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Abstract. A system-to-system communication involving stateful sessions
between a clustered service provider and a service consumer is investi-
gated in this paper. An algorithm allowing to decrease a number of calls
to failed provider nodes is proposed. It is designed for a clustered client
and is based on an asynchronous communication. A formal specification
of the algorithm is formulated in the TLA+ language and was used to
investigate the correctness of the algorithm. An agent-based model was
constructed and used to evaluate effectiveness of the proposed algorithm
by performing simulations.
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1. Introduction

Nowadays business applications include a lot of interactions with service providers
for handling various operations like order and payment processing, application
monitoring and other specialized services [1]. The business applications them-
selves are often provided as services [2]. This kind of system architecture leads
to many system-to-system integrations. Requirements for high availability and
fault tolerance impose use of clustered topologies. In the case of system-to-system
communications, clustered topologies are often used on the service consumer side
as well as on the service provider side. The service providers are often deployed
on a cloud or another virtualized infrastructure. Such infrastructure provides a
lot of flexibility, but introduces a network instability, connection drops and other
disruptions caused node migrations [3,4].

A lot of service providers implement the model of the eventual consistency in
order to maintain high availability together with the service scalability [5]. That
means the consistency is not guaranteed globally and special requirements are
imposed on the service consumers in order to minimize the observed inconsistency.
A common requirement for the clients of such services is to maintain session
stickiness to particular nodes in the provider cluster [6]. That applies also to the
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stateless protocols, as requests for the particular end-user should be routed to the
same back-end node in order to minimize the primary-node or the cache misses
causing data inconsistency for a particular user.

A lot of mainstream protocols have no support for detecting lost connections
or server failures immediately [7]. In such cases, the node availability should be
tracked by examining responses to the service requests. Only specific faults can
be used as an indication of the failed provider node, excluding all the business
faults as well as bad requests. If the service is accessed rarely, additional fake
requests can be performed in order to keep the sessions alive or to detect node
failures faster, before next user request will be received.

One of the ways to handle failing provider nodes is to consider another server
from the remaining list and use it onwards for the session. This strategy can be
inefficient if applied for each session separately, without sharing the knowledge
on the failed nodes in the case of multiple sessions bound to a single provider
node. After detecting the node failure, the error can be propagated to the caller or
fail-over to another provider node can be performed silently, without interrupting
the caller. Even if the error is handled by the consumer application, usually it has
an impact on the behaviour of the system at least as increased execution time
of some operations [7,8]. Because of that, the number of calls reaching the failed
nodes should be minimized. The optimization usually includes sharing the node
availability information between the sessions.

Applications consuming the provider services are often implemented as clus-
ters themselves. The state sharing in the cluster is much more expensive than in
a single node, especially if consistency should be preserved [2]. Inconsistency in
tracking back-end availability has relatively low cost, as fixing it can only cause
several unnecessary calls to the failed nodes. Keeping that in mind, it is reasonable
to implement the sharing of the back-end node availability without consistency
guarantees, employing the best-effort strategy. One of the ways for implementing
it is to use asynchronous messages to share the known information on the provider
availability.

Different applications require complex event processing relying on the detec-
tion of composite events often formed by logical and temporal combinations of
events coming from many sources [9]. Various formal methods handling tempo-
rally composed events have been designed and implemented for complex event
processing [10,11]. The Temporal Logic of Actions (TLA) is among such methods
successfully used to describe behaviours of concurrent systems [12]. The corre-
sponding specification language TLA+ and the TLC model checker help to pre-
vent serious bugs from reaching production as well as to optimize complex algo-
rithms without sacrificing quality [13].

An algorithm for coordinating sessions using asynchronous messages in the
consumer cluster is proposed in this paper. In order to avoid misbehaviours in
various corner cases, the algorithm was formulated as a formal specification in
the TLA+ language [12,14]. The specification was verified by performing model
checking [15], employing the TLC tool provided by the TLA+ toolbox. We first
provide a direct solution of the problem in Section 3 and show its misbehaviour
by performing model checking. Then we propose two modifications of the algo-
rithm in Sections 3.6 and 4. In Section 5 we describe an agent-based simulation

K. Petrauskas and R. Baronas / Effectiveness of the Asynchronous Client-Side Coordination96



performed in order to assess effectiveness of the proposed algorithm and discuss
results of the simulations.

