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Introduction

The Standard model (SM) is a remarkably successful theory able to
explain a vast range of phenomena in particle physics to an unprece-
dented accuracy. Yet there is no doubt, that the SM is not a complete
theory and we need to look forward for a new physics beyond the SM.
Neutrino mixing is an undeniable hint of physics beyond the SM of par-
ticle physics. The experimental evidences for neutrino oscillations [1-4]
prove that neutrinos have non—vanishing masses. The SM alone can-
not explain this phenomenon, hence numerous extensions of the SM to
incorporate masses of neutrinos were proposed. Among the first and
most straightforward extensions to account for massive neutrinos are
the so-called seesaw mechanisms [5-8]. They naturally give rise to small
masses for neutrinos in a relatively simple way, making them one of the
most appealing theoretical resolution of the neutrino mass puzzle. For

more recent reviews on the seesaw models we refer to [9-12].

The neutrinos is not the only possible physics beyond the SM. The
discovery of the Higgs boson [13,14] which completed the SM, also in-
spired further research in the scalar sector, which is possibly larger than
the one of the SM. Since it is the first and the only scalar particle
detected so far, the natural question arises if there are more scalar par-
ticles in nature. Theoretical motivations for more than a single Higgs
doublet have been around for quite some time already [15-18]. Many
of the extensions can be described as special cases of the general two
Higgs doublet model (2HDM) comprehensively reviewed in [19] for the

non-supersymmetric cases.

The model we study consists of the general charge—parity (CP) con-
serving 2HDM, extended with one neutral Weyl spinor that enables the
seesaw mechanism together with a radiative mass generation. We call
it the Grimus—Neufeld (GN) model, since they were the first to propose
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Introduction

it to explain neutrino masses [20]. An elegant feature of this model is
that it gives a loop ordered masses for neutrinos: at tree level, we get
only one non—zero light neutrino mass via seesaw mechanism, at one
loop level, second light neutrino gets a mass radiatively. So the seesaw
mass and the radiative mass is naturally separated by different orders
in perturbation theory. One of the neutrino stays massless at one loop
level, but can get a non—vanishing mass at two loops. To explain two
experimentally measured mass differences, it is enough that two of the
light neutrinos are massive. Hence, the GN model at one loop level is
sufficient to fit these experimental values.

So far, there is no way to tell which extension of the SM is preferred
by nature. However, as the experimental research of particle physics
advances (for a review of experimental data see [21]), the parameter
spaces of different models are being narrowed with the hope to rule out
some of the most constraining models. In order to do the analysis of
the parameter space of the model, one needs to relate measured cross
sections and decay rates to the parameters of the theory. This relation is
done by calculating scattering amplitudes in a perturbation series from a
specific Lagrangian. In the zeroth order approximation, the parameters
that appear in the Lagrangian stands for the parameters that we measure
in the decay rates and cross sections, such as masses and couplings.
However, the zeroth order approximation of the model is not enough,
especially when it comes to neutrino masses [22,23]. One needs to go at

least to loop level calculations.

At loop level, the original (bare) parameters of the model does not
represent the physical values anymore, as the loop corrections modifies
the trivial relations of the tree level theory. Hence at loop level, we
need to renormalize the model to define how physical parameters are
related to the parameters of the model. This is done by requiring the
renormalized fields and parameters to satisfy the specific renormaliza-
tion conditions, which defines the renormalization scheme. Physics does
not depend on the choice of the renormalization scheme. However, ev-
ery scheme has its strengths and weaknesses when it is applied, hence
choosing the most appropriate scheme for the studied problem is always
an important decision to make. In this thesis, we will concentrate on

the gauge dependence in the renormalization procedure.

Gauge symmetries are the guiding principle of contemporary particle
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Introduction

physics. However, a symmetry on the classical level might not be satis-
fied after the quantization of the theory. This phenomenon is known as
anomaly [24]. Gauge invariance of the theory is ensured to hold if the
theory is anomaly—free [25-27]. Checking if the model is anomaly—free,
is an easy check of a few algebraic expressions. However, this does not
mean that we are safe from accidentally introducing gauge dependences
in parameters of the model, i.e. masses or couplings. These gauge de-
pendent terms, of course, cancel out in the scattering matrix, but the
interpretation of gauge dependent parameters then become ambiguous,
as they cannot stand for true physical parameters. Hence it is theoret-
ically desirable to define gauge independent physical parameters in the
renormalization procedure.

We study the mass renormalization of the neutrinos in the GN model.
In order to define gauge invariant renormalized masses, we employ the
complex mass scheme (CMS). As the masses are a consequence of the
electroweak symmetry breaking, their renormalization is closely related
to the renormalization of tadpoles. We show how the mass counterterm,
fixed by CMS together with the usual tadpole scheme is gauge depen-
dent. Since the CMS is proven to give gauge invariant renormalized
masses, it follows that bare masses become gauge dependent. A way
to avoid these gauge dependences is to apply the Fleischer—Jegerlehner
(FJ) scheme [28]. We apply this scheme to the neutrino mass renor-
malization and verify with computer algebra systems that the gauge
dependences cancel for all neutrino mass parameters. Hence we succeed
to define gauge invariant bare and renormalized neutrino masses in the

GN model.

The main goal and tasks of the research work

The main goal of the research presented in the thesis is to formulate
a consistent scheme for renormalizing neutrino masses in the Grimus—
Neufeld model at one loop level. This was done by completing the
following tasks:

e Formulate the model in terms of Weyl spinors and implement it

in computer software packages for automated calculations.

e Decide on the renormalization scheme for the neutrino mass renor-
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malization and adapt it to the mixed Majorana fermion system in

Weyl spinor notation.

e Check the gauge invariance of the masses and the mass countert-

erms.

e Find a gauge invariant prescription for renormalizing neutrinos.

Novelty and relevance of the results

The model we study in this paper was first proposed by Grimus and
Neufeld in [20]. However, the renormalization and the issue of the gauge
invariance of the renormalization of neutrino masses was not studied for
this model until very recently [29], where the MS scheme was used for
the renormalization. We use different approach. We define the renor-
malized masses as physical parameters, so that they can be used as an
input of the theory, rather than an output. The usual scheme for this
purpose is the OS, but it is known to give gauge dependent mass defini-
tions for unstable particles [30]. The CMS however, is proven to give a
gauge invariant definition of mass for all loops [31]. As neutrinos of the
GN model are mixed particles which include unstable ones, we apply
the CMS in order to have conceptually consistent and gauge invariant
renormalized mass parameters.

Using the CMS solves the problems of the gauge dependencies for
renormalized masses. However, bare masses of the theory are not nec-
essarily gauge independent, since the counterterms that relate them can
acquire gauge dependent contributions. This becomes problematic if one
wants to make a meaningful and gauge invariant comparison to other
renormalization schemes such as the MS. A way to avoid these gauge
dependencies is to use the FJ procedure [28], which recently got some
renewed attention in order to use the MS scheme in a gauge invariant
way [29,32-35]. We apply the FJ procedure in the CMS, so that the
CMS renormalized mass is related to bare mass gauge invariantly. The
correct application of the FJ scheme also allows for additional consis-
tency checks of the model implementation, as all the gauge dependencies
of mass parameters have to be separated by this procedure.

To summarize, this is a first attempt to set up a consistent and gauge

invariant renormalization procedure in a physical basis for the masses
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of the GN model. We also describe how to reproduce our expressions of
counterterms using SARAH, FeynArts and FormCalc.

Statements of the thesis

1. The radiatively generated neutrino mass is finite and gauge inde-

pendent in the one loop approximation.

2. The FJ scheme is directly applicable for the renormalization of the
neutrino masses in the seesaw extended 2HDM at one loop level.

3. The CMS can be applied together with the FJ scheme for neutrino
masses at one loop and is algebraically equivalent to the OS.

Author’s contribution and approbation of the

results
This thesis is based on 3 research publications:
1. V. Dudénas and T. Gajdosik. Lith. J. Phys. 56, 149-163, 2016,

2. V. Dudénas and T. Gajdosik. Acta Phys. Pol. B 48, 2243-2249,
2017,

3. V. Dudénas and T. Gajdosik. Phys. Rev. D 98, 035034, 2018.

The author of this thesis is also the main author and the main contrib-
utor in all of these three papers. The author is also a co-author of the
work that is not directly related to the results of this thesis:

1. V. Dudénas, T. Gajdosik, A. Juodagalvis, and D. Jurciukonis. Acta
Phys. Pol. B 48, 2235, 2017.

This paper is nevertheless related to the content of this thesis in the
sense that it studies the same model, but uses a different formulation
and emphasizes on the different aspects of the model by using numerical
analysis. The thesis, however, presents purely analytical results.

The results were also presented in the following conferences:
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1. Vytautas Dudénas, Thomas Gajdosik, Developing Weyl spinor for-
malism for seesaw neutrinos, Open readings 2015, March 24-27,
Vilnius, Lithuania.

2. Vytautas Dudénas, Thomas Gajdosik, Weyl’o spinoriy formalizmo
plétojimas supuokliniams neutrinams, 41 Nacionaliné lietuvos fizi-
kos konferencija, 2015, May 17-19, Vilnius, Lithuania.

3. Vytautas Dudénas, Thomas Gajdosik, Renormalization of prop-
agators of Weyl spinors in the seesaw extension of the standard
model, Open readings 2016, March 15-18, Vilnius, Lithuania.

4. Vytautas Dudénas, Thomas Gajdosik, Using techniques of alge-
braic renormalization for the two Higgs doublet model with one
heavy neutrino, Open readings 2017, March 14-17, Vilnius, Lithua-

nla.

5. Vytautas Dudénas, Thomas Gajdosik, On the renormalization of
neutrinos of the seesaw extended 2HDM, Matter to the deepest,
2017, September 3-8, Podlesice, Poland.

6. Vytautas Dudénas, Thomas Gajdosik, Renormalization of the neu-
trino sector of Grimus—Neufeld model, 42 Nacionaliné lietuvos
fizikos konferencija, 2017, October 4-6, Vilnius, Lithuania.

7. Vytautas Dudénas, Thomas Gajdosik, Gauge parameter depen-
dence of the neutrino mass renormalization, Open readings 2018,
March 20-23, Vilnius, Lithuania.

8. Vytautas Dudénas, Thomas Gajdosik, Gauge dependence of tad-
pole and mass renormalization for a seesaw extended 2HDM, Work-
shop on multi-Higgs models, 2018, September 4-7, Lisbon, Portu-
gal.

Structure of the thesis

In the first chapter of this dissertation we give an introduction to the
GN model. We list all the particles, present the scalar potential and
the Yukawa sectors and show the Lagrangian part that is responsible for
neutrino masses. We also present the basis choices that we will use in the
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Introduction

scalar and Yukawa sectors. In the second chapter we present the CMS
scheme and its application to mixed Majorana fermion systems in terms
of Weyl spinors. We discuss the algebraic equivalence of the OS and the
CMS, which will be continued in the fourth chapter in the context of loop
calculations. We also present how radiative masses are incorporated in
the framework of the CMS and are interpreted as the CMS-renormalized
masses. The second chapter is mostly based on [37] and partly on [38].
The third chapter is based on [38] and is the main chapter of the thesis,
where we present the gauge independent renormalization of neutrino
masses in the GN model. As the renormalization of masses depend also
on the renormalization of tadpoles, we start the chapter by presenting
the renormalization of tadpoles. Then we present the full expression of
the one loop radiative neutrino mass, which is finite and gauge invariant,
hence proves the first statement of the thesis. Then we continue the
application of the CMS to the renormalization of the other two non-—
vanishing neutrino masses and show that this application in the usual
tadpole scheme leads to the gauge dependent bare mass parameters for
the neutrinos. In order to define bare masses gauge invariantly, we apply
the FJ scheme and then modify the CMS—fixed counterterms. We prove
that these CMS+FJ fixed counterterms are gauge invariant by explicitly
calculating them, leading to the second statement of the thesis. In the
fourth chapter we present how we arrived at this result with the help
of SARAH, FeynArts and FormCalc. We also continue the discussion
about the algebraic equivalence of the OS and CMS scheme, which leads
to the third statement of the thesis. We summarize all the results in the
concluding section of the thesis. We include additional material in the
appendices that should help the reader to trace back all the conventions
and definitions used throughout the text.
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Chapter 1

The Grimus-Neufeld model

In this chapter we will introduce the scalar and the Yukawa sectors of the
GN model together with the particle content and the necessary defini-
tions. The scalar sector is the general CP conserving 2HDM, extensively
studied in [19,40-43]. The Yukawa sector of the model is presented and
parametrized as in the original paper of Grimus and Neufeld [20]. Since
the pole masses will become the renormalized masses, the relations to
the physical basis, i.e. mass eigenstate basis, for both Yukawa and scalar
sectors are presented. The presentation of a physical parametrization of
2HDM can also be found in [44,45].

Note that in this section we will only talk about the construction
of the tree level or the bare theory. Hence all parameters and bare
fields in this section are bare parameters and fields. This is not to
be confused with the renormalized parameters introduced in Chapter 2,
where we distinguish bare parameters by adding an additional index 0
to the subscript. Since we do not talk about renormalized parameters in
this section, we will not add this index in the expressions of this section
in order not to overcrowd the notation where it is not needed.

1.1 Particles of the model

Any model in quantum field theory is described by its Lagrangian, from
which we can deduce Feynman rules and hence calculate amplitudes.
So, in order to understand the model, we need to understand how the
Lagrangian is constructed first. We briefly present how to construct the
model of QFT by postulating particle content of the theory. These basic
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1. The Grimus-Neufeld model

principles of constructing the model can also be found in almost every
serious introductory book on quantum field theory, such as [46-49]. We
present the particle content of the SM, the usual SM relations and then
we present what additional particles there are in the GN extension of
the SM.

The Lagrangian is described by the gauge symmetries it satisfies. For
instance, the GN Lagrangian, just as well as the SM Lagrangian, is sym-
metric under a local SU (3) x SU (2); x U (1), gauge group, where the
index C stands for colour charge, L stands for left handiness of fermions
and Y stands for hypercharge. Gauge bosons of the theory transform un-
der the adjoint representation of these gauge groups. They are: photons,
W/Z bosons and gluons. All fermions and scalar bosons are grouped ac-
cording to the charges they have with respect to these gauge symmetries.
If all the particles with their charges under the gauge groups are given,
then the Lagrangian is given by all possible terms that are allowed by
the gauge symmetries. The usual way to describe the model is to tell the
dimension of the representation of SU (3), and SU (2); and the U (1)
hypercharge Y in the form of (D (RSU(g)) , D (RSU(Q)) ,Y) for each par-
ticle. Hence the representation of 2 is the fundamental representation
of SU (2), 3 is the fundamental representation of SU (3) and 3 is the
antifundamental representation of SU (3). All the fermionic degrees of
freedom of the model are written as left handed Weyl spinors. Then the
SM is fully described by three copies of left handed (LH) Weyl spinors
multiplets® (three copies stands for electronic, muonic and taonic fami-
lies), which transform in the representations [47,48]:

(1,2,-2)@(1,1,1)@(3,2,1/6)@(3,1,—2/3)@(3,1,1/3) (1.1)

and one complex scalar, which transform under:
(1,2,-1/2) . (1.2)

In order for a model to be invariant under local gauge symmetries, a
derivative of a field with respect to spacetime is promoted to a covariant
derivative of a field. The covariant derivative acting on a field gives
interaction terms of fermions and scalars with gauge bosons. For the
SM, 2HDM and the GN model, it is:

!See the Appendix B for more on Weyl spinors as the fundamental representation
of an SU (2) subgroup of a Lorentz group.
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1.1. Particles of the model

A
D, = 8, —igiY By, — ige T, W}, — ig3?an : (1.3)

with T, = %aa, where o, are the Pauli matrices, A, are Gell-Mann ma-
trices, p is a spacetime index and the Einstein summation convention
is assumed?. B, W§ and G, are the gauge bosons of U (1), SU (2)
and SU (3) group. The sign convention in covariant derivative Eq. (1.3)
is consistent with the most usual quantum field theory textbooks (i.e.
[46,47,49]) and with the conventions in [50,51]. Some other sign con-
ventions are occasionally used in the literature. For a resource on the
relationships to other sign conventions we refer to [52].

How the covariant derivative, shown in Eq. (1.3), acts on a field, de-
pends on the charges the field carries. For example, let us write £ as the
particle that transforms under the representations that are shown as the
first entry of Eq. (1.1). £ is a color singlet, a doublet under SU (2); and
has a hypercharge Y = —%. It has two eigenvalues of SU (2) generator
T3. Let us separate these two states of T3 into —i—% state and —% state
as £y and ¢_. The covariant derivative, written explicitly with the sum-
mation over indices expanded and the Pauli matrices written in, acting

on / field is:
i i
Dyl = 04l + 5 (91 Bu — GgW2) by + 3 (@1Bu+ @W2) 0
=925 (W1 —iWo) b — gog (W1 + W) €. (1.4)

The expression in the first brackets of this equations is identified as the Z
boson, Z,,, second brackets stands for the photon, A,,, and the other two
brackets stand for W bosons. We introduce g, as the electromagnetic
coupling, sy and cy as the sine and cosine of the weak mixing angle:

9192 g2 g1
e = —F—— W = —F/—/m SW = ——— (1.5)

NCEY NCET A Vi +a

which allows us to write the gauge fields as:
Ay = swW; + cw By, (1.6)

Zy = cwW2 — swBy, (1.7)

2We use Einstein summation convention everywhere in the thesis, unless explicitly
stated otherwise.
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1. The Grimus-Neufeld model

1
W = i (W7 FiWs) . (1.8)

With these definitions and Eq.(1.4), the electromagnetic charge of a
particle is described by

Q=T3+Y, (1.9)

from which we can see that ¢4 stands for the SM neutrinos and ¢_
stands for the electron, muon and tau. In the same way, one can iden-
tify other representations from Eq. (1.1) as being the representations of
LH antileptons, LH quark doublets, LH down type antiquarks and LH
up type antiquarks respectively®. The scalar particle, which transforms
under Eq. (1.2) is the SM Higgs doublet. In this work we will not con-
sider the SU(3) gauge group anymore, which is responsible for strong
interactions. This is because all the particles we consider are singlets
under the SU (3) gauge group, hence the quark sector is separated from
the analysis presented in this thesis. However, one should keep in mind
that in the full implementation of the model into the computer algebra
systems, the quark sector has to be included.

The Higgs doublet of the SM, Eq.(1.2), spontaneously breaks the
electroweak symmetry, SU (2);, x U (1), — U (1)g, by going into the
minimum of its potential. The value of the field at the minimum is the
vacuum expectation value (VEV) of the Higgs. The Higgs VEV gives
masses to all the particles of the theory, which otherwise would violate
gauge invariance of the theory. W and Z bosons of the broken theory get
masses, which are related to the electromagnetic coupling, weak mixing
angle and the VEV of the Higgs by

ga2v geV

= == =—-—. 1.10
mw = cwmz == =5 (1.10)
The equivalent directions of the spontaneous symmetry breaking (SSB)
are parametrized by gauge fixing conditions. The usual gauge fixing
condition is the R¢ gauge, in which, the unphysical Goldstone bosons in

the broken theory have masses of:

mii = Ewmiy,, miz = Eym%. (1.11)

3We postulate all the Weyl spinors in the LH representation under a Lorentz
group. The RH representations of the corresponding Weyl spinors appear in the
Lagrangian as a hermitian conjugate fields. For more details on this, see Appendix B.
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1.1. Particles of the model

Table 1.1: Naming of particles, grouped according to the representa-
tions under the gauge groups of U(1)y and SU(2)r. Y stands for a
hypercharge of the U (1), and D (RSU(Q)) stands for the dimension of
the representation under SU (2). The SU (3) representation of all these
particles is trivial.

label families (D (RSU(Q)L> , Y> name
(v 1 __( nmeutrino
t= < e ) 3 (2.-3) lepton = ( electron >
N 1 (1,0) singlet neutrino
E (1,1) positron
H 2 (2,+3) Higgs doublet

Table 1.2: Naming of particles in their mass eigenstates.

’ label ‘ families name
v 4 neutrino
e 3 electron
E 3 positron
o+ 1 charged Higgs boson
h 1 SM Higgs
H 1 heavy Higgs
A 1 Axial Higgs
Xw 1 W Goldstone
Xz 1 7 Goldstone

Goldstone bosons X%,EV and xz are the components of the Higgs doublet
of the broken directions of SU (2); x U (1),-. They become unphysical
after the SSB takes an effect and are “eaten up” by the longitudinal
polarizations of W and Z bosons.

The GN model, as the extension of the SM, have all the particles,
presented in Eq. (1.1) and Eq. (1.2). In addition, it has one copy of the
complex scalar, transforming in the representation of Eq. (1.2) and the
Weyl fermion, which is a singlet under all gauge groups, i.e. transform
as (1,1,0). All the particles of the GN model (except the SU (3) part,
which we ignore in the presentation), are listed in Table 1.1.

The electroweak symmetry breaking gives rise to mass parameters,
hence particles can be listed as mass eigenstates. They are presented in
Table 1.2. In terms of Weyl spinors, the Dirac fermion can be thought of
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1. The Grimus-Neufeld model

as a doubly degenerate mass eigenstate, i.e. two Weyl spinors that have
the same mass. This is the case for the Weyl electron e and the Weyl
positron E4. This degeneracy is due to a gauge symmetry: neither e nor
FE cannot have a gauge invariant Majorana mass term, but they can have
a Dirac mass term that couples e and F together. In contrast, the gauge
singlet N can have a mass term for itself, which is called a Majorana
mass term, and Dirac mass terms that couple N with v states. At the
end, this results in 4 different mass eigenstates labeled by v, which are
called Majorana mass eigenstates®.

The additional scalar and fermion in the GN model extends the Scalar
and the Yukawa® parts of the Lagrangian. The scalar potential is the
scalar potential of the 2HDM. Second Higgs doublet allows to write
additional Yukawa couplings for all the fermions of the SM. Additional
singlet neutrino allows for neutrino Yukawa couplings, which are absent
in the SM. We will now present the extended Lagrangian parts that will
be important in the study of neutrino masses.

1.2 Scalar sector
The general 2HDM has the potential [19,42]
2 pt 1 tr ) o2 gty o L AR
V. = mhH{H + N <H1H1> + m3,HYHy + 5o (HQHQ)
s (H{) (HiH) + n () (H{H)
=2 H T Hy + s (HIE) (HIH
12441412 2 5 o411 2411

s (H{) (HIH) + X (B ) (HiH) + Hel,
(1.12)

where H; is the field, listed in Table 1.1 with the family index ¢ = 1, 2.
We restrict the potential to have a CP symmetry, which restricts the

1Since we define all spinors as LH, we are led to a convention where we write a LH
positron as E. Then the RH positron and the RH electron is e’ and ET, respectively.
Later, we will need to generalize the hermitian conjugation operation. With this
generalization, the antiparticles of given particles will be written with bars i.e. € and
F instead of e and ET.

5In the GN model, four distinct mass eigenstates can be identified only after the
loop corrections, as will be explained in detail a bit later.

5By Yukawa sector we mean the Lagrangian part in which fermions are coupled
to scalars. These couplings are called the Yukawa couplings.
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1.2. Scalar sector

parameters to be [19]:
mij A €R, 6,5 =1,2, k=1,23,4,56,7. (1.13)

As the CP conserving case makes all the bare parameters real, both of
the vacuum expectation values (VEVs) in a generic basis are real as well.

The 2HDM potential has a family symmetry U (2), which means that
we cannot distinguish between H; and Hj from the potential alone [40].
The overall phase is irrelevant, hence we can transform between the
two Higgs doublets with a unitary transformation U € SU (2), getting
the new basis with the parameters m;; and \. We parametrize this
transformation by

ix i(x—¢)
U= R (1.14)
_el(gfx)sw eszcw

where x, £ are phases and ¢y, sy are cosine and sine of an angle . In

the following section we will introduce the Higgs basis, which will be the
main basis that we use throughout the rest of the manuscript.

1.2.1 Minimum and the Higgs basis

Minimizing the potential, Eq. (1.12), in the general basis gives two non-
vansinshing vacuum expectation values v; and v9e®® for Hy and Hy re-
spectively, were v; and vg are real [19]. The ratio of these two VEVs is
conventionally parametrized by

tanf = L. (1.15)

U2

By making the unitary transformation, parametrized in Eq. (1.14), be-
tween the two Higgs doublets, we can choose a basis in which, only the
first Higgs doublet acquires a VEV, v? = v? + v3. This is achieved by

setting:
Yv=p5, &=

in Eq.(1.14). This is called the Higgs basis. As we work in the CP
conserving case, where all the parameters of the potential are real, both

(1.16)

D[
(RIS

of the VEVs are real as well, hence 6 = 0. Therefore the general basis
transformation, Eq. (1.14), reduces to an orthogonal transformation

U= ( b o ) , (1.17)
—s5 cp

25



1. The Grimus-Neufeld model

which relates the CP conserving Higgs basis to the general basis.
An easier way to define the Higgs basis is just by choosing the parametriza-
tion of the components of the Higgs doublets from the beginning as:

Xy H*
Hy = ‘ , Hy = , . (118
1 75 (V+h+ixz) T\ S H+iA (1.18)

One needs to remember that with this parametrization, the m;; and
A; of the potential Eq. (1.12) are the Higgs basis parameters and not
of the general basis anymore. Note that the 8 parameter is hidden in
the definition of the Higgs basis parameters and does not appear in the
Lagrangian anywhere. This is due to the fact that for a general 2HDM
potential, the 8 parameter is basis dependent, while the 2HDM potential
preserves the U (2) Higgs family symmetry [40]. Hence 8 does not have
a physical meaning in the 2HDM potential alone.

The Higgs basis is well defined only at the minimum, where it gets a
non vanishing VEV| so that the parametrization in the Eq. (1.18) makes
sense. To get the minimum conditions of the Higgs basis, one sim-
ply inserts the Eq. (1.18) into the Higgs potential Eq. (1.12), computes
derivative with respect to h, H and A, respectively, and sets all the fields
to zero to obtain the three expressions that have to vanish at the min-
imum. These three expressions are called the tadpole functions. They

are:

1) = —v <m%1 + ;)\11}2> , Th=v (m%Q — ;112)\6) , Tha=0,

(1.19)
Simply put, the tadpole functions are the coefficients of the linear terms
in h, H and A, respectively’. The so—called tadpole conditions are the
requirement that these tadpole functions vanish. The third equation of
Eq. (1.19) is trivially zero because of the imposed CP symmetry, which
constrained the parameters to satisfy Eq.(1.13). Hence we have only
two non-trivial tadpole conditions that minimize the potential by fixing

"The expressions in Eq. (1.19) are the tree level tadpole functions, when we talk
about the tree level theory only. Higher order tadpole functions are defined as coeffi-
cients of linear terms in h, H and A of a corrected effective potential. The notation for
tadpole functions and other Green’s functions in the framework of the path integral
and effective action are presented in Appendix A.
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1.2. Scalar sector

the values of v and mis:
T, =0, Ty =0

1 1
= mi = —51)2)\1, miy = 502)\6. (1.20)

The second equation of Eq. (1.20) can also be interpreted as the Higgs
basis condition. That is, it ensures that Hs does not get a vacuum

expectation value at the minimum by relating the parameters.

1.2.2 Mass matrix and mixing

In the CP conserving case, A does not mix neither with h nor with
H. Its mass is given by the coefficient of the bilinear term in A in the
potential:

m?% = m3y + (A3 + Ay — \5) 07 (1.21)

In the Higgs basis, the charged Higgs boson is distinguished from the
charged Goldstone bosons by the R¢ gauge fixing conditions, so that
the mixing between chared Higgs and Goldstone bosons vanish at the
minimum, defined by Eq. (1.20). The mass of the charged Higgs is

1
m2, = §A3v2 +m32,. (1.22)

In the general CP conserving 2HDM, a mixing between h and H occurs.

The mass matrix for A and H is:

%)\17)2 + m%l %)\61}2 — m%2 (1.23)
SAv? —miy A3+ A+ Xs)vP+m3y ) '

After imposing the minimum conditions of Eq. (1.20), the mass matrix

becomes:

A v? Agv?
Y SR (1.24)
A6v” 5 (A3 4 Ay + A5) v° 4+ ma,
To obtain the mass eigenstate basis, we rotate between h and H with

an orthogonal matrix:

o¢>=< “ S“),¢§“ass:0?;¢?iggs,¢>?igg5=<h,ﬂ>i, (1.25)

—Sa  Ca

where sine and cosine of the mixing angle « are written as s, and cq,
respectively. We can reparametrize the potential by the physical basis
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1. The Grimus-Neufeld model

expressing five of the parameters in terms of the masses and the mixing,.
Using the definitions of the tadpole functions Eq. (1.19), we arrive at:

2

cZmi +stm3, Ty
M =——5— — 3,
v v
2 2
CaSa (mH — mh) Ty
A = 2 T
v
2
Moy = M+ — 9
2 2 (. 2 2 2 2
)\4:mA+sa(mh—mH)+mH—2mH+
v2 ’
2 2 (2 2 2
—m45 + s (m7? —m% ) +m
As = —2 a(hz ) My (1.26)

v

Together with the minimum conditions Eq. (1.20), seven parameters are
reexpressed in terms of masses and mixing. Masses for Goldstone bosons
come from the gauge fixing functions only. That is, the contribution to
their masses from the scalar potential are zero at the minimum:

52 52 9 A v?

1
V= V=miy+——=—-Ty. 1.27
6XW5XJ{,V 62Xz 1 v ( )

Since v can be expressed by the SM relations of Eq. (1.10):

ge¥
Sow = 2swew , Mz = o W =mzew, (1.28)
oW

we are only left with As, A3 and A7, which cannot be expressed by
masses and mixing. They can be defined by quartic vertices. Before
rotating into the mass eigenstate basis, let us write the quartic vertex
functions that define these couplings in the Higgs basis (see the notation
in Appendix A):

Upva—wm ==X, Unvg—un = —A1s Dpvg—nn = —A3. (1.29)

To relate to the vertex functions in the mass eigenstate basis, which
we will now label by (m) in the subscript, we use chain rule for the
derivatives with respect to fields together with Eq. (1.25):

6 _Ohew 5 Ham 5 5

I = — 1.
5  Ohgmy 6 0Hgy 0 ) d
SH ~ 0H Ohy tH 6H(py S“éh(m> e 0H (m) (131)
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1.3. Yukawa sector

The parameters, expressed in mass eigenstate vertex functions are:

2 2
)\2 = _SQ’FH"’H*h(m)h(m) - 2SaCaFH+H7H(m)h(m) - cogFH+H7H(m)H(m) ’
(1.32)

_ 2 2
)\3 - _CQPH+H7}L(m)h(m> + 2CQSQPH+H7h(m)H(m) - SQFH+H7H(m)H(m) I
(1.33)

)\7 = _SOlCa(FH+H_h(m>h<m) - FH+H_H(m)H<m>)
2 2

- (Ca - sa) FH+H_h(m)H(m) . (134)

The fields H* are already in the mass eigenstate basis by choosing the
Higgs basis. Tadpole functions, expressed in mass eigenstates rather
than in the Higgs basis, are also related with the same rotation of
Eq. (1.25):

Th = cOcTh(m) - SaTH(m> ) TH = caTH(m) + SOLTh(m) )

Ty = TA(m (1.35)

y -
As we see, for the minimum conditions, the Higgs basis is far more com-
fortable than the mass eigenstate basis, as it gives simpler expressions
for tadpole conditions. However, the usual framework to calculate loop
corrections is in the mass eigenstate basis. Mass eigenstates are used
in FeynArts and FormCalc Mathematica packages. Hence having the
formulation in mass eigenstates is useful for the implementation in com-
puter algebra systems. Keeping in mind the relations between the two
basis, let us employ the benefits of both of them.

