)

,
G(x− t)
G(x)

}
by the inequality

min

{
a1
b1
,
a2
b2
, . . . ,

ar
br

}
6
a1 + a2 + · · ·+ ar
b1 + b2 + · · ·+ br

6 max

{
a1
b1
,
a2
b2
, . . . ,

ar
br

}
, (5)

which holds for all ai > 0 and bi > 0, i = 1, 2, . . . , r, r > 1.

The next lemma was proved by Embrechts and Goldie (see [18, Thm. 3]). Note that
in its assertion “∗” stands for the convolution of d.f.s.

Lemma 2. Let F and G be two d.f.s. If F ∈ L(γ) with γ > 0, then F ∗ G ∈ L(γ) if
either G ∈ L(γ) or G(x) = o(F (x)).

4 Proofs of main results

In this section, we give detailed proofs of all our main results.

Proof of Theorem 5. Let η be an arbitrary c.r.v., and set

κ := min
{
n > 1: P(η = n) > 0

}
.

Then for any x > 0, we have

F ξ(η)(x) =

∞∑
n=1

F ξ(n)
(x)P(η = n)

= F ξ(κ)
(x)P(η = κ) +

∞∑
n=κ+1

F ξ(n)
(x)P(η = n)

= F ξ(κ)
(x)P(η = κ)

(
1 +

∞∑
n=κ+1

(
n∏

k=κ+1

F ξk(x)

)
P(η = n)

P(η = κ)

)

6 F ξ(κ)
(x)P(η = κ)

(
1 + F ξκ+1

(x)
P(η > κ + 1)

P(η = κ)

)
and

F ξ(η)(x) > F ξ(κ)
(x)P(η = κ).

Therefore, we obtain

F ξ(η)(x) ∼
x→∞

P(η = κ)F ξ(κ)
(x). (6)

Nonlinear Anal. Model. Control, 24(2):297–313
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Part (i) If Fξk ∈ L∞+ for all k ∈ N, then Fξ1 ∈ L(γ1), Fξ2 ∈ L(γ2), . . . for some
positive parameters γ1, γ2, . . . . Hence,

Fξ(κ)
∈ L(γ1 + γ2 + · · ·+ γκ) (7)

for the finite nonrandom κ because

lim
x→∞

F ξ(κ)
(x+ y)

F ξ(κ)
(x)

= lim
x→∞

∏κ
k=1 F ξk(x+ y)∏κ
k=1 F ξk(x)

=

κ∏
k=1

e−yγk

for each y > 0. Thus, it follows from (6) and (7) that

Fξ(η) ∈ L(γ1 + · · ·+ γκ) ⊂ L∞+

for any c.r.v. η, which proves part (i) of the theorem.

Part (ii) Let us consider the class L∞. If Fξk ∈ L∞ for each k ∈ N, then, applying
arguments similar to those in the proof of part (i), we deduce that Fξ(η) ∈ L∞ for an
arbitrary c.r.v. η.

If Fξ(η) ∈ L∞ for an arbitrary c.r.v. η, then from (6) it follows that Fξ(m)
∈ L∞ for

any m ∈ N. This implies that Fξk ∈ L∞ for each k ∈ N because for all x > 0 and y > 0,
we have

F ξ1(x+ y)

F ξ1(x)
=
F ξ(1)(x+ y)

F ξ(1)(x)

and

F ξk(x+ y)

F ξk(x)
=
F ξ(k)(x+ y)

F ξ(k)(x)

/F ξ(k−1)
(x+ y)

F ξ(k−1)
(x)

, k ∈ {2, 3, . . .},

which completes the proof of part (ii).
If Fξk ∈ L for each index k ∈ N, then proof of the assertion is analogous to the

presented proof for the class L∞.

Proof of Theorem 6. We consider the proof separately for different classes.

• Let us consider the case B = L(γ) with some γ > 0. First, we suppose that
P(η < κ) > 0. Let y > 0 be a real number. By (5), for any x > y and K > κ, we
have

F ξ(η)(x− y)

F ξ(η)(x)
6 max{J1,J2}, (8)

where

J1 =

∑
n<κ F ξ(n)(x− y)P(η = n)∑
n<κ F ξ(n)(x)P(η = n)

and J2 =

∑
n>κ F ξ(n)(x− y)P(η = n)∑K
n=κ F ξ(n)(x)P(η = n)

.
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Applying the upper bound from Lemma 1, we obtain

F ξ(n)(x− y)

F ξ(n)(x)
6 max

16k6n

F ξk(x− y)

F ξk(x)
.

