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Abstract. In this paper, a stochastic adaptive method withst#peojection for stochastic gradient has been
developed to solve two-stage stochastic linear problems. The method is based on the adaptive regulation
of the size of Monte-Carlo samples and a statisticahteation procedure taking into consideration the
statistical modelling accuracy. To avoid “jamming”‘@igzagging” in solving the constraint problem the
procedure for stochastic gradient epsilon-projattias been implemented. Four algorithms of the epsilon-
projection are tested by the computer simulation. The recommendationsto solve two-stage stochasticlinear
problems are made under the numerical study and results of solving the test examples.
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1. Introduction

Stochastic programming deals with a class of optimization models in which some data
may be a subject to significant uncertainty. Such models are appropriate when data
evolve over time and decisions have to be made prior to observing the entire data
streams. Although widespread applicability of stochastic programming models has at-
tracted considerable attention of researchers, stochastic linear models remain one of
more challenging optimization problems. Methods based on approximation and de-
composition are often applied to solve stochastic programming tasks (see, e.g., [4-7],
etc.); however, they can lead to very large-scale problems, and, thus, require very large
computational resources. In this paper, we have developed an adaptive approach for
solving stochastic linear problems by the Monte-Carlo method based on asymptotic
properties of Monte-Carlo sampling estimators. To avoid “jamming” or “zigzagging”
in solving a constraint problem we implement the procedure for stochastic gradient
g-projection. This approach is grounded on the treatment of a statistical simulation
error in a statistical manner and the rule for iterative regulation of the size of Monte-
Carlo samples [9,10].

Let us consider a two-stage stochastic optimization problem with a complete re-
course:

Fx)=cx+ E{Q(x,8)}— min , (1)

xeDCH
subject to feasible set

D ={x|Ax=b,x e}, 2
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where
O(x,§)=min[gy| Wy +Tx <h, y eN}], (3)

vectorsb, ¢, h and full rank matrices\, W, T are of appropriate dimensionality [11].
Assume vectorg,  and matrice$\, T be random in general, and distributed by abso-
lute probability law with the density functiop(-): @ — R, .

2. Stochastic differentiation and Monte-Carlo estimators

Let us consider the analytical approach (AA) to estimate the gradient of the objective
function in two-stage stochastic programming with recourse (1). Indeed, by the duality
of linear programming we obtain that

F(x):cx+E{max[(h—Tx)u|uWT+q>o, uem]}. (4)

It's easy to see, that objective function is piecewise linear. Thus, by Rademacher
theorem, this function is differentiable almost everywhere and, by Lebesgue theo-
rem, the gradient of two-stage stochastic linear problems objective function can be
expressed as

V. F(x)= E{g'(x,£)}, (5)

whereg(x, &) = ¢ — Tu*, u* is given by a set of solutions of a dual problem ([8,13],
etc.)

(h—Tx)"w* =max[(h — Tx) u|uW’ +4 >0, uenR"], (6)
u

Under the assumption on the continuity of the measure of the second stage variables
the objective function is smoothly differentiable.
Let us define the set déasible directions as follows:

Vix)={geM" | Ag=0,Vici<a(g; <0, if x; =0)}, xeD. (7)
Since the objective function is differentiable, the solutioa D is optimal if [1]:
VF(x)y =0, (8)

wheregy is a projection of the vectas onto the seU.

Let us assume that Monte-Carlo samples= (y1, y2,..., yV) of a certain size
N are provided for any € D, wherey' are independent random variables of the
second stage, identically distributed at density). Then the sampling estimator
F(x) and the sampling standard deviatidn(x) can be computed from the ran-
dom sample{f(x, y1), f(x,y?,..., f(x,yV)}. Next, assume the stochastic gradi-
entg(x, y/) can be computed for any e D andy/. Thus, the corresponding sam-
pling gradient estimato® (x) = % Z?’:lg(x, y/) and the sampling covariance matrix

Z(x) = v ﬂ.\’:l[g(x, y/) —G]-[g(x, y/) — G can be estimated by same random
sample, too.
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3. Stochastic procedure for optimization

Let us introduce the stochastic procedure for the optimization. The gradient search
approach with projection to a feasible set would be a chance to create optimizing
sequence; however, the problems of “jamming” or “zigzagging” are typical in this
case. To avoid them thefeasible direction approach is applied.

Assume a certain multiplied > O is given. Define the functiop,: V(x) — R by

. - . X

nAg)=rmn{p,rnm (—i>}, J1<j<n(gj > 0), )
AT
<j<n

px(@) =p, IfVigi<a(g; <0).

Thus,(x + p - g) € D, whenp = p,(g), foranyg € V(x), x € D, Now, let a certain
small values > 0 be given. Then we introduce the functien V (x) — R
ex(g)=2- max{min{x;, 5-¢;}}, Jigj<n(g; >0,

1<j<n
g;>0

ex(g) =0, if Vigj<n(g; <0),
and define the-feasible set

Ve(x) = {g eR” |Ag:0,vl<i<n(gj <0, if (ngj <5x(g)))} (10)

Denote the projector to feasible areaBy=1 — BT - (BBT)~1. B, whereB is a
non-degenerate matrix.

Assume that initial poink® € D is given, the Monte-Carlo sample of a certain
size N? is generated and Monte Carlo estimators are calculated. Iterative stochastic
procedure of the gradient search is used further:

xt+l — ! _ pt . Gg(xt), (11)

wherep’ = p,:(G',) is a step-length multiplier defined by (9), a6t is a feasible
direction. To find this direction the projection of the gradient estimator to linear sub-
set, describing by constraint matrik, P4 is calculated. Then the set of the indexes
of the variables is determined for those steps of the gradient search will be done. In
this process, indexes of the zero components of the péjnthich are correspond-
ing to the positive components of the gradient estimator, are eliminating from the set
of all variables. The indexes are eliminating one by one, beginning with components
corresponding to the maximal positive component of the gradient. Then the index is
eliminated, the corresponding column of the constraint matrix isaoegl by the col-
umn with zero values and projection matex and projection of the gradiert are
recalculated:
<i> <i>\T <i> <i>\T
Sl C R Sl CR
Zi,j Zi,j

wherei — the eliminating index.