1.3 Yukawa sector

In comparison to the SM, the 2HDM has additional coupling parameters
that couple fermions to the second Higgs doublet that is absent in the
SM. As the number of parameters in this case increases significantly,
various global symmetries can be employed to restrict them [19]. In
the SM, where the neutrinos are massless, Yukawa couplings for leptons
can be made diagonal to define the flavor basis, hence giving only three
real parameters directly related to the masses. Even with no additional
Yukawa couplings for neutrinos, the addition of the second Higgs dou-
blet, not restricted by any symmetry, leads to an additional 3 x3 complex
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1. The Grimus-Neufeld model

matrix of parameters in the Yukawa sector that cannot be absorbed into
redefinitions of the fields. The Higgs basis, however, has a comfortable
feature of isolating the Yukawa couplings, that are directly related to
masses of fermions from the couplings with additional scalar fields. The
flavor basis is then defined in accordance to H; in the analogous way as
in the SM. Starting from the general basis, the interactions of H; with
leptons are:

L=-YSH{E; + H.c. (1.36)

We make a unitary transformation from the general basis to the flavor
basis:

7 14 [ \ £

l; =Ujt; \E; =UFE;, YS'ULUGT =Y (1.37)

to make the couplings diagonal:

[

The index i now can be called a flavor index and stands for electron,
muon, or tau. After making this definition of the flavor basis, we look at
other couplings in this particular basis. Once we write the Lagrangian in
the flavor basis, these unitary transformations, Eq. (1.37), do not appear
anywhere, since they get absorbed into the definition of the fields and
couplings. The coupling of the charged leptons to the second Higgs
doublet is still an arbitrary complex 3 x 3 matrix:

L=-YH{E; - Y7 :H;E; + H.c. (1.39)

From now on, we will introduce other parameters of the Lagrangian,
starting from the flavor basis defined by Eq. (1.37).

Quarks also have additional couplings with the second Higgs doublet.
However, for the case of neutrino masses and mixing, they do not give
any contribution at one loop, hence they are ignored.

1.3.1 Yukawa couplings for neutrinos and a choice of a
basis

Recall that the product /H} is an invariant under the SU (2) gauge
group, where ¢ = 1,2 stands for the first or the second Higgs doublet
in the Higgs basis. Formally, this product can be written in a group
theoretical notation as a symmetric product in 2® 2, where 2 stands for
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1.3. Yukawa sector

the dimension of the representation and the bar stands for the conjugate

representation (see e.g. [53]). We write this product in components as:

where we write the components of the representation are written in the
parenthesis in order to avoid the possibility to confuse them with the
family indices. The SU(2) has another bilinear invariant product, which
is an antisymmetric product in 2 ® 2:

CayHiz) = Ly Hiy - (1.41)

In order not to change the summation convention, we sum over indices
symmetrically all the time, but introduce the antisymmetric symbol

6(12) = —6(21) =1 (142)
to write the same product as®:

In order to have a gauge invariant Yukawa term for the neutrino, the
addition of the gauge group singlet to the product, shown in Eq. (1.43),
is needed. In the GN model, a single gauge group singlet neutrino N
(Table1.1) is postulated. Then the Yukawa term in the flavor basis
reads:

L=-Y""Y;eH N - Y"*(;ecHoN + H.c., (1.44)

Since we introduced only one gauge singlet fermion N, the Yukawa cou-
plings are two complex vectors in the neutrino family space. As we are
in the flavor basis, the family index i stands for electron, muon or tau (
i=e€,,T).

Now we will look only at the neutrinos from the lepton doublet. The
neutrinos are in the first component of a doublet £, hence it couples to the
second component of the Higgs doublet, as shown in Eq. (1.43). Writing
explicitly only the components for neutrinos from Eq. (1.44) gives

L=-Y""w{HyxN - Y"v[Hyp N+ Hec., (1.45)

8Note that in SARAH, this symbol is omitted and this product is written as . H;.
Hence if one interchanges the order in SARAH model file, one should also not forget
the minus sign that pops out because of this convention.
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1. The Grimus-Neufeld model

where F' stands for neutrino in flavor basis. The Hj;) include only
neutral scalars. We can now reparametrize these Yukawa couplings by
making unitary transformation on neutrinos”. First, let us absorb the
phases of Y;” Linto the fields VZ-F , so that all three entries of Y;” I are real
parameters. Then we can achieve a zero in the second entry of the first
Yukawa coupling, by an orthogonal rotation:

O3V} =0. (1.46)

The superscript of the orthogonal operator tells the components of the
Yukawa coupling vectors between which the rotation is made. Similarly,
we rotate between the first and the third component to get the singular

value out of the 3 entries of Y*! by:
OLORY! =0, 0300y = (1.47)

We will now absorb the parameters of the second Yukawa coupling. As
the first and the second entry of the reparametrized Yukawa couplings
to the first Higgs doublet are zeros, we can rephase and rotate between
the first and the second component freely, without altering anything
else, except the second Yukawa coupling. We first adjust the phase of
the first element of Y*2, to match the second element of Y”? by a phase
shift U:

arg(UfiOj 013V })?) = arg(USiO OB Y %) . (1.48)

Then we rotate between these two components to get zero in the first
entry:
O Um0 03Y? = 0. (1.49)

Finally we absorb the phase of the second entry to make it real and
positive:
Uy, 012 U0l 08Y? e RT . (1.50)

We are left with 2 real and one complex parameters in the Yukawa sector.
The other parameters were absorbed into 3 rotations and 2 phases of
the unitary transformation. This is not yet the mass eigenstate of the
fields, but merely a comfortable reparametrization of the Yukawa sector.

9Since we started from the flavor basis after the electroweak symmetry breaking,
the 3 x 3 block of this Unitary matrix for light neutrinos can be identified with the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
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1.3. Yukawa sector

To summarize this parametrization, let us name this whole matrix by

V = UPOR2U*0OB0?3 and write [38]:

Vgt =0, VYt =0, VaYil=y,
mj)gl/? — 0’ V2j1/"ju2 — d, ‘/3]'}/]?2 — d/,
dyyeR", deC. (1.51)

The fields transform as

vi = Vil (1.52)

The basis v/ with the parametrization Eq. (1.51) is also used in [20]. In
this basis, the EWSB gives the Dirac mass term that couples v with
v4. This “turns on” the seesaw mechanism and the two Majorana mass
eigenstates v3 and v4 can then be defined at tree level. The states 1/}
and v/, are both massless at tree level. However, the parametrization of
Eq. (1.51) distinguishes between the v/ and 4 by the interaction with
the second Higgs doublet. As we will shortly see, only v/} acquires a
mass term at one loop level, while /] stays massless, which is the main

reason for this parametrization.

1.3.2 Seesaw mechanism

The seesaw mechanism in the GN model is the simplest and earliest
seesaw mechanism of type I [5]. After reparametrizing the Yukawa sector
by Eq.(1.51), the seesaw mechanism is done only between two states:
vy and v}. First, recall that we chose the Higgs basis, hence the Dirac
mass terms after the EWSB only appear from the interactions with Hy,
which is represented by Y*! for neutrinos. By Eq. (1.51), we chose such
a basis that there is only a single interaction between neutrinos and Hj,
parametrized by y. That is, the Yukawa coupling to the H; is described
by:

L= —yv3Hy )N + H.c. (1.53)

Then the seesaw transformation is just the 2 x 2 rotation matrix between
N and v, which is caused by the non diagonal mass matrix, just as it
would be the case in the 1 family analysis. After the EWSB, the non
vanishing VEV of the Higgs generates the Dirac mass term yv/+/2:

1 1
b= (ﬂyv> VN + Zsyvs (h+ix’) N + He. (1.54)
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N has a Majorana mass term that is not protected by any gauge sym-
metry, hence it is not involved in the EWSB, which is

1
£=—3MNN + H.e. (1.55)

We can absorb the phase of the mass term M into the redefinition of
the field N, so that the parameter M is real, similarly as we did for yiF
when arriving at the parametrization Eq. (1.51). Then the mass terms

can be written in the matrix form as:

1
L, = —5nMyn” | n = ( v, N ) , (1.56)

where the mass matrix is

0 ﬂy”) . (1.57)

M, =
< V2yo M

This matrix has two positive singular values, ms and m,4, with the rela-
tions:

M =my—mg and y*v? = 2mama, m3 < my. (1.58)

We obtain the mass eigenstates by diagonalizing this mass matrix with
the seesaw transformation parametrized by:

U = ( Tiesa s ) : (1.59)

534 C34

UM, U = diag(ms, m4), (1.60)

where the sine and cosine parameters are related to the mass values by:

my

and 3, = (1.61)

my + Mms3 m4+m3'

The phase shift ¢ comes from the requirement that ms and my4 are pos-
itive, assuming M and y are positive. Hence the 4 x 4 mixing matrix,

relating the mass the eigenstate basis and the flavor basis is:
U =UUto2ucot3o®, (1.62)
which relates v and vF by:
vi =Ujvl (1.63)
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The Yukawa Lagrangian part of the interactions between neutrinos
and neutral scalars together with the mass terms in the mass eigenstate
is:

1 1 1 . .
Eyuk = ——M3V3V3 — =My ValVy — —d (H =+ ZA) 12 (—18341/3 + 634V4)

2 2 V2

- \}5 ly(h+ixz) +d (H+iA)]

X [csassavsvs +i (€54 — s34) Vsva + caassavava] + Hee..  (1.64)

The Lagrangian part, shown in Eq. (1.64), presents all the main charac-
teristics of the mass generation in the GN. That is, we see from Eq. (1.64)
that v3 and v, have tree level Majorana masses and vy interacts with
neutral scalars of the second doublet, hence it can acquire a radiative
mass at one loop. Finally, 11 does not appear in Eq. (1.64) at all. This
makes it impossible for 17 to get a mass—like term at one loop level.
This is the main reason of choosing the parametrization of Eq. (1.51).
Eq. (1.64) presents the only Lagrangian term that we will need to con-
sider in order to explain the renormalization of neutrino masses for v
and vy, and construct the expression for the radiative mass of .

Summary

In comparison to the SM, the additional particles in the GN model
are: one neutral scalar, one neutral pseudoscalar, one charged scalar
and one heavy neutrino. We presented the Lagrangian parts of the GN
model and presented the different basis choices that we will use in the
following chapters of the thesis. In the scalar sector we introduced the
general basis, the Higgs basis and the mass eigenstate basis. In the
Yukawa sector we introduced the flavor basis, the parametrization used
in [20], and the mass eigenstate basis. The mass eigenstate basis will be
needed in order to use the complex mass scheme for the renormalization
of masses. We introduced tadpole functions in Eq.(1.19). As we will
see in Chapter 2, the renormalization of tadpoles interplays with the
renormalization of masses. The part of the Yukawa sector, shown in
Eq. (1.64), is the main expression of this section, since these terms are

responsible for neutrino mass generation.
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Chapter 2

Complex mass scheme

We use multiplicative renormalization constants for parameters and fields
to derive counterterms. All the parameters and fields in Chapter 1 were
presented as bare parameters and fields. In this chapter, we add zeros in
the subscript everywhere to distinguish the bare parameters and fields
from the renormalized ones. That is, every bare parameter of the theory
po and every bare field of the theory ¢g is related to the renormalized
parameter p and field ¢ by:

po=(1+0d,)p, ¢o= (1+;5¢>¢, (2.1)

where d,, and 4 are renormalization constants. Note that the renormal-
ization constants are dimensionless. When fields mix, the field renor-

malization constants are promoted to matrices:
1
doi =) | L+ 50 | @i (2.2)
J
where the Kronecker delta is written as 1;; and d4;; stands for the renor-
malization constant.
In this chapter, we will extensively use the notation presented in Ap-

pendix A, where the notion of one particle irreducible n—point functions
in the context of effective quantum action is introduced.

2.1 Complex parameters in the Lagrangian

Before going into the presentation of the complex mass scheme (CMS),
we present some modifications on the Lagrangian level, that arise due
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to the complex parameters. The CMS is the analytic continuation of
the OS into the complex domain, which separates the bare parameters
into complex counterterms and complex renormalized parameters. The
hermicity of the bare Lagrangian ensures the unitarity of the theory. As
far as we consistently set up the renormalized complex parameters and
counterterms in the connection with real bare parameters, we do not
violate unitarity, as it was shown in [54]. Hence the CMS is a viable
consistent scheme. We now present the relations between the bare and
the renormalized Larangians in the CMS, which was also discussed in
[38]. First, consider the Majorana mass term

Ly, = —%MQVOVO — %m:gl/gyg . (2.3)
We can absorb the phase of the mass parameter into the field, so that
mo € R:

1
Loy = —3Mo (Vol/o + V$V$> . (2.4)

We can also write the same term as:
1
Loy = —§m0V0V0 + H.c.. (2.5)

Now we introduce complex multiplicative renormalization constants for

all parameters and fields:
1 t 1=\ _
mo = (1+0m)m, vy = 1—{—551, v, vy = 1—1—56,, v, (2.6)

and insert into Eq. (2.4) to get:

1
Loy = —5m (vv+ D) +c.t., (2.7)

where c.t. stands for counterterms. Note that d,,, § and § are complex
parameters, hence in general, m is complex and 7 # vf. Renormalized

fields are related [37] with the consistency relation from Eq. (2.6):
1= 1
1 /-
=l = <1+2(5V—5l)>u+0(52) : (2.8)

Having this in mind we can see that the neutrino mass term in the renor-

malized Lagrangian (taking the part of Eq. (2.7) with no counterterms):
1 1
Ly, = —5m (vv + vw) # —gmwy + H.c. (2.9)
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is not Hermitian in general. The mass term in the bare Lagrangian,
shown in Eq. (2.7) or Eq.(2.4), however, is. In the CMS, the antiher-
mitian part of the mass term or the phase difference of the field comes
from the imaginary part of the two point correlation functions! (or self-
energies). That is, the antihermitian parts reflect the instability of the
particle and is directly related to the decay width of the particle. These
antihermitian terms, however, do not affect the algebraic structure of
the effective Lagrangian. That is, the renormalized Lagrangian can still
be expressed as a sum of terms that are conjugate to each other, except
that the conjugation operation does not act on the phase that appears
due to an instability. To account for the “renormalized” hermitian con-
jugation, we define a new symbol H.c.*[38] which allows us to write:

1 1
Lo, = —gm (vv +ow) = —5mv + H.c” (2.10)

Note that H.c.* term is not the hermitian conjugate of —%mw/ in the
usual sense, but

H.c” :mvv — muv, (2.11)

that is, the H.c.* stands for the terms in the renormalized Lagrangian,
that were written as H.c. in the bare Lagrangian. Simply put, it stands
for the renormalized H.c. terms.

In Eq. (2.7) we were assuming that the phase of the bare mass param-
eter is absorbed into the bare fields as in Eq. (2.4), so we wrote a single
complex mass renormalization constant for the mass term in Eq. (2.6).
Let us now loosen this assumption and consider the Eq. (2.3) in general.
Then there is a phase difference between mg and mg, which we will now

call 2a. We can write:
Imo| € = me'™ (14 6,,) , |mole™ = me™ (1 +6,,) . (2.12)

As m is complex, we have (mem)T £ me~*. This is similar case to
renormalization of fields v and 7, i.e. one of the phases comes from the
initial field phase and another phase comes from the instability of the
2@ can be absorbed into the definition
of the fields and become a contribution to the phase of Eq. (2.8), which

equals to &, — ). The imaginary part of m accounts for the instability

particle. The phase difference e

'The definitions for the two point correlation functions are given in the Ap-
pendix A.
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2. Complex mass scheme

of the particle and is fixed by the pole position condition in the CMS. In
contrast, a cancels in the pole position condition of the CMS and comes
only in the field renormalization, i.e. the residue condition in the CMS.
In the general setting, the CMS renormalized mass constant relates the
CMS renormalized mass with the absolute value of the bare mass:

|mol = m (14 6m) - (2.13)

If the phase were not absorbed in the fields from the start, the H.c.*
function would act as:

H.c* : me"®vy — me . (2.14)
However, the redefinition of the fields by absorbing the phase as in
Eq. (2.4) is always possible and comfortably separates the field phase
from the mass renormalization. There is no real benefit from carrying
around this phase in our expressions, hence we will always absorb them
from the start to have simpler expressions.

2.2 Complex mass scheme for mixed fermions

The complex mass scheme was first proposed as a scheme to define a
gauge invariant Z boson mass [30], and studied afterwards extensively
n [55-63]. The formal proof of gauge invariance of the definition of
mass in the complex mass scheme to all orders was done in [31], with
the help of functional identities introduced by Nielsen [64]. We adapt
the formulation of the CMS to the two component spinor notation for
mixed Majorana fermions.

First we rescale all parameters and fields by renormalization constants
as in Eq. (2.1), so that:

1 1
Voi = <1+ 251/)”1/;'7 V(T)l- = <1+ 251/)"173', m; (1 +6mz) =mgp; € R.
1) )
(2.15)

From the first two equations, the consistency condition, shown in Eq. (2.8),

is generalized to include more fermions [37]:

1-

VT + 6;” =it 5(5mj j
1 P
= =0+ 5 (Bvij = 0335) 7 + 0 (6%) (2.16)
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2.2. Complex mass scheme for mixed fermions

Now we insert these renormalization constants in the Lagrangian to get
the one loop counterterms that appear in the two point functions®. The
mass term in the Lagrangian in terms of renormalized fields and masses

is:

1 1 1
—5Moilivoi = —5 (1 4 Opmi) my <1ij + 25m‘j> <1ik + 25Vik> VjVk
1 1/1 1
Y (1 + Omi) miviv; — 5 <2mj5yjk; + kaéukj) VjVk

+0(6%) . (2.17)

For the hermitian conjugate part of the mass term we get:

1 1 o 1/1 - 1 = o
_im()iug;iljgi = —5 (1 + 5mz) m;V;V; — 5 <2m]’5,/jk + kadykj> ViV

+0(6%) . (2.18)

The free field term?, up to the first order in 0 is:

1- 1
Vv = (1ij + 25m‘j) (1ik + 25mk) Vjopyy

1 1
= U;opy; + <25ij + 26ij> viopuy, + O (6%) . (2.19)

For Majorana fermions, the opposite chirality term is equivalent:

1
VOiO'pV(J)rZ' = V;0pU; + <25ukj + 25ujk> viopvy + 0 ((52) . (2.20)

After all these shifts, the tree level two point functions for Majorana

fermions in terms of renormalized parameters and fields are*:
2 &[0 [0 ~[0 _
]‘—‘1[2]1/1 = FI[Z]DZ = —my, F[Vi]ﬁj =po, F[ﬁi]l/j = po, (221)

where we write a hat to denote the renormalized Green’s functions. We

define dimensionless renormalized scalar self-energy functions as:

A A A

miEViI/i = Fl/il/i ) miEDiIZ; = FDif/i ) po-zl/iﬂj = Fl/iﬂj ) pa-zﬁﬂ/j = FDZ’I/]' .

(2.22)

2See Appendix A for the definitions.
3We refer to Appendix B or [65] on the usage of Weyl spinor notation.
4For definitions of the renormalized Green’s functions, see Appendix A.
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2. Complex mass scheme

The renormalized self-energy functions at the one loop level are:
A z[/lz]vz = —0Omi — 0ii + E[l.] . f],[; ]D —8pmi — Oii + E[V”V :

S, = 2 (@t o) + 50, S = L (Gat o) +8ll, (229

for ¢ = 7, and:

a1 < o oen 1z [1]

E17 v — 5 (6Zj + 5jl) EV vjo Ewﬁj -5 (613 + 531) EV-LVJ )

) 1 1 _

Pl = =3 (midig + mys;) + T, FEJDJ = —5 (midy; +m;d) + L,
(2.24)

for i # j.

Now we have the expressions for renormalized two point functions as
counterterms plus unrenormalized two—point functions. To fix the coun-
terterms, we need the renormalization conditions on the renormalized
two—point functions. As the CMS is the analytical continuation of the
OS scheme, the derivation of the conditions is the same as for the mixed
fermions in the OS. One can look at these derivations for the OS in the
Dirac spinor notation, for example, in [59,66,67]. Here we present the
derivation of the same expressions in Weyl spinor notation.

In Weyl spinor formulation, the chiral structure is presented in Feyn-
man diagrams, hence no projection operators or Majorana conditions
are needed. In some calculations, this makes it easier to see the vanish-
ing contributions immediately on the diagrammatic level. The price to
pay is that we usually have more diagrams to consider. To derive the
conditions, we will follow a straightforward procedure of summing loop
diagrams for a propagator. The Feynman rules and the main relations
for using Weyl spinors is presented in Appendix B. We write all four
tree level propagators, shown in Figure B.1:

%,%,%,%,Dk:pg—mi, (2.25)
where the usual +ie in the denominators and the index structure as in
Figure B.1 is understood, so we do not need to write them explicitly all
the time. The corrections to these propagators can come in four Lorentz
structures. These four Lorentz structures for one particle irreducible
(1PI) contributions are listed in Figure2.1. These 1PIs then can be
treated as two—vertices, i.e. we can attach two propagators to a 1PI two—
vertex. The rule to connect the propagator to the 1PIs of Figure2.1 is
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2.2. Complex mass scheme for mixed fermions

=1

vU

>1 —aa >1 a [21] ~ a
~ POaa F[DT/ I bo FI[/V N 51, ' 6b

(a) (b) (c) (d)
Figure 2.1: One particle irreducible diagrams, decomposed into four
terms according to the Lorentz structure.

(c) (d)
Figure 2.2: The insertions of the 1PI to the propagator of a propagator
Figure B.1(a).

that the arrow inside the bubble of the 1PI that is closer to the connected
propagator has to show to the opposite direction than the arrow of the
connected propagator line that is closer to the 1PI insertion. That is,
crossing the border of the 1PI bubble flips the arrow. Note that “crossing
the border” of 1PI flips the arrow of a Weyl spinor propagator, just as
interactions with scalars do, as is shown in Figure B.3.

Let us consider the first propagator in Eq. (2.25), which is the propa-
gator that is also shown in Figure B.1(a). The corrections to this prop-
agator must have the number of arrows directed to the right minus the
number of arrows directed to the left equal to 1. Given the rule to con-
nect the arrows, the considered propagator has four diagrams for 1PI
insertions, which are shown in Figure 2.2.

Once we know the Lorentz structure of the diagrams, we can assign
the expressions for them. For generality, let us say that we have the
jth fermion going into the ith fermion. We now assign propagator ex-
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2. Complex mass scheme

pressions for every propagator, as shown in Figure B.1, and write the
coefficients for 1PIs in. The sum of the expressions that we obtain from
the diagrams Figure 2.2(a), Figure 2.2(b), Figure 2.2(c) and Figure 2.2(d)
is:

10P -~ wop 1M, - imj  1op - my o 1my
Iy, —+—T1,5—+—1,, —
DZ‘ VilVj D] + DZ VilVj D‘7 DZ ViVj D‘7 D,L

A op
bron
J

1op - A . .
= _DzD] (pQEDiI/]' + mimjzyiﬂj + ].—‘yiyjmj + mil—‘,;i;,j)
1

= —iop— A

Inserting the 1PIs two times, three times and continuing in this way,

gives:
ol 1 1
wp(E " D; A“D Z D" Dy A’WD
— —A~ —A —A — ) 2.27
; D, Yk p A A Dj + (2.27)

up to an infinite number of terms, giving the all loop level propaga-
tor. Equivalently, we get the contributions to the other three types of

propagators:
_ 11'3 - 1
— —A — .. 2.28
iop (32~ 5 Au g+ ) (2.28)
. 1;j 1 1
i| =— — —B;i— + ... 2.29
my <DZ Dz Z]Dj—i_ ) ) ( )
1 1 - 1
| =— — —B;;— + ... 2.30
1 <Dz D; ”Dj " ) ’ ( )
where:
Alj - pQXA:ViD]- + mimjijﬂiljj + f‘ﬁil_/jmj + mifljillj 9 (231)
BZ] = m’imjf‘l/il/j +p2 [mjﬁ:f/il/j + f‘f/iﬂj + miiljif/j:| 9 (232)
By =1 [ij + S, + My S, ] +mam; T, . (2.33)

The CMS condition for the ith particle is that at p? = m?, where m?

in general is complex mass parameter, the propagator does not mix and
has an exact pole with a residue 1. For the propagator of Eq. (2.27),
we see that it is realized with Aij\pzzmz = 0. As it is not independent
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2.2. Complex mass scheme for mixed fermions

from the other three types of propagators, all four conditions have to be

satisfied simultaneously:

Z]‘p2—m A2J| 2=m?2 = Bij|p2—m2 = Zj‘pz—mQ =0. (2.34)
For i £ j we get
<fﬂiﬂj + mii:l/il_/]'>m2 = 07 (fViVj + miiﬁil/j)mz =0. (235)
For 7 = j, all four conditions collapse into one condition for the position
of the pole:
All‘p2—m$ = An| 2=m? = B”’p2—m2 = B”’pQ—m
= m? (EWW + 2171‘171' + EVif/i + Zf/ﬂ/i) =0. (2.36)
p?=mj

Imposing the conditions of Eq. (2.35) gets rid of mixings, when the par-
ticle is at the pole. So, at the pole, we can formally do the Dyson

resummation [68] ignoring the mixing terms:

1op 1ap 1My 1my; (2.37)
Di+ Ay’ Di+ Ay Di+Bii" Di+ By’ '
The residue condition is then:
;i‘p2:m% = A;i|p2:m% = Bz{i|p2:m? = Béi’gﬂ:m? = 07 (238)

where the prime indicates the derivative with respect to p?. In terms of
the renormalized self energy functions, these relations give:

m,

[

iﬂiw (m,?) = 21/1‘171 (sz) = _21/1'1/1' (mf) = _2171172‘ (m?) ) (2'40)
where the mz2 in the subscript of a bracket means that we evaluate
the bracket at p?> = m?. Inserting the Eq.(2.23) and Eq.(2.24) into
Eq. (2.35), Eq.(2.39) and Eq.(2.40), we get the expressions for coun-

terterms:

Omi = (Ewl?i + EDM‘ + Eﬂiﬁi + EViVi) (2'41)

2,
m;

N

1
5 (51/11 + 51/11) = _Ef/iui (sz) - sz (E:_/zzlI + 2;11171 + Z:ql/z + 2571171)7712 ’
(2.42)
Svii — Ouii = (S, — Eylyz)mg ; (2.43)
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2. Complex mass scheme

Ovij = m (ij,yil-,j +mly0, + m?El—,iy]. + mjmizl’il_/j)m§ )

_ 2 (2.44)

dvij = m (mils5, + MLy, + mymiSp,,, + mgzuiﬁj)mi ;
(2.45)

with an additional consistency condition on the unrenormalized self en-
ergies:
EZ‘V@' (m?) = Eumi (m2) . (2.46)

(2
In fact, this relation has to hold for every value of p? as it is a consequence
of (see Appendix B)
£t pux = X"k . (2.47)

A more general statement for any value of p? is:
Yo, = Yup; - (2.48)
Other trivial relations are:
Cviw; =Tvus Uoipy =Tojp, - (2.49)

All these relations also hold for the renormalized functions. In Eq. (2.44)
and Eq. (2.45) we used these relations while relabeling indices i <+ j to
match the definitions in standard references, such as [66,69]. One can

check that Eq.(2.44) and Eq.(2.45) can also be derived evaluating at
; :
These expressions are the same expressions as in [67,70], except that

p?> = m? instead of p> =m
they are written in two component spinor notation for mixed Majorana
particles and we did not take the real part of the pole. This means that
the equalities are in general complex.

Now we can return to the interpretation of these complex parame-
ters. The complex mass parameter is a generalization of the real mass
parameter including the decay width and is gauge dependent. The in-
clusion of the decay width into the definition is tricky, as it can be done
in different ways [61]:

. 2
m? = (mg - ZF3> : (2.50)

m” = m% —imeol’y, (2.51)



2.2. Complex mass scheme for mixed fermions

2 _ . r
mQZMle;' (2.52)
14+ T%/m3y

m?eC,my,TreR, k=1,2,3. (2.53)

Note that I' in these equations means the decay width and not the
effective vertex functional, which should be clear from the context. The
definition of Eq. (2.50) is used for fermions and Eq.(2.51) for bosons.
They are different due to the fact that the mass dimension of a fermion
([m]%) is different from the mass dimension of a boson([m]'). So the
self energies for bosons contribute to the mass parameter squared, while
the self energies for fermions give a contribution to the mass to the first
power. The third definition Eq. (2.52) is introduced in [30] where it was
shown that the m; describes the Z boson mass at two loop level, hence
one can think of it as an approximation of Eq. (2.51). Let us look how
the definition of Eq. (2.50) enters at one loop.

Recall the discussion in Section 2.1 and take the definition of the mass
renormalization constant in Eq. (2.13) and compare it to the definition
Eq. (2.50). They give:

m = (m3 - ;F3> = (1_”:7%@. (2.54)

Taking the real parts and imaginary parts:

ms = Jﬁm) = mgo — mgRed,, + O (62) , (2.55)
Ty = —2Im(1:7_17(()$w — 2mgTmd,, + O (5%) . (2.56)
The renormalization constant d,, is expressed by Eq. (2.41). At one loop:
Om = ! s +E0 + S +20) ipo)\2
2 m?=(ma—3Ts)
= % (B0, + S, + B, + Do)z + O (67) (2.57)

so the definitions for mass and width in Eq. (2.55) and Eq. (2.56) give
the same result at one loop as the OS scheme. The equation of Eq. (2.56)
at one loop is then the usual Cutkosky rule that ensures the unitarity
of the theory. How unitarity is maintained order by order in the CMS
was studied in [54]. The only difference from the OS scheme at one loop
is that we now include the width into the imaginary part of the mass
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2. Complex mass scheme

counterterm. At two loops, however, we need to include the width also
in the evaluation of loop integrals, which in turn will give the difference
in the mass of the particle.

Let us now consider the effect of the complex field renormalization.
At one loop level, we have the relation of Eq. (2.16):

1
vl =nit

5 (Gvij — 03, )7+ 0 (6%) . (2.58)

vij

In the OS, only the real part of the self energy functions is absorbed into
the renormalization constants, hence in the OS we have:

OS: Sl/z‘j = 5;2] = 1/2L =v;. (259)

This can be seen by taking the real part only in Eq. (2.44) and Eq. (2.45).
In the CMS, however, if particle j is unstable, we get contributions to
this relations in the form of Eq. (2.16) or, at one loop, Eq. (2.58). First,
consider the one loop case of a single fermion. In the mass eigenstate
basis, we can always adjust the phase so that at one loop Eq.(2.43) is
Zero:

Uiv; yl Vi

Svii — Ouii = (Z[}L -z )m2 =0. (2.60)

This is ensured by the hermicity requirement of the bare Lagrangian.
Then the phase difference can be written as:

—_

J =0+ = (0pii — 6,55) Vi + O (52) = u; +4ilmé,; ; + O (52) (2.61)

\V)

The imaginary part comes from Eq. (2.42):

mo,;; = —ImEl, (m2) — m2Im (z’[” Iy AR 350t z;[j;i) i
(2.62)
For a mixed system, even if the ith particle is stable it can acquire
the “instability phase” from the mixture with other unstable particles.
Consider a two—particle system, in which the first particle is stable and
the second is unstable. Then:

Im511 = O, Im512 75 0. (263)

Similarly as in Eq. (2.60), we can adjust the phase of the bare mass terms
so that:
ril =il sl el (2.64)

UiUj A2 Vilj UiV
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2.2. Complex mass scheme for mixed fermions

where the second equation is ensured by the hermicity of the bare La-
grangian. This gives us:
Ovij = Ouij (2.65)

SO
vl = 0y +ilmé, 12 . (2.66)

To understand this equation, consider that the renormalization in the
usual OS scheme ignores the imaginary parts coming from loop func-
tions. Hence in a mixed system, this imaginary part is also omitted for
the non diagonal field renormalization constants in the OS scheme. In
the CMS, this imaginary part is accounted by Eq. (2.66). The counter-
intuitive feature is that even though 1 is stable, we still have VI #* 1y
due to a mixture with unstable particles. However, at the one loop level,
this phase does not come in the diagonal two point function of a stable
particle. To see this, let us write

5V,1 (51/2L 51/,1
Fl_/jl’i = I_‘Vil_’j = a FV'LVZ’ FD’LDj f— 67171 E FVlTVZ . (267)

At the one loop level:

1 -
I = <1kj + 5 (o - :kj)> r o+t o), (268
Yk k2 ,7

<1 0 1 < * N * 0 1
Lo =T0 i+ 5 Ok = S0y + Oumi — O3;) F[V.f}u,i +I0+0 (%)
7 V)

(]

(2.69)

In the mass eigenstates, we have:
FE)T]ui = Pi]vi =0, i#k. (2.70)

Hence for i = j (using Eq. (2.65)):
T = <1kj + % (6vii — 5:1'1')) PS]VT + Fi]ﬂ +0(6%) , (2.71)
Pho =T+ Guis = 63) UL+ T 40 (5%) (2.72)

which shows that the “instability” phases do not come from the mixed
terms for one loop diagonal two point functions, and only the stability
of the particle in the consideration matters. Going back to an example
of 2 particle mixing, for stable v; we have:
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ot = (14 Img,) I

vy

R e (2.73)
282

1 l/I Ze2

[<1]
2

[<1] _ 0] no_
Pom = (14 2tméyu) T+ T =T

12851

(2.74)

which proves our statement about the absence of the “instability” phase
in the two point functions of a stable particle at one loop. For unstable

V9 we have:

1“5% — (14 Iméyo) T, 471 | 2 pI<H (2.75)
vavy 112) Valy

Tho = (14 2Imé,00) 1'% 4Tl o2l (2.76)
272 272 272

The additional phases that enter the diagonal two—point functions due
to a mixing with unstable particles like in Eq. (2.66), appear at higher
loops than one. At the one loop level, the off-diagonal terms will have a
contribution from the instability of v, which ensures the cancellation of
mixing at the exact poles of the particles. This means that the renormal-
ization of mixing will have some contributions from unstable particles
that are different than in the OS scheme already at one loop level.