This paper is an extended version of work published in [16]. We extend our
previous work by providing a dynamic assessment of the effectiveness of the pro-
posed algorithm and two its variants. The assessment was performed by con-
structing an agent-based model and performing simulations with it.

2. Principal Structure

We consider an interaction between two systems – a service provider and a ser-
vice consumer. Both systems are assumed to be master-less clusters consisting of
several nodes. The nodes of the consumer cluster maintain a set of sessions bound
to some nodes in the service provider cluster. A structure of the elements partic-
ipating in the session management is shown as a UML class diagram in Figure 1.
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Figure 1. Principal structure of the modelled subsystem

The main idea of the session management algorithm is that a client-side ses-
sion process notifies its coordinator when a failure of the provider node is detected.
The coordinator then notifies the other sessions bound to the same provider node
and the coordinators on the other consumer nodes. The coordinators then notifies
the corresponding sessions on their nodes. In that way, all the sessions in the
cluster can handle the failure of the provider node gracefully.

We assume that a session can be bound to another node in the case of a
provider failure, although re-binding of sessions should be avoided, as the cost of
such operation is not negligible. The cost can be expressed in terms of performance
drop or a possibility to provide the end-user with inconsistent data, etc. A session
can be unbound, i.e. not bound to any of the provider nodes. This can be the case
for the sessions that were dropped by the provider and were not reconnected yet.

3. Formal Specification

The session management algorithm relies on the asynchronous communication
for sharing the knowledge about the provider node availability. We assume each
session to be a separate process in a node. These processes communicate asyn-
chronously with a coordinator process responsible for tracking a state of the
provider cluster in the consumer node.
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3.1. State of the Model

The specification of the session management algorithm is formulated in the TLA+

language and has several parameters (constants). A constant in the specification
does not change during a single simulation (model checking), but can have differ-
ent values in separate simulations. The following excerpt defines constants and a
state structure of the specification:

constants PNodes, CNodes, SNames
variables prov , cons
NA

Δ
= choose n : n /∈ PNodes

Msg
Δ
= [pn : PNodes]

TypeOK
Δ
= prov ∈ [PNodes → boolean ] ∧ cons ∈ [CNodes → [

c : [PNodes → [st : boolean ]],
s : [SNames → [pn : PNodes ∪ {NA}, m : subset Msg ]],

sm : subset Msg , cm : subset PNodes]]

In order to keep the specification simple and the state space finite, we consider
a number of consumer and provider nodes as well as a number of sessions in each
node to be constant. The constant PNodes stands for a set of provider nodes. Each
node in this set is defined by assigning a unique identifier, e.g PNodes = {p1, p2}.
Similarly the constant CNodes stands for a set of consumer nodes. The constant
SNames stands for a session pool in the consumer node and should be assigned
with a set of session identifiers.

Systems are modelled as state machines in TLA+. Variables define a state
structure of the machine. In this specification the variable prov represents the
actual state of the provider nodes. This variable is a function with the domain
PNodes and the range boolean, where true means the corresponding node is
operational, and false – the node is down.

The variable cons represents the state of the consumer cluster including its
view of the provider nodes. It is a function with a domain CNames and therefore
describes state for each node in the consumer cluster separately.

A state of the coordinator process is represented by the field c, that holds
known states for all the provider nodes in each consumer node. The state of a par-
ticular provider node cons[cn].c[pn].st (where cn ∈ CNodes and pn ∈ PNodes)
can differ from prov [pn], because changes of the node availability are not detected
immediately by the consumer nodes.

The field cons[cn].s stands for a session pool in a consumer node. Each ses-
sion cons[cn].s[sn] (where sn ∈ SNames) is bound to a node pn ∈ PNodes or is
unbound, if cons[cn].s[sn].pn = NA. The session has also a set of asynchronous
messages cons[cn].s[sn].m received from the coordinator in the current node. Syn-
chronous calls are modelled as direct changes of the corresponding variables. In
this algorithm we consider messages sent to the sessions by the coordinator to be
asynchronous. The set of possible messages is defined as Msgs .