This, together with (5), yields

J1 6 max
n<κ

n∈supp η

{
max

16k6n

F ξk(x− y)

F ξk(x)

}
. (9)

For x large enough, application of the Bonferroni inequality gives that

J2 6

∑
n>κ

∑n
k=1 F ξk(x− y)P(η = n)∑K

n=κ(
∑n
k=1 F ξk(x)−

∑
16k1<k26n

F ξk1 (x)F ξk2 (x))P(η = n)

6
F ξκ (x− y) supn>κ{ 1

ϕ(n)F ξκ (x−y)

∑n
k=1 F ξk(x− y)}

F ξκ (x)(1−
∑K
k=1 F ξk(x)) infn>κ{ 1

ϕ(n)F ξκ (x)

∑n
k=1 F ξk(x)}

×
E(ϕ(η)1{η>κ})

E(ϕ(η)1{κ6η6K})
. (10)

Combining inequalities (8), (9) and (10) and taking into account conditions (4), we
conclude that

lim sup
x→∞

F ξ(η)(x− y)

F ξ(η)(x)
6 max

{
eγy, eγy

E
(
ϕ(η)1{η>κ}

)
E
(
ϕ(η)1{κ6η6K}

)}
for all K > κ, which implies

lim sup
x→∞

F ξ(η)(x− y)

F ξ(η)(x)
6 eγy (11)

for any y > 0.
Applying arguments similar to those for deriving (8), we obtain

F ξ(η)(x− y)

F ξ(η)(x)
> min{J1,J3}, (12)

where

J3 =

∑K
n=κ F ξ(n)(x− y)P(η = n)∑
n>κ F ξ(n)(x)P(η = n)

.

Similarly to (10), we get

J3 >
F ξκ (x− y)(1−

∑K
k=1 F ξk(x− y)) infn>κ{ 1

ϕ(n)F ξκ (x−y)

∑n
k=1 F ξk(x− y)}

F ξκ (x) supn>κ{ 1
ϕ(n)F ξκ (x)

∑n
k=1 F ξk(x)}

×
E(ϕ(η)1{κ6η6K})

E(ϕ(η)1{η>κ})
. (13)

Nonlinear Anal. Model. Control, 24(2):297–313
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Applying the lower bound from Lemma 1, we obtain

F ξ(n)(x− y)

F ξ(n)(x)
> min

16k6n

{
F ξk(x− y)

F ξk(x)

k−1∏
l=1

Fξl(x− y)

Fξl(x)

}
.

Therefore, by (5), we have

J1 > min
n<κ

n∈supp η

{
min

16k6n

{
F ξk(x− y)

F ξk(x)

k−1∏
l=1

Fξl(x− y)

Fξl(x)

}}
. (14)

Combining inequalities (12), (13) and (14) and taking into account conditions (4), we
deduce that

lim inf
x→∞

F ξ(η)(x− y)

F ξ(η)(x)
> eγy.

The last inequality together with (11) implies that Fξ(η) ∈ L(γ), which is the desired
conclusion for the case P(η < κ) > 0. If P(η < κ) = 0, then the proof is similar with
the only difference that

F ξ(η)(x) =
∑
n>κ

F ξ(n)(x)P(η = n)

for all x > 0. This completes the proof provided that B = L(γ) with some γ > 0.

• Let now B = L∞+ . First, we suppose that P(η < κ) > 0 and κ > 2. In this case,
Fξk ∈ L(γk) with some parameters γk > 0 for all k ∈ {1, 2, . . . ,κ}. It is easy to check
that

lim
x→∞

F ξ(2)(x− y)

F ξ(2)(x)
= lim
x→∞

F ξ1(x− y) + F ξ2(x− y)

F ξ1(x) + F ξ2(x)
(15)

for any y > 0.
If Fξ1 ∈ L(γ1) and Fξ2 ∈ L(γ2) with γ1 = γ2, then applying (5), we conclude that

Fξ(2) ∈ L(γ1). If Fξ1 ∈ L(γ1) and Fξ2 ∈ L(γ2) with γ1 < γ2, then representation (1)
implies that F ξ2(x) = o(F ξ1(x)), and hence, from relation (15) we deduce that Fξ(2) ∈
L(γ1). Consequently, Fξ(2) ∈ L

(
min{γ1, γ2}

)
in all possible cases.