2.2.1 Radiative masses in the CMS framework

When the Weyl spinor v does not have a mass term, it has only two
types of propagator, shown in Figure B.1(a) and Figure B.1(b). If there
is no symmetry that forbids the mass term, then it can be generated at
the loop level. Moreover, this generated mass term will give rise to a
propagator that was absent at the tree level. That is, it will generate
the correlation functions (vv) and (vw). For instance, at the loop level

we have

. Pyp— . . ) — = 2 —_ - =
oyt 2o _ it e # (10 0%) ~T5 )
pQ vv p2 p2 p2 2

(2.77)

Here we identified the radiative mass mfooPl = —r!! (0) as being a

Doo
one loop mass term. The diagram that corresponds to this correction is
shown in Figure2.3.

This definition of m[l°°P! looks reasonable, since it gives the mass-like
propagator in a similar form as for the usual massive particles. However,

the pole of the one loop propagator, Eq. (2.77), still looks to be at p? = 0.
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2.3. CMS as a generalization of the OS with asymptotic spinors

Figure 2.3: Diagram responsible for radiatively generated propagator of
Eq. (2.77).

To see if this definition is consistent with a pole position of a particle,
we need to go to higher loops. The propagators of all four types mix in
a more complicated manner than for the massive particle case, since the
absence of mass—like propagators at the tree level leads to a not so trivial
loop ordering. Hence, to prove that this mass definition is consistent
with the pole of the propagator in general, we will employ a slightly
different approach that is based on a generalized on-shell equations of

motion in the next section.

2.3 CMS as a generalization of the OS with
asymptotic spinors
The other way to derive the CMS expressions is by formally generalizing

the OS renormalization conditions for the asymptotic states given in e.g.

[69]. To translate it for Weyl spinors, we can write the Majorana spinors

as P = v P = ( v D ) By Lorentz decomposition we find that
v
the renormalized two point function in this notation:
R op (1 + flyp) -m (1 — i]l,,,)
—m (1= 555)  op(1+n)

The bar on the mass is to notify the chirality structure, otherwise, it
has the same value as m, i.e.:
m — m52 , m — mdy , (2.79)

so that the spinor indices are implicitly understood, but not explicitly
written. The on-shell Weyl spinor with Majorana mass term satisfies:

opv = mvt, opvt =mu. (2.80)
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We can formally say that the CMS Weyl spinors satisfies the modified
equations at complex p? = m?:
opy = My, opi = muv, (2.81)

which is the same as
[0
P et = 0. (2.82)

As a renormalization condition, following the expressions presented in
[69] we require that the Eq. (2.81) or Eq. (2.82) are satisfied at all loops:

op 1—1—2,,,; v—m 1—5]1,,, v

0="Tgylm? = . .
i ep(1+3m)v—m(1—3)7
m2
m 1+f],,,—, -m 1—2,,,, v
= ) . ,  (2.83)
m(1+3)—m(1—3) 7
m?2
which gives:
(ipu + ip,;) = (2,,9 + EW> =0. (2.84)
m m
The residue condition is:
op m
‘ m op |,
lep2_)m2 p2_—’rn2rd’]¢d} = ”ll) . (285)
The direct calculation gives:
14+ 35| +m? (2;,7 + 3+ + ijw)mQ =1, (2.86)
14 Sou|m2 +m? (i’yﬁ + 34+ + E'W) =1, (2.87)
m

hence we arrive at the expressions in Eq. (2.39) and Eq. (2.40).

Now let us assume that we have zero mass at tree level, but we
generate the mass-like two point function at loop level. Eq.(2.78) is
modified to
As the loop level mass term is non zero, we still use the relation Eq. (2.81)

at p> = m? and write
F,[l’}wi/}’]ﬁ:m? =0. (2.89)
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This gives us two equations:

fW fﬂﬁ
m = — v M= - (2.90)
[ 5] e ™ iy g b
The residue condition, Eq. (2.85), in this case gives:
Suolmz = Soulmz = 0. (2.91)

So the CMS renormalized radiative masses are just:

m = —Tolprom = LW + 0 (6%) , m =I5l e_g + 0 (62) .

(2.92)
This one loop result is consistent with the radiative one loop mass defini-
tion also used in [71]. When we say “CMS renormalized mass”, we only
mean that this renormalized mass is the position of the exact pole of the
propagator. The cancellation of UV divergent terms has to be assured
in this procedure by the counterterms that appear in the renormalized
self energy functions. When the bare mass terms are non zero, the CMS
condition fixes the counterterms to account for the mass shift due to the
perturbative corrections and absorbs the UV divergences. For the mass-
less case, however, we see from the Eq. (2.92), that the CMS conditions
leads to an expression for the mass term rather then to a condition to fix
the counterterms. In fact, as we assume the multiplicative renormaliza-
tion Eq. (2.1), we see that there is no counterterm apparent in the one
loop two point function in Eq. (2.92). This means that it has to be finite
by itself i.e. the apparent divergences in loop functions have to cancel
in the expression of Eq.(2.92) with no need of additional subtraction.
Since it gives the exact pole, it has to be gauge invariant as well. We will
see in further sections how this becomes evident in practical calculations
for radiatively generated neutrino masses of the Grimus—Neufeld model.
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Summary

The CMS is the analytical continuation of the OS, which defines renor-
malized mass parameters gauge invariantly at all loops [31]. We re-
formulated the CMS using Weyl spinors and presented the derivations
of CMS conditions for a system of mixed Weyl spinors with Majorana
masses [37]. We show that the CMS renormalized fields get the addi-
tional phase differences if any particle in the system of mixed particles
is unstable. We also show that these phases do not enter the one loop
two—point functions for stable particles, which was not done before. In
the last section of the chapter we present another approach to derive
the CMS conditions and show that the radiative mass is the CMS renor-
malized mass. To the best of our knowledge, the interpretation of ra-
diative masses as the CMS renormalized masses is new. This leads to
the conclusion that the radiatively generated masses for fermions are
gauge independent. We check the gauge independence explicitly of the
radiative neutrino mass in the GN model in the following chapter.
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Chapter 3

Renormalization in the
Grimus-Neufeld model

In this chapter we will derive renormalization constants for our specific
model, by applying Eq.(2.1) to the parameters and fields of the GN
model. The Lagrangian parts that we will need in the discussion are the
scalar potential Eq. (1.12) and the Yukawa terms shown in Eq. (1.64). As
it was noted in the introduction, we employ the CMS for mass renormal-
ization to have a framework that gives the gauge invariant renormalized
mass definitions at all loop levels for both stable and unstable particles.
The CMS, in comparison to the OS, gives a significant difference only for
unstable particles, where the narrow width approximation is not valid.
In the GN model at one loop, all three neutrinos that are measured by
the experiment are stable particles, hence it is natural to question the
decision to use the CMS procedure for them. However, if the fourth
neutrino has a large enough mass (which is the original assumption and
motivation of the seesaw mechanism), it becomes unstable. Since all the
neutrinos mix, it is reasonable to choose a single setup for the renor-
malization of all four neutrinos. As can be seen from Section 2.2, this is
not only a convenient choice for stable particles, but it might actually
give a difference in the field renormalization. As the field renormaliza-
tion is related to the mixing, it affects the renormalization of the PMNS
matrix. Furthermore, all the neutrinos except the lightest one might
become unstable at some loop level, hence for full consistency, the CMS

procedure for all mixed neutrinos is required.

As we will use the CMS, we use masses as the free parameters of
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3. Renormalization in the Grimus-Neufeld model

the theory instead of the original, symmetry based parameters. How-
ever, it is worth to keep track of the relations to the parameters in other
bases than the mass eigenstate basis. These relations between the renor-
malized parameters in different bases can also be represented with the
help of Eq. (2.1) as relations between their counterterms. This allows us
to work out the algebraic structure of the renormalization constants in
more detail. For instance, as we will see, the relationship between the
renormalization constants of the VEV of the Higgs and the masses of
the neutrinos will help to identify the potentially gauge dependent term
algebraically. This will become the main tool to separate the gauge
dependences with the FJ scheme.

The renormalization of the minimum of the scalar sector is related to
the renormalization of masses, because all of the masses in the theory,
except for the Majorana mass of the heavy neutrino singlet, are given
by the EWSB mechanism. Hence we first consider the renormalization
of tadpoles, which define the minimum of the theory.

3.1 Renormalization of tadpoles

In this section, we derive the renormalized tadpole conditions to fix
the counterterm for the Higgs VEV, which will later interplay with the
renormalization of the masses of the neutrinos. For describing the min-
imum conditions, we will only need to consider the Higgs potential. In
the CP conserving scalar potential, given in Eq. (1.12), we have all bare
parameters real:

mol'j,)\oi € R. (31)

We also have one parameter that is not an independent variable and is
related to the minimum of the potential: the VEV of the Higgs vy € R.
The renormalized tadpole function can be written as:

T =T+ 6T, (3.2)

where hat stands for the renormalized functions. We get 6T by replacing
all the bare parameters in 7' by the renormalized parameters with the
renormalization constants Eq. (2.1) including the arbitrarily introduced
parameter v. At tree level, 5T = 0, hence the renormalized tree level
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3.1. Renormalization of tadpoles

tadpole functions are:
. 1 . 1 A
}EO] =—v (m%l + 2)\11)2) ,TI[?} =v <m%2 - 2v2)\6> , TIE‘O] =0. (3.3)

Eq. (3.3) are the renormalized tadpole functions and the parameters in
them are the renormalized parameters. Hence formally it is different
from the tadpole functions introduced in Eq.(1.19) as they were the
tadpole functions of the bare theory. However, the difference only make
sense when going to the loop level. We will require, at every loop level

1, the tadpole conditions for the renormalized tadpole functions:

T = 0. (3.4)

As we work at one loop level, we will look only at the following equations:
70 = g, (T[” + 5Tm) p0_g = 0. (3.5)

In practice, we insert Eq. (1.18) into the Eq.(1.12), do the redefinition
of parameters and fields of Eq.(2.1), expand to the first order in the
renormalization constants, collect terms near h, H and A and simplify
with the tree level tadpole condition 7% = 0 to get:

ST = %Alv?’ (26,11 — Ga1 — 26,) |
5T}[}] = %/\6?}3 (25m12 — 5)\6 — 251}) ,
5T =0. (3.6)

As v was introduced as a placeholder for the VEV of the field that
minimizes the potential, it is not an independent variable on itself and
is defined dynamically by the renormalization conditions. That means
that one of the renormalization constants d,,11, dx1 or d, has to be
redundant. We take the renormalization of mi; and A fixed together
asl:

20m11 — 0x1 = 0. (3.7)

Then the counterterm for the Higgs basis field h becomes:

5T = — X\ 0?6, . (3.8)

!This is motivated by the fact that this choice cancels all the divergences of the
unbroken ¢* theory, so that &, accounts for all the effects that arise due to a symmetry
breaking.
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3. Renormalization in the Grimus-Neufeld model

The tadpole condition gives:

L -
= .
)\1113 h
As we chose the Higgs basis, we rotated out one of the VEVs of the
fields and got a single value VEV v. This rotation is hidden in the
definitions of the fields and we do not see any parameter directly from

the potential that corresponds to this hidden VEV. Hence, there is no

more redundancy in our formulation of the counterterms for tadpoles.

Oy

(3.9)

The second tadpole condition gives:
1
560 (2012 — By — 26,) + Tl = 0. (3.10)

Inserting Eq. (3.9) into Eq. (3.10) we get:

1 _ Yt 1o
<5m12 25%) = <)\1Th )\GTH : (3.11)

In the expansion to the first order in multiplicative renormalization con-
stants, we got that the pseudoscalar Higgs does not have any countert-

]

erm, i.e. 5TE = 0. This is due to the CP conservation of the potential.

If we set up everything correctly, we must have:
Tl =0 (3.12)

in our perturbative expressions. Otherwise, the potential could not be
minimised at one loop level, which would be a contradictory result. In
other words, this simple equation gives us a nice way to check the cor-
rectness of the implementation of the model and we checked that this is
indeed the case for the one loop level with our setup. However, the two
loop counterterm exists, i.e. (HA“E} = 0, hence it allows for a consistent
renormalization of CP odd tadpoles if the explicit violation of the CP
symmetry appears at higher loops [72].

In this set up &, does not arise from the field renormalization and
by absorbing all the tadpole functions, ensures that the v is the proper
VEV of the Higgs. As we treated v as a separate parameter that is
independent of the field, the field renormalization constants do not enter
the expressions for the tadpole condition. All the field renormalization
constants are fixed by the CMS conditions. It was shown explicitly in
[73,74] that ¢, coincides with 0y, only in some specific cases and that it
is not the case for a general R¢ gauge.
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3.2. Renormalization of neutrino masses

Xz Xw
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h h

(a) (b)
Figure 3.1: Tadpole diagrams that give gauge dependent contributions.
h field here is the Higgs basis field, hence these tadpoles are related to
the mass eigenstate basis by Eq. (1.35).

One last thing to note about expression Eq. (3.9) is that it is gauge
dependent. The gauge dependences appear only in tadpole diagrams
with Goldstone bosons, shown in Figure 3.1, as Goldstone boson masses
explicitly depend on the gauge choices. This does not necessarily mean
that v is gauge dependent. However, one of vy or v then definitely is.
This is conceptually important in the FJ scheme that we are going to
use. In that scheme, v as the VEV of the theory to all loops (the “proper
VEV” as it is called in [28]) is expected to be gauge independent, while
vg is merely a tree level approximated bare value, which might be gauge
dependent.

3.2 Renormalization of neutrino masses

For renormalizing the neutrino masses, we will employ the CMS, pre-
sented in Section 2.2. First, let us look at the counterterms that we
have for neutrinos. The bare mass Lagrangian for neutrinos includes
only two mass terms: mg3 and mg4. This means that neither 17 nor
1o has a mass term at tree level at all, hence no mass counterterms as
well. So, if the two point correlation functions for v, or for 11 give a non
vanishing result, this whole result is a loop generated mass term as in
Eq. (2.90). This kind of a mass term would be problematic if it would
turn out to be not finite or not gauge independent: we would not be able
to define a consistent mass parameter from it, meaning that the whole
model is inconsistent. This is not the situation in the GN model, hence
getting the finite and gauge invariant radiatively generated mass term
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3. Renormalization in the Grimus-Neufeld model

serves as a first crosscheck of the implementation of the model. Also,
the calculation of the mass term of 5 is not so complicated, so it can be
done without computer algebra programs and then checked with them.

3.2.1 Radiative mass m.

We now present the derivation of the expression for the mass of v5. As
in the presentation of the renormalization of massive fermions in Section
2.2, we had mass parameters renormalized to coincide with the position
of the pole. We found that for massless particles, the mass is given by
the two point function Iy, or I';5 . In that sense, the radiative mass for
Vo is the renormalized mass, despite the fact that it does not have any
renormalization constant and does not need any UV subtractions. At
one loop level, Eq. (2.90) gives:

my =T | og=—T0 .. (3.13)
We first consider diagrams, that possibly can contribute, but give van-
ishing contributions. Possible contributions are shown in Figure 3.2.
They all include propagators of type B.1(c) and B.1(d), for v» and e.
However, these bare propagators do not exist, neither for v nor for e,
as they require non-vanishing bare Majorana mass terms, hence, all the
diagrams shown in Figure 3.2 vanish. However, note that the Majorana
mass terms and hence the Majorana type propagators vanish for v» and
e due to different reasons. The difference between 15 and e is that for
v, we chose a basis in which the bare mass vanishes and can generate
the mass term at loop level. e, however, is a charged particle and has a
similar type of propagator that is proportional to the Dirac mass term,
which connects e with E, but cannot get a Majorana mass at any loop
level. The Majorana mass term for e would violate the gauge symmetry.
The diagrams that are proportional to a Dirac type of propagator do
not appear at all for this mass term, since it would require the neutrino
to couple to E, which is not the case in this model.

The only non-vanishing diagrams for ms are those that appear from
the couplings that are proportional to the parameter d. These diagrams
give contributions, proportional to the Majorana mases ms and my4. This
can be read out from the Lagrangian part given in Eq. (1.64). The La-
grangian term that gives Feynman rules for these contributions (written
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3.2. Renormalization of neutrino masses

Z w
10 Vo 1%0) Vg € 1%}
(a) (b)
H* xw Xz
RN RN
—>—6/—<->—\0—<— —>—6/—<->—\0—<—
Vo e 12 Vo vy V2

(c) (d)
Figure 3.2: Diagrams that give vanishing results and do not contribute
to Fg?]w. They all vanish, because the propagators for e and 1o that
are shown in these pictures do not exist, since neither 5 nor e has bare

Majorana mass.

h,H,A
.
N
/
> b
1) V3, Vs vV

Figure 3.3: Six diagrams that give the radiatively generated mass ms.
h, H and A are in the mass eigenstate basis in the diagrams.

in the Higgs basis) is:

—%d (H + iA) v (—issavs + caava) - (3.14)

The mass eigenstates of scalar particles are given by Eq. (1.25):
H = CaH(m) + Sah(m) . (3.15)

In total there are six diagrams that give the one loop mass for v, and
are compactly shown as one diagram in Figure 3.3.
Let us get the loop with A and v3 first. The Feynman rule for the
vertex is:
, o1
il Avprs = fzﬁdsMAl/ng. (3.16)
(1]

The Feynman rules give us the contribution for iI'y;,, (inserting the
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3. Renormalization in the Grimus-Neufeld model

dimensional regulator y and setting p? = 0):

1 ? a-p [ d°q
(—Zﬁds%) (2mp) /(2ﬂ)4 (r3v3) (AA)

1 ms 4 D/ ms - 4
= ——d>—— (2 =
2L s 4y 27 V(@ —md) (@ —m2)

_ ldQ im?m3 27T,u /qu 1
27 (2m)" (m3 +ma) (% = m3) (¢ = m3)

2
— id? 3 : 1
i 392 (s T 112) (O mg,mA) (3.17)

In the first line we directly applied Feynman rules, writing the propa-
gators for v3 and A as (v3v3) and (AA), in the second line we wrote
the expressions for propagators and wrote the expression for ss4, given
in Eq. (1.61), in terms of tree level masses, in the third line we factored
out i72 to have the standard By function in the parenthesis and in the
last line we wrote the By function as defined in Appendix C. The de-
fault multiplier for the FeynArts output is —i, in order to cancel the
additional 4 from the expression iI'. So the FeynArts output directly
gives the n—point functions I'y, . 4,. Hence, if the model is implemented
correctly into FeynArts, we should get out in the output the same term,
Eq. (3.17), without the i factor in front?. As all the couplings are the
same for F,[/;VQ , the result is also the same as the result for F,[}Q],,Q.

The final result for the neutrino mass, which we will call ms, with
the CP conserving 2HDM potential is:

d2

_ (1]
= Tnle0 = Tonleo =~ ™

X <m§ [Bo (0,m3,m%) — ¢ By (0,m3, m3;) — s2Bo (0,m3,m},)]

—m3 [Bo (0,m3,m%) — 2By (0,m3,m¥) — 528 (0,m3,m3)] ) :
(3.18)

Note that the evaluation is done at p? = 0, the zeroth order mass term.
me now is the “renormalized” one loop mass. This mass can be used to

2Getting the factors right is a pain, but it is an essential and unavoidable step to
get everything consistent. Hence we pay a lot of attention to explain where all the
7s and is come from.
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3.2. Renormalization of neutrino masses

iterate to the next loop levels. This is the full one loop result without
any other approximation and is finite and gauge dependent. It is an
easy exercise to check the finiteness of the result. As By functions have
the same divergent constant c.., one just checks that it cancels out:

d2

200 = Tgor (mg + my)

(m% [1—03—321]—77@21 [1—03—3&] Coo = 0.

(3.19)
It is interesting to note some properties of mo that can be seen from the
one loop expression Eq. (3.18). First we see that in the alignment limit
of the 2HDM, i.e. where o = 0, mgy depends only on A and on H and
does not depend on the SM Higgs h. In addition to the alignment limit,
if we have degenerate scalar masses, i.e. where a = 0 and mpy = may,
mgy vanishes at one loop.

3.2.2 Renormalization of ms and my4

The masses mg3 and myg4, are not zero at tree level, hence they have non
vanishing counterterms that have to be defined in the renormalization
procedure. The renormalization conditions given by the CMS, fix the
mass counterterms by Eq. (2.36) at one loop. However, a direct calcu-
lation (by methods of Chapter4) shows us that the mass counterterm
is gauge dependent. As the CMS is rigorously proven to give gauge in-
variant mass definitions [31], the gauge dependent counterterms mean
that the bare masses mg3 and mgy4 are, in fact, gauge dependent. To see
where these gauge dependencies appear, we compare the renormalization
constants in two different bases. Then we will identify the problematic
term, which naturally will lead to the FJ scheme.

We first start from the bare seesaw relation Eq. (1.58):
M() = Mp4 — M3 and ygvg = 2m03m04 . (3.20)

These equations relate the parameters in two bases: the LH sides of
Eq. (3.20) has the mass parameters in the basis defined by Eq. (1.51),
while we have mass eigenvalues on the RH side. We replace every pa-
rameter with renormalized parameter and counterterm as in Eq. (2.1)
and require Eq. (3.20) to hold for both, the renormalized and the bare

parameters, together. In this way we can compare the renormalization
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3. Renormalization in the Grimus-Neufeld model

constants in two different bases, with the relationships fixed as:
Om3 + Oma = 2 (0y + dy) , (3.21)

M4dms — M30m3 = (Mg —m3) o (3.22)

From the construction of Eq. (3.21) we see that the mass counterterms
have a 4, contribution, which is gauge dependent, as discussed in the
end of Section 3.1. It is reasonable to expect that this is the only gauge
dependent term, since v enters directly in the gauge fixing functions, but
M and y do not. Hence one would expect to cancel gauge dependence
just by subtracting the d, from the Eq. (3.21). One can do that, if the
bare masses in Eq. (3.20) are defined with v instead of vy, which leads
to the FJ scheme.

3.3 Fleischer-Jegerlehner scheme

The conceptual reasoning of using the same VEV for both, renormalized
and bare parameters lies on the different nature of the VEV compared
to all other parameters: it is defined dynamically by the minimum con-
ditions. The minimum of the all loop level bare theory and the renor-
malized theory has to be the same. As we define v to be all loop level
VEV, and vy is merely a substitution for the bare tree level parame-
ter expression, the “proper” VEV, that is responsible for all the masses
in the theory, is v and not vy. This identification allows a consistent
subtraction of the gauge dependent tadpoles from mass renormalization
constants. That the masses, defined by the proper VEV are gauge invari-
ant then follows from the gauge invariance of the proper VEV. However,
it is not an uncommon statement that the VEV is a gauge dependent
quantity [73-75]. The roots of this confusion are the definitions of what
we call the VEV. That is, the VEV that is defined as e.g.:

QSWMW
V= ——""

, 3.23
5 (323

where My, g. and sy are pole mass, renormalized electromagnetic cou-
pling and sine of Weinberg angle, is certainly gauge independent, be-
cause all these three parameters are gauge independent quantities. We

call this VEV the “proper VEV”, which has to coincide with the VEV
that is given by all loops. If we use the R¢ gauge in the renormalized
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3.3. Fleischer-Jegerlehner scheme

perturbation theory with v being gauge invariant renormalized VEV as
in Eq. (3.23), the vp becomes dependent on gauge parameters and not
v. To understand the gauge dependence of vy consider that fixing the
gauge is essentially choosing the direction in which the symmetry break-
ing is carried out. But loop corrections can rotate your fields out of a
chosen direction, hence vy and v are not the values of exactly the same
basis. As other equivalent directions are parametrized by £z and &,
vg becomes dependent on these parameters as it gets contributions from
those directions. The FJ scheme systematically separates this rotation
by defining bare masses in terms of the proper renormalized VEV rather
than the bare VEV. This can be thought of as choosing the correct ba-
sis from the start of the calculations. One can draw an analogy to the
parametrization we use to “guess” one loop neutrino mass eigenstate for
vy already at tree level by Eq. (1.51). There we rotated the fields, so that
11 in that basis does not get loop corrections for a mass term. Analogy
with the VEV is that we choose v to define bare masses, so that the loop
corrections do not rotate the basis we chose by R¢ to define the direc-
tion of EWSB. The VEV value shift due to the differences in these two
bases are then conveniently separated in §,, which also enter in bilinear
terms and let us separate the gauge dependences there to define gauge

invariant bare and renormalized masses.

Considering the FJ scheme, some questions are still not adequately
treated in the literature. For instance, an interesting question that we
feel is still unclear is the FJ scheme’s relationship to the pinch tech-
nique (PT) [76-78]. As the PT is used to define gauge invariant Green’s
functions, it identifies the tadpole contributions in two point Green’s
functions just as well as the F.J scheme. In fact, in [79], the method of at-
taching tadpoles to propagators were called “pinch technique inspired”,
but the resulting expression is the same as the FJ scheme. However, the
PT is proven to coincide with the background field gauge with £ = 1
[80], hence refs. [32,33] point out that the PT cannot be called a gauge
invariant prescription as it is just one of the gauge choices, in contrast
to the FJ. While the PT is more of a technical tool, the FJ scheme has
more of a physical interpretation that relies on the notion of the “proper
VEV”. Furthermore, the FJ scheme is used only in the context of the
two point functions, but the contribution of different tadpole treatments
appear also in vertices with scalar particles, which, for the best of our
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3. Renormalization in the Grimus-Neufeld model

knowledge, have not got any attention in the literature in this context
so far.

In the following section, we will present the application of the FJ
scheme for the neutrino renormalization constants of the GN model.

3.3.1 Fleischer-Jegerlehner scheme applied

Following the procedure in [28], to define the gauge invariant mass coun-
terterms we define the bare mass with the proper VEV. Thus the bare
relation Eq. (3.20) is modified to:

My = my —mpg,  yov* = 2mpymp; (3.24)

and the renormalized relation has the same VEV v:

M =my—mz, y*v®=2myms. (3.25)

From Eq. (3.24) and Eq. (3.25), we see that the mass counterterms after
applying the FJ scheme for the neutrinos become:

Orag + Orpa = 20y, (3.26)

M40,y — m351/ng = (m4 —m3) s, (3.27)

where we use primes to define the counterterms of the FJ scheme to
differ from the counterterms in the usual construction of Eq. (3.21) and
Eq. (3.22). Note that Eq. (3.27) is not different from Eq. (3.22), because
the Majorana mass of the neutrino singlet does not have any contribution
from the EWSB mechanism. Bare masses in these two different schemes
are related by the single VEV shift:

/ /
M4 M300

mo; = mpy; + Ao,  Ng =2 i=3,4. (3.28)

Moy + Mg
As the seesaw mixing parameters depend on the masses, they are shifted

as well:
2 2 ) 2 2
034 — Si34 T 200Ch345034 (0034 - 3034) )
2 2 2 2 2 2
Ch3a = Ch3a — 2003345034 (B34 — S034) - (3.29)

However, these shifts of the mixing parameters become relevant only at
higher loops than one, so we can drop them from our one loop expres-
sions. At one loop level, everything is the same as in Eq. (1.64), except
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3.3. Fleischer-Jegerlehner scheme

that the bare mass term Lagrangian for neutrinos becomes:

1 1
Linass = —3 (mbs + Do) vosros — 3 (mby + Do) voaros
1 1
=-3 (m3 + A) vavs — 5 (mg + A) vyvg + c.t. (3.30)

A or Ag are the parameters of a loop order, so formally, they are coun-
terterms and should be written in terms of c.t.. For clarity, we wrote
them here near the mass terms explicitly. The expression for the CMS
fixed mass counterterms of Eq. (2.41) at one loop is modified to:

—A, fori=3,4.

pr=mi M

5;1%' = % (21[/11']%‘ + E’[jli}ﬁi + Z[Vli]ﬂi + Elgli}w)

(3.31)

We explicitly check this expression to be gauge independent for both
neutrinos (¢ = 3,4) in the GN model (see Section 4.3). Since ¢/, are
gauge independent, the masses in the CMS are also gauge independent,
it follows from Eq. (3.21) and Eq. (3.22) that 05 and 6, are gauge in-
dependent, just as expected. Furthermore, both of the bare masses are
shifted by the same value Ag, as shown in Eq.(3.28). This is a di-
rect consequence of the fact that in the GN model, the interactions of
neutrinos with the SM like Higgs have only one singular value, which
we parametrized by y in Eq. (1.51) (in terms of mass eigenstates it is
expressed in Eq.(3.24)). As A is essentially a tadpole function from
Eq. (3.9) multiplied by couplings to neutrinos, the result of Eq. (3.31) is
equivalent to the result, which we would get by including tadpoles at-
tached to the propagators in self energy functions as is used in e.g. [79].
However, our construction has a more direct link to the interpretation
of using the proper VEV, and in that sense, is closer to the original
proposal of the scheme in [28].
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3. Renormalization in the Grimus-Neufeld model

Summary

We presented the renormalization of tadpoles and the gauge invariant
renormalization of neutrino masses in the GN model [38]. We outlined
the derivation of the one loop expression for the radiative neutrino mass
and presented the final result. The expression for the radiative mass is
finite and gauge invariant, proving the first statement of the thesis. We
showed that the bare masses for neutrinos in the GN model depend on
the gauge in the usual CMS scheme. We presented the FJ scheme and
then applied it together with the CMS to get gauge invariant bare and
renormalized masses for all neutrinos at one loop. We derived the FJ-
modified CMS counterterms for neutrinos in the GN model, which we
explicitly checked to be gauge invariant by the methods of the following
chapter. This is the first time this scheme was applied for neutrino
masses in the GN model. Also, to the best of our knowledge, it is the
first time the FJ scheme was used together with the CMS.
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Chapter 4

Setting up the calculations

4.1 Using SARAH for generating FeynArts
model file

SARAH [50, 51] is a general tool for building a model, which auto-
matically calculates mass matrices, vertices and self energies. It was
originally created for supersymmetry (SUSY) calculations [50] and was
adapted for non-SUSY models afterwards [51]. As using Weyl spinors in
SUSY is more natural than using Dirac spinors, the SARAH model file
is based on Weyl spinor representations of fermions rather than Dirac
spinor representations. This feature is particularly comfortable for us,
as we choose to work in Weyl spinors in our formulation.

The model building in SARAH is based on gauge group represen-
tations. In the model file, first one defines gauge fields by naming
them, writing the gauge group name, naming the coupling and writing
if SARAH should expand the sums over charge indices in the output.
Then one defines scalars and Weyl spinors according to the gauge group
representations. It is done by writing a name, writing how many iden-
tical particles that name will carry (family index), writing names for
gauge group components and writing charges under all gauge groups in
the same order as the gauge groups were defined. All the gauge inter-
actions are automatically calculated by the SARAH, so there is no need
to write the Lagrangian parts for that. The only Lagrangian terms that
need to be written in are the Yukawa terms and the scalar potential.