Four rules for the choice of eliminating index were tested:
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— finding the minimal component of the gradient between almost admissible direc-
tionsgjmin - (R1)1

— finding the minimal projection of the gradient to admissible directions — (R2);

— finding the minimal component of the point x between almost admissible direc-
tionsx; — (R3);

— finding the minimal ratiq):f-—; between almost admissible directions — (R4).

A possible decision on finding an optimal solution and stopping of the algorithm
were tested by statistical crita. The optimality hypothesis Bccepted for some point
x; with significance 1 u, if the following condition is met:

LV 66 (z(x") - G(x") < Fish(u,n, N' —n). (12)
n

Next, again it is accepted that the objective function is estimated with permissible
accuracy, if its confidence bound does nota®ed this value:

D (!
2ng - D(x") <5
/Nt
whereD(x") is a sampling variance of the objective functian, is the g-quantile of

a standard normal distribution [12]. The iterations of the algorithm are being repeated
while both conditions are met.

(13)

4. Computer simulation of stochastic gradient estimators

In this section, a computer simulation study on the gradient estimators considered in
Section 3 is presented by using testing examples.

Example (Two-stage stochastic linear optimization problem). The data of the prob-
lem is taken from the database [2,3hat p: / / www. mat h. bme. hu/ ~ deak/ t wost age
/11/20x20. 1 (accessed 0B006-01-20).

The dimensions of the task are as follows: the first stage has 10 rows and 20 vari-
ables; the second stage has 20 rows and 30 variables. The estimate of the optimal value
of the objective function given in the database is 182.94284066. The application
of the considered approach allows us to improve the estimate of the optimal value up
to 182.59248+-0.033.

The computer study for various rulesgprojection was done by PC computer (In-
tel Core2 Quad CPU 2.0GHz, 1 GB of RAM, Windows XP). Algorithms implemented
by original C++ application.

The example was solved 400 times by the approach developed for four different
e-projection approaches described above. In the Figs. 1-5, the number of the gradient
g-projection steps, the number of iterations, the time of the computation, the ratio and
the total amount of the Monte Carlo trials needed to solve the problem undeptioe
jection constant for various rules of-projection are presented= 0 means that any
g-projection was done.
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Fig. 1. Number of the gradientprojection steps  Fig. 2. Number of iterations under tleeprojection
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Fig. 5. Total amount of the computations under éhgrojection constant for various rules of
e-projection.

The results of computer simulation showed the theoretical presumption that con-
stant epsilon, chosen properly (0.8—-0.9), guarantees convergence of the algorithm a. s.
to an optimal solution [10].

5. Conclusions

Thus, the stochastic iterative method has been developed to solve two-stage stochastic
linear programming problems by a finite sequence of Monte-Carlo sampling estima-
tors. The method of the-projection of the stochastic gradient by feasible directions
was implemented. The proposed method was applied to solve the examples taken from
standard database of two-stage stochastic programming tests.
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The approach presented in this paper is grounded on the stopping procedure and the
rule for adaptive regulation of the size of Monte-Carlo samples, taking into account sta-
tistical modelling accuracy. Several stochastic gradient estimators were compared by
computer simulation by studying the worliitly of the estimators for testing the opti-
mality hypothesis bytatistical criteria. The regulation of a sample size in case this size
is taken inversely proportional to the square of the norm of the gradient of the Monte-
Carlo estimator allows us to solve stochastic linear programming problems rationally
from a computational viewpoint and guarantees convergence a. s. The numerical study
corroborates theoretical conclusions on the convergence method and shows that the
developed procedures make it possible to solve stochastic problems with sufficiently
agreeable accuracy by the means of an acceptalberaof computations.

It follows from the computer study that theprojection approach enables us to
solve the optimization problem avoiding “zigzagging” or “jamming” and decreasing
the amount of computations as compared with that without theojection. The con-
clusion also might be done that theprojection constant should be chosen not small
(about 0.8—-0.9). The rules for the choice of eliminating index are more preferable as
follows: find minimal component of the gradient between almost admissible directions
(R1) and find minimal projection of the gradient to admissible set (R2).
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REZIUME

L. Sakalauskas, K. Zilinskas. Epsilon-projektavimo metodas dvieju etapy stochastiniamtiesiniam
programavimui

Straipsnyje nagrigjamas stochastinis adaptyvus metodas schsistinio gradiento epsilon-projektavimu
dvieju etaju stochastiniams tiesiniams uzdaviniamsespic Metodas paggtas Monte Karlo imiy turio
adaptyviu reguliavimu ir stabdymo proags, vertinant statistinio modeliavimo tikslanstatistiniais
kriterijais. Epsilon-projektavimo metodas yra sugas ,uzstrigimo* arba ,zigzagavimo“ problemoms
iSvengti sprendziant uzdavinius su ribojimais. Ketepisilon-projektavimo algoritmai aprasyti ir iStirti
kompiuteriniu modeliavimu. Remiantis modeliavimo réatais, pateiktos praktinio realizavimo rekomen-
dacijos.

Raktiniai ZodzZiai: stochastinis programavimas, Monte-Karlo metodas, optimizavimas, stochastinis gradi-
entas, epsilon-leistina kryptis, epsilon-projekcija.