Since ξ(n) = max{ξ(n−1), ξn}, n > 2, using induction on n, we obtain

Fξ(n) ∈ L
(
min{γ1, γ2, . . . , γn}

)
(16)

for each n ∈ {1, 2, . . . ,κ}.
Applying arguments similar to those for deriving (8), (10), (12) and (13), we have

F ξ(η)(x−y)

F ξ(η)(x)
6

I1(x−y) + F ξκ (x−y)E(ϕ(η)1{η>κ}) supn>κ I2,n(x−y)

I1(x)+F ξκ (x)(1−
∑K
k=1 F ξk(x))E(ϕ(η)1{κ6η6K}) infn>κ I2,n(x)
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and

F ξ(η)(x−y)

F ξ(η)(x)
>

I1(x−y)

I1(x) + F ξκ (x)E(ϕ(η)1{κ6η6K}) supn>κ I2,n(x)

+
F ξκ (x−y)(1−

∑K
k=1F ξk(x−y))E(ϕ(η)1{η>κ}) infn>κ I2,n(x−y)

I1(x) + F ξκ (x)E(ϕ(η)1{κ6η6K}) supn>κ I2,n(x)

for all y > 0, K > κ and sufficiently large x, where

I1(x) =
∑

16n<κ
F ξ(n)(x)P(η = n) and I2,n(x) =

1

ϕ(n)F ξκ (x)

n∑
k=1

F ξk(x).

The last two inequalities, condition (4) and relation (16) yield

Fξ(η) ∈ L(γ∗) ⊂ L∞+ with γ∗ = min
16k6κ
k∈supp η

{γk}.

If either P(η < κ) = 0 or κ = 1, then we have I1(x) = 0 for all x > 0. Therefore,
from the last two inequalities and condition (4) we see that Fξ(η) ∈ L(γκ) ⊂ L∞+ in this
case, which completes the proof provided that B = L∞+ .

• If B = L∞, then the proof can be obtained along the lines of the proof for the
class L∞+ .

Proof of Theorem 7. We give the proof only for the case B = L(γ) with some γ > 0.
The other two cases can be considered similarly.

Let Fξ1 ∈ L(γ) for some γ > 0. For all x > 0, it is obvious that

FS(2)
(x) = P(ξ1 > x, ξ1 + ξ2 > x)

=

∫
(−∞,0)

F ξ1(x− z) dFξ2(z) + F ξ1(x)P(ξ2 > 0). (17)

Consequently, by inequality (5), for all x > 0 and y > 0, we have

FS(2)
(x+ y)

FS(2)
(x)

6 max

{
sup
z<0

F ξ1(x+ y − z)
F ξ1(x− z)

,
F ξ1(x+ y)

F ξ1(x)

}
= sup
v>x

F ξ1(v + y)

F ξ1(v)
. (18)

Similarly, for all x > 0 and y > 0, we get

FS(2)
(x+ y)

FS(2)
(x)

> inf
v>x

F ξ1(v + y)

F ξ1(v)
. (19)
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Combining (18) and (19), we conclude that FS(2)
∈ L(γ).

Applying arguments similar to those for deriving (17), we obtain

FS(3)
(x) =

∫∫
R2

P(ξ1 > x, ξ1 > x− z1, ξ1 > x− z1 − z2) dP(ξ2 6 z1, ξ3 6 z2)

= F ξ1(x)P(ξ2 > 0, ξ3 > −ξ2) +

∫∫
z1<0
z2>0

F ξ1(x− z1) dP(ξ2 6 z1, ξ3 6 z2)

+

∫∫
z1<0
z1<−z2

F ξ1(x− z1 − z2) dP(ξ2 6 z1, ξ3 6 z2)

for all x > 0. From this and inequality (5) it follows that

inf
v>x

F ξ1(v + y)

F ξ1(v)
6
FS(3)

(x+ y)

FS(3)
(x)

6 sup
v>x

F ξ1(v + y)

F ξ1(v)

for all x > 0 and y > 0. Letting x→∞ in the last inequality, we see that FS(3)
∈ L(γ).