The standard SARAH package comes with a variety of model files
that are already set up. One of them is the general 2HDM, which we
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can use and modify it to our convenience. In the out of the box model
file, all the general Yukawa terms and the scalar potential of the 2HDM
is written already. So taking the main model file for the general 2HDM,
we only need to add the singlet neutrino to have all the particle content
of the GN model, presented in Section 1.1. We define the singlet neutrino
in the model file [38]:

FermionFields [[6]] = {n, 1, conj[nR], 0, 1, 1}

where the first and the third entry is the name of the field and its
component respectively, the second is the number of families and the
last three entries are the charges under the gauge groups (singlets under
all of them). The singlet in the theory allows for the Yukawa terms for
neutrinos, which are analogous to the Yukawa terms for the up—type
quarks. Additionally, the singlet neutrino has a Majorana mass term.
Hence the neutrino Yukawa terms together with the Majorana mass
terms are added:

LagYukawan = — ( — Ynl Hl.n.1 — Yn2 H2.n.1 + 1/2 M n.n )

After this inclusion, the SARAH model file has all the general parameters
and all the particle content of the GN model. Up to this point, no
parametrization is done, hence everything is written in the general basis.
We implement the Higgs basis, Eq. (1.18), by writing in the model file
the definitions of EWSB. That is, we set one of the VEVs to zero in the
definition for VEVs that is in the original 2HDM model file:

DEFINITION [EWSB] [ VEVs]=
{ { H10,{v,1/Sqrt[2]},{sigmal ,\[Imaginaryl]/Sqrt[2]},
{phil ,1/Sqrt[2]} },
{ H20,{0,1/Sqrt[2]},{sigma2,\[Imaginaryl]/Sqrt[2]},
{phi2,1/8qrt[2]} } };
After the definitions of VEVs, there are definitions for the particle mix-
ings in the “MatterSector”. As we work in the R gauge and in a CP
conserving potential, we delete the mixing between the charged scalars
and pseudoscalars. As the neutrinos now can have eigenstates, we in-

troduce the neutrino mixing matrix:
{ {vL,conj[uR]}, {VL,Un} }

where the VL is the combined mass eigenstate neutrino four-vector and
Un is the mixing matrix U*, where U is shown in Eq. (1.62)".

'Note that the Un is complex conjugate of U and not U itself, since Eq. (1.63).
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4.2. Using FeynArts + FormCalc with Mathematica

We will use this SARAH model file only for generating the FeynArts
model file and it works fine for this matter. However, one should be care-
ful when using this model file for other uses and check whether these sim-
plifications do not pose any difficulties. We generate the FeynArts model
file from the “Mathematica” interface for SARAH, applying the func-
tions Start[“modelfile”], ModelOutput[EWSB], and MakeFeynArts|].

4.2 Using FeynArts + FormCalc with

Mathematica

After doing the steps described in Section 4.1, we get the FeynArts [81]
model file that is written in the Higgs basis. The Yukawa terms are still
general and no particular basis is chosen so far. We choose the flavor
basis by setting all the mixing matrices of the charged leptons to the
identity matrix, and identify the Yukawa matrix that couples charged
leptons with the first Higgs doublet as a diagonal matrix, shown in
Eq. (1.38). The neutrino mixing parametrization, Eq. (1.51), is done by
the replacement:

3
D Uy} = (0,0, —icsay, s3ay); (4.1)
=1

3
> UYP = (0, d, —icsad, sad), (4.2)
=1

The mixing matrix U is parametrized as a combination of orthogonal
rotations and phase shifts just as presented in Eq.(1.62). These re-
placements can be done in the FeynArts model file itself, or later in
the calculations. It is easier to implement it during the calculations
as replacement rules in Mathematica interface, which also reduces the
risk of accidentally introducing mistakes in the model file. However,
we do the replacements Eq. (4.1) and Eq. (4.2) in the FeynArts file for
the neutrino—neutrino-Higgs vertices as these replacements drastically
reduce the time of calculations of neutrino self-energies. We did ad-
ditional crosschecks, so that the parametrization is consistent with the
one presented in the thesis. We leave other Yukawa couplings to be
replaced afterwards in the Mathematica notebook interface, when the
specific amplitude is considered.
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4. Setting up the calculations

After setting up the FeynArts model file, we use it with the FeynArts
package to draw possible Feynman diagrams for the amplitude that we
are interested in. We then use FormCalc [82] to calculate Feynman am-
plitudes in terms of standard Passarino—Veltman functions [83]. Further
reduction and simplification of the results is done by creating functions
with replacement rules that implement our chosen parametrization and
relate the parameters with the tree level relations. As we work at one
loop level, all tree level relations, presented in Chapter 1, can be used
to simplify one loop expressions. In this way, we automate the alge-
braic simplifications of the one loop results for two—point and one—point
correlation functions that we need for mass and tadpole counterterms.

Formally, when applying the CMS conditions, the mass parameters
are complex. However, at one loop level, there is no need to implement
complex parameters of the CMS in FeynArts directly. In fact, we use
the assumption that they are real, when doing the algebra. One reason
why this is consistent with CMS is that the effect of using complex
parameters in the loop functions is actually of higher order that one
loop. Hence the expressions for complex counterterms are evaluated at
real poles at one loop. For consistency, one has to be able to argue the
possibility of complex parameters in the implementation. The fact that
the algebraic structure is unchanged by using the CMS allows us to do
that. As an example, consider the SM-like Higgs contribution to the
mass of v4. It is proportional to y, as can be read out from Eq. (1.64).
We parametrized the Yukawa couplings by Eq. (1.51), so that yy € R,
but suppose that the renormalized y = yo/ (1 + d,) is not necessarily
real. The contributions of the loop with the SM-like Higgs to the mass
of v4 in the renormalized theory are:

A A

1—‘1/41/4 ~Y, 1—1174174 ~Yy. (4'3)

If we do not tell FeynArts+FormCalc that y is real, we will get in the
output:

1A—‘II4V4 ~Y, f‘174l74 ~ yT ) (44)
which is incorrect in the context of the CMS?, but can be corrected
by the replacement y' — y. But in Mathematica interface, the same
identification of y! with y is achieved by imposing an assumption that

2Recall the discussion in Section 2.1 about the introduced H.c.*
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4.3. Gauge cancellation in the FJ scheme

the parameter y is real. Hence imposing assumptions of real parame-
ters in algebraic simplifications that are real only as bare parameters
is a correct way to do the formal algebra simplifications with Mathe-
matica. In this sense, the CMS keeps the algebra of the bare theory
unchanged. So the assumptions of reality of masses and most of the
couplings® are implemented in the Mathematica files, where the algebra
between loop integrals is done. Note that after the simplifications are
done, the parameters and loop functions can be consistently continued
to the complex domain without any loss of generality and hence can
be used in the CMS conditions. The collection of all the relations and
parametrizations used is presented in Appendix D.

4.3 Gauge cancellation in the FJ scheme

When we set up the FeynArts model file and collected the parameter
relations, we can check how the FJ scheme works for the neutrino masses
in the GN model. That is, we want to see if the expression shown in
Eq. (3.31) is gauge parameter independent. Using Eq. (2.41), we can
write Eq. (3.31) as:

mZ(S;m = mZ(SmZ — A, 1= 3, 4, (4.5)

where we write Eq. (2.41), using Eq. (2.60) and Eq. (2.46):
Mibmi = M So,, (M) + Loy (M) (4.6)

and the definition for A from Eq. (3.28) with Eq. (3.9):

mams 1

A=2 TV (4.7)

my + m3 A\v3
2
R

hence we will drop the momentum dependencies from the expressions

From now on, all the two loop functions are evaluated at p?> = m

for convenience.
To denote the gauge dependent term, we will add the gauge param-
eter £ in the subscript at the end of the renormalization constants, self

energies and tadpole functions; for example:

dp = Op¢ + gauge independent terms, dp¢ = Opey, + Opey, - (4.8)

31.e. all the properties of the parameters of the bare theory are assumed. For
convenience, we list them in Appendix D.
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4. Setting up the calculations

Now we can write the gauge dependent terms of Eq. (4.5) as:
!
0 = m;0mse — A¢, (4.9)

where we used exclamation mark to note that this equality has to be
checked. We explicitly check that Eq. (4.9) holds, using SARAH, Fey-
nArts and FormCalc. Note that m; is gauge independent as it is the pole
mass of the particle by CMS conditions, in contrast to mg;. We now out-
line how we separate the gauge dependent terms to check Eq. (4.9).

4.3.1 Getting A,

To get A¢, we need to calculate T}El] in the Higgs basis. As FeynArts
uses the mass eigenstate basis, we need to use the basis transformation,
relation Eq. (1.35), and calculate T, }[Ll(]m)

by FeynArts as diagrams of h(,,) —nothing and H,,) —nothing. Gauge

and TE}(m). They are generated

dependencies can come into the loops only via gauge dependent propa-

gators. Hence we can consider only tadpoles with gauge bosons, ghosts

and Goldstone bosons. The gauge dependent part of gauge boson con-

tributions are exactly canceled by the contributions from ghosts, hence,

only the Goldstone bosons give gauge dependencies in tadpoles, which
are shown in Figure 3.1. This contribution is:

A1V

Tié = G

Inserting it into Eq. (4.7) we get:

[A() (m%fz) + 2A0 (m%[/fw)] . (4.10)

1
Ae= mT:mrig 167202 [Ao (m%€2) +2 Ao (miyéw)] - (4.11)

4.3.2 Getting m;0,,.¢

The FormCalc output is easy to use in Weyl spinor notation as the
spinor products in the result of the amplitude appear in “WeylChains”.
By collecting terms near those “WeylChains” we can take separately all
four components presented in Eq. (2.22). The structure of the output of
FeynArts for the two point function of v; going to v; at one loop is:

i) T+ o) TV + wipomy) UL + o) £01, 0 (4.12)

12374 ViU; vV,

where the brackets denote the four different “WeylChains”. As the first
consistency check, Eq.(2.60) and Eq.(2.46) should be satisfied in the
output.
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4.3. Gauge cancellation in the FJ scheme

To make algebra simplifications easier and faster, we separated dif-
ferent one loop contributions to self energies according to the bosons
that appear in the loop. Those contributions are from the neutral
Higgs scalars, the charged scalar Higgs, the neutral Goldstone boson,
the charged Goldstone boson, the W boson and the Z boson. We la-
bel them as 210, LH+ yxz  yxw  $Wand ¥%, respectively. The
gauge dependence enters into the two point functions from propagators
of gauge and Goldstone bosons. Hence 2% and ¥+ do not depend on
any gauge parameter, as they do not have those propagators. We can
also separate the terms that depends on &y from the terms that depends
on £z. That is, the terms that depends on &z will come from neutral
loops X2 and ¥4, while ¥XW | W will have & dependence.

Let us consider mg3d,,3¢,, as an example. We write potentially the
&w dependent terms of Eq. (4.6):

M30mae,y = ms (Sx0, + 35V, ) +TXW + T

v3v3 (21 %] v3v3 v3vs -

(4.13)

We create the amplitude for v3 — 13 in FeynArts, separating the dia-
grams according to the bosons that appear to the loops. In the Form-
Calc output, we get the structure of Eq. (4.12), so we take the needed
self energies to put into Eq. (4.13) and then simplify them with the re-
placements and parametrizations of Appendix D. This direct calculation

first gives:
Ty, =0, (4.14)
and the final result is:
2
msm
MOy = o Je 2 40 (M) | (4.15)

(m3 + my) 1672m?%,s3,,,
where sopy = 2swew is the sine of the double Weinberg angle. In-
termediate steps of going from Eq. (4.13) to Eq. (4.15) can be found in
the Appendix B of [38]. Doing the analogous procedure for my and £z
dependent terms, we get:

m35m3§ = m46m4§

2
ms3my Ye

= Tms + ) Tommg gy, A0 (m282) + 240 (mivéw)]

(4.16)

Using the relation Eq. (1.10), we see that this term is exactly the same
as Eq. (4.11), which proves that Eq.(4.9) holds at one loop. Thus we
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4. Setting up the calculations

checked the validity of the FJ scheme in the GN model and supported
all the claims of Section 3.3.1 by an explicit one loop calculation.

Summary

We use SARAH for generating a FeynArts model file. We use Feynarts
to generate amplitudes of the process v; — v;. We use FormCalc to
express these amplitudes in terms of standard Passarino—Veltmann in-
tegrals. In this chapter, we described the technical steps we did, in
order to explicitly cancel gauge dependent terms in the FJ+CMS fixed
counterterms [38]. We also describe how the CMS-induced complex pa-
rameters behave like real parameters in the algebra of loop corrections.
This feature allowed us to use the mentioned packages in a default con-
figuration to get the expressions of the CMS—fixed counterterms. This
was not described in the literature before.
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Conclusions

In this thesis, we present a study of gauge dependence of the renormal-
ization of the one loop neutrino masses of the GN model. To ensure
the gauge dependence of the renormalized masses, we choose to use the
CMS. In Section 2.3 we show how the radiative masses can be incor-
porated into the formalism of CMS and give arguments why the result
for the radiative mass term should be gauge invariant and finite. This
leads to the first statement of the thesis. In Section 3.2.1 we explicitly
calculate the radiatively induced mass ms for neutrino 5 and show that
it is indeed gauge invariant and finite.

In renormalizing ms and my, the CMS conditions alone do not give
gauge independent counterterms. We apply the FJ scheme to define
gauge independent counterterms. As this was not done in the GN model
before, we checked whether the FJ scheme is applicable, i.e. if it cancels
gauge dependencies in the neutrino two point functions. In Section 3.3.1,
we show that the singlet neutrino does not affect the application of the
FJ scheme as its Majorana mass term is not related to the EWSB. Thus
the renormalization of the Majorana mass term for the singlet neutrino
is gauge invariant by itself. We also show that the gauge dependent term
for the renormalization constants of mg and my is the same, due to a
single value of the coupling to the first Higgs doublet in the Higgs basis.
To prove that this construction works, we have explicitly checked the
gauge cancellation in the GN model by employing SARAH, FeynArts
and FormCalc. This is presented in Chapter 4.

The CMS introduces complex masses and couplings to the renormal-
ized Lagrangian. As the CMS is an analytical continuation of the OS,
the algebraic structure of the loop corrections is expected to be the same.
If this is the case, the algebraic simplifications with assumptions that the
parameters are real, should still give the correct algebraic expressions
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Conclusions

for counterterms in the CMS. This means that without loss of generality
we can introduce the complex parameters after the expressions in con-
sideration are algebraically simplified. In practice, we can take the usual
FeynArts model file to calculate the expressions for counterterms in the
CMS, with no additional modifications, as the complexity of parameters
can be defined later. In Section 2.1, we present how this continuation
can be understood on the Lagrangian level, by defining the renormal-
ized hermitian conjugation symbol H.c.*. In Section 4.2, we argue how
this algebraic structure is maintained when calculating loop corrections
in the GN model. As the application of the FJ scheme is an algebraic
procedure, the CMS can be used together with the FJ scheme to define
both the renormalized and the bare masses gauge invariantly, which we
do for the neutrinos of the GN model in Eq. (3.31).
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Appendix A

Quantum effective action

Here we present the derivation of the quantum effective action from the
classical action S (¢) to clarify the sign conventions used and introduce
the definitions for Green’s functions that are used throughout this thesis.
The derivations of Green’s functions from functional methods can also
be found in e.g. [46,84-86]. However, since much confusion can arise
due to differences in sign conventions, we believe that it is important to
collect the derivation here, so that the consistency of conventions can be
easily verified.

We will use a shorthand notation for the integral and frequently skip

the indices that are summed over:

/qu /J@ / ) ¢; (z d4g;—/ZJ ) i (x)diz. (A1)

In the cases when we have many integration measures, we will write

indices in the subscript of the integral sign as:

/ = /d4x1...d4ajn. (A.2)
l.n

We insert sources in the action S (¢) by:

S(6.0) =@+ [ 0. (A.3)
The path integral is:
Z=27(J)= / D¢eS7) = NeiS() (A.4)
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A. Quantum effective action

where N is an integration constant. The connected! correlation func-
tions then are:

D e (DT) s
<¢1'-¢n>c = f ¢¢1 Q'Sse ‘ = Zilfz‘
[ DgeS(¢:7) J=0 10J1...10J, lJ=0

o o
= —1 Z‘ = —'IZ‘
e B e T e, T
57’L
= A.
ZiéJl...i(UnW’J:o’ (A.5)
where we have defined the generating funtional:
W=W(J)=—ilnZ(J) or Z =€V (A.6)

The important correlation function is the propagator, which is the 2

point correlation function (¢¢):

52
Dyy = = —f— . A.
o0 = (90). Z(SJ(SJW J=0 (A7)
The classical field, which is dependent on J, can be written as:
ow
-, A.
0, = 5 (A8)
One can write:
. 1J1..4dy
W, = —z/ Lt (g fade (A.9)
1.n mn.

so that:

W = ; Wy = —inz:l :l—n' /1n Jioodn (P1.-0n), - (A.10)

The Legendre transform of W is an effective action (or the effective

vertex functional):

T ((6),) =W - / (0), 7. (A11)

From now on, we will use the classical fields (¢) ; as variables, so let us
drop the brackets and the source index as:

Py = 9. (A.12)

!They are called connected because the Feynman diagrams describing them are
connected.
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Then writing the variation of the effective action with respect to the
classical field gives:

0 0
%F:%W 5(;5 qﬁJ——W J - /¢5¢J

oJ (5
5¢6J /%J /= W /%
_ (A.13)

From here we can relate propagator with its inverse (we indicate space-
time variable in the subscript):

o8 5. bbb s
WS, 0J, 00 0Jy 00 00g
1) 5W .
=5, 5J ¢ = —1Dpglpp

It follows that the propagator is:
Dyg =il . (A.14)

The effective vertex functional can be ordered by loop expansion:

T'= Y rlerl, (A.15)

loop=0

Also, as I' is a polynomial in ¢, it can be expanded as:

— 1 5"

The expansion coefficients then are the 1 particle irreducible functions

with an ¢ prefactor and I' is the generating functional for 1PI vertices:

onr
Fr. =il : Al
Y501 00m lsm0 = L1 (A17)

The Feynman diagrams, that represent the functions in Eq. (A.17), can-

<¢1--~¢n>1P1 =

not be reduced into a two different disconnected diagrams by cutting a
single line, hence they are called 1 particle irreducible functions. Each
individual coefficient can be ordered by loops just as well as Eq. (A.15).
The tree level effective action is just a classical action (T1% (¢) = S (¢)).
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A. Quantum effective action

For example, the two point function of a scalar at tree level is (in the
momentum space):

T =p? —m?2, (A.18)

which corresponds to the Lagrangian term L,4s5 = % (8M¢)2 — %méqf)?
It is, of course, zero on-shell. The definitions of these Green’s functions
comply with the default definitions in FeynArts. That is, by default
the FeynArts amplitude is multiplied by —i to cancel the ¢ factor of the
RHS of Eq.(A.17), so that the calculated output would be I'y ;. 4,
These are the same sign conventions used in standard textbooks e.g.
[46, 86], in which the action can be identified with as negative energy
function S = —FE. We write the one particle VEV as the special case of
Eq. (A.17):

T, =Ty, (A.19)

which is called the tadpole function.
The renormalized Green’s functions are given in terms of renormal-

ized fields and parameters and they are:

(5nf\[loop] .~ [loop]
5¢) On | ¢i= b1--0n
=rlorl 4 5r“°"p] (A.20)

(... 1) =

where dT[loP] stands for the counterterm part of the renormalized effec-
tive action. Similarily,

~loop]  An|loop] ~loop]  w[loop)
loor = plieor) o gplieorl = pleord, (A.21)

As spinors are anticommuting, the definition Eq. (A.17) might be
confusing as the ordering of spinors is important. Since in this thesis we

are interested in two point functions only, it is convenient to define:

5.5 5.8
5§ 56
FgXT = EFTXH&,XZO 3 FngT = Tt s 1Ex=0> (A22)

where £ and x are Weyl spinors. These definitions are easy to use, as the
derivatives are visually in the same order. Other positions of derivatives

82



give either a minus sign, or has opposite order than fields. For example:

-
o 0 90 )

0
ext 5E oxT ’E,xfO Syt o€ |£7x70 5€ x1 ‘nyfo (A.23)

So it makes sense to use Eq. (A.22) in order to avoid confusion with or-
derings or additional minus signs. The easiest way to check the relations
Eq. (A.23) and the Eq. (A.22) is to make sure it does not introduce any
unwanted signs to the tree level free field action. This can be done using
the definitions and relations, presented in Appendix B.
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Appendix B

Weyl spinor notation

Here we collect the most important conventions and relations concerning
Weyl spinor usage that are most extensively presented in [65]. We use
refs. [36,47,48,65] for this overview of Weyl spinors. We first recall that
Weyl spinors transform in a fundamental representation of SU (2). As
is shown in many standard textbooks (e.g. [47,48]), the Lorentz group
can be decomposed into the direct product SU (2); x SU (2) », were the
SU (2); is hermitian conjugate to SU (2) by construction. To label
the representation under these groups, we use the same notation as in
1, i.e. we will write them as (D (RSU(Q)L> , D (RSU(Q)R>>, where D
is a dimension of the representation R. Then Weyl spinors, are called
left-handed if they are in the representation (2,1) ! and right-handed in
the representation (1,2) under the Lortentz group. We write undotted
indices to denote the components of the LH Weyl spinor and we write
dotted indices to denote the components of the RH spinor. Since the
RH spinor transforms under the group that is the hermitian conjugate
of the SU (2), group, we have, for a LH spinor x:

(XG)T =Xas X* (27 1) ) XT : (172) : (Bl)
Group theoretical relation for two dimensional representations of SU (2):

202=14®3g, (B.2)

"Here we use the notation from i.e. [47,48], in which the dimension of the repre-
sentation D (R) is used, rather than spin value of the representation as in [65]. Le. 2
dimensional representation of SU (2), in [65] is written as (3,0), since D = 25 + 1,
but it means the same thing as (2,1) in notation we use.
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B. Weyl spinor notation

where the subscript A stands for antisymmetric combination and S for
symmetric, says that the natural metric in Weyl spinor space is anti-
symmetric. Define [65]:

.
2= =y = —ep=1, <eab> = (ea) =€y - (B.3)

Having this symbol, the singlet out of 2 Weyl spinors y and € is given
by:

T iy
eabbea ) (Eabbea) = 6ab§lx;§ . (B'4)
Defining raising and lowering the indices:

X=X, X=X, xa =X’ XL =™ (BS)
one can introduce the summation convention for spinors to have an index
free notation:

Ex = x€ = X% = " xpéa,

ehxt = xTeh = eax® = eely] (B.6)
so that the LH spinors are summed when indices go down from left to
right, and the RH spinors are summed when indices go up from left to
right.

The usual Lorentz four-vector transform under the SO (3,1) group
as a four dimensional object. Under the product of SU (2); x SU (2)p,
the Lorentz four vector is in the (2,2) representation. Since for Lorentz
vectors it is far more natural to work with the four dimensional SO (3,1)
representation, a map, relating Rgy(2), xsu(2), <> Rsos,1) is needed.
Since now the spinors are defined with indices raised or lowered, the
connections that takes two spinors into a vector now are of two types:
the one which takes two spinors with indices down and makes a vector
and the one that takes two spinors with indices up and makes a vector.

Naturally, they are related by the “spinorial metric”:
ghaa — cabeaby it (B.7)
Two spinors compose into a vector object as:
elot i xa = —X ol (B.8)

where:
ot = (1,0’) , ot = (1, —O'i) , (B.9)
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where ¢! are the Pauli matrices. Note that the summation convention

is always kept, so we can go into the index free notation:
glaty = —xoter. (B.10)
The other useful relation is:

0, (XT6“X> = i(?p,XTW‘X + Z'XT5“8#X = —iXU“BuXT + ix%”@wg.
(B.11)
In the action, the total derivative can be ignored as it is just a boundary
term, hence in the momentum space, this identity becomes:

T T

x'otpux = xotpux', (B.12)

which is the usual kinetic term in the Lagrangian. The Majorana mass

term in the Lagrangian is:

1
—§mxx+H.c. (B.13)

The kinetic term together with the Majorana mass term give four types
of the propagators that are shown in Figure B.1. The momentum in
the diagrams is fixed to be from left to right in the diagrams, hence the
rules for propagators Figure B.1(a) and Figure B.1(b) reflect the equality
Eq. (B.12). Le. Figure B.1(a) is different from Figure B.1(b) only in the
assignment of momentum for spinors.

The Dirac fermion consists of two Weyl spinors, let us call them e
and E. The Dirac fermion does not have a mass term, which is shown

in Eq. (2.3), instead, it has a mass term in the form:
—meE + H.c. (B.14)

which is called a Dirac mass term. Both e and F have the propagators
shown in FigureB.1(a) and FigureB.1(b). The mass-like propagator
has the same expression as in the Majorana case but, now it connects
two different Weyl spinors e and E. We indicated the spinors explicitly
in the diagrams shown in Figure B.2.

The interaction term with the gauge boson A#Q, is written as:

g&la"Ayx = —gxo" ALl (B.15)

2 A,, in this section stands for a generic gauge boson, not necessarily a photon.
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B. Weyl spinor notation

PO i ipg e imoy im5g
o e e o
—— — g —p— ——<

(a) (b) (c) (d)
Figure B.1: Four types of propagators for a single Weyl fermion with a
Majorana mass m. The expression for every propagator is written above
the diagram. The direction of momentum is understood to be assigned
from left to right. The arrow shows the direction from the spinor with
dotted index, to the spinor with undotted index.

imoy imég
p=—m p2 —m?
e e
E e E 3

(a) (b)
Figure B.2: Two mass—like propagators for Weyl spinors e and E that
composes into a Dirac spinor. These propagators are different from
those shown FigureB.1(c) and FigureB.1(d), since they connect two
different Weyl spinors and are proportional to a Dirac mass term. The
propagators of the type FigureB.1(a) and FigureB.1(b) are the same
for e and E with m being their common Dirac mass term.

The interaction terms with some real scalar S:
1 Lot tet
FUSXE+ Syt E (B.16)

The corresponding Feynman rules for the interaction terms of Eq. (B.15)
and Eq. (B.16) are presented in Figure B.3.
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1got —igot

(a) (b) (c) (d)
Figure B.3: The Feynman rules for interactions of Weyl spinors with
Scalar, and Vector particle. They correspond to the Lagrangian terms
Eq. (B.16) and Eq.(B.15). The momentum flow is understood as go-
ing from left to right. Note the similarity with propagators, shown in
Figure B.1.
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Appendix C

Standard PaVe functions

We present the standard loop integrals, which we encounter when cal-
culating radiative corrections for masses. These standard one loop func-
tions were first introduced in [83]. We will follow [69]. As in our cal-
culations we encounter only one point and two point functions, we will
present only those. For simpler expressions, the ie term, that is re-
sponsible for time ordering in the propagators will be absorbed into the
masses, i.e.

m? — m? — ie. (C.1)

The one point scalar function is defined as:

A (m2) — (27ru)47D /qu 1 (C 2)
0\ im?2 @ —mi’ '

The two point scalar functions are:

o G ) = Z [ v !
) ) . 92 )
i (¢ = m3) ((a+p1)* = m3)
(C.3)
B, (p?,m3,m?) = W/qu u
Y Y )]
im (a2 = m3) ((a+p1)* = m3)
(C.4)

B,, can be decomposed by Lorentz decomposition into the scalar function

and momentum four vector:
B, =p.B . (C.5)
Bji can be expressed as:
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1
By (pi, mg,mi) = 07 [Ao (m3) — Ao (m1)]
1
1
t oy (=pi +mi —mg) Bo (pi,m3, m?) .
1

When getting functions with FeynArts, the default overall factor for
the amplitude is ? i 5 and default setting is D = 4[81]. The

T D X (loop number

—1 cancels the ¢ coming from the action iI.

Note about the measure

D
The measure near one loop integral in D dimensions is [ (‘21 )qD. The
X

problem with the integral, that it is no longer of a fixed dimensions,

hence the couplings become with variate dimensions as well. To fix the
mass dimension of the integral we use the regulator u of mass dimension

in the following manner:

wp [ dPq¢ ) AD dPq
: /(27r)D = (2m) /(27?)4 (C.6)

Now we see that this measure is of fixed dimension four. Also, for every

loop, there comes the additional factor of (2r)™* which is consistent
with the —i factor of FeynArts with D = 4.

(27‘() D X (loop number)
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Appendix D

Parametrizations

For convenience, we list all the relations and parametrization used in
the simplifying the Feynman amplitude. This list is also shown in the
appendix of[38].

D.1 Scalar sector and the SM relations

The assumptions of the CP conservation:

mi dow ER; i, j=1,2,k=1,..,7. (D.1)
The minimum conditions:
1 1
mi, = —5)\11)2 and m3, = 5)\602. (D.2)

The Higgs basis:

Xow Hy
Hy = 4 . Hy = , . D.3
' %(U-i-h-f—ZXZ) 2 %(H%—zA) (D-3)

The mixing matrix for scalars is only between h and H:
Od) _ < Ca Sa ) , ;nass — O?}Qﬁfiggs,
—Sa Ca

o995 — (b, H), , (D.4)

(2

where s,, ¢, are sine and cosine functions of the mixing angle o. The

relations of the Electroweak sector are:

_ gel
Sow = 2swew , myz = , My = mzcy , (D.5)
Saw
where sy and cpyare sine and cosine functions of Weinberg angle.
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D. Parametrizations

D.2 Yukawa sector

The first thing that we do after generating FeynArts model file is making

the replacements Eq. (4.1) and Eq. (4.2) in it:

3
ZUz‘ij‘l N (0’ 0, —i c34y, 334y)j )
j=1

3
ZUUYJ‘Z — (0, d, —icad', 83461/)]. : (D.6)
j=1

The parametrization of Yukawa couplings:

VijYj =0, V5¥j =0, VyYj =y,
Vi;Y? =0, Vo¥P =do, VoY] =dy,

do,yo € R, d €C, (D.7)
where the neutrino mixing matrix is:
U =Uv =UutotrucoBo® (D.8)
with relations
F _ mass __ 1% F
Vo, = (VOE’ You, Vor ]\TO)Z y Yoi = U”VO] . (D9)
The parametrization of mixing matrix is:
s2.+ et =1, Soii,cCoii R;
0ij 0ij = 15 S0i55C0ij> 00, PO € N
0P =1, for i,j # A, B;
O4B = —O03% = soap; 045 = O3B = coan;
Uf;-:ewo fori=j=1;U7 =1 fori,j#1;
Ul?';-:eip0 for i = j = 2; Uf, = 1y for i,j # 2;
Usi =i Uly =i so3a; Uy = —i- Ul = —i - co3a;
UMt =1;; for i,j # 3,4. (D.10)
The seesaw is realized with:
My = mos — mos, Ygug = 2mozmos , (D.11)
2 mo3 2 mMo4
Sjgu = —————— and Cigyy=——"—"—. D.12
031 mog + mos 03 mogy + mos ( )
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Santrauka

Komentaras apie terminijag

Teorinéje elementariyjy daleliy fizikoje yra daugybé nusistovéjusiy ang-
lisky terminy, kurie skamba gal kiek neformaliai ir Zargoniskai. Jie ne
visada atitinka tikslia fizikine prasme, kaip pavyzdziui, Sioje disertacijoje
vartojamas terminas ,buozgalvis® (angl. tadpole), tac¢iau yra asociaty-
vus ir trumpi. Dél sios priezasties jie yra patogus profesinése diskusijose
ir placiai vartojami angliskoje literaturoje. Kadangi Lietuvos teorinéje
daleliy fizikoje ne visi tokie terminai yra nusistovéje, siy zargoniniy ter-
miny lietuviy kalboje vartojimas néra jprastas, taigi tiesioginis terminy
vertimas i$ angly kalbos be prasmeés bei kilmés paaiskinimo padaro lie-
tuviska teksta sunkiai skaitomu. Kita vertus, pernelyg sudétingas, nors
ir fizikine prasme tikslus terminas, negali turéti pasisekimo neformaliose
mokslinése diskusijose. Tokiais atvejais daznai linkstama j pasiskolintus
i$ angly kalbos barbarizmus. Siy barbarizmy nejmanoma isgyvendinti
is lietuviy kalbos, jeigu néra jy tiksliai atitinkanciy ir paprastai naudo-
jamy terminy. Taigi, nereikéty vengti profesinio zargono vartojimo, o,
atvirksciai, stengtis ji kurti ir puoseléti, tokiu budu turtinant profesine
lietuviy kalba. Todél Sios santraukos gale pateikiu kai kuriuos vers-
tus terminus su vartojimo pasitulymais bei trumpais fizikinés prasmeés
ir termino kilmés paaiskinimais. Tikiuosi, kad Sis sarasSas leis skaityto-
jui lengvai susigaudyti tarp vartojamy terminy ir padarys sig santrauka

lengviau suprantama.