The fields sm and cm in cons[cn] stand for sets of asynchronous messages re-
ceived by the coordinator process correspondingly from the sessions in the current
node and the coordinators in other consumer nodes.

A set of valid states in the specification is defined by the predicate TypeOK
used to check the type correctness of the specification.
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3.2. Behaviour of the Provider Nodes

Transitions of the state machine are defined by the actions – formulas involving
primed variables (they stand for the variable values in the next step),

ProvNodeUp(pn)
Δ
= ¬prov [pn]

∧ prov ′ = [prov except ! [pn] = true]
∧ unchanged 〈cons〉

ProvNodeDown(pn)
Δ
= prov [pn]

∧ prov ′ = [prov except ! [pn] = false]

∧ unchanged 〈cons〉
The action ProvNodeUp(pn) states that the provider node pn ∈ PNodes

can become operational at any time if it is currently down. The expression
[prov except ! [pn] = true] stands for a function that is equal to prov except
that the value of prov [pn] equals true. The action ProvNodeDown(pn) corre-
spondingly turns operational node down.

3.3. Behaviour of a Consumer Session

A session can either handle requests, update its state based on messages from the
coordinator or connect if it was not bound to any provider node. The latter is
modelled by the action SessionConnect(cn, sn), where cn ∈ CNodes stands for
a consumer node and sn ∈ SNames stands for a session identifier. This action
is enabled, if the session is not bound to a provider node (cons[cn].s[sn] = NA)
and there is a node pn ∈ PNodes that is operational (prov [pn] = true) and the
consumer node knows it is operational (cons [cn].c[pn].st = true),

SessionConnect(cn, sn)
Δ
= cons[cn].s[s].pn = NA ∧ cons[cn].c[pn].st

∧ ∃ pn ∈ PNames : ∧ prov [pn]
∧ cons ′ = [cons except ! [cn].s[sn].pn = pn]

∧ unchanged 〈prov〉
When connected (cons[cn].s[sn].pn ∈ PNodes), a session can be used by the

consumer node to issue requests to the service provider. Only failing requests
are modelled in this specification, because the successful requests do not affect
the state of the modelled subsystem. We consider all the requests ended up with
business faults as completed successfully. A request is considered failed only if the
corresponding provider node is down (prov [pn] = false) at the moment, when
the request is performed. In that case the session marks itself as unbound and
sends an asynchronous message indicating the failure of the provider node to the
coordinator process. The state of the other sessions as well as the state of the
coordinator is not affected in this transition directly,

SessionReqFail(cn, sn)
Δ
= cons[cn].s[sn].pn ∈ PNodes ∧ ¬prov [cons[cn].s[sn].pn]

∧ cons ′ = [cons except
! [cn].s[sn].pn = NA,
! [cn].sm = @ ∪ {[pn 	→ cons[cn].s[sn].pn]}]

∧ unchanged prov

The symbol @ in this and other formulas stands for the current value of the
function.
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Sending an asynchronous message is modelled by adding it to the set of
messages cons[cn].sm sent by the sessions to the coordinator. The ordering of
messages is not modelled in this specification in order to decrease the space of
possible states. Duplicated messages are modelled by not removing a message
from the set cons[cn].sm after processing it.

A session can receive notifications from the coordinator indicating provider
nodes that became down. Upon receiving such a message the session unbinds
itself, if the provider node specified in the message matches with the bound node,

SessionUpdate(cn, sn)
Δ
=

∃msg ∈ cons[cn].s[sn].m :
∃msgsDeq ∈ {cons[cn].s[sn].m, cons[cn].s[sn].m \ {msg}} :

∧ cons ′ = let consDeq
Δ
= [cons except ! [cn].s[sn].m = msgsDeq ]

in if msg .pn = cons[cn].s[sn].pn
then [consDeq except ! [cn].s[sn].pn = NA]
else consDeq

∧ unchanged prov

Receiving a message (dequeuing) is modelled by taking any message from
the set of sent messages cons[cn].s[sn].m ignoring their order. The set of sent
messages is either left unchanged or the selected message is removed from that
set.