Continuing in the same way, we deduce that FS(n)
∈ L(γ) for each n ∈ N.

Part (i) In the case under consideration, we have

FS(η)
(x) =

κ∑
n=1

FS(n)
(x)P(η = n) +

∞∑
n=κ+1

FS(n)
(x)P(η = n)

=

κ∑
n=1

FS(n)
(x)P(η = n) + FS(κ)

(x)P(η > κ).

Applying (5) yields

min
16n6κ
n∈supp η

FS(n)
(x+ y)

FS(n)
(x)

6
FS(η)

(x+ y)

FS(η)
(x)

6 max
16n6κ
n∈supp η

FS(n)
(x+ y)

FS(n)
(x)

for all x > 0 and y > 0. Since FS(n)
∈ L(γ) for each n, the last inequality implies that

FS(η)
∈ L(γ) as well, which proves part (i) of the theorem.

Part (ii) It is easily seen that the condition on the c.r.v. η implies that P(η = k) > 0
for all k large enough. In addition, we observe that requirement (3) implies relation

P(η > k + 1)

P(η = k)
−→
k→∞

0, (20)

which follows from the equality

P(η > k + 1)

P(η = k)
=

∞∑
j=1

P(η = k + j)

P(η = k)
=

∞∑
j=1

j−1∏
r=0

P(η = k + r + 1)

P(η = k + r)
,

provided for k is sufficiently large.
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We now choose any K large enough. Then on the one hand, we have

FS(η)
(x) =

K−1∑
n=1

FS(n)
(x)P(η = n) + FS(K)

(x)P(η = K)

+

∞∑
n=K+1

FS(n)
(x)P(η = n)

6
K−1∑
n=1

FS(n)
(x)P(η = n) + FS(K)

(x)P(η = K)

(
1 +

P(η > K + 1)

P(η = K)

)
for all x > 0 because

FS(n)
(x) = P

(
min{S1, S2, . . . , SK , . . . , Sn} > x

)
6 P

(
min{S1, S2, . . . , SK} > x

)
= FS(K)

(x)

for any n ∈ {K,K + 1, . . .} in the case under consideration.
On the other hand, it is evident that

FS(η)
(x) >

K−1∑
n=1

FS(n)
(x)P(η = n) + FS(K)

(x)P(η = K).

Therefore, by inequality (5), for all x > 0 and y > 0, we obtain

FS(η)
(x+ y)

FS(η)
(x)

6 max

{
max

16n6K−1
n∈supp η

FS(n)
(x+ y)

FS(n)
(x)

,
FS(K)

(x+ y)

FS(K)
(x)

(
1+

P(η > K + 1)

P(η = K)

)}
.

Since FS(n)
∈ L(γ) for each n, letting x→∞ yields

lim sup
x→∞

FS(η)
(x+ y)

FS(η)
(x)

6 e−γy
(

1 +
P(η > K + 1)

P(η = K)

)
for any fixed y > 0 and all K large enough.

Similarly, we get

lim inf
x→∞

FS(η)
(x+ y)

FS(η)
(x)

> e−γy
(

1 +
P(η > K + 1)

P(η = K)

)−1
for any fixed y > 0 and all K large enough.

The last two inequalities together with (20) imply that FS(η)
∈ L(γ) for any c.r.v. η

satisfying property (3), which proves part (ii) of the theorem.
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Proof of Theorem 8. Part (i) We consider the proof separately for different classes.
• Let now B = L(γ) with some γ > 0. From Lemma 2 it may be concluded that the

d.f.s of the r.v.s

Sn = ξ1 + ξ2 + · · ·+ ξn and S(+)
n := ξ+1 + ξ+2 + · · ·+ ξ+n

belong to the class L(γ) for any n 6 κ, where ξ+k denotes the positive part of ξk, 1 6
k 6 κ. Moreover, it is obvious that