Ivadas

Standartinis elementariyju daleliy modelis (SM) yra labiausiai eksperi-
mentiskai pasisekes modelis, beprecedenciu tikslumu aprasantis daleliy
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fizikos fenomenus. Taciau neabejotina yra ir tai, kad SM néra visus reis-
kinius apimanti teorija, taigi fizika nesibaigia ties SM ribomis. Neutrino
aromaty maisymasis yra aiSkiausias to jrodymas: eksperimentiskai ap-
tiktos neutriny osciliacijos [1-4] irodo, kad neutriny masé néra nulineé.
SM nenumato masyviy neutriny, taciau yra pasiulyta jvairiy budy kaip
praplésti SM juos jskaitant. Vieni i§ pirmyjy ir labiausiai tiesmuky SM
plétiniy yra sverto mechanizmai [5-8]. Siuose modeliuose neutrinai yra
natturaliai mazy masiy bei su pakankamai paprastu masés suteikimo me-
chanizmu, todél §ie modeliai yra populiariis teoretiky tarpe. Siuolaikines
sverto mechanizmy apzvalgas galima rasti ¢ia [9-12].

Neutriny aromaty maiSymasis néra vienintelis fenomenas gamtoje,
kuris yra jmanomas uz SM riby. Higgs’o dalelés atradimas [13, 14],
uzbaigdamas eksperimentines SM aprasyty daleliy paieskas, tuo paciu
ikvepia tolesnius skaliariniy lauky tyrimus, kurie nebutinai apsiriboja
SM skaliariniu sektoriumi. Kol kas Higgs’o dalelé yra pirma ir vienin-
telé uzfiksuota skaliariné dalelé gamtoje. Kyla naturalus klausimas ar
yra daugiau tokiy daleliy, nes yra nemazai teoriniy argumenty uz di-
desnj skaliariniy daleliy skai¢iy [15-18]. Daugelis modeliy, numatanciy
daugiau skaliariniy daleliy, gali buti aprasyti kaip atskiras apibendrin-
to dvieju Higgs’y dublety modelio (2HDM) atvejis. 2HDM modeliai,
neturintys supersimetrijos, placiai aprasyti ¢ia [19].

Kol kas néra galimybiy pasakyti, kuris modelis vienareikSmiskai tei-
singai apraso visus fizikinius gamtos reiskinius. Taciau daugéjant eksper-
imentiniy duomeny (ju apzvalga galima rasti [20]) yra vis siaurinamos
ivairiy modeliy parametry erdvés. Tokiu budu atmetama dalis mode-
liy, kuriy parametry vertés yra apribotos taip, kad nepatenka j galimas
eksperimentiniy verc¢iy ribas. Nulinis perturbacijy teorijos artinys neé-
ra pakankamas norint atlikti tokia parametry erdvés analize. Neutriny
maséms aukstesnés eilés pataisos yra ypatingai svarios [21,22], o joms
yra reikalinga pernormavimo procedira.

Pernormavimo procedura apibrézia teorijos parametrus, tokius kaip
masé ir saveikos konstantos, kilpose. Kalibruotinis teorijos invarian-
tiSkumas yra automatiskai tenkinamas, jeigu teorija yra be anomalijy
[23—-25], taciau tai neapsaugo nuo netyéiniy kalibruotés priklausomybiy
ivedimy modelio parametry apibrézimuose, t. y. suskaic¢iavus paramet-
rus kilpose, gali paaiskeéti, kad jie priklausomi nuo kalibruotés. Zinoma,
Sios kalibruotinés priklausomybés iSsiprastina skaiciuojant sklaidos mat-
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ricos elementus, tac¢iau parametry, priklausomy nuo kalibracijos, fizikiné
interpretacija tampa kebli.

Siame darbe yra tiriamas Grimus—Neufeld (GN) modelio [26] neutriny
pernormavimas. Jis sudarytas i§ CP simetrisko 2HDM, praplésto vienu
neutraliu Weyl’o spinoriumi, kurio jvedimas salygoja sverto mechanizma
bei radiacinj masés generavima. Norint, kad pernormuoti masés para-
metrai buty kalibruotiskai invariantiski, mes pritaikome kompleksinés
masés schema (CMS). Kadangi masé yra elektrosilpnosiosios simetri-
jos pazeidimo pasekmé, masiy pernormavimas yra glaudziai susijes su
buozgalviy pernormavimu. Mes parodome, kaip masés kontranarys, is-
reikstas i§ CMS salygy, tampa priklausomas nuo kalibruotés, jeigu CMS
salygos yra naudojamos kartu su jprastine buozgalviy pernormavimo
procedura. Kadangi yra jrodyta [27], kad CMS apibrézia kalibruo-
tiskai invariantiskas pernormuotas mases visose kilpose, plikos masés
standartinéje buozgalviy schemoje tampa kalibruotiskai priklausomos.
Pritaikant Fleischer—Jegerlehner (FJ) schema [28], siy priklausomybiy
nuo kalibruotés galima isvengti. Mes ja pritaikome neutriny masiy per-
normavimui ir, kompiuterinés algebros pakety pagalba, parodome, kad
priklausomybés nuo kalibruotés musy nagrinéjamame modelyje iSnyk-
sta. Taigi, mes apibréziame kalibruotiskai invariantiskas tiek plikas,
tiek pernormuotas GN modelio neutriny mases.

Pagrindinis tyrimo tikslas ir uzdaviniai

Pagrindinis Sioje disertacijoje pristatyto tyrimo tikslas yra suformuluoti
korektiska Grimus—Neufeld modelio neutriny masés pernormavima vie-
noje kilpoje. Siam tikslui pasiekti buvo isspresti Sie uzdaviniai:

e Suformuluoti modelj Weyl’o spinoriy formalizme ir jvesti ji i kom-

piuterines programas automatiniams skaic¢iavimams.

e Pasirinkti pernormavimo schemg neutrino masiy pernormavimui
ir pritaikyti ja sumaiSytoms Majorana fermiony sistemoms Weyl’o

spinoriy formalizme.

o Patikrinti masiy ir masiy kontranariy kalibruotinj invariantisku-

ma.
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e Rasti kalibruotiskai invariantiska neutriny pernormavimo proce-

dura.

Rezultaty naujumas ir aktualumas

Siame darbe tiriamas modelis pirma karta yra pasiiilytas Grimus’o ir
Neufeld’o [26]. Neseniai pasirodziusiame darbe [29], sio modelio pernor-
mavimas bei neutriny masiy pernormavimo kalibruotinio invariantisku-
mo klausimas buvo tirtas, pritaikant modifikuoto minimalaus sutrauki-
mo (MS) schema. Iki minéto darbo $ie klausimai GN modelyje nebuvo
paliesti. Kitaip nei [29], mes apibréziame pernormuotas mases kaip fi-
zikinius parametrus tam, kad jie galéty buti naudojami kaip jvesties
parametrai, o ne iSvesties. Tokiu atveju yra jprasta naudoti antmasés
schema (OS), taciau yra zinoma, kad OS apibréztos nestabiliu daleliy
masés yra priklausomos nuo kalibruotés [30]. Yra jrodyta [27], kad CMS,
kitaip nei OS, apibrézia kalibruotiskai invariantiskas pernormuotas ma-
ses visose kilpose. Kadangi GN modelio neutrinai sudaro sumaisyta
daleliy sistema, susidedancia tiek is stabiliy, tiek iS nestabiliy daleliy,
mes joms visoms pritaikome CMS tam, kad apibréztume konceptualiai

korektiskas ir kalibruotiskai invariantiskas mases.

Nors CMS ir apibrézia kalibruotiskai invariantiskas pernormuotas
mases, plikos masés nebutinai yra kalibruotiskai nepriklausomos, nes jas
surisantys kontranariai gali jgauti kalibruotine priklausomybe. Tai tam-
pa problema, jeigu norima CMS mases palyginti su kity pernormavimo
schemy masémis, tokiy kaip MS, nuo kalibruotés nepriklausomu biidu.
Siy priklausomybiy nuo kalibruotés galima iSvengti pritaikant FJ pro-
cedura [28], kuri neseniai vél sulaukeé isaugusio susidoméjimo, pritaikant
ja kartu su MS [29,31-34]. Mes pritaikome FJ procediirg kartu su CMS,
taigi, CMS apibréztos masés yra suristos su plikomis masémis kalibruo-
tiskai nepriklausomu budu. FJ schemoje kalibruotinés priklausomybés
skaic¢iavimuose yra sistematiskai atskirtos. Taigi, atsiranda galimybé
papildomam skaic¢iavimy patikrinimams kompiuterinése programose.

Siame darbe pristatomas pirmas bandymas suformuluoti korektiska
ir kalibruotiskai invariantiska pernormavimo procedurg fizikinéje bazéje

GN modeliui. Mes taip pat aprasome kaip pakartoti musy rezultatus,
naudojantis SARAH, FeynArts ir FormCalc.
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Ginamieji teiginiai

1. Vienos kilpos artinyje radiaciskai gauta neutrino maseé yra baigtiné

ir nepriklausanti nuo kalibruotés.

2. FJ schema yra tinkama svertu iSplésto 2HDM neutrino masiy per-

normavimui.

3. CMS yra algebriskai ekvivalenti OS ir jg galima taikyti kartu su

FJ schema vienos kilpos neutriny maséms.

Autoriaus indélis ir rezultaty aprobacija

Sis darbas remiasi rezultatais, pristatytais trijuose publikuotuose straips-

niuose:
1. V. Dudénas and T. Gajdosik. Lith. J. Phys. 56, 149-163, 2016,
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zikos konferencija, 2017, October 4-6, Vilnius, Lithuania,

7. Vytautas Dudénas, Thomas Gajdosik, Gauge parameter depen-
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Grimus—Neufeld modelis

Grimus-Neufeld (GN) modelis [26] yra 2HDM [19], prapléstas svertiniu
[5] neutrinu. Sis modelis turi du mechanizmus, suteikiancius neutrinams
mase: sverto mechanizmg bei radiacinémis pataisomis gaunama neutri-
no mase. Sverto mechanizmas leidzia tik dviem i keturiy neutriny turéti
medZio mases, i$ kuriy viena masé yra didelé!. Dél saveikos su antruoju
Higgs’o dubletu vienoje kilpoje sugeneruojama dar viena nenuliné ma-
sé neutrinui, vadinama radiacine mase. Taigi, vienoje kilpoje, vienas
neutrinas yra su didele mase, du su nedidelémis masémis ir vienas su

nuline mase.

1Jeigu tikésimés Yukawa sgveikos konstanty panasios eilés, kaip ir kriiviniy lep-
tony atzvilgiu, sunkioji masé turéty buti apytiksliai ties Didziojo Susijungimo (angl.
Grand Unification) energijos skale [10].
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ViF = Ve, Vp, Vr)i Trys neutrinai aromato bazéje
N Neutralus neutrinas
_l’_
H, = < % _t h n ZXZ)) Pirmasis Higgs’o dubletas Higgs’o bazéje.

( L (H+iA ) Antrasis Higgs’o dubletas Higgs’o bazéje.

Neutralus Higgs’o laukai

H + Krivi turintis Higgs’o laukas

A Aksialinis Higgs’o laukas

XW W Goldstone’o bozonas

Xz Z Goldstone’o bozonas
Yy v i=1,2,3 Yukawa koeficientai

L1 lentelé: Neutriny ir skaliariniy daleliy zyméjimai aromato bei Higgs’o
bazése.

Sios GN modelio savybeés, pasirinkus patogia baze, gali biiti identi-
fikuotos jau medzio artinyje, kaip ir buvo padaryta [26]. Pirmiausia,
skaliariniame sektoriuje mes pasirenkame Higgs’o baze [35-37]. Higgs’o
bazé, gaunama atliekant U(2) transformacija tarp dvieju Higgs’o dub-
lety. Higgs’o bazéje yra isskiramas vienas dubletas atsakingas uz elekt-
rosilpnosios simetrijos pazeidima, t. y. nenuliné vakuumo tikétiniausia
verté (VEV) priskiriama tik Siam dubletui. Kitas dubletas sioje bazéje,
kuris turi nuling VEV, simetrijos pazeidime nedalyvauja. Dél to maseés
nariai medyje kyla tik i§ Yukawa saveiky su pirmuoju dubletu Higgs’o
bazéje.

Nagrinéjant leptonus, paprasciausia yra is pradziy pasirinkti aromato
baze, t.y. kai kruvj turintys leptonai yra savo masés tikrinése buseno-
se ir yra identifikuojami kaip elektronas, miuonas ir taonas. Aromato
bazéje neutrinai yra atitinkamai elektroniniai, muoniniai arba taoniniai.
Papildomas Majorana neutrinas nesaveikauja elektrosilpnaja saveika ir
yra neutralus visy simetrijy atzvilgiu. Trijy aromato bazés neutriny,
svertinio neutrino, Higgs’o dublety bei laisvyjy Yukawa koeficienty pa-
zyméjimai yra nurodyti lenteléje L1. Tada Yukawa nariai neutrinams

yra uzrasomi taip:
L=-Y""WEH )N = Y?vf Hy)N + H.c.. (S.1)
Skliausteliuose pazyméjome, kad sgveikose su neutrinais imama antroji
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dubleto komponenté?. I$ (S.1) matyti, kad tik pirmasis narys bus atsa-
kingas uz masés narj, nes tik H; turi nenuling VEV. Maseés parametras,
gaunamas po elektrosilpnosios simetrijos pazeidimo (S.1) lygtyje, yra
vadinamas Dirac’o masés parametru. N laukas taip pat turi Majorana

maseés parametra M:

L— —%M (NN +H.e.) . (S.2)

(S.1) isSraiskoje mes galime pakeisti baze unitariomis transformaci-
jomis ir atlikti SVD dekompozicija Yukawa saveiky vektoriams. Bazé,

taip pat naudojama ir [22,26], yra parametrizuojama:

‘/ijy'jlll — 07 VZjX/}Vl — 0, ‘/Sj}/"jlll =y,
Vle'jVQ — 07 V2jY'jl/2 — d, ‘/éj}/;VZ — dl7

dyeR", deC. (S.3)

Sioje bazéje po elektrosilpnosios simetrijos pazeidimo Dirac’o masé, jun-
gianti v4 ir N yra lygi %yv, kas matyti, jstacius skaliariniy lauky israis-
kas i§ L1 lentelés j (S.1). Unitaria transformacija tarp v4 ir N pereiname
prie masés singuliariy ver¢iy bazés, gaudami du Majorana fermionus.
Visa transformacija tarp pradinés aromato bazés ir masés singuliariy
verciy bazés uzrasoma kaip sandauga ortogonaliy transformacijy O, fa-
zés pasukimy U bei sverto transformacijos U34:

v; = Uil U = UV = UHUP0R2Uc0B0% . (S.4)

ig¥i

Sverto transformacija parametrizuojama

—i034 ’i334 ms3 my
Ut = = ———, y=——""1), (S5)
834 C34 myq + ms

kur msg ir m4 Majorana masés nariai atitinkamai v ir v4 fermionams,

susije su v/ bazés parametrais:

M=my—msg ir y?v®=2msmy, mg<my. (S.6)

215 lentelés L1: Hyo = % (v+h+ixz)ir Hyg) = % (H +1iA)
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Yukawa nariai, jskaitantys neutriny saveikas su neutraliais skaliariniais
laukais, kartu su masés nariais, uzrasomi:
1 1 1 . .
Lyuk = —sm3vavz — —myvavy — —=d (H +iA) vy (—is3a3 + c3414)

2 2 V2
- \}5 [y (h+ixz) +d (H+id)]

X [0343341/3V3 + 14 (c§4 — s§4) V3l + 0345341/41/4] + H.ec.. (S.7)

Kadangi v ir vo vis dar neturi masés parametro, jos yra issigimusios bu-
senos. IS (S.7) lygties matome, kad vo saveikauja su skaliarais i$ antrojo
Higgs’o dubleto, kai v lygtyje i$ viso nefiguruoja. Dél Sios priezasties,
skaiciuojant vienos kilpos pataisas, 9 jgaus radiacines pataisas, o v liks
su nuline mase. Taigi, parametrizacija (S.3) dar medyje leidzia i$ karto
nuspéti visas keturias vienos kilpos masiy tikrines biisenas.

Kompleksiné masés schema

Pernormuoti neutrinams mes naudojame kompleksinés masés schema
[30,38-46] (CMS, angl. complex mass scheme). Ji yra analitinis tesi-
nys antmases schemos (OS, angl. on-shell), i masés apibrézima jtrau-
kiant dalelés skilimo plotj kaip menama masés parametro dalj. Taigi,
OS ir CMS masés apibrézimai yra identiski stabilioms daleléms, taciau
issiskiria daleléms, kurios néra stabilios. OS masés apibrézimas yra ka-
libruotiskai priklausomas nestabilioms daleléms [27], pvz.: Z bozonui.
Istoriskai CMS pirma kartg ir buvo pristatyta kaip schema, iSspren-
dzianti kalibruotés priklausomybés problema Z bozonui dviejose kilpose
[30]. Veéliau jrodyta, kad CMS masés apibrézimas yra kalibruotiskai
invariantiskas visose kilpose [27].

Nors GN modelio eksperimentiskai matuojami trys neutrinai yra sta-
bilus, jie yra maisyti su nestabiliu ketvirtuoju neutrinu. Taigi, norint
matematiskai korektiskai pernormuoti neutrinus, mes taikome CMS kaip
bendra schema daleliy maséms pernormuoti. CMS aprasymas Weyl'o
spinoriy formalizme maisSytiems Majorana fermionams yra pristatytas
[47]. CMS schema mes uztikriname, kad musy pernormuoti masiy pa-
rametrai buty kalibruotiskai nepriklausomi.

Naudojantis laisvo Weyl’o spinoriaus v su Majorana mase m judéjimo
lygtimis, mes galime bendrais bruozais apibudinti OS ir CMS schemas.
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Judéjimo lygtys yra:
apr =mv' | opv’ =mv. (S.8)

Iskaicius trikdziy pataisas, tiek kairiosios, tiek desiniosios siy lygciy pu-
sés pasikei¢ia. OS schemoje pareikalaujama, kad reali Sios lygties su
pataisomis dalis biity tenkinama ties realia p> = m? reikséme. CMS
schemoje realumo reikalavimas iSmetamas, todél atsiranda papildoma
fazé tiek masés parametrui, tiek laukui, t. y. (S.8) modifikuojasi i

opy =mv, opi = muv, (S.9)

kur m nebéra realus, o 7 skiriasi nuo v faze, atsirandancia dél dalelés
nestabilumo. Jeigu dalelé yra stabili, lygtis (S.9) redukuojasi j (S.8).
Taciau, jeigu stabilios dalelés maiSosi su nestabiliomis, situacija néra
tokia paprasta ir bendru atveju ,nestabilumo* fazés gali jeiti ir j stabiliy
daleliy pernormavima [47].

Jeigu plika dalelés masé yra lygi nuliui, desiniosios (S.9) lygéiu pusés
gali buti sugeneruojamos trikdziy pataisose. Tokiu atveju vienos kil-
pos masé yra skai¢iuojama ties p? = 0, t. y. nulinés eilés masés verté
idedama j kilpos masés israiska. Kadangi radiaciné masé tenkina CMS
salygas, ji ir yra pernormuota CMS masé pagal apibrézima. IS to, kad
CMS pernormuotos masés yra kalibruotiskai nepriklausomos, isplaukia,
jog radiaciné masé taip pat turi buti kalibruotiskai nepriklausoma. Sis
pastebéjimas yra ypac svarbus, nes radiaciskai sugeneruota masé neturi
kontranario. Taigi, jeigu atsirasty kalibruotiné priklausomybé radiacinei
masei, jos nebiity imanoma panaikinti. Tai reiksty, kad teorija yra mate-
matiskai nekorektiska. Taigi, kalibruotiskai nepriklausomos ir baigtinés
radiacinés masés iSraiSskos gavimas yra pirminis modelio bei jo jvedimo
i programinius paketus korektiSkumo patikrinimas.

CMS schemoje jvedami pernormuoti kompleksiniai parametrai, tokie
kaip masé ir sgveiky konstantos, tac¢iau jie yra susieti su plikos teorijos
realiomis masémis ir saveikos konstantomis. Si sgsaja leidzia iSlaikyti
modelio unitariskuma kiekvienoje kilpoje [48]. Taip pat algebriné plikos
teorijos struktura yra issaugojama ir pernormuotoje teorijoje, nes me-
namos pernormuoty parametry dalys jeina tik j antiermitine efektinio
potencialo dalj. T. y., jeigu plikoje teorijoje turime operatoriy Oy kartu
su ermitiskai jungtiniu:

L=0y+ H.c., (S.10)
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tai pernormuotoje teorijoje turime:
L=0+H.c"+ct. (5.11)

kur H.c.* zenklina i$ (S.10) lygties pernormuotus H.c. narius. Atkreipia-
me démesj, kad H.c.* néra O operatoriaus ermitiskai jungtiniai nariai.
Kita vertus, papildoma kompleksiné fazé, atsirandanti CMS schemoje,
yra bendra abiems O ir H.c.* nariams. Tokiu budu pernormuotas Lag-
ranzianas atspindi pliko Lagranziano realuma. Taip pat, esantys sarysiai
tarp parametry islieka tokie patys kaip ir taikant OS schema, nors tie
parametrai ir jgauna bendrg faze. Skaiciuojant trikdziy pataisas, papil-
doma fazé nepakeicia algebriniy skaiciavimy. T.y., skai¢iuojant patai-
sas, laikant, kad masés parametrai yra realus, gaunama ta pati algebriné
iSraiska kaip ir to nepadarius. Tai leidzia naudoti CMS atliekant algeb-
rinius skai¢iavimus su programiniais paketais, kuriuose néra numatytas

kompleksiniy masiy verc¢iy naudojimas.

Pliky masiy priklausomybé nuo kalibruotés bei
FJ schema

Taikant CMS, pernormuoti masés parametrai yra kalibruotiskai nepri-
klausomi, taciau tai dar nereiskia, kad pliki masés parametrai tos pri-
klausomybés neturi. Nors pliki parametrai ir neatspindi matuojamy
dydziy, juy priklausomybé nuo kalibruotés kelia keblumy, norint paly-
ginti rezultatus su kitomis pernormavimo schemomis, tokiomis kaip MS
[29,31]. Kadangi visos maseés, iSskyrus Majorana neutrino N masés pa-
rametra M, yra kilusios i elektrosilpnosios simetrijos pazeidimo, jy per-
normavimas yra susijes su skaliarinio sektoriaus pernormavimu, konkre-
¢iai, su buozgalviy pernormavimu.

Iprastoje buozgalviy pernormavimo schemoje (pvz.: [49]), plikos ma-
sés kyla i$ plikos Higgs’o VEV, o pernormuotos masés atitinkamai is-
reiskiamos iS pernormuotos Higgs’o VEV. Pernormuota Higgs’o VEV
yra apibréziama buozgalviy salygose kaip reikSmé, minimizuojanti po-
tencialg nagrinéjamame artinyje. Tuo tarpu plika VEV, surista su per-
normuota VEV per pernormavimo konstantg, minimizuoja tik medzio
potenciala. Jau vienoje kilpoje Higgs’o VEV pernormavimo konstanta
yra kalibruotiskai priklausoma. Diagramos, kurios lemia Sia priklauso-
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/ /

h h

I ¢
| |
| |

(a) (b)
P1 pav.: Diagramos, lemiancios kalibruoting priklausomybe. h laukas
¢ia yra laukas Higgs’o bazéje.

mybe yra pavaizduotos P1 pav. Tai reiskia, kad arba pernormuota, arba
plika VEV priklauso nuo kalibruotés.

Literaturoje yra daznai teigiama [50-52], kad Higgs’o VEV yra kali-
bruotiskai priklausoma. Sis teiginys paremtas kalibruotine priklausomy-
be pataisy, pavaizduoty P1 diagramose. Taciau taip pat akivaizdu, kad
pernormuota VEV, apibrézta buozgalviy salygose ir surista su pernor-
muotais kalibruotiskai invariantiska W bozono mase, elektromagnetinés
saveikos konstanta bei Weinberg’o kampo sinusu:

2sw My
V= —

, S.12
9e (8.12)

yra kalibruotiskai nepriklausoma. Sis nesusipratimas dél kalibruotiniy
priklausomybiy kyla i$ skirtingy VEV apibrézimy: plika VEV, minimi-
zuojanti potencialg medyje, yra kalibruotiskai priklausoma, tuo tarpu
(S.12) yra pernormuota ir kalibruotiskai nepriklausoma VEV.

Kadangi plika VEV kilpoje tampa priklausoma nuo kalibruotés, stan-
dartinéje buozgalviy schemoje juy kalibruotiné priklausomybé perduoda-
ma plikiems masiy parametrams. Kalibruotiskai invariantiskai apibrézti
plikas mases galima panaudojant FJ schema buozgalviams [28]. Prak-
tiskai FJ schemoje naudojama viena ir ta pati Higgs’o VEV, apibréziant
tiek plikas, tiek pernormuotas konstantas. Tokiu budu kalibruotiskai
priklausomi nariai atskiriami nuo masés parametry, taip apibréziant ka-
libruotiskai nepriklausomas tiek plikas, tiek pernormuotas mases. Si
procedura remiasi prielaida, kad visy kilpy pernormuota trikdziy teorija
bei plika trikdziy teorija turi sutapti. Taip pat pastebéjimu, kad skirtin-
gai negu kiti modelio parametrai, Higgs’o VEV yra gaunama dinamiskai,
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t. y. minimizuojant potenciala. Vadinasi, yra tik viena ,teisinga®“ (angl.
wproper*) VEV, kuri minimizuoja pilna visu kilpu teorija. Taigi ,tei-
singa® VEV yra (S.12), kai plika VEV yra tik apytikslé nulinio artinio
verté. Remiantis Siais argumentais, visi masés parametrai, tiek pliki,
tiek pernormuoti, turi kilti iS teisingos VEV.

Sekant siais argumentais, vienas klausimas lieka neaiskus. Jeigu pli-
ka ir pernormuotos teorijos turi duoti tuos pacius rezultatus, kodél plika
verté, pataisyta vienoje kilpoje, yra kalibruotiskai priklausoma, o per-
normuota — ne? Atsakymas j §j klausimg slypi kalibruotés parametri-
zavime ir bazés pasirinkime. Kalibruotés pasirinkimas apibendrintoje
R kalibruotéje yra parametrizuojamas £z ir { parametrais, iSskiriant
Goldstone’o bozonus xz ir xw kaip nefizikinius laisvés laipsnius, “su-
valgomus” isilginiy W ir Z bozony poliarizacijuy. Taigi, kalibruotés pa-
rametrizavimas taip pat susijes su Higgs’o dubleto H; parametrizavimu,
kuriame isskiriama kryptis, kurioje laukas jgauna nenuling VEV (zr. L1
lentele). Po kilpos pataisy bazé kiek pasisuka, taigi, kryptis, kurioje
laukas jgauna nenuline VEV taip pat pasisuka. Tuomet Higgs’o VEV,
zZitirint i pirminés bazeés, jgauna &y ir £z priklausomybes, t. y. indélius j
jos verte i$ kity krypcéiy. FJ schemoje yra pasirenkama ,teisinga“ VEV,
taip iSvengiant Siy bazés nesutapimy ir kalibruotiniy priklausomybiy.
T. y. galime sakyti, kad FJ schemoje bazé, kurioje isreiskiama Higgs’o
VEV, yra pasirenkama ne pries, bet po kilpos pataisy jskaitymuy.

Toliau mes pritaikysime FJ schema GN modelio neutrinams kartu su
CMS.

Neutriny masiy pernormavimas

Skyriuje ,,Grimus—Neufeld modelis“ visi pristatyti parametrai bei laukai
yra pliki. Nuo Siol mes pridésime indeksa ,,0“, norint atskirti plikus
parametrus nuo pernormuoty. Visi pernormuoti parametrai p ir laukai
¢ yra susije su plikais parametrais py bei laukais ¢g per pernormavimo
konstantas:

Po = (1 + 5p)p, qf)o = (1 + ;(%) gb (S.13)

Plika Higgs’o verté néra laisvas parametras, nes jis apibréziamas per

minimumo salygas. Taciau mes jo pernormavimo konstanta apibrézia-
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me analogiskai kaip ir visiems kitiems parametrams p3. Vienos kilpos
Higgs'o VEV pernormavimo konstanta yra isreiskiama i buozgalviy sa-

lygy ir yra lygi:

L
= T,
)\1’03 h

kur A\; yra Higgs’o saveikos su savimi konstanta, ateinanti is 2HDM

5o (S.14)

potencialo, T }[ll] yra vienos kilpos VEV pataisa Higgs’o bazéje, atvaiz-

]

duojama buozgalviy diagramomis. Taigi j T,[l1 jeina ir diagramos, pa-
vaizduotos (P1) pav.

Istacius (S.13) i (S.7), matome, kad nei v, nei v, neturi masés kontra-
nariy. Tai reiskia, kad kilpos pataisose sugeneruotos masés privalo buti
baigtinés bei kalibruotiskai invariantiskos, antraip visas modelis buty
nekorektiskas. Tiesiogiai suskaic¢iavus vienos kilpos mases laukams 1
bei 5, gauname, kad v; vienoje kilpoje lieka su nuline mase, o v masé

yra:

d2

_——X
327 (m3 + m4)

mo =
X (m% [BO (O,mg, mi) — ciBo (O,mg,m%) — siBo (O,mg, m%)]

- m421 [BO (07 m?b m2A) - CiBO (Oa m?la ’I’I’L%{) - S?!BO (07 m?b m%z)] ) )
(S.15)

kur s, ir ¢, yra atitinkamai sinusas ir kosinusas lauky A ir H maiSy-
mosi kampo «, By yra standartinis Passarino—Veltman integralas [53],
o masiy indeksai zymi daleles, kuriy masés parametras yra uzraSytas.
Diagramatinis (S.15) iSraiskos Sesiy nariy atvaizdavimas yra parodytas
P2 pav. Matome, kad rezultatas yra kalibruotiskai nepriklausomas bei

yra baigtinis, t. y. diverguojantys integralo nariai susiprastina:

2
P >(map—ca—sa}—mzn—cz—sa =0,

321 (mg + my
(S.16)

kur ¢ zymi diverguojantj narj. Atkreipiame démesj j tai, kad (S.15)
uzraSyta maseé yra pilna vienos kilpos CMS pernormuota masé. Tai, kad

3Sj papildoma laisvés laipsnj mes apribojame véliau, po pernormavimo salygy
iSreiskimy.
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h,H,A
-
N
/
— > <
Vv V3, Vs V2

P2 pav.: Sesios diagramos, kompaktiskai sudétos viena ant kitos, atvaiz-
duojancios mg kilpos pataisas, uzrasytas (S.15).

Siai masei néra kontranario, yra Sio modelio ypatybé. Taip pat si ma-
sé nepriklauso nuo FJ schemos pritaikymo, nes v neturi plikos masés.
Rezultatas (S.15) yra gautas tiek tiesiogiai taikant Feynmano diagra-
mas, tiek naudojantis SARAH, FeynArts bei FormCalc paketais. Tokiu
budu rezultatas (S.15) pasitarnauja kaip papildomas modelio jvedimo j
programinius paketus patikrinimas pries skaiciuojant sudétingesnes is-
raiskas.