3.4. Behaviour of the Consumer Node Coordinator

The coordinator is responsible for maintaining the state of the provider nodes
in a single consumer node. The coordinator receives messages indicating fail-
ures of the provider nodes from the sessions. Then it updates its internal state
(cons[cn].c[pn].st) and notifies all the sessions and other consumer nodes about
the state changes, if some node becomes unavailable,

CoordSessionMsg(cn)
Δ
=

∃msg ∈ cons[cn].sm : ∃ sm ∈ {cons[cn].sm, cons[cn].sm \ {msg}} :
let consDeq

Δ
= [cons except ! [cn].sm = sm]

consEnq
Δ
= [c ∈ domain consDeq 	→ [consDeq [c] except

! .cm = if c = cn then @ else @ ∪ {msg .pn}]]
consUpd

Δ
= [consEnq except

! [cn].c[msg .pn].st = false,
! [cn].s = [s ∈ domain @ 	→ [@[s] except ! .m = @ ∪ {msg}]]]

in ∧ cons ′ = if cons[cn].c[msg .pn].st then consUpd else consDeq

∧ unchanged prov

The coordinator sends notifications to other consumer nodes when some
provider node becomes offline,

CoordClusterMsg(cn)
Δ
=

∃ pn ∈ cons[cn].cm : ∃ cm ∈ {cons[cn].cm, cons[cn].cm \ {pn}} :
let consDeq

Δ
= [cons except ! [cn].cm = cm]

consEnq
Δ
= [consDeq except ! [cn].c[pn].st = false,

! [cn].s = [s ∈ domain @ 	→ [@[s] except ! .m = @ ∪ {[pn 	→ pn]}]]]
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in ∧ cons ′ = if cons[cn].c[pn].st ∧ ¬prov [pn] then consEnq else consDeq

∧ unchanged prov

As shown above, the coordinator marks the provider nodes as being down
in the consumer state based on messages from the sessions and the other co-
ordinators. The coordinator is also responsible for marking the nodes as being
available, when they become operational. This is performed periodically by check-
ing the nodes that are currently marked as down (cons [cn].c[pn].st = false)
and marking them available if the checks succeed. This is modelled by the ac-
tion CoordProviderCheck(cn, pn). The check of the provider node is performed
synchronously and is modelled here by the conjunct prov [pn],

CoordProviderCheck(cn, pn)
Δ
= ¬cons[cn].c[pn].st ∧ prov [pn]

∧ cons ′ = [cons except ! [cn].c[pn].st = true]

∧ unchanged prov

3.5. Temporal Properties

The complete specification in TLA+ is represented as a temporal formula

Spec
Δ
= Init ∧ �[Next ]〈prov,cons〉 ∧ Liveness

where Init describes the initial state, Next defines all the possible transitions at
any step and Liveness defines requirements for actions to actually occur. Here
� is a temporal operator “always”. The expression [Next ]〈prov ,cons〉 states that
either a step Next or a step not changing the variables prov and cons can occur.

The formula Init stands for the initial state. It is similar to the TypeOK
predicate, except that message sets are initialized with empty sets {} and all the
provider nodes are assumed to be operational initially. The formula Next is a
disjunction of all the actions and describes all the possible transitions at any step.
This formula straightforward and therefore is omitted in this paper.

Liveness is a temporal formula describing what actions should actually occur
in the system if they are enabled (contrary to “can occur”). We assume weak
fairness conditions (an action will be performed if it is enabled forever) for all
the actions describing behaviour of the consumer nodes (the sessions and the
coordinators).

The specification Spec can be used to check if it satisfies required properties.
A typical property usually checked for any specification is a type correctness
invariant

TypeInvariant
Δ
= Spec ⇒ �TypeOK

Apart from simple invariants, TLA+ allows to define temporal properties.
These properties imply requirements for the entire behaviour (a sequence of tran-
sitions),

NodeDownDetected
Δ
=

∀ pn ∈ PNodes, cn ∈ CNodes, sn ∈ SNames :
(cons[cn].s[sn].pn = pn ∧ ¬prov [pn]) � (cons[cn].s[sn].pn = NA ∨ prov [pn])

SessionsWillReconnect
Δ
=

∀ pn ∈ PNodes, cn ∈ CNodes, sn ∈ SNames :
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(cons[cn].s[sn].pn = NA ∧ prov [pn]) � (cons[cn].s[sn].pn = NA ∨ ¬prov [pn])
The temporal property NodeDownDetected asserts that if a provider node

becomes unavailable, then sessions bound to it will be eventually disconnected,
unless the node will become operational again (� is the temporal operator “leads
to”). It was checked that this property holds for the specification by employing
the TLC model checker.