P(Sn > x) 6 P
(
max{ξ1, ξ1 + ξ2, . . . , ξ1 + ξ2 + · · ·+ ξn} > x

)
= P

(
S(n) > x

)
6 P

(
ξ+1 + ξ+2 + · · ·+ ξ+n > x

)
= P

(
S(+)
n > x

)
(21)

for any x > 0 and n 6 κ. Consequently, FS(n) ∈ L(γ) for each n 6 κ.
To get the desired assertion, it suffices to notice that

FS(η)(x) =

κ∑
n=1

FS(n)(x)P(η = n) + FS(κ)(x)P(η > κ) (22)

and apply arguments similar to those in the proof of part (i) of Theorem 7.
•We now deal with the case B = L∞+ and suppose that

Fξ1 ∈ L(γ1) , Fξ2 ∈ L(γ2), . . . , Fξκ ∈ L(γκ)

for some collection of positive parameters {γ1, γ2, . . . , γκ}.
From Lemma 2 and inequality (21) it follows that

FS(n) ∈ L
(
min{γ1, γ2, . . . , γn}

)
for any n 6 κ.

Hence, from equality (22) we have

FS(η)(x) ∼
κ−1∑
k=1

FS(n)(x)P(η = n) + FS(κ)(x)P(η > κ), (23)

which is equivalent to

FS(η)(x) ∼
κ̂∑
k=1

qkFS(nk)(x) := F̂ (x) (24)

for some collection of positive coefficients {q1, q2, . . . , qκ̂}, where 1 6 κ̂ 6 κ, {n1, n2,
. . . , nκ̂} ⊂ {1, 2, . . . ,κ} and FS(nk) ∈ L(min{γ1, γ2, . . . , γκ}) for all indices nk.
Note that the sum in (24) contains only those summands of the sum (23) for which
FS(n) ∈ L(min{γ1, γ2, . . . , γκ}), and the coefficients qk in (24) stand for the corre-
sponding probabilities.

Applying inequality (5), we see that a d.f. with the tail function F̂ belongs to the class
L
(

min{γ1, γ2, . . . , γκ}
)
. Therefore, FS(η) ∈ L(min{γ1, γ2, . . . , γκ}) ⊂ L∞+ as well.
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• The case of the class L∞ can be considered similarly, which proves part (i) of the
theorem.

Part (ii) This part of the theorem follows immediately from Theorem 4 because
distributions of the r.v.s Sη and S(η) coincide provided that all the r.v.s in the sequence
{ξ1, ξ2, . . .} are nonnegative. This completes the proof of the theorem.

5 Examples

In this section, we present two examples which demonstrate the applicability of the
obtained results.

Example 1. Let {ξ1, ξ2, . . .} be the seasonal sequence of independent r.v.s with d.f.s
{Fξ1 , Fξ2 , . . .} defined as follows:

Fξk(x) =


(1− e−x)1[0,∞)(x) if k ≡ 1 mod 3,

(1− e−2x(1 + 2x))1[0,∞)(x) if k ≡ 2 mod 3,

(1− e−2x(1 + 2x+ 2x2))1[0,∞)(x) if k ≡ 3 mod 3.

It is clear that Fξk ∈ L(1) for k ≡ 1 mod 3 and Fξk ∈ L(2) for k 6≡ 1 mod 3.
According to Theorem 5, Fξ(η) ∈ L∞+ for any c.r.v. η independent of {ξ1, ξ2, . . .}. While
Theorem 7 implies that d.f. FS(η)

belongs to the class L(1) for each c.r.v η independent
of {ξ1, ξ2, . . .} and satisfying condition (3).

Example 2. Let {ξ1, ξ2, . . .} be a sequence of independent r.v.s with shifted exponential
d.f.s

Fξk(x) =
(
1− e−(x+k−1)

)
1[0,∞)(x), k ∈ N,

and let η be the Poisson r.v. independent of {ξ1, ξ2, . . .}.

In such a case, condition (2) holds, and we can say that d.f.s Fξk , k ∈ N, belong to the
class L(1) uniformly. Since r.v. η satisfies condition (3), FSη ∈ L(1) due to Theorem 4,
Fξ(η) ∈ L∞+ due to Theorem 5, Fξ(η) ∈ L(1) due to Theorem 6, FS(η)

∈ L(1) due to
Theorem 7 and FS(η) ∈ L(1) due to Theorem 8.
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