Visiskai kita situacija yra pernormuojant ms ir my4. Plikos masés
néra nulinés — jos suriStos su pernormuotomis masémis per pernorma-
vimo konstantas kaip parodyta (S.13). Pernormavimo konstantos yra
isreiskiamos i§ CMS salygy, kartu taikant FJ schema. Kad lengviau su-
prastume kalibruotiniy nariy atskyrima FJ schemoje, palyginkime ja su
standartine buozgalviy schema GN modelyje. Standartinéje schemoje
plikos mg3 ir mg4 tenkina (S.6):

MO = Mopg — M3 ir ygvg = 2m03m04 . (817)

Ivedus pernormavimo konstantas (S.13) kiekvienam i§ Siy parametry,
gauname, kad jos yra susietos:

S + Ot = 2 (85 + 68, | (S.18)

M4Oma — M30m3 = (Mg —m3) Opr - (S.19)

Is lygties (S.18) matome, kad masiy kontranariai turi savo apibrézime
0y, kuri yra isreiksta i$ buozgalvio salygy lygtyje (S.14). Vadinasi, masiy
kontranariai turi priklausomybe nuo kalibruotés, kurios pavaizduotos P1
diagramose. Lygtis (S.19) §, nario neturi, taigi, galima tiketis, kad ji
neturi ir kalibruotinés priklausomybés.

FJ schemoje vietoje S.17 mes uzrasome:

Moy = m64 - m63 ) y(z)'U2 = 2m64m63 : (5.20)
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T. y., apibréziame plikas mases per ,teisinga* Higgs’o VEV (Siuo atveju
per vienoje kilpoje pernormuota VEV ). FJ schemoje masiy kontranariai

yra:
m3 + O = 20y, (S.21)

M4Oyq — M30y,3 = (4 —m3) o0, (S.22)

taigi, masiy kontranariai nebeturi d, savo apibrézimuose. Taip pat ma-
tome, kad (S.22) ir (S.19) iSraiskos yra identiskos tiek FJ, tiek standarti-
néje schemoje. Tai galima paaiskinti tuo, kad Majorana masé M nekyla
is Higgs’o VEV, taigi, israiskos, priklausancios tik nuo M, nesikeicia dél
skirtingo skaliarinio sektoriaus pernormavimo.

Isreiskiant masés kontranarius i§ CMS salygy bei pasinaudojant FJ

schema, mes gauname:

1

o =5 (S, + 30 +2lh +2bl) | -, (s29)
pe=my 7
Ao Mams0 gy
my +ms3

kur skliaustuose yra pazymeétos bedimensinés dviejy tasky Green’o funk-
cijos (savienergijos) visoms keturioms v; bei 7; kombinacijoms vienoje
2

kilpoje, taske p? = m;. Mes suskaiciavome, kad israiska (S.23) vieno-
je kilpoje nepriklauso nuo kalibruotés pasirinkimo, t. y. kalibruotiskai
priklausomi A nariai tiksliai susiprastina su savienergijy kalibruotiskai
priklausomais nariais. Taigi, mes apibréziame kalibruotiskai nepriklau-
somas tiek pernormuotas, tiek plikas neutriny mases GN modelyje. Is
(S.23) kalibruotinés nepriklausomybés isplaukia, kad Yukawa saveikos
konstantos y bei Majorana masés M pernormavimai yra taip pat kali-
bruotiskai nepriklausomi. Atkreipiame démesj i tai, kad FJ schemoje
atsirandantis A yra tas pats abejoms maséms ms ir my4. Taip yra dél to,
kad GN modelyje neutriny saveika su Higgs’o lauku aprasoma tik viena
verte y.

Skaic¢iavimy atlikimui buvo pasinaudota SARAH, FeynArts ir Form-
Calc paketais. Generuojant GN modelio FeynArts faila, buvo pasinau-
dota SARAH. Su FeynArts buvo sugeneruotos reikalingos diagramos,
o su FormCalc jos buvo isreikstos per standartinius Passarino—Veltman
integralus. Algebriniai iSraisky suprastinimai, naudojantis modelyje api-
bréztomis parametry lygybémis, buvo atlikti Mathematica aplinkoje.
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ISvados

Disertacijoje pristatome vienos kilpos GN modelio neutriny masiy per-
normavimo kalibruotinés priklausomybés tyrima. Uztikrinti pernormuo-
ty masiy nepriklausomuma nuo kalibruotés pasirinkta kompleksinés ma-
sés schema neutriny masiy pernormavimui. Parodome, kaip radiaciné
masé jeina ] bendrg CMS formalizma bei pateikiame argumentus, ko-
dél ji butinai turi buti kalibruotiskai nepriklausoma ir baigtiné. IS to
iSplaukia pirmasis disertacijos ginamasis teiginys. Mes ji irodome tiesio-

giai apskaiciuodami GN modelio neutrino mase mso vienoje kilpoje.

Pernormuojant ms ir my vien tik CMS salygos neuztikrina siy masiy
kontranariy kalibruotine nepriklausomybe. Mes pritaikome FJ schema
kalibruotiskai nepriklausomiems kontranariams apibrézti. Kadangi tai
dar nebuvo atlikta GN modelyje, mes patikriname, ar FJ schema yra
taikytina Siuo atveju, t. y. ar tikrai FJ schemos pritaikymas panaikina
kalibruotines priklausomybes neutriny kontranariams. Kadangi singleti-
nio neutrino Majorana masé néra susijusi su elektrosilposnios simetrijos
pazeidimu, Sis neutrino singletas nepakeic¢ia FJ schemos pritaikymo bu-
do. Taigi, singleto Majorana masés pernormavimas yra kalibruotiskai
invariantiskas savaime. Mes taip pat parodome, kad mg ir m,4 pernorma-
vime isskirta kalibruotiskai priklausoma dalis yra vienoda abejoms ma-
sems. Taip yra dél to, kad neutriny sgveika su pirmuoju Higgs’o dubletu
Higgs’o bazéje aprasoma vienintele konstanta y. Tam, kad jrodytume
tokios konstrukcijos tinkamuma, mes patikriname, ar kalibruotinés pri-
klausomybés issiprastina i iSraisky, naudojant SARAH, FeynArts bei
FormCalc paketus.

Taikant CMS, pernormuotas Lagranzianas tampa priklausomas nuo
kompleksiniy masiy ir saveikos konstanty. Kadangi CMS yra analitinis
OS tesinys, tikétina, kad algebriné struktura kilpos pataisose yra to-
kia pat taikant abejas schemas. Jeigu tai tiesa, algebriniai prastinimai,
naudojant prielaida, kad masés ir sgveikos konstantos yra realios, turé-
ty duoti korektiskas kontranariy algebrines israiskas ir CMS schemoje.
Vadinasi, mes galime analitiskai pratesti mases ir saveikos konstantas
i kompleksine plokstumg po to, kai israisky algebriniai prastinimai yra
atlikti. Praktikoje tai reiskia, kad galime jprastai ir be papildomy mo-
difikacijy naudoti FeynArts modeliy failus kontranariy iSraiSkoms skai-
¢iuoti, o véliau jas naudoti CMS kontekste. Mes pristatome, kaip in-
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terpretuoti CMS per Lagranziano narius, tam jvesdami pernormuoty
ermitiskai sujungtiniy nariy simbolj H.c.*. Taip pat pristatome, kaip
algebriné struktura yra islaikoma trikdziy pataisose GN modelyje. Ka-
dangi FJ schemos pritaikymas yra algebriné procedira, CMS gali buti
naudojama kartu su FJ schema. Tokiu budu kalibruotiskai invariantis-
kai apibréziamos tiek plikos, tiek pernormuotos masés. Mes tai jgyven-

diname GN modelio neutrinams.

Terminy zodynélis

Medis, medzio lygmuo (angl. tree, tree level) — naudojamas nu-
sakyti kvantinéje lauko teorijoje nulinés eilés trikdziy teorijos arti-
nj. Nulinis artinys, vadinamas medzio lygmeniu, nes tame artiny-
je piesiamos Feynman’o diagramos atrodo kaip issisakojes medis.
Trumpinant, sitilau nevengti sakyti tiesiog ,,medyje* pvz.: skaicia-
vimai atlikti medyje, kas reiksty, kad skaiciavimai atlikti taikant
nulinés eilés trikdziy teorijos artinj. Taip pat suskaiciuoti dydziai
gali buti ,,medzio®“ dydziai, pvz., neutrino medzio masé reiksty nu-

linés eilés artinj neutrino masei.

Kilpa, kilpos lygmuo (angl. loop, loop level) —nusako aukstesnés
eilés pataisas negu medis. Pataisos vadinamos kilpos lygmeniu, nes
Feynman’o diagramos, braizomos aukstesnés eilés pataisose negu
medyje, turi kilpas. Pagal kilpy skai¢iy galima pasakyti, kurios
eilés pataisa yra nagrinéjama. Taigi pirmos, antros, treéios ir t.
t. eilés pataisos vadinamos atitinkamai vienos, dviejy, trijy ir t. t.
kilpy pataisomis. Terminas galéty buiti vartojamas taip pat kaip

ir medzio terminas.

Buozgalvis (angl. tadpole) — Higgs’o lauko vakuumo tikétiniausios
vertés pataisos. Si funkcija vadinama buozgalviu, nes Higgs’o VEV
vienos kilpos pataisy Feynman’o diagramos atrodo kaip buozgal-
viai. Terminas gali buiti naudojamas ir nusakyti bet kurios eilés
Higgs’o VEV pataisoms. Higgs’o VEV minimizuoja potenciala,
taigi, buozgalviy funkcijos nusako potencialo minimumo salygas.

Kontranariai (angl. counterterms) — pernormavimo proceduroje at-
sirandantys nariai, kuriuos reikia apibrézti per pernormavimo sg-
lygas. Kontranariai panaikina singuliarumus is kilpy pataisy. Jie
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atsiranda is parametry bei lauky pernormavimo konstanty. Per-
normavimo salygose jie yra apibréziami (uzfiksuojami), kaip ,,at-
sveriantys“ diverguojanc¢ius narius, atsirandancius kilpose, taigi,

priesdélis ,kontra“ nusako ta ,atsvérima®

Sverto mechanizmas (angl. seesaw mechanism) — sverto mecha-
nizmai yra vieni iS neutriny masiy modeliy. Juose postuluojamos
dalelés, kurios sgveikaudamos su neutrinais suteikia neutrinams
mases. Neutriny masés Siose saveikose tampa atvirkséiai propor-
cingos postuluotyjy daleliy maséms. Taigi, jei postuluojamos da-
lelés turi dideles mases, neutrinai tampa mazy masiy. Si priklau-
somybé yra vaizdziai apibudinama sverto jvaizdziu, kur sunkios
dalelés ant vienos sverto pusés ,nusveria“ lengvus neutrinus esan-

¢ius kitoje sverto puséje.

Pliki parametrai / laukai (angl. bare masses / fields) — paramet-
rai / laukai neapibrézti per pernormavimo salygas. Pliki paramet-
rai yra tiesiog laisvieji parametrai Lagranziane, tac¢iau tik netie-
siogiai atitinkantys fizikinius dydzius, skaiciuojamus kilpose. Tuo
tarpu pernormavimo salygos suriSa pernormuotus parametrus su
fizikiniais dydziais, tarsi ,aprengia fizikine prasme“. Laukai taip
pat vadinami plikais arba pernormuotais analogiskai.

Antmasés schema (angl. on-shell scheme arba OS) — pernorma-
vimo schema, kurioje pernormavimo taskai yra eksperimentiskai
matuojamos daleliy masés. Tuose taskuose yra apibréziamos per-
normuotos masés bei laukai. Taigi, OS schemoje pernormavimas

vyksta ,ant“ masiy (angl. on mass shell).
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We present a basic formalism for using the Weyl spinor notation in Feynman rules. We focus on Weyl spinors with mixed
Dirac and Majorana mass terms. To clarify the definitions we derive the Feynman rules from the path integral and present two
examples: loop corrections for a fermion propagator and a tree level analysis of a seesaw toy model.
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1. Introduction

Despite the tremendous success of the Standard Mod-
el (SM), there is no doubt that it cannot be a com-
plete theory due to numerous experimental evidences
for which the SM fails to find an explanation. One of
these experimental evidences is the observation of
neutrino oscillations; for a short review of these ex-
periments see references [1, 2]. The oscillations prove
that at least two of the neutrinos have masses, but
the original assumptions of the SM forbid these mass
terms. So the neutrino sector and possibly the Higgs
sector should be extended with some new degrees of
freedom, i. e. new particles, to allow for the possibility
that neutrinos have a mass.

The simplest “building blocks” for a fermionic
particle content are Weyl spinors. Thus the model
building is usually done in the Weyl spinor notation.
However, if one looks at the standard textbooks on
quantum field theory (QFT), like [3, 4], one can see
that it is unusual to find a proper treatment for Weyl
spinors. This is in contrast to supersymmetry (SUSY)
references [5, 6]. As a result, non-SUSY calculations
using Weyl spinors are somewhat absent in the litera-
ture, although the Weyl spinor formalism is known
for an easier implementation on computer algebra
systems [7]. This is not very surprising as we have
only Dirac mass terms in the SM: the 4-component
spinor formulation is way easier to deal with in this
case. But considering a possible Majorana neutri-
no [8], theories with mixed Majorana and Dirac mass

terms for fermions become relevant; for a review of
seesaw mechanisms see [9]. Then the usual 4-com-
ponent spinor techniques are not so transparent to
understand the dynamics of mass mixing, whereas
the Weyl spinor notation gives a natural diagram-
matic approach to these cases, as we will see in Sub-
section 4.4.

The difficulty of using Weyl spinors also arises from
having many possibilities of different conventions. We
present the definitions, which are essential to under-
stand these possibilities in Section 2. With the conven-
tions from [5] we rederive Feynman rules in order to
make these conventions visible by using the path in-
tegral approach in Section 3. We focus on the exam-
ples that are relevant for studying a seesaw model. This
includes loop corrections for a Majorana particle in
Subsubsection 3.4.2 and Subsection 4.3 and a diagram-
matic approach of the seesaw itself in Subsection 4.4.

2. Weyl spinors

2.1. Definitions

The Weyl spinor [10, 11] is the fundamental represen-
tation of the group SU(2). The Lorentz group is ho-
momorphic to SU(2), ® SU(2), [12], where L and R
are labels to distinguish the two subgroups. Particles
fall into representations of these groups. A particle
which is in the fundamental representation of the L
subgroup and in the trivial representation of the R
subgroup is called a “left-handed” spinor and has left
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chirality. The opposite is true for the “right-handed”
spinor.

The two subgroups of the Lorentz group are related
by Hermitian conjugation and by parity transforma-
tion [12]. So if we do a Hermitian conjugation or a pari-
ty transformation on a left-handed field, we get the field
in the right-handed representation. Both of the two
transformations flip the representations L <> R, but
the Hermitian conjugation also makes a charge conju-
gation. For more detailed discussion see [11].

A Weyl spinor is anticommuting, so the symbols
that give the spinor metric are antisymmetric. Denot-
ing spinor indices by Latin letters, we write for left-
handed spinors

&=y, 1)

where € is the totally antisymmetric symbol, which
takes a left-handed spinor into its dual space by
the definition [5, 13]

§r=e", 8 =c 8, =0, 2

where § is the Kronecker symbol. Note that the com-
ponents of the spinor are Grassmannian (i. e. they an-
ticommute). The Hermitian conjugation puts a spinor
into the opposite handiness. The right-handed
spinor index is written as a Latin letter with a dot, so
(&) = & Doing Hermitian conjugation of the scalar
product of left-handed spinors

(0= (g x)" = (&) = xig™ 3)

and defining the raising and lowering of a right-hand-
ed index in a similar way as for the left-handed spinors

i— ab _ ) be — &
§i=e*t, 8 =¢; & ¢,;e"=0, 4)
we can write the definition of this metric:

12 _ B _ — s = 21 — 21 — s =
?=c’=¢ =g =lande =" =¢,=¢;=-1.(5)

Since the fields anticommute, we get
=8, =-x8=-c“c & =xE&=x¢. (6)

We define a summation convention for left-handed
(undotted) spinor indices to sum from up to down.
The Hermitian conjugation reverses this summation,
hence dotted indices are summed from down to up; to
conclude,

S =xf=8y,=xE, Ex = =8x"=x5" ()

2.2. Basic properties and the Lagrangian for Weyl
spinors

The four components of a 4-vector can be written in
the space of the direct product SU(2), ® SU(2),. Since
the fundamental representation of SU(2) has 2 de-
grees of freedom, a 4-vector can be seen as the pro-
duct of two fundamental representations of SU(2),
i. e. two Weyl spinors. Hence we can find a connec-
tion that transforms two spinors from these two Lor-
entzs subgroups into a four-component vector in
the Minkowski spacetime. The connection is

E'WX — f;'(—;uiw = _Xagﬁdfa — _Xayf.r (8)
with the definition
gtin = et )

These connections can be written as

3 = (I, - ™, 0", = (I, 3),, (10)
where g is a 3-vector of Pauli matrices, and I'is the 2 x 2
identity matrix. The product in Eq. (8) is a 4-vector
composed of two Weyl spinors. If we multiply it with
some other 4-vector, we will get a Lorentz scalar,

EA-o)x= f;Au(—;w'm X,= g‘ibfﬁ} Aﬂa—#[w €ahXb

= A, 0l = x(A - 0)F, ()
where in the first and the last equality the summation
convention is being used, which holds for these sig-
ma symbols as well. Assuming A, represents a vector
field, Eq. (11) forms a valid spinor-vector interaction
term in a Lagrangian.

Free field terms in the Lagrangian must be bilinear
and Hermitian. Given Eq. (7), it is easy to write down
the mass term for a single Weyl spinor. We can write
the mass term for a single left-handed spinor & as

LM:—%M(chfL gL, (12)

The parameter M is made real by absorbing
its phase in the Weyl spinor. The term defined by
Eq. (12) is called a Majorana mass term. A sin-
gle Weyl spinor with such a mass term is called
a Majorana particle, since from this Weyl spinor
one can construct a four-component Majorana
spinor. The factor of % is conventional, to avoid ad-
ditional numerical factors in amplitudes due to
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the symmetry of this coupling. Another possible in-
variant mass term can couple two Weyl spinors:

LD - _mDERTXL _ mLX”‘fR- (13)

These terms are called Dirac mass terms. If two
Weyl spinors share a Dirac mass term and do not have
a Majorana mass term, they are usually combined
into one Dirac spinor, which is nothing more than
two Weyl spinors with the same mass. Such particles
are called Dirac particles. It is also possible for Weyl
spinors to have all those mass terms, with the result
that the Weyl spinors are not in their mass eigenstates.
In this case, the diagonalized mass matrix in general
will give two different masses for two different Weyl
spinors. Those are often called two Majorana parti-
cles, since the diagonalized mass terms can be written
as in Eq. (12). The difference between Dirac and Ma-
jorana fermions is discussed in [11].

From Eq. (11) we see how a vector connects to
spinors. The partial derivative 0 is also a vector. So
we can write Eq. (11) with 8# in place of the vector to
form the kinetic term

L, =i8"50 ¢, (14)
which is Hermitian up to a total derivative, which
does not affect dynamics:

L= if”(_ﬂ‘aﬂfL = iflaﬂayfu +total derivative.  (15)
Note the chirality structure of this term. If we recover
indices, we see that

g £ = s (16)
has only a dotted index, which means that acting on
a spinor with 00 or 00 gives a spinor that has the oppo-
site chirality than the spinor the operators were acting
on.

The superscript L that we used in & and y* is just
aname of the field. We stick to this convention for nam-
ing left-handed spinors with superscript L and right-
handed spinors with superscript R that correspond to
particles and not to antiparticles. So &7 is in the right-
handed representation, but it is purely our convention
that we call & an antiparticle. All the results that are
obtained for the charge conjugated left-handed spinor
apply for a right-handed spinor and vice versa. The chi-
rality is all what matters in taking care of the algebra in
this formulation. Hence, keeping track of indices with-
out suppressing them is often useful in order to make
less mistakes. Whenever we do not use spinor indices,
recall the summation conventions shown in Eq. (7).

A lot of spinor algebra relations consistent with
these definitions can be found in [5]. For our pur-
pose, we only need

(17)

(18)

(00" + 0" ) = 270},
[G*c” + G'o* ]‘; = 2g*‘véz.

The spinor indices are suppressed using the sum-
mation convention of Eq. (7). g*"is the usual Minkows-
ki metric, taken to be diag(1,-1,-1,-1). When con-
necting these symbols with spinor indices, one can
connect only barred to unbarred sigmas. As we will
see, this knowledge helps in choosing the right rule
for writing amplitudes.

3. Propagators

When dealing with the path integral formulation, it is
convenient to go to the momentum space. For this we
need to define Fourier transformations of the fields.
For the left-handed Weyl spinor & we define

éL(x):Aefikv€L(k)’ f”(x)Z’/k-erf”(k)’ (19)

where

— de — D
[=J 8 [
and D is the number of spacetime dimensions. In
the spirit of dimensional regularization D is set to 4 at
the end of the calculations. The Dirac delta function
in D dimensions is represented by the integral

(20)

(277,')[)5(]( _kr)=/e—'u(k—k’). (21)

Using Egs. (19) and (21) in the action § = foK,
with £ given in Eq. (14), we arrive at the action in
the momentum space:

S = [i (@608 () = [ (M@ PP (22)

The Majorana mass term in the momentum space
becomes

Sy = [IMER)E(x) + ME ()& ()}

= [(ME-p)Ep) + MEPE P} (23)

For a Dirac particle, where we have 2 Weyl spinors,
we could define L and R fields to Fourier transform
in the same way. Then we would arrive at a Fourier
transformed action, where all fields are expressed in
the same p direction. But to have the same appearance
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of the p dependence as in the Majorana case, we rather
keep a definition for all left-handed fields the same, i. e.
we require &*" to Fourier transform the same as &, and
define
fR(x) :fke+ikx£R(k), Em (x) =fke'ik"fm(k). (24)
For two Weyl spinors & and &, sharing the same
Dirac mass, we have the momentum dependences

S, =J{&(p) @ PE) + E(-p) (0 p) E(-p)

-my & (=p) E(p) -m' E(-p) E"(p)}. (25)
Note that we do not have the freedom of choos-
ing the definition of the Fourier transformation in
the Majorana case, since we have twice less degrees
of freedom.
Eq. (25) can also be written in an alternative form
as is evident from Eq. (15). We have

L&) @ p) ) =-LEp) (0 p) E1(p)
=+ [Ep) (0 p) E(p). (26)
Using Eq. (26), the action of Eq. (25) can be written as
Sy =L18p) (0~ p) E(p) + E(p) B p) £ (p)

- m &(=p) &(p) - miE(-p) & (p)}. (27)

As we will see, the fact that we can write the ki-
netic term for a single Weyl spinor in two different
ways (Egs. (25) and (27)) results in the freedom of
choosing one of two rules for a single propagator line.

We introduce source functions to the Lagrangian
density in the position space as

JH(x) §H(x) + J¥(x) &(x) + H.c. (28)
and we define the Fourier transformation of the source
functions for left and right fields:

JHx) = Je k), J(x) = [ e &R (k). (29)

The Fourier-transformed version of Eq. (28) then
becomes

JP)Ep) + J*(=p) &(-p) + "' (P)§"(p)

(30)
+J¥(=p) §(-p).

The definition for the derivation with respect to
the source function is

) s s
&,(p,) (- P9,

(31)
6‘] (]7]) a(p )é‘h 5‘](1(])1):
&Il (p RS S ()

Since all Weyl spinors anticommute, this is true for
the sources as well, i. e. {*, J'} = {I*, J'*} = {J*, J""} = 0.
It also holds for their derivatives.

3.1. Propagator definitions

A propagator is a 2-point correlation function. Given
the path integral Z(J) = [[D¢]e*?, where [D¢] stands
for a formal measure of all possible field configura-
tions, and the action S(J) :fx(L +J¢), the 2-point cor-
relation function of some scalar field ¢ is given by

(Olpx)e()[0)=2"(J = 0[Pl (x)o( )eisU0)

6 |S(J)‘ .
6J(y> 66y

Since the correlation functions are evaluated at
vanishing sources and the path integral is a function
of sources, we abbreviate

z=2(],J") and 2| = Z(J, )| .., - (33)

Modifying the propagator definition for Weyl
spinors poses some complications mainly because
of their anticommutativity properties. We consider
a left-handed spinor & with an effective action S(J, J')
=[(L+JE +&J% . The product of J¢ = & is invariant,
but there is an ambiguity in the sign if we differentiate
with respect to the source function. Since we defined
+J¢, in the action, we have the property

( bgb) (Jbéb) 5 =

where the arrow indicates the direction of acting. This
arrow is introduced in order to compare the defini-
tions with [5], where this opposite direction of acting
for source derivatives is frequently used. Remember-
ing the summation convention for dotted indices, we
have

(34)
o6J¢

; +5)=_(J;§“’)5%=5”~ (35)

Given this, one can relate the definitions for prop-
agators using source derivatives acting only from

the left, with the definitions for propagators given in
[5]. They are:
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[ [ ‘

Wl 0200 2 5 G

R °

idJ, (X) l5f()’)

L8 8

(0 0)-2 igj*“'(y)iSJ"(x)Z‘
719 d

i8J(x) i8I ()" e
(0l.@E »fo)=z" i5j (y)iéJET(x)Z‘
6, b .
z iaj“(x)zia/b(y)"

fa ) Er 750
(Ole wgmlo)-2" s ?

(39)

L8 5
= 7z - zZ
i8J,(x)" i8I (y) |

We use the full definition for propagators, where all
corrections for a propagator are encoded in the path
integral Z. The definitions for propagators in [5] are
presented in the free field theory only, but the struc-
ture is the same. The only difference is the factor Z in
front of the expression, which we need to include to
keep the right normalization of correlation functions
in the presence of higher order corrections.

3.2. Propagator in momentum space

Since the momentum space is natural for Feynman
diagram calculations, we will define the Fourier-
transformed version of the previous propagator ex-
pression.

First consider a propagator for the left-handed
field & of the form

(0

"0)|0)=(/1DE 1) 1€, () E ') e

L5 8 /] (40)
i6.J,(y) i6J°(x)

We first take a look how derivatives with respect
to source functions transform under Fourier trans-
formations. Making use of the Fourier transforma-
tions defined in Eq. (19) and the chain rule for func-
tional derivatives, which is just a generalization of

@, 0 , we get
0x J Ox; 6y

s “fa? sIHp) 8
8J " (x) ot (x)874(p) (41)
PN A b 20" 5
= en ) 8/5p) =Je S ()

One can check that for the opposite chirality we
have

[ @r)’s (42)
875 (v) 87" (p)
Putting Eq. (41) into Eq. (40) we get
5 _ 6 6
(0f¢, &0n]0)= i67,(y) 16J°(x)
(43)

D D
_z f R 4(271:) ) ‘277:) ) z
pp' i6J,(p") 16J°(p)

The propagator depends only on the spacetime
difference x-y and not on x and y separately. So
the propagator should Fourier transform with a sin-
gle factor of x-y. By rearranging exponents from
Eq. (43) and adjusting the signs of the momentum to
have the e”#* factor in front, we get

<0 éa(x) éb(y)‘ 0> :'/'pe*ip(x,y)

(44)

Z—l/‘ o o-#) (27[) () (27[)”5
B, 165

This expression still depends on the spacetime
point y, because we did not yet restrict the coordinate
space propagator to depend only on the spacetime
difference x-y. But the translational invariance of
the action always gives this spacetime dependence for
correlation functions, hence the correlation function
is a translational invariant itself. To preserve this sym-
metry we need to have p’ = p in the momentum space;
the additional exponent in the brackets of Eq. (44) will
just give the identity all the time. There is also an ad-
ditional integration / . which might seem strange at
first glance. But actually, this integration is what is
needed to set p’ = p. To understand this, consider that
we have two derivatives with respect to sources. Since
the sources are set to zero, the terms that contribute
from the action must also come as bilinear func-
tions of sources. After differentiation with respect to
the sources we should have two Dirac delta functions,
recalling the definition of differentiation in Eq. (31).
Because we have an action in the momentum space as
/ L(w@), we have only one integration measure coming
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from the action, which uses one Dirac delta function
to fix one momentum. So the integration fp, is need-
ed to fix the other free momentum. Hence p’ serves
just as a dummy integration variable that matches di-
mensions and sets p’ = p at the end of the algebra.
As a result of these considerations, we can safely omit
the exponent in the brackets (e¥??"7>1) from our
definitions for propagators. Furthermore, since we
always have p’ = p in the end, there is no difference

on what source function we put this integration varia-
@n)’s em)°’s  @en)°s (@n)°s
B, W) L) 6 |
Eq. (44) without any consequence. However, the signs
of the momenta depend on the choice of the Fourier
transformation.

We define Fourier transformations for 2-point
correlation functions to be

(0], &1 0[0)=f ¢ X0

ble: we can change

o)FT(p) (45)

aSa
and

(0 0)= [0
i

where FT(p) labels that the Fourier transformed ver-
sion of (0|¢ (x) &(y)|0) depends only on the momen-
tum p. The propagators in Egs. (36) and (39) have
an opposite chirality structure compared to those
of Egs. (45) and (46). We defined that fields that are
of opposite chirality to each other transformed with
the opposite momentum sign in Eq. (19). In order
to be consistent with this definition, we have Fou-
rier transformations for the propagators in Egs. (36)
and (39) with the opposite momentum sign rela-
tive to Egs. (45) and (46). This is also consistent with
momentum dependences in the free field actions of
Egs. (22), (23), (25) and (27). Given these definitions,
we get the expressions for all four types of propagators:

£,¢%0) (46)

FT(p)’

e S 0
(0l¢.£210)sry =27 g;)azap) % , (48)
0]€.8"[0)er = y%ﬁj—fgz (49)
Ol 510) -2 ST L0 71 50

Now we take two Weyl spinors, & and &, with
the same Dirac mass that couples them together.

Since we introduced a Fourier transform in such a way
that & transforms the same as &, we can already write
propagators for this Dirac particle by just relabelling
fields and without changing momentum dependences:

(271) °5 (271) o

<0‘§L‘riz§l“’ FT(p)_ » SJL(p) 871(7) , (51)
o @r)’s  @r)°s

(OF"¢10)eri =27, o) ey Y
Lbe Rt _ @r )05 4(27I)D5

<0‘§ ga 0>FT(p) ‘/Zﬂ,iaJR’mep) l(i]é(p')z > (53)
RgLtalg _ @n)’s_ @er)’s

< ‘5 4 )l-T(p) /p 15.];1( 17) i(i]R’](p') ‘ (54)

These propagators can be written differently, for
example, one can use the propagator (0|¢:£}1|0)
instead of (0[8"§"(0) ...
from Egs. (47) to (50)

FT(p)

- The changes should be clear

3.3. Propagator for a free field

Considering free fields, it is always possible to shift
fields in the action in such a way that the field depend-
ent part is separated from the source dependent part.
To be more precise, consider we have a field £ and we
shift it to £’ such that the path integral becomes

Z() = [IDEJe = [[DE]e%70 = NV,

N=/[D¢']e*®, (55)

The integration over fields gives just a constant
factor N to the path integral Z(J).

Now let us consider the possible shift for Weyl
spinors. We use left- and right-handed fields & and &
sharing a Dirac mass term. Then the fields are shifted
by a linear combination of sources, i. . the left-handed
field will be shifted by a linear combination of left- and
right-handed sources. From Subsection 2.2 we know
that constructing something that is left-handed from
an originally right-handed spinor can be done with
ap. It is easier to see this if we restore spinor indices.
When two spinors have only a Dirac mass, the shift for
the left-handed field will have the form

£(p) > &(p) +x-(0p),, J(-p) +y-J:(p),  (56)
where x and y are just some unknown constants.
The minus sign in the momentum dependence comes
from the fact that the propagation of the right-hand-
ed field in the negative time direction is the left-hand-
ed field in the positive time direction. The important
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thing is keeping track of the chirality. Having in mind
our labelling of R and L, the shift for &® is the same as
for & except for interchanging the labels R <> L and
the connection ¢ -> ¢ due to the opposite chirality of
&R, In the case of one left-handed spinor with the Ma-
jorana mass only, we can identify R > Lt in Eq. 56).