The property SessionsWillReconnect asserts, that if a session is unbound and
there is an operational node, the session will reconnect and will continue to serve
requests,

TemporalProperties
Δ
= Spec ⇒ NodeDownDetected ∧ SessionsWillReconnect

The TLC model checker was used to check the type correctness invariant
as well as the temporal properties defined above. The model checking showed
that property SessionsWillReconnect is not satisfied by the specification. The
misbehaviour is caused by the asynchronous communication between the sessions
and the coordinator. One of the counter-examples: a provider node was down, then
it becomes available, coordinator process marks it as available and then receives
a delayed message from a session indicating node failure. As a consequence, the
node is marked as unavailable again till the next CoordProviderCheck(pn). This
behaviour can repeat infinitely, making the consumer to consider running provider
node as failed thus decreasing availability of the system.

3.6. Explicit Provider Checks

A possible solution allowing to avoid the impact of the delayed messages is to check
node availability before marking it as offline in the coordinator process. In that
case, the CoordSessionMsg(cn) action should be changed by adding expression
cons[cn].c[msg .pn].st ∧ ¬prov [msg .pn] instead of cons[cn].c[msg .pn].st in the IF
condition. The changed parts of the action are as follows:

CoordSessionMsg(cn)
Δ
=

. . .
∧ cons ′ = if cons[cn].c[msg .pn].st ∧ ¬prov [msg .pn] then consUpd else consDeq

∧ unchanged prov

With this change the temporal property SessionsWillReconnect is fulfilled.

4. Detecting Delayed Messages

In order to avoid the impact of the delayed messages, generations of the provider
nodes can be introduced. Each time when a provider node is detected to become
online by the coordinator, its generation number is increased. Messages referring
to generations older than one known by the coordinator are then ignored. The
generations should be tracked in the coordinator process as well as in the sessions
and should be included in the messages exchanged between them,

Msg
Δ
= [pn : PNodes, gen : Nat ]

TypeOK
Δ
=
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∧ prov ∈ [PNodes → boolean ]
∧ cons ∈ [CNodes → [

c : [PNodes → [st : boolean , gen : Nat ]],
s : [SNames → [pn : PNodes ∪ {NA}, gen : Nat , m : subset Msg ]],

sm : subset Msg , cm : subset PNodes]]

The observed generations of the provider nodes are tracked inside of the con-

sumer nodes and are not shared between them. Each node can observe different

provider node interruptions. Moreover, depending on a network topology, a par-

ticular provider node can be accessible from one consumer node and not accessible

from other. The message delays between the consumer nodes are handled by the

explicit node checks (conjunct ¬prov [pn]) in the action CoordClusterMsg(cn).

Some parts of the model should be updated to maintain the observed provider

node generations. The initial state can start from any generation. We consider to

have gen �→ 0 in all the sessions and the coordinators.
For the coordinator behaviour, the CoordProviderCheck(cn, pn) action is

changed to increment the node generation each time the coordinator detects it
became available,

CoordProviderCheck(cn, pn)
Δ
= ¬cons[cn].c[pn].st ∧ prov [pn]

∧ cons ′ = [cons except ![cn].c[pn].st = true, ![cn].c[pn].gen = @+ 1]

∧ unchanged prov

The coordinator then ignores all the messages received with old generations

(msg .gen < cons[cn].c[msg .pn].gen) in the CoordSessionMsg(cn) action. It also

includes the generation into the messages sent to the sessions when node change

is detected on a notification from other consumer nodes in CoordClusterMsg(cn).