It is possible to calculate the coefficients x and y
by straightforwardly inserting the shift, Eq. (56), into
the action and requiring terms that couple sources with
fields to cancel. However, since this form of the shift
includes the transformation between the left and right
chiral states, it makes sense to combine the left and
right chiral states into one 2-component vector, where
the components are Weyl spinors. This is just the usu-
al 4-component spinor in the chiral representation.
How this is done one can find in the appendix of [5].
The source dependent part of the action for two Weyl
spinors sharing a Dirac mass term is

IS(J)——/ JL-‘( )1(0 p)JL( )+JR1( p)l(G p) R( p)
N S
}57

+ =75 Ep) I (p)

R ()
p*—m}

D P mD

Remembering the definitions of propagators in
Egs. (51) to (54) we get

(leet), =1~ (59
(olg"elo), =i (59
(e’ 710),,, =i~ (60)
(0" o), =i (61

FT(p)  p°"—mp

Comparing Eq. (57) with Egs. (25) and (27), we
see that the same action can be written as

SO R ) 1 )

+J (p) inty Jm(p)+JR( p) J”(P)} (62)

Egs. (58) and (59) can be written in alternative
forms by changing p > -p and exchanging 0 < G.
Hence we conclude that in this notation

—ic-p

p — p

‘2" P_ s equivalent to (63)

2
p —mp

If we have a Weyl spinor with a Majorana mass
term, the action can be written as

isU)=-2f {J“( ) TR ) KT )

JHE p)J‘(p)+ J“( p)J“(p)} (64)

p2 MZ

It is obvious that the same equivalence for propa-
gators shown in Eq. (63) holds too. Using this action
we get only two independent propagators instead of
four, but all four forms, as seen from Egs. (47) to (50),
are present.

3.4. Propagator for the interacting theory

In the previous section we saw the free field terms
of the action. If we consider an interacting theory,
we have an additional term S, and the path integral
becomes

7 ~ eSinttiSfree = eiSinteiStree |

(65)

Most of the models in particle physics are built
to describe the interactions as a perturbative series
of this expression. The only case when the pertur-
bation theory is not applicable is when we have
a bound state. Since we are interested in models that
should describe interactions with neutrinos (which
do not participate in such states), treating iS_ as
a perturbation is general enough. The free field
term is expressed in terms of the source functions,
so the interaction term then can be expressed as de-
rivatives with respect to sources acting on the free
field action: S, _is promoted to an operator S, . Then
the path integral becomes

Z ~ et e — [l +iS,, +% (iS,.)"+ } e (66)

Given the Lagrangian of a theory and using
the definitions for propagators of Egs. (47) to (50)
or Egs. (51) to (54), we can calculate corrections
for the tree level propagators to the desired order.
The first term of this expansion is just a free field ap-
proximation that we discussed in the previous sub-
section. The second term becomes zero after setting
sources to zero as will become clear after we work
out the expressions for i$, . The third term in the ex-
pansion gives a loop correction for the propagators.
In the following subsection we summarize the ex-
pressions of iS,_ for possible interactions with Weyl
spinors.
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3.4.1. Vertices

We will consider possible couplings that appear in
renormalizable models in four dimensions. We will
leave, however, the letter D in the exponents of phase
space integrals, denoting the number of dimensions
as a free parameter in our expressions. This empha-
sizes that dimensional regularization can be used be-
fore setting D = 4.

In four dimensions a spinor can couple to a vec-
tor or a scalar. The spinor-vector coupling term in
the action is

iS, = +ig [£ (0)(d()-0)E" ()

—ig [¢1@(A0) 0) ). (67)

This is the same term written in two different
ways, where g is some coupling constant. We promote
this term to an operator i8Y by changing the fields
to the corresponding derivatives with respect to
the sources. By making use of Egs. (41) and (42) we go
to the momentum space. The expressions for iS,_ are

is), = +ig @r)"8(p, +py+ ps)ol
Pr-Py Ps

y @r)’s  @mn)°s (@r)°s

16 (p)i6J;" = py)i8J; (p,)

(68)

or
is”

int _lgf
Piopaspy

(277)1)6(171 +py+ py) gh
5 en)’s  @em's @r)’s
184 (p))i6.J"(p,) i8J(p,)

where we restored spinor and vector indices. We
see that there is a freedom in choosing the connec-
tion between the vector and the spinors, i. e. we can
choose either ¢ or -0 to write down the same ver-
tex. The minus sign for the momentum comes from
the definition of the Fourier transformation present-
ed in Egs. (19) and (24).

The spinor scalar coupling can come in two forms:

(69)

%yld)& LEL4H.c, and y,pEME +Hee. (70)

Here the first term couples some scalar ¢ to the same
Weyl spinor and the second term couples it to two dif-
ferent spinors. We will always introduce the factor
in the definition of the coupling of a scalar with two
spinors of the same field in order to cancel additional
combinatorial factors that appear due to the symmetry
of this term. We take ¢ to be a complex scalar for gen-
erality, so that we have a complex coupling constant.

Using Eq. (41) we get iS$ for the scalar case in
terms of the source functions

-sz 1)’1_/ (2”) 3(py+py+ps)

or)°s . 0r)°s . 0r)°s (71)
i5J¢(pl) iEJL“(pZ) iéJj(ps)
or
S = ih_/:ﬁ({%z’{)}f‘s(ﬁ]*'[’z +p3)
(72)

on )’ @r)°s
15J¢(p)

(277:) [
15J’”"(p ) i6J4p)

The Hermitian conjugate of i$$ just gives the Her-
mitian conjugate coupling constants and opposite signs
for the momentum dependences in the source func-
tions.

3.4.2. The spinor-vector loop

Now we can calculate corrections to all propagators de-
fined in Egs. (51) to (54). We see that the term linear in
iS, vanishes forapropagatorafter setting sourcestozero,
since all possible interaction terms acting on the free
field part of the path integral will leave an odd number
of sources. Therefore the loop correction comes from
7(1S )7 in Eq. (66). To see how the path integral for-
mahsm applies, we work out the example for the loop
correction to the propagator defined in Eq. (51).

Consider the loop correction to a propagator for
a fermion with only a Majorana mass and a vector bo-
son in the loop. Let us call the spinor & and the vec-
tor A . The free field term for this fermion is given
in Eq. (64). The interaction operator then is either
Eq. (69) or Eq. (68). Let us use the form of Eq. (68).
Then the interaction operator to order O(g*) is

S65.)=2 [ ) 8(pyspstp) 2m) kst

ProP2sP3skikasks

i @er)’s @r)’s (r)°s

aa”; oLt . 73
B 16 Cp) 8J(p,) (73)

@er)’s @n)’s ()’
P8I (k) i8I (~ k) i8I (k)

We abbreviate the fermion propagators of the free
field as

P(p)= 2'
P -

P(p)—“’ 2 s PP 5 (79)
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suppressing the spinor indices. We will use the let-
ter G as an abbreviation for the boson propagator,
which is an even function of the momentum:

G(p) = G(=p) . (75)

Let us take A to be neutral. In this context, it is
enough to say that a neutral field is self-conjugate, i. e.
it is its own antlpartlcle On the Lagrangian level we
have a factor of - in front of the bilinear terms due
to this extra symmetry, hence the free field term for
a neutral boson after completing the squares is

5==3] JEPGEI(p). (76)
For the propagator of the A, field we write G, (p)
which is also symmetric under U
With the definition of the propagator in Eq. (51),
the correction to one loop order is

> @r)’s  @m)°s
) /p’ i6J-(p) 16J5(0)

)

<0‘ éLTag La

(77)

where the number in the brackets of the superscript
denotes the order of the correction. In Eq. (77) we
have 8 derivatives with respect to the sources in to-
tal. Since the propagator is evaluated at vanishing
sources, only the term ;(lsfm) will contribute from
the expansion of the free field part of the path inte-
gral. Looking at Eq. (73) we see that in Eq. (77) we
have derivatives with respect to 3 J*'s, 3 J's and 2 ] s.
The only non-vanishing terms are those that have
the same number of sources. These contributions

1. 4
from Z@Sfree) are

Lip gL
-/U-J‘w,wxw 4,2J G UHPIY o
(78)
41 _ .1 ]
L aa WG RIS O R ) S0 R ),

where @ , @,... are the momenta of different pairs
of source functions. All the indices are contracted.
The momentum dependences of the source func-
tions can be seen in Eqs. (76) and (64). Acting with
source derivatives we get 8 Dirac delta functions that
are integrated over with the momenta @, ®,..In
the end one arrives at an expression that can be dia-
grammatically expressed as a Feynman diagram.

To see explicitly how this is done, we take the first
term of Eq. (78) as an example:

S @n)’s  @n)’s
»'i6J5(p) 16J”(p')

X —| (1S lm) /

(79)
——JG LUHPIY|

1,0, 03 0, 412

The easiest start is to differentiate this term first

with respect to the vector bosons, since it can be
@er)’s (n)°s

i&/ﬁ(pz )i&]; (kz)'
the definition of differentiation, Eq. (31), we get

done independently: Remembering

er)’s @r)°s ;1 ., .
2 6 G2 COV G @) )

= [ @r 8(p: + ) Gy @) 6 @, ~ky) - (80)
= (2m°8(p, + k)G, (k).

Differentiating in the same manner with respect
to the spinor sources from Eq. (73) and integrating
with respect to the momenta @,0,, and @ p We are
left with 6 Dirac delta functions in total (2 coming
from Eq. (73)). The integrations over all momenta,
coming from iS,_ in Eq. (73), will connect these mo-
menta to preserve momentum conservation. The last
integration over p 'completes it with setting p'= p as
discussed in Subsection 3.2. IT, shown in Eq. (79), be-
comes the sum of

=PI+ 1 er) 50

(81)
<[ PUp)OLD O, P (p, )} ,

5 - pﬂ(p){_l m)°50)ie)’

| (82)
< Do (kP +pz)o:b-ﬁb“@l)},

T=—(ig ) [P*“()0,P ()] D,,, ©0)[[0}, P 0], (83)
and

L=+P (p)lig) [0l P (p+00%;D,, P Up) . (84)

These terms are represented as Feynman dia-
grams in Fig. 1. Arrows on the lines show the flow of
the left chirality, i. e. they point from dotted to un-
dotted indices. The momentum flow is taken from
left to right as shown with additional arrows near
the momenta.
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Fig. 1. Feynman diagrams showing the terms in Eqgs. (81)
to (84). The bubbles B, and B, shown in (a, b) are can-
celled by the normalization of the path integral. T,
the tadpole connected to the propagator, shown in (c),
vanishes. A, shown in (d), is the contributing loop cor-
rection to the propagator.

The amplitudes in Eqgs. (81) and (82) are the so-
called vacuum bubbles. They are cancelled by Z™ to
all orders. To prove it for this order, see the O(g?)
of Z at vanishing sources. By the same argument of
matching the number of derivatives with the number
of sources we get

Loa 2 el 1pm 21 v
E(lsmt)ze Vs :E(lSinl)zi(lsfree : .

. Tra N2 1g 3
The only non-vanishing terms from E(IS\H.) 565 )
are

(85)

J D,J (J-PIY

6L

SGWD[ S IDIT U BRI, g

“’33

Working out the first term, one arrives at the terms
that are shown in the brackets of Egs. (81) and (82).

There is also an interesting factor of 3 > in Egs. (81)
and (82), which stands for the symmetry factor of these
diagrams, i. e. the diagram is identical if you change
places of two identical fermion propagators or places
of two vertices. Also, there is a minus sign in Eq. (82).
This is due to the anticommutativity of fermions: each
closed fermion loop gives a relative minus sign to
the amplitude. Just as expected, the symmetry factors
and the rule for closed fermion loops are the same as in
the usual Feynman diagram calculus.

An interesting diagram is drawn from Eq. (83),
which is a tadpole connected to a propagator. Note
that it has a minus sign due to the closed fermion loop.
This already looks strange from a physical perspec-
tive: the gauge boson of momentum 0 is vanishing
into the vacuum. Since a vector has a Lorentz index,
we might worry about the Lorentz invariance if this
would contribute. But it does vanish: the propagator
P(k) is an odd function of k, so the term [o, P )]
gives 0 when integrating over all values of t e momen-
tum. Note that the propagator P, (k) is even: a tadpole
diagram appearing with this propagator would give
a contribution. This cannot happen with a gauge bo-
son, but it appears in the interaction with scalars as
will be discussed in Subsection 4.3. So we are left only
with Eq. (84) contributing to the one loop correction.

<

gla -
- " _igH
F10.P or T by 104 Py

2 2 2 2 2 2
p—-m p-m p —-m p —m

() > (b)

gLTd T) éLu

—-ic"“p,,

gLT(z

(0) f” d)

———
. éRTa €L

61?,1} (

imé ! im'§ Y
> 2 2
p —m p

2
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Fig. 2. Feynman diagrams and rules for propagators.
These are all possible diagrams for propagators of Weyl
spinors. The corresponding Feynman rule is written un-
der each diagram. For the propagators shown in (a, b)
one can choose between two possible rules. The mass
term can be either Dirac or Majorana in these rules, but
for the Majorana case one has to identify & = &' in (c, d).
Propagators in (c, d) are even functions of the momen-
tum, hence the direction of the momentum flow is irrel-
evant and not shown in the diagrams.

4. Feynman rules

4.1. Propagators and mass insertions

All the definitions in this paper are consistent with
the definitions of [5]. To present Feynman rules for
Weyl spinors, one has to include a chirality flow in
the diagram. An arrow on the propagator line is de-
fined to show the direction in which the left chirality
flows, i. e. the arrow is directed from the dotted in-
dex towards the undotted index. Whenever a chiral
symmetry breaking term appears (such as a mass),
the directions of arrows indicate this by showing op-
posite directions in the diagram. This is in contrast
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with Feynman diagrams for 4-component spinors,
where the direction of an arrow is defined as fer-
mion flow, which has to be preserved all the time in
order to have fermion number conservation. Feyn-
man rules for propagators of Weyl spinors are shown
in Fig. 2.

We first consider the propagators shown in Fig. 2(a,
b). We draw an additional arrow near the propaga-
tor line showing the momentum flow. The definition
of momentum flow is crucial for these propagators
in order to assign the correct rule. To see why this is
the case, recall Eq. (63). We have two alternative forms
of writing down the expression for the same propaga-
tor and this form is related with the direction of mo-
mentum. This freedom can be understood comparing
the two equivalent expressions for the same action
shown in Egs. (25) and (27) in terms of Weyl spinors
or in Egs. (57) and (62) in terms of sources functions.
These alternative forms of writing down the same ac-
tion are reflected in the rules shown in Fig. 2(a, b). We
can go from one form to the other by either flipping
the arrow of the propagator, or by changing the direc-
tion of the momentum. For Fig. 2(a), where the left
chirality goes from left to right, we have the propagator
~ op or by changing p > —p we have ~op. Equivalently,
if we flip the direction of chirality as in Fig. 2(b), we
have the propagator ~op or ~-op.

The propagators of Egs. (60) and (61), shown in
Fig. 2(c, d), exist only if the mass term is not zero. These
propagators are even functions of the momentum,
hence the direction of the momentum is not impor-
tant. Since the mass term for fermions couples different
chiral states, the direction of the arrow is not preserved
along the propagator line for these propagators.

All the rules for propagators shown in Fig. 2 are
obtained using the action of Eq. (57) and the defini-
tions of the propagators from Egs. (51) to (54). Al-
ternatively, one could start from a chirality preserv-
ing action, where the mass terms are zero, and treat
the mass terms as couplings. Then we have massless
propagators as the first approximation in Fig. 2(a, b).
Taking a Dirac mass term, Eq. (13), as a coupling, we
get the Feynman rules shown in Fig. 3 with m = m_,,
Making an infinite sum of even numbers of mass in-
sertions into the massless propagator for the Weyl
spinor, we recover the mass term in the denomina-
tors of the propagators shown in Fig. 2(a, b). Making
an infinite sum of odd numbers of mass insertions
gives rise to the propagators of Fig. 2(c, d). If we have
a Majorana mass as in Eq. (12) instead, we will have just
the same rules of Fig. 3 with m = M. Making the infi-
nite sums of these insertions will give all the same rules
shown in Fig. 2 identifying & = &'" and m = M.

(a) (b)

—imd; ~im'§?

Fig. 3. Mass insertion diagrams and rules. These diagrams
correspond to mass terms if they are treated as couplings.
These rules can be used for either a Dirac or a Majorana
mass term in the same way, i. e. m = m if we have a Dirac
mass term as in Eq. (13) and m = M if we have a Majorana
mass term as in Eq. (12). The direction of arrows shows
the chirality structure of the mass term. The momentum
conservation along the line is understood. The direction
of the momentum flow is irrelevant just as in Fig. 2(c, d).

4.2. Vertices

To define the set of rules for interactions with Weyl
spinors, one just needs to understand the chirality
structure of the interaction terms. The scalar-spinor
interaction term changes chirality. Hence the arrows
of the spinor lines point in opposite directions in
the diagrams as shown in Fig. 4(b, c). The momenta
are defined to flow into the vertex and the Dirac delta
function of these momenta gives the momentum con-
servation at the vertex. In Fig. 4(b) we define the cou-
pling constant y to come from the term that couples
two left-handed spinors as in Eq. (70). Figure 4(c) is
just the Hermitian conjugate of Fig. 4(b) with a cou-
pling y'. If the scalar field is real, then one can define
the phase of the spinors in such a way that y" = y.

(a) (b) |
[
———<—
igad(2 p,) or -igod(Z.p,) iyd(Z,p)
©
[
—>—
y'o(Zp)

Fig. 4. Feynman diagrams and rules for vertices. The cor-
responding Feynman rule is written under each diagram.
There are two possible rules for a vertex with a vector bo-
son, as shown in Fig. 4(a). All momenta are defined to
flow into the vertex, so that §(% lp[) gives momentum con-
servation. The rules for vertices with scalars are shown in
Fig. 4(b, ¢).
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The spinor-vector interaction term, shown in
Eq. (67), preserves chirality. Hence arrows on the prop-
agator lines must show in the same direction for this
coupling. There is also a freedom in choosing the con-
nection: either o or o, as seen in Eq. (67). These two rules
are related by a relative minus sign. The rules, shown in
Fig. 4(a), are consistent with this sign convention:
L, =+go- V& = ¢l VE.

i

(87)

Note that we also have a freedom in writing the ex-
pression for the propagator as shown in Fig. 4(a, b).
But ¢ can only be connected with o and vice versa as
discussed in Subsection 2.2. Once we choose a rule for
the vertex, we cannot choose the form of the propaga-
tor freely anymore. That means, if we choose a vertex
as ~0, both propagators must be ~o to form a product
~0o0. We illustrate this by an example in the next sub-
section.

4.3. Using Feynman rules: loop correction

To check the consistency of the rules and to present
an example of using them, we derive Eq. (84) directly
from the diagram shown in Fig. 5(b). This example
helps to understand the property in Feynman rules
for Weyl spinors that is not apparent in the usual
Dirac spinor notation: the one to two correspond-
ence between the diagram and the rules appearing
in Fig. 4(a), Fig. 2(a) and Fig. 2(b). We use the same
abbreviations for the free field propagators as in
Egs. (74) and (75). Taking the momentum flow from
left to right, the rules presented in Fig. 2(b) tell us
that we can choose either P(p) or P(-p) for each fer-
mion line. The rules for the vertex, shown in Fig. 4(a),
give us the freedom to choose between iogd(Xp,) and
-i6gd(Zp,). As noted at the end of the previous sub-
section, we can connect only barred to unbarred sig-
mas. We integrate over internal momenta of propa-
gators which use up the delta functions that enforce
momentum conservation at each vertex. So we are led
to two possible ways to write this correction:

(p)=P(p) { [igo) P(p+ k)D(k)(igG)} P(p)  (88)

or
n(—p):P(—p)[/k S iga)P(—p—k)D(k)(—igS)}P(—p)- (89)

Because P and P are odd functions of the momen-
tum, IT and IT are also odd functions. If we recover
contracted indices, one can see that the functions I1
and II differ only by the index structure and this in-

dex structure is the same as for P and P, respectively.
The diagrams for these functions are presented in
Fig. 5. The propagator shown in Fig. 2(b) together
with its correction in Fig. 5(b) can be written as

P(p) +1I(p) or — (P(p) + T(p)),

whereas the diagram in Fig. 5(a) leads to a correction
for a propagator shown in Fig. 2(a):

P(p) +11(p) or — (P(p) +T1(p)).

The corrections do not spoil the index structure
and the properties under p->-p for correlation func-
tions, which just means that we managed to consist-
ently define Feynman rules. The freedom of choosing
one of two rules for a vertex shown in Fig. 4(a) and for
propagators shown in Fig. 2(a, b) at one loop order is
reflected by the two functions for the same diagram as
shown in Fig. 5. This justifies the freedom of choosing
one of the two rules for the same propagator shown in
Fig. 2(a, b) and for the vertex shown in Fig. 4(a) at one
loop order.

(90)

(91)

(a) (b)

T(p) orTI(-p) T(p) or TI(-p)
Fig. 5. Gauge loop corrections for the propagators shown
in Fig. 2(a, b), respectively.

As discussed in Subsection 3.4.2, the vacuum bub-
bles do not contribute to the corrections. Also, the tad-
pole with a gauge boson connected to the propagator
gives a vanishing result. The scalar tadpoles shown in
Fig. 6 do not vanish. Usually one requires as a renor-
malization condition that these tadpoles cancel to-
gether with the tadpoles and counterterms arriving
from corrections to the vacuum expectation value of
the scalar field. However, it is important to note that
other possibilities in defining renormalization con-
ditions exist and, in principle, tadpoles can also be
taken into the definition of a propagator.

(a) (b)

Fig. 6. Tadpole diagrams that give non-vanishing results.

The corrections for a single propagator shown in
Fig. 2(a) has four possible forms. This is because there
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are four forms of propagators in the Weyl spinor no-
tation, hence we are led to four possible combinations
of external legs shown in Fig. 7.

(a) (b)

(©) (d)

Fig. 7. All possible diagrams for correcting the propaga-
tor shown in Fig. 2(a). 1PI stands for the sum of all one
particle irreducible diagrams.

4.4. Using the Feynman rules: example of the Seesaw

The seesaw mechanism [14-17] is an illustrative
example for the usage of the sets of rules for Weyl
spinors shown in Figs. 2, 3. Instead of looking at
the seesaw extension of the SM, we consider a simpli-
fied toy model. We take two Weyl spinors & and &
coupled with a Dirac mass term and we give a large
Majorana mass to &, taking M>>m,:

£, = —(myE "€+ He) - %M(é MERLHE).  (92)

We treat the Majorana mass term as a first approx-
imation for the mass of &® and the Dirac mass term
as a coupling, shown in Fig. 3, which means that to
the first approximation &" is massless and does not
have propagators like in Fig. 2(c, d).

The mass term m_ mixes the fields & and &*. To
estimate the size of this mixing consider the diagram
shown in Fig. 3(a), which represents this mixing term.
We can interpret this diagram as the field & trans-
forming into &* with the coupling of (-im) = (-im,).
We take the positive momentum direction and assign
propagators to external lines for & as in Fig. 2(a) with
m? = 0 and for & as in Fig. 2(b) with m? = M2. This
correction reads

where we used the property presented in Eq. (18) to
get (p - 0) (p - 0) = p*. Eq. (93) is an expression for
the propagator for &, of the form shown in Fig. 2(c)
with m = M and an additional factor of ﬁ This
means that the propagating field & transforms into &
by a fraction ~ 2.

We further explore diagrams that give correc-
tions to the & propagator. The correction arising from

the Dirac mass term for a propagator of &" is shown in
Fig. 8(a). The diagram of Fig. 8(b) gives rise to a prop-
agator of a form shown in Fig. 2(d) that is absent in
the case when the Dirac mass term is neglected. Con-
sidering the case, where & is near its mass shell, we
have p? « M*. The diagram in Fig. 8(b), using the rules
from Figs. 2, 3, gives

ipo iMoo ipo
2 7 Wiy T
p -M P (94)
2 2
——ih%E—lmg 12 s m= "o,
M p M

which is a new propagator for &. This expression is
the first term in the infinite sum of

(95)

which we get when considering infinite copies of
this diagram. Note that we have an opposite sign to
the normal convention for this propagator.

Fig. 8. Mass insertion diagrams for correcting the prop-
agator of &.

Taking the diagram shown in Fig. 8(a) and using
p* < M?* we get

po . S o po (imy)’
7 Wy 2D Ty TS 2
-M P p M

(96)

Equivalently, considering the infinite sum of cop-
ies of this diagram, one gets

2 4
i@[u(imj [im) ] A
M) pz[H'ng

M

From this propagator, we see that the field is
2

97)

rescaled by a factor of |1+ An/q[% .

Having the result from Eq. (93), we can define
anew ﬁel;ln, to include the admixture of ¥ with a frac-
tion of - —2

Lo_gl_Mp grt, 98
T (%8)
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Then the transformation for £*' reads

m
Ew =78 +E" (99)

These fields are normalized up to the first order in
"o This is evident from Eq. (97), which says that &
rescales with a factor of

2 2
,/1+%:1+0[%J~

One can also check that inserting these redefini-
tions leaves the kinetic term unchanged up to the first
m
order in 7. Inserting the inverse transformation

(100)

L_gt , Mpgrt 101
§h =gk, + Togtt (101)
Ri__Mper  gry (102)
§ M 51’[5\’\,’ new
into Eq. (92) we get
2
(103)

1 Rt gRY mp
——M(EEN +He)+ O] —2
L ) o 2 |

We see that the phase of & should be redefined
in order to get the right sign for the mass term. This
redefinition of the phase to get a positive mass term in
the Lagrangian also cancels the minus sign in Eq. (95),
which means that we recover the normal convention
for a propagator. The phase of the parameter % can
also be absorbed into the field definition. So the final
mass term for the redefined fields can be written as

£, =g mlEL gL He)

104)
1 RY g RY m]z) (
-~ MG, St He )+ O =51,

S MEL Gl e+ [Mz

where m, and M are real Majorana masses. By these
redefinitions, we get rid of the mixing between
the two spinors up to the first order in “2. The mass

parameter m, is the same as in Eq. (94).
5. Conclusions

The main confusion in using Feynman rules in
the Weyl spinor notation comes from keeping track
of definitions. We see that in the Weyl spinor formu-
lation we have an additional freedom of choosing
between two equivalent rules for the same diagram.

This one-to-two correspondence between diagrams
and rules, as we see in Figs. 2 and 4, makes it even
more complicated to follow where minus signs must
appear. We try to ease this confusion by presenting
explicit derivations of Feynman rules from the path
integral and emphasizing on the definitions. We also
define propagators in the momentum space rather
than in the position space. This leads to the unusual
looking propagator definitions presented in Egs. (51)
to (54). Concentrating on the momentum space we
explore different choices of momentum dependences
of the fields: Majorana spinors do not have the free-
dom in choosing momentum signs in the Fourier
transformation, whereas the Dirac spinors do. In
order to have the same definition for both cases, we
introduce the convention to fix the momentum de-
pendences of the Dirac spinor.

The examples presented here, loop corrections
and the seesaw mechanism, are related to our future
work. We plan to explore the nature of Weyl spinors
with mixed mass terms in broken gauge field theo-
ries. The Standard Model with the seesaw mecha-
nism for one family will be our next step. Later we
will include mixings between families and a richer
Higgs sector than in the Standard Model. The mixing
terms then complicate the analysis and Weyl spinors,
as the smallest representation for fermions can show
their full advantage over the usual 4-component
spinor notation.

The authors thank the Lithuanian Academy of Sci-
ences for the support (Project DaFi2015).
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FEINMANO TAISYKLES VEILIO SPINORIAMS SU SUMAISYTAIS DIRAKO IR
MAJORANOS MASES NARIAIS

V. Dudénas, T. Gajdosik

Vilniaus universiteto Teorinés fizikos katedra, Vilnius, Lietuva

Santrauka

Pristatome formalizmg, reikalinga norint nau-
doti Veilio spinorius remiantis Feinmano taisyklémis.
Pagrindinis démesys skiriamas Veilio spinoriams,
sumaisytiems su Dirako ir Majoranos masés nariais.
Tam, kad bty aiSkas visi naudojami apibrézimai, mes

iSvedame Feinmano taisykles i§ trajektorijy integralo.
Taip pat pristatome du paprastus Veilio spinoriy nau-
dojimo pavyzdZius: fermiono propagatoriaus kilpos
pataisy integraly sukonstravima ir Zaislinio sapuokliy
modelio pirmojo artinio masés nariy i§vedima.



IT

On the Renormalization of Neutrinos in the Seesaw Extension
of the Two-Higgs Doublet Model

Vytautas Dudénas and Thomas Gajdosik

Acta Physica Polonica B, 48, 2243-2249, 2017

Reprinted under Creative Commons Attribution 4.0 International
license



Vol. 48 (2017) ACTA PHYSICA POLONICA B No 12

ON THE RENORMALIZATION OF NEUTRINOS IN
THE SEESAW EXTENSION OF THE TWO-HIGGS
DOUBLET MODEL*

VYTAUTAS DUDENAS, THOMAS GAJDOSIK

Faculty of Physics, Vilnius University
Universiteto 3, 01513, Vilnius, Lithuania

(Received November 6, 2017)

We present the complex mass renormalization scheme for mixed Majo-
rana fermions using the Weyl spinor notation. Showing the expressions for
field and mass renormalization constants, we discuss the differences to the
on-shell renormalization scheme. Working in a seesaw extended two-Higgs
doublet model, we apply the complex mass scheme for neutrino masses and
mixings.
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1. Introduction

The most commonly used renormalization scheme is the on-shell scheme
(OS). However, it is shown that for unstable particles this scheme leads to
gauge non-invariant definitions of masses |1]. In the seesaw mechanism (for
a review, see [2]), the heaviest neutrino is by no means a stable particle.
Original assumptions of the seesaw mechanism put the heaviest neutrino
beyond the reach of any possible experiment. This partially justifies the use
of OS, since we are looking only at the light neutrinos. However, for a more
precise study of the model, the assumptions on the unmeasured parameters
should be relaxed and this justification is lost.

The extension of the OS for unstable particles is the complex mass
scheme (CMS) [3-5]. It is the analytical continuation of the propagator
to the complex domain. In that way, the information about the decay width
of the particle is included in the renormalized mass as the imaginary part of
self energies. One can formally prove gauge invariance of the definition of
mass at all loop levels [1] with the help of Nielsen identities [6].

* Presented at the XLI International Conference of Theoretical Physics “Matter to the
Deepest”, Podlesice, Poland, September 3-8, 2017.

(2243)
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In Section 2, we present the main definitions used to define the renor-
malization scheme. In Section 3, we outline the derivation of mass and field
renormalization constants for the Majorana fermions in the complex mass
scheme and discuss the implications. Finally, in Section 4, we present the
restrictions on the specific renormalization constants and one-loop Green’s
functions in the two-Higgs doublet model (2HDM) with one seesaw neutrino.