The generation is included in the messages triggered by the session notifications

in the CoordSessionMsg(cn) action without changes in the specification as it only

forwards received messages (and they include the gen field).
When connecting, a session takes the current provider node generation from

the coordinator in the consumer node (cons [cn].c[pn].gen), therefore the action
SessionConnect(cn, sn) is updated to assign the generation known by the session
as follows:

SessionConnect(cn, sn)
Δ
= cons[cn].s[s].pn = NA ∧ cons[cn].c[pn].st

∧ ∃ pn ∈ PNames : ∧ prov [pn]
∧ cons ′ = [cons except ! [cn].s[sn].pn = pn,

![cn].s[sn].gen = cons[cn].c[pn].gen]

∧ unchanged 〈prov〉

The sessions should only consider messages received from the coordinator in the

SessionUpdate(cn, sn) action with a generation not less than the current genera-

tion known by the session (cons[cn].s[s].gen ≤ msg .gen) and then remember it as

the last known generation (![cn].s[s].gen = msg .gen). All the other messages are

just dequeued and ignored. The sessions include the generation to the messages

sent to the coordinator in the SessionReqFail(cn, sn) action.
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5. Simulation

An agent-based simulation was performed in order to investigate behaviour of the
proposed algorithm. The agent-based model [17] was implemented using the Er-
lang programming language [18,19,20]. This language implements an actor model,
where a program is constructed as a set of communicating sequential processes.
The processes communicate by exchanging asynchronous messages.

The developed simulation model consists of three types of agents: sessions
and coordinators in a consumer node and the provider nodes. The agents commu-
nicate in synchronous and asynchronous ways thus implementing the proposed
algorithms in a direct way.

Three variations of the session management algorithm were implemented and
used in the simulations: the algorithm maintaining observed node generations
(G), the algorithm with explicit node checks (C) and the algorithm where the
sessions are not coordinated between each other (N).

The parameters used in all the experiments as a basis were the following:

nc = |CNodes| = 10, np = |PNodes| = 100, ns = |SNames| = 1000.

These parameters describe a topology of the system. The agent-based model also
includes the timing of the operations. In order to make the behaviour of the
model closer to a real application, the timing parameters were randomized by
introducing dispersion of their values. The following timing parameters were used
as a basis in all the experiments:

ts = te = 100± 10ms, tc = 1000± 500ms,

where ts is a time consumed by a provider node to execute a request success-
fully [21]. A provider node takes te of time to respond with an error. The same
parameters were used for the provider operations and the availability checks. The
parameter tc stands for a period of time while the user waits before accessing the
session for the next time (the session is accessed approximately 1/tc times per
second).

5.1. Failure Handling

In order to determine, how the variants of the algorithm tackle with the provider
node faults, an experiment was carried out using the agent-based simulation. The
experiments start with all the nodes up and all the sessions connected to random
nodes. In the period t ∈ [0, 100]ms 10% of the provider nodes were made inacces-
sible (prov [pn] = false). The experiment was designed so that errors returned
by the sessions were counted as is, without performing any retries. Results of the
experiments are shown in Figure 2.

As one can see in Figure 2a, the algorithm maintaining the observed node
generations (G) caused less errors to be returned by the sessions comparing to
the other variations. The variation (C) caused more errors, because the provider
nodes were not marked as failed while the explicit check was performed. This
figure shows also, that the proposed algorithm (G) handled the errors faster.
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Figure 2. Behaviour of the proposed algorithm (G) and its variations (C, N) in the case of single
burst of provider node failures

The error count stopped to grow after 1 second when the provider nodes were
made inaccessible, while the algorithm (N) generated errors for 3 seconds after
the failures started to appear.

Figure 2b shows that variant (C) being less efficient in error handling, per-
forms twice more availability checks against the provider nodes comparing to the
variant (G) of the algorithm.

5.2. Impact of the Request Rate

In order to investigate the impact of the request rate on the behaviour of the
proposed algorithm, a number of simulations were performed with different rates
of the user requests. The rate of the requests was varied by changing tc (delay
performed by the users between requests) from 0.01 to 16 s. With the base con-
figuration described in Section 5, this range corresponds to the overall rate of the
requests from 106 down to 625 operations per second. Each of the experiments
was performed in the same way, as described in Section 5.1. The results of the
investigation are shown in Figure 3.

Dependency of the accumulated number of errors on the request rate is shown
in Figure 3a. As one can see in this figure, the variant (G) of the algorithm
performs better or similar to the other variants in the investigated range of tc.
For the higher values of tc (thus the lower rate of the requests), the algorithm
with generations (G) has similar performance to the variant with explicit checks
(C), through its performance is notably better for lower delays (tc ∈ [0.2, 4] s).
Accumulated error counts are approaching nf = np × 10% when increasing tc for
both algorithms (G) and (C). In the case of the variant (N) the accumulated error
count does not depend on the rate of the requests and is approximately equal to
nsnc/nf , the number of sessions bound to the failed nodes nf . The variants (G)
and (C) approach to this error count when tc → 0. That means the sessions are
accessed faster than the state coordination is performed.

The impact of the request rate on the accumulated number of checks is shown
in Figure 3b. The variant (N) does not perform any availability checks and there-
fore the count is always 0. In the case of the explicit checks (C) the number of
checks equals ncnf = 100, because the check is performed for each failed node
on each consumer node. The variant (G) of the algorithm uses checks only for
validating notifications from other nodes. In the case of low rate (high tc), the
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Figure 3. Behaviour of the proposed algorithm (G) and its variations (C, N) in the case of single
burst of provider node failures depending on the load, tc ∈ [0.01, 16] s

session coordination is performed faster in the entire cluster, than the sessions are
accessed. Because of this, the number of checks approaches to (nc − 1)nf = 90.
At a high request rate (low tc), the sessions are often accessed before the failure
notification is received from another node (and checked) leading to less checks
performed and more failures reported to the users.

Figure 3c shows impact of tc on the time interval between the first and the
last error, a period in which the users will experience consequences of a failure.
In the case of non coordinated sessions (N) the delay increases linearly (higher
values are not shown in this graph in order to keep other curves distinguishable).
The proportion coefficient is larger than 1 here, because failures can occur also on
reconnects. The variant (G) of the algorithm is always faster than the variant (C),
because it performs less explicit checks. Each of the consumer nodes perform the
checks sequentially because that is done by a single coordinator process. Number
of checks on each node is approximately equal to nf and each check takes te time
to complete. In this experiment nf te = 1 s.

5.3. Impact of the Provider Behaviour

The dependency of the algorithm performance on the the number of failing
provider nodes as well as their latency is shown in Figure 4.

As one can see in Figure 4a, the accumulated number of errors increases
linearly in the case of variants (C) and (G) while it grows exponentially, when
sessions are not coordinated (N). The exponential increase of the errors is observed
because the reconnects are performed with no knowledge of the failed nodes.

Figure 4b shows that the number of errors does not depend on the provider
node latency in the case of variant (N). The variants (C) and (G) perform better
when the latency is smaller, because the first error is received earlier and the
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Figure 4. Behaviour of the proposed algorithm (G) and its variations (C, N) at different number
of failing nodes (a) and different latency of the provider operations (b)

explicit availability checks are performed faster. The algorithm maintaining the
observed node generations (G) performs better than the other variants in all the
investigated cases. Its advantage is bigger at the lower latency of the provider
nodes (t < 0.7 s in this case).

6. Conclusions

The proposed algorithm for tracking provider node availability allows to avoid
synchronous communication in the consumer cluster as well as inside of the con-
sumer node. That allows to avoid process blocking thus decreasing impact on the
performance. The algorithm was formulated by employing formal specification
language and was model-checked for its correctness in a subset of its possible
states.

The model checking showed that straight-forward solution of the problem
works incorrectly at some race-conditions. Explicit node checks can be used to
solve the inconsistencies though they introduce a lot of overhead and can cause
bottlenecks in the system. The overhead can be decreased by tracking observed
generations of the provider nodes. It is meaningful to track the generations in a
single consumer node, although its usefulness cluster-wide depend on the network
topology.

The agent-based simulation showed that the coordination of the sessions can
decrease a number of errors exposed to the user considerably. With the config-
uration used in the simulation, the error count was decreased 50 times at a low
rate of operations. By coordinating the sessions the duration in which the users
observe consequences of a provider node failure can be changed from linear to
constant function of delays between quests. At the very high rate of the user
requests (106 with the investigated configuration), the performance of the coor-
dinated sessions approaches the performance of uncoordinated case, because the
sessions are accessed faster than the coordination is performed.

The variant of the algorithm tracking the observed node generations performs
better than the variant with explicit node checks. At some parameters, it handles
two times more errors and handles the errors faster. The explicit checks cause
higher load on the provider nodes, comparing to the variant maintaining the
observed node generations.
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