2. Definitions

We use the Weyl spinor notation in the chiral representation as in |7, §].
Let us say we have left-handed Weyl spinors 1vp; with bare Majorana masses
mo;. We can always fix the phase of vy; so that the mass parameter my; is
real. Then we can write the multiplicative renormalization constants as:

Wi = ZQVJ ) ng = ZziT JT’ moi = MiZm, ;
Zm; = 14 06m,, ZZ. =1 + §5ij . (1)

However, as we will see later, these multiplicative constants are not enough
to absorb the imaginary parts coming from the loop functions for unstable
particles. So we increase the degrees of freedom for the field renormalization
part:

(2)

h N\b—l

f
1 _
Vg = Z Vs 1/02 = Z2 (Z%l/]) =Z2v

This is equivalent to dropping the pseudohermicity requirement as suggested
in [3].
The renormalized Green functions are

5nﬁ[loop} ~[loo loo loo
Joorl = oo parle) o (3)

[loop] _
(P1-- On)ipr = 301 00, — Loron

where I is the renormalized effective action and 61" stands for counterterms.
Then the tree-level Green’s functions read as:

I = —my, f—[q]—_:—mi, f—[q]_:pﬁ, I;[O}Di:pa, (4)

ViV ViV Vi

where o and & connect spinors to four vectors as defined in |7, 8]. Due to
Lorentz invariance, we can factor out the scalar parts of Green’s functions as:

Fuil/i - mizuil/i ) FDZ'DZ' = m’iZDiﬂi )
ViUj = pU'Ez/iDj ) Fl7il/j = pa-Eljil/j . (5)
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Then we can express the counterterms using Eqgs. (1)—(5) and write the loop
functions as:

~

2V¢Vi = _5ml - 517, + El/il/i 5 Z 5 - S’Ll + 2171172 ; (6)
ﬁyzyj = % (5”‘ + Sﬂ) + Ef,ﬂ,j , E (5” + (Sjl) + 2,,11,] . (7)

3. From on shell to complex mass shell

With these definitions, the resummed propagators are:

~ ~ ~ ~ —1
<DiVi> = zc‘rp [p2 (]. + E,jilji> — m? (1 — EVz'Vi — 2,71.,71. — Eljiyi>] s (8)

~ A ~ -1
<ViVi> = 1m; |:p2 <1 + 2'71'771' + EViDi + 2771'1/72) - mzz (1 - ZWW)} ) (9)

together with analogous two propagators that can be obtained from Eq. (8)
and Eq. (9) by changing v; <+ 7;. Abbreviating D; = p? — m?, the mixed
two-point correlation functions (i # j) are:

(viv;) = —i(D;D;)~" (m’imjﬁViVj +p° [ma‘ﬁf/wj + Iy, +miﬁwﬂj]) , (10)

and v; < ;. The OS renormalization condition for a mass counterterm
can be derived by requiring that the real part of the pole of the diagonal
propagator coincides with the renormalized mass. The requirement that the
mixed propagators vanish and that the residue of the diagonal propagator
is equal to one gives the conditions for the wave function renormalization.
Generalization from the OS to the CMS is obtained by just dropping the
reality requirement and evaluating self energy functions at the exact complex
pole of the propagator. Hence in the CMS, these conditions are:

(ﬁljil/i + 217,‘171* + 21/1'171' + ZA’lflil/i> = 0’ (12)
p?=m?
S =~y (Lo + S+ S+ S | (13)
v L Op? Vil 22 vili vivi p2=m2’
viv; p2:m12 = Eﬁi”z p2:m2 - _Eﬁiyz :mg = —Eyil/i p2:m? ’ (14)
(Fyzl/] + ijVzV]> 22 - 07 (Fl_/iﬂj + mj£ﬁﬂ/j> p2:m? = 0 . (]‘5)

The condition of Eq. (12) comes from the requirement of the position of the
pole for Eq. (8) and Eq. (9); the conditions of Eq. (13) and Eq. (14) come
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from the requirement that the residue of Eq. (8) and Eq. (9) is one and
the conditions of Eq. (15) come from the requirement that the expressions
in Eq. (10) and Eq. (11) vanish at p*> = m? and p? = m? Inserting the

expressions from Eq. (6) and Eq. (7) into these conditions leads to:

1
57”1‘ = = (El’il’i + ED,L-DZ' + El/iﬂi + 2177;1/1‘) 9 (16)
2 p2:m12
} SM +0i;) = _2171'1/@' - m?% (ZViVi + 2171‘171' + Ewﬁi + 2171'1/1') 2 (17)
2 8]? pi=m;
gii - 5Z’L = (21/“/1‘ - 217,‘171‘) p2:m2 9 (18)
_ 2 9
0ij = W (75 Liw; + 1105 iy + milpm; + mim; Sy, ) ‘pzm? 9
2 2
O = o (T, i B, 4 3L, + 5 D, ) ’pz:mi -

Equations (12)—(20) are consistent with the expressions in [3]. If we used
the multiplicative constants only in the form of Eq. (1), without the field
renormalization constants shown in Eq. (2), we could not absorb the imag-
inary parts from the loop functions. This can be easily seen from Eq. (17):
using only constans from Eq. (1) would lead to an always real combination of
constants (5; +6;; in the LHS of Eq. (17) instead of &;; +&;; which, in general,
can be complex. On the other side, we see that the mass counterterm in
Eq. (16), generalizes straightforwardly to the complex mass scheme by just
dropping this reality condition. Actually, this would not be the case if we
did not absorb the phase of the bare mass parameters in the Weyl spinors.
Then we would have needed to introduce some new m; and gmi in analogy to
§; and 7;. However, there is no need for this additional complication, since
we can always fix the phase of Majorana fermions.

Another interesting and somewhat odd feature of this scheme is that
the renormalized field in the Lagrangian is not related to the corresponding
antifield by Hermitian conjugation, whereas the bare fields are. The relation
is altered by the wave function renormalization constants from Eq. (2):

1\ 1 _
(z.z.y]) = Ziy = vl =wi+ 5 (0 —ol)m+0 (7). (1)

From Eq. (19) and Eq. (20), we can see that if v; is stable, we have §;; = 6;[]..

This means that the relation of Eq. (21) reduces to V;r = p; if every v; is
stable and we recover the usual on-shell conditions. However, if at least
one particle entering Eq. (21) is unstable, we get 7; # VJ for all particles
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that mix, even if the particle under consideration is stable. This is not
inconsistent: all particles mix at the Lagrangian level. To see how this is
consistent, we should look at Green’s functions instead. Let us assume that
the particle v; is stable, then at one-loop level:

52 I3 (51/;-r 52 .
j J
51/;-r 1 /- ; R R
(5171' = 1ji + 5 <(5ﬂ — 5]7,) = 1ij = Fyiﬂi = FVz‘VJ . (22)
If v; is unstable, similar manipulations give:
. 1 /- . .
Y= (1 +5 (- 5L>> 1l (23)

Here, we also used the assumption that the basis is chosen in such a way

that there are no mixed terms at tree level. As an example, let us assume
that all the couplings that go into the expression for §;; — 5;- are real. Then

dii = d0i; and we can rewrite Eq. (23) as:

A1
1237

iIm Sis T [0] r [1]
e Fvwf + Fuiuj : (24)
We see that the instability of v; is seen as the additional phase in its two-
point Green’s function, while a Green’s function of a stable particle stays
the same.

4. Renormalization constants for 4 neutrinos in the 2HDM

The Yukawa sector for neutrinos in the 2HDM in the Higgs basis includes
four neutrinos, two neutral scalars h’, H', one neutral pseudoscalar A’, a
charged scalar H* and Goldstone bosons. In general, all neutral scalars
mix, giving the mass eigenstates h, H, and A. The seesaw mixing is defined
between the third and the fourth neutrino (s* = i ¢ = _ i),
The full Yukawa Lagrangian for this model can be found in [9]. The Yukawa

part that includes only the neutral scalars can be written as:

1
L, = — 5103 V0303 — 57104 V04704

—— [y (h’—H’XO) —d (H'+iA")] (csvosvos + i (02—32) Vo3V04 + CSV04V04)

N

1
_\ﬁd (Hl—{—ZA,) V02 (—iSIjog + CI/04) + h.c. (25)
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y is given by the neutrino masses and the vacuum expectation value, hence
the only free parameters in this part of the Lagrangian are

mo3, Mo4,d € R and d eC. (26)

There are no bare masses for v» and vq, hence no mass counterterms and no
counterterms for their mixing:

Smy = Omy = 612 = 012 = 021 = 621 = 0. (27)

v1, 9 and v3 are stable at one-loop level, so the counterterms are the same
as we would have in the OS scheme:

vi=0j, Om,€R, 6 =0;, o}

) =0, i=1,234; j=1,23.

(28)
For an unstable v4, we have:

Oms» 0ids 0ia, Oaa, 0 € C, ) = (1 — 60 + %514) 7y, i=1,2,3. (29)

Since we chose a basis in such a way that v; does not interact with any
neutral scalar, it stays massless after loop corrections as well. Since the
counterterms of Eq. (27) are zero, there should be no mixing between v
and 1o after a loop correction, so:

Ly, =Ly, =0. (30)

Note that 413 and J14 are not equal to zero and they are used to absorb
the mixing coming from I},,, and I,,,,, which are not zero due to a loop
with a charged fermion and a charged scalar.

Finally, there is no counterterm for the mass term for vo, which means
that the one-loop mass term

ma = _FV2V2 (0) (31)

is finite and gauge invariant.

The authors thank the Lithuanian Academy of Sciences for the support
(the project DaFi2017).



On the Renormalization of Neutrinos in the Seesaw FExtension . ..
REFERENCES

[1] P. Gambino, P.A. Grassi, Phys. Rev. D 62, 076002 (2000)
[arXiv:hep-ph/9907254].

[2] G. Senjanovi¢, Riv. Nuovo Cim. 34, 1 (2011).

[3] D. Espriu, J. Manzano, P. Talavera, Phys. Rev. D 66, 076002 (2002)
|[arXiv:hep-ph/9907254].

[4] A. Denner, S. Dittmaier, Nucl. Phys. Proc. Suppl. 160, 22 (2006)
|[arXiv:hep-ph/0605312|.

[5] B.A. Kniehl, A. Sirlin, Phys. Rev. D 77, 116012 (2008)
|[arXiv:0801.0669 [hep-th]]|.

[6] N.K. Nielsen, Nucl. Phys. B 101, 173 (1975).

[7] H.K. Dreiner, H.E. Haber, S.P. Martin, Phys. Rep. 494, 1 (2010)
[arXiv:0812.1594 [hep-ph]].

[8] V. Dudénas, T. Gajdosik, Lith. J. Phys. 56, 149 (2016).

[9] W. Grimus, H. Neufeld, Nucl. Phys. B 325, 18 (1989).

2249



IT1

Gauge dependence of tadpole and mass renormalization for a
seesaw extended 2HDM

Vytautas Dudénas and Thomas Gajdosik
Physics Review D, 98, 035034, 2018

Reprinted under Creative Commons Attribution 4.0 International
license



PHYSICAL REVIEW D 98, 035034 (2018)

Gauge dependence of tadpole and mass renormalization
for a seesaw extended 2HDM

Vytautas Didénas’ and Thomas Gajdosik

Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University,
Saulétekio avenue 3, 10257 Vilnius, Lithuania

® (Received 22 June 2018; published 24 August 2018)

We study the gauge dependence of the neutrino mass renormalization in a two Higgs doublet model, that
is extended with one singlet seesaw neutrino. This model gives only one light neutrino a mass at tree level,
while the second light mass is generated at loop level via the interaction with the second Higgs doublet. At
one loop level, one neutrino stays massless. We use multiplicative renormalization constants to define
counterterms. The renormalized mass parameters are defined as the complex poles of the propagators,
using the complex mass scheme for mass renormalization. With this setup, we analytically get the
expressions for the neutrino mass counterterms and isolate the gauge dependent part. We show, how
relating this gauge dependent part with the tadpole renormalization leads to gauge independent counterterm

definitions, hence gauge independent bare masses for neutrinos.

DOI: 10.1103/PhysRevD.98.035034

L. INTRODUCTION

Neutrino oscillations are known for more than 30 years
[1]. They prove that neutrinos are not massless. However,
how exactly neutrinos get their masses in the framework of
quantum field theory is still unclear. Seesaw mechanisms
[2,3] are by far the most popular attempts to extend the
standard model with massive neutrinos. The type I seesaw
mechanism [2] is the earliest and simplest such extension,
which includes neutrino mass terms induced by the Higgs
boson of the standard model (SM). In case there are more
Higgs bosons than the single SM Higgs, the type I seesaw
extension can be generalized as in [4]. This allows for a wider
range of configurations in the seesaw and Yukawa sectors to
generate the masses for neutrinos that are in agreement
with the experimental values. Also, there are numerous
theoretical motivations [5-8] suggesting a larger scalar
sector. We restrict ourselves to a general CP conserving
two Higgs doublet model (2HDM) [9], which can be viewed
as a general class of more specific models that include two
scalar doublets under the gauge group SU(2),,cux-

The 2HDM paired with the seesaw mechanism gives a
new way of generating masses for neutrinos that is absent in
the usual SM seesaw extensions. That is, the mass terms
that are absent at tree level arise at loop level due to the
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interactions with the second Higgs doublet. This radiative
mass generation makes it possible to account for both
experimentally measured mass differences at one loop level
having only one sterile neutrino in the seesaw mechanism.
This set up, with the 2HDM and one sterile neutrino at one
loop was first proposed in [4] and we call it the Grimus-
Neufeld model (GN model).

We look at the gauge parameter dependence of the
neutrino mass renormalization in this GN model with a CP
symmetric 2HDM potential. It is proven in general [10],
that the position of the complex pole of the propagator is
independent of the gauge. Hence one can extend the on-
shell (OS) scheme to the complex domain to define gauge
invariant masses as is done in the complex mass scheme
(CMS) [11,12]. However, this does not mean that the mass
counterterms are necessarily gauge parameter independent.
In fact, at one loop there is the same gauge dependence of
the mass counterterms in the CMS as in the OS scheme.
This is because the one loop expressions for the OS are the
same as in the CMS except for the required reality of loop
functions in the OS scheme. As long as the mass is
evaluated at the exact pole (as in the CMS), this gauge
dependence of the counterterm does not bother the defi-
nition of mass since the exact pole is gauge independent
anyway. Defining a gauge independent counterterm, how-
ever, is important in other schemes such as (modified)
minimal subtraction, where the gauge dependence might
occur in the running of parameters [13,14]. Some explicit
examples of the gauge dependence in the MS scheme are
given in [15-17]. Hence it is worth to look at the
possibilities to define gauge independent mass counter-
terms in the CMS or the OS, as well.

Published by the American Physical Society
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In the GN model, we analytically check that the gauge
dependent terms for the fermion two point function vanish
if the tadpole diagrams are attached to the propagator as
discussed in [18]. This way of dealing with gauge depen-
dent parts originates from the pinch technique [19]. Hence
applying this technique to define numerically gauge invari-
ant counterterms seems rather straightforward. However, to
analytically isolate these tadpole diagrams from the coun-
terterms requires some effort. We present how we achieve
this isolation of the gauge dependent terms for the neutrino
mass counterterms in the GN model. We try to be as
transparent as possible in showing our steps so that the
reader can easily reproduce our results. All our renormal-
ization constants arise from multiplicative renormalization
and we use Weyl spinors for our expressions rather than
Dirac spinors.

In Sec. II we present the main definitions and discuss the
implications of using the complex mass scheme over the
on-shell scheme. In Sec. III we introduce the scalar sector
and present the tadpole renormalization conditions in the
2HDM. In Sec. IV we introduce the Yukawa sector of the
GN model and show the expressions of mass counterterms
for neutrinos. The relationship between tadpole conditions
of Sec. Il and mass counterterms is also explained in
Sec. IV. In Sec. V we show how we set up the calculations
using SARAH [20](version 4.12.0 [21]), FEYNARTS [22]
(version 3.9) and FORMCALC [23] (version 9.4) and present
the analytical results. Section V is accompanied by the
Appendix B in which we present some intermediate steps
of the derivations. We conclude the results in Sec. VI by
discussing the cancellation of the gauge dependence of
neutrino propagators in the GN model.

II. DEFINITIONS AND THE COMPLEX
MASS SCHEME

We use the same definitions as in [24], where we
presented the adaptation of the complex mass scheme
[12] for Majorana fermions in Weyl spinor formalism.
The renormalized Green functions are

1 floop] T 1o°P) _ ~floop]
i<¢l"'¢n>lPl - 5¢,..50, $1=0 = it

_ rlloop] [loop]

=Ty 0, Ty 0 (1)

where &I1°°?! stands for the counterterm part of the
renormalized effective action. The superscript denotes
the loop order of the function in consideration. The tadpole
function is defined as the special case of Eq. (1):
I 1

TE/}oop] = 1—‘[/)oop]. (2)
The definitions for using Weyl spinors as the basis of
Feynman diagram calculations can be found in [25]. The
scalar parts of Green’s functions of a left handed Weyl

spinor v; and its Hermitian conjugate V,— can be separated by
the Lorentz index structure:

L, =m%,, Ly = miZ,
Fl/[l/j = pazplyj’ Fbjb = po-Ez/?v_,‘ (3)

The definitions of Eq. (3) work well for the on-shell
scheme, but have to be slightly modified for the complex
mass scheme.

We work in renormalized perturbation theory, where the
renormalized parameters p and the renormalized fields ¢;
are related to bare parameters and bare fields by multipli-
cative renormalization constants:

$oi = Z(lij +8;)¢;  (4)

J

po=p(1+36,),

We use the subscript 0 to denote the bare quantities, 1;;
stands for the Kronecker delta, 5, and §;; are one loop order

renormalization constants. These redefinitions of parame-

ters and fields give rise to the counterterms 51"3:01’]{/5

in Eq. (1).

We use the general R; gauge for calculations. As we will
look at the gauge parameter dependencies, we will fre-
quently look at only the gauge parameter dependent part of
the expressions. To denote the gauge dependent term, we
will add the gauge parameter & in the subscript at the end of
the renormalization constants, self-energies, and tadpole
functions; e.g.:

6, =0, + gauge independent terms,  5,: = 6,¢, + Ope, -
(5)

We use the complex mass scheme [12] (CMS) to
renormalize masses and fields. The CMS for mixed
fermions is presented in [26-28] and the adaptation to
Weyl spinor formulation is presented in [24]. Here we
mention the main differences that need to be considered
when generalizing the OS framework to the CMS.
Considering a Majorana mass term for the Weyl fermion v:

1 1wy
Loy, = =5 MoYoko — Em(l)l’o”(;w (6)

we can absorb the phase of the mass parameter into the
field, so that m, € R:

1 -
Ly, = —Emo(vovo + VUU$)~ (7)

Renormalizing the mass parameter leads to
1 For
Ly, =— im(l/ol/o +viy) + et (8)

where m € C and c.t. stands for the counterterms. Hence
the CMS introduces an apparent nonhermiticity in the

035034-2
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renormalized tree level Lagrangian (the full Lagrangian
including all the counterterms is Hermitian). Also, the
condition for the residue at the complex pole leads to an
additional phase difference in the fields [26-28]. That
means that the field renormalization constants are not
Hermitian conjugate to each other either [24]:

vi=(14+8)p, vy=(1+8w=0#0, 6#8 (9)
where we use overbars as parts of the names of the
renormalization constants and the fields. Hence the renor-
malized mass Lagrangian in the CMS is:

1
Em:—Em(WJrIJE). (10)
Comparing with the bare Lagrangian, we see that we could
write Eq. (6) or Eq. (7) as:

1
Ly, = =5 Mool +H.c. (11)
We cannot write Eq. (10) in the same way, since it is not
hermitian. However, we can try to define a new symbol
H.c.* to have the possibility to write:

L, = —%m(w+17u_) :—%mWJrH.c.* (12)
In this equation the symbol H.c.* makes the replacement
for the field v — © and leaves m — m. The mass parameter
is unchanged in the H.c.* since we found the basis, in which
the bare parameter is real by absorbing the phase into v in
Eq. (7). Hence the algebraic structure of Eq. (7) is kept in
the renormalized version shown in Eq. (10). A similar thing
happens in the CP conserving Higgs sector: the CP
symmetry constrains the form of the Lagrangian, which
has to be kept during the renormalization condition. Also,
in the scalar and the vector case, if we have ¢, € R, then
¢ = ¢. The easiest way to generalize the H.c.* symbol is to
say that we choose the basis in which the bare parameters
that can be real are made real; then we can summarize:

o (P00 B ER

p=r¢—=>d poER

Normally, if a bare parameter is related to the bare mass
term, that parameter can be made real by absorbing the
phase into the field. Hence the second line of Eq. (13)
assumes that there is no effect of the mass renormalization
to the parameter p if p, cannot be related to the mass term.
While this assumption is correct at one loop level, the
definition Eq. (13) at higher loops should be treated with
caution. Without going into too much technical details, one
can think of H.c.* as a shorthand notation for the renor-
malized H.c. terms of the bare Lagrangian.

Now we can come back to the definitions of Eq. (3). As
the CMS renormalized field is 7 and not v', as can be seen
from Eq. (9), we write [24]:

(14)

The difference between Egs. (3) and (14) is rather formal:
i.e., one does not really see the difference when calculating
the Feynman diagrams. However, for using the CMS for
field and mass renormalization, one should keep this
difference in mind for the conceptual consistency.

After we have the consistent set up for renormalizing the
fermions in the CMS, we continue to look at the gauge
parameter dependencies of the renormalization constants in
this scheme. The multiplicative renormalization constants
Eq. (4) can be used for any renormalization condition. The
algebra of the CMS is basically the same as in the OS, as
the CMS is just the analytical continuation of the OS to the
complex domain. In this paper, we study the algebraic
relations that allow to isolate the gauge parameter term in
the mass counterterm. As this procedure is purely algebraic,
the expressions concerning the isolation of the gauge
dependent part are the same as in the OS scheme apart
from the reality requirement. We, however, do these
manipulations with the CMS in mind, as the generalizations
despite being rather straightforward are still needed for a
full consistency. We now turn to the explicit expressions for
the GN model.

III. SCALAR SECTOR AND TADPOLE
CONDITIONS

The general 2HDM is an extension of the SM with
a second Higgs doublet having the same charges as the
SM Higgs doublet. The most general potential can be
written as [9,29]:

Vtiges = M3y Hy Hop +m3y Hoy Hoo — (m3,, Hiy Hoy +Hoc.)
1 1
Jr5/101 (H{yHox )2+§/102(H(T)2Hoz)2
+ o3 (Hby Hoy) (HiyHoz) +Aos (HoyHop ) (Hj Hoa)

1 i ;
+ Eﬂos(H(T)sz)(H(;sz)+/106(H01H01)(H(T)1H02)

+Ao7(HiyHop) (HgpHop ) +H.c. |, (15)

where H(y; and Hy, are the two Higgs doublets. In a general
basis, they both develop VEVs: vy, and v, respectively.
The VEV value that is responsible for the electroweak
symmetry breaking is v3 = v}, 4+ v3,. We choose to work
in the Higgs basis, where we can parametrize the Higgs
doublets as:

035034-3
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H 7( Z(TW )
o \%(Uo + ho + ixoz) )’

" (16)
Hy = . . 1
” (%(Hw on>>

In this basis, H, is chosen to have 0 vacuum expectation
value (VEV), v, is the VEV of Hy, yo7, and yy stand for
Goldstone bosons, hy, Hy, and A, are neutral scalars and
H{ is a charged scalar. Note that when we choose the Higgs
basis by Eq. (16) and insert into the Eq. (15), the parameters
in Eq. (15) are the Higgs basis parameters and not the ones
of the general basis. The transformation of parameters
between the Higgs and the general basis can be found in
[9,30]. We consider the CP conserving case, where all the
bare parameters are real,
mgij.AOke[R{; i,j=1.2, k=1,...,7, (17)

by an imposed CP symmetry on the bare Lagrangian.

After introducing the renormalization constants, Eq. (4),
we write the zeroth order renormalized effective action (or
the renormalized Lagrangian, ignoring the kinetic terms) of
the Higgs sector as:

0 'y 'y 7 *
T = = B Hy =3, By Ho + {m?, B Hy + He' .}

—%ﬁl(ﬁlﬂl)z—%ﬂz(ﬁsz)z—ls(ﬁlHl)(ﬁsz)
—4(HyH ) (H Hy)

|3 (Ea ) (BaHL) + 26(AH) ()
+/1.7(H2H2)(FI2H1)+H.C*.:|, (18)

where we used the definitions of Eq. (13). As the bare fields
hy, Hy, A are real, the renormalized fields are written as:

1w H*
H, = ). Hy= o
! S +htirg) P\ LH A

H =H'(y" >y H" > H ,i—> —i). (19)

xy and yy, are related to g, as described by Eq. (9).
The same holds for H* and H~. The neutral fields appear in
the barred doublets in the same way as in the unbarred
doublets.

To get the minimum of the potential, Eq. (18), we need to
solve three tadpole equations for the three neutral scalars. It
is important to note that we will express the tadpole
equations in the Higgs basis and not in the mass eigenstate
basis as the expressions are simpler. The mass eigenstate

basis for & and H and the Higgs basis is related by an
orthogonal transformation parametrized by [9]:

ob — ( Cq S“), s = Ogﬁjd)?iggs’

—Sq Cq

¢ = (h.H),. (20)
where s, and c, are sine and cosine functions of a mixing
angle a, respectively. In general, we would have 3 x 3
mixing matrix, but the imposed CP symmetry on the
potential does not allow A to mix with 4 and H at tree
level. Then the tadpole functions in different bases are
related by:

T,= CaTh(m) - S"TH(no’

TA = TA(m)’

TH = CaTH(,,,) + saTh(,,z)’
(1)
where we added the m in the subscript to indicate that the

fields are in the mass eigenstates. At tree level, the tadpole
functions are

0
0 O Higes 1
o = # = <m%l +§i,vz>,

(0]
R ol 1
gy (m%2 ~3 U2ﬂ6> ,

B SH
)
A oI’ iggs
Y % =0. (22)

We see that the third tadpole function is already zero in the
CP conserving case. We require the tadpole conditions to
hold for all loop levels:

Tl =11 =1l =o. (23)
The tree level tadpole conditions ﬂ?] = TES] = T,[L?(], =0
give:
2 L) 1,
mi, = —5/117) and m7, :5/161) . (24)

Now we require the tadpole conditions Eq. (23) for tree
and one loop level together:
7\"[()] _ O,

(Tl 4 571) =0,

g = (25)
where we indicate in the second equation that we use
the relations from the first condition at the loop order
after algebraically deriving counterterms from the multi-
plicative constants shown in Eq. (4). The one loop tadpole
counterterms evaluated at 7% = 0 for the CP conserving
case then are
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N 1
5T[hl] = 5/11”3(2@”11 =8 —26,),

A 1
5T[1;] = 5361’3(2%12 — 836 — 26,),

5Tl =o. (26)
As v is defined dynamically by Eq. (24), it is not an
independent parameter of the theory. This means that one of
the counterterms 6,,;1, d,,, 6, is redundant. This is because
we did not yet choose which parameter is used over which
from the tree level minimum condition Eq. (24). One of the
choices is treating 4; and v as the independent ones so that
the shift of m, is given by:

1
Ol = =0,1- 27
mil =501 (27)
Then the shift of the VEV yields the one loop tadpole
counterterms, evaluated at 7% = 0:
st = —4,0%8,, (28)
A 1
ST = 54603 (2,12 = 836 = 25,). (29)
The one loop tadpole conditions Eq. (25) give:
1
5, =—=T,", 30
pReth (30)

1 1 /1 1 1 1
(51;112_55%) :F<ZT/, _ETH . (31)

The v now stands for a loop renormalized VEV or the
“proper VEV” as in [31]. So far, the construction is similar
to the S, scheme of [32], “scheme 3” in [13] or [31] of the
SM, but without the proper relation of the VEV to the mass
terms, it is not yet complete. To complete it asin [13,31,32],
one identifies the bare mass parameters arising from the
proper VEV, rather than v, as also noted in [13,31-35].
The idea is to avoid the inclusion of the gauge dependence
coming from §,, into the definition of the mass counterterm
5,, as will be shown in the next sections.

IV. YUKAWA SECTOR

The GN model adds a single sterile neutrino N to the
general 2HDM. This sterile neutrino is a gauge singlet
under all gauge groups of the SM and has a Majorana mass
term M. To write the Yukawa couplings, we start in the
flavor basis, in which the Yukawa coupling of the charged
fermions to the first Higgs doublet in the Higgs basis is
diagonal. Then the general Yukawa couplings for neutrinos
can be seen as two three-vectors Y! and ¥2. The neutrino
Yukawa Lagrangian together with the Majorana mass term
then is written as:

1
Ly ==Y!noiNoHg; = Y?n;NoH, —EMONONO +H.c.

(32)

where n, are neutrinos in the flavor basis with i = e, u, 7.
The Yukawa couplings Y} and ¥? give in general 6 complex
parameters and M, gives 1 complex parameter. We absorb
four phases into the ny; and N to get Y}, My € R. By a
singular value decomposition, we can parametrize the
Yukawa couplings with only four real parameters:

dy,yo € R, dyeC, (33)
absorbing the other degrees of freedom into the Unitary
mixing matrix. To make the parametrization easy, we
decompose it into subsequent orthogonal rotations O and
phase shifts U, so that O? produces zero in the second
position of ¥' (033} = 0), 0" in the first (O];03Y} =
0). U° adjusts the phase of the first element of Y? to
match it with the phase of the second element
(arg(US,0)203Y5) = arg(U3,0;70F}Y5), O makes
the first element of Y? zero (012 ;’nlOl',?Oi?Yﬁ =0)
and U” adjust the phase so that the second element
of ¥ is real (U5,02,U%,005Y2€R). Writing

V=UP0"2U*0"3 0%, the basis choice is summarized as:

ViYi=0,  VyYi=0,  VyY; =y,
ViYi=0,  VyYi=d,  VyYi=dj.
dy.yo€R,  djecC. (34)

Note that we are still free to adjust the phase of the first
row of V. To combine these rotations with the seesaw
transformation, we combine all neutrinos to a single
vector, consisting of four flavor basis neutrinos:
V(l;i = (nOwnOwnOr’NO)i' (35)
To account for the fourth component of this vector, the
3 x 3 matrix V is trivially extended to a 4 x 4 matrix by
adding an identity element on the diagonal. As we work
in the Higgs basis, only the first Higgs doublet gets the
VEV. With the parametrization Eq. (34), the seesaw
transformation acts on the third and fourth component
yielding the whole 4 x 4 mixing matrix:
U = U34V — U34Uﬁ012Ua013023 (36)
and the relation between the mass eigenstate and the
flavor basis becomes:

mass — ¥ . F
voi = Ugivg,-

(37)
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All the parametrization of neutrino mixing matrix is
summarized in Appendix A.

In order to see the differences in the mass terms between
the tadpole schemes, we first do the usual construction like
in, e.g., [12], and then modify it according to the discussion
at the end of Sec. III. After the electroweak symmetry
breaking, the seesaw mechanism yields two bare mass
eigenvalues m; and mg, that have the relations:

Mo = moy —mo3 and  ygvg = 2mozmey.  (38)

The seesaw parameters are expressed in terms of masses:

M3
Moy ~+ M3

Moy

St = and 3y, = (39)

Moy + Mo3

Note that as long as we stay at tree level, v, = v. In this basis
we have four neutrino states v;, where v, and v, have zero
mass, but v, is distinguished from v by its interaction with
the second Higgs doublet, i.e., v does not couple to any of
the Higgses. By applying the rotation Eq. (37) in Eq. (32),
using the parametrizations of Eq. (34), (38), and (39) and
inserting the explicit Higgs basis Eq. (16), we write the
Yukawa Lagrangian part that includes only neutral scalar
fields together with the Majorana mass terms:

1 1
Ly =~ P Mmo3lop3lo3 — 2 Mo4lo4lo4

1
——do(Hy 4 iAg)voa (—iSo3av03 + Cozal
NG b(Ho )02 (=i8034203 034%04)

1
~ 5 Yo(ho + ixzo) + dy(Ho + iAg)]

) 2
X [Co3aS03a¥03%03 + 1(Chzg = $34)V03t0s

+ Co3aS034V0avs) + Heoc. (40)

We straightforwardly apply the multiplicative renormaliza-
tion constants, Eq. (4), for all the parameters and fields. The
tree level renormalized effective action is then written in the
same way as the bare Lagrangian, except that the parameters
and fields are the renormalized ones:

A0 1 1
F%k = ——m3l3l3 — 3 Mylsly

2
1
——=d(H + iA)vy(—issvs + c34vy)

V2

- % (h + ixz) + d'(H + iA)]

0 2
X [€345341303 + ((C54 — $34)V3V4 + C34S34Va04)

+Hc* ., (41)

where:

M = my — ms, V20?2 = 2mymy. (42)
2 _ M3 2 My

§5 =, = 43
= , e p— (43)

Having Egs. (38) and (39) for the bare theory and Egs. (42)
and (43) for the renormalized one gives us the relations
between the renormalization constants:

5m3 + 5m4 = 2(5L + 6}')* (44)

m45m4 - m35m3 = (m4 - m3)5M' (45)
The mass renormalization constants are fixed by the CMS
condition [24]:

1
5mi =5 (le,b‘ + 217,-17, + ED,II; + 21?;1/,)'1)2:"1? )

) m; #0,

(46)

which is nothing more than the usual expression for the OS
renormalized mass counterterm (as in [36]) extended to
the complex domain and written in Weyl spinor formalism.
The CMS condition gives us the renormalized mass param-
eters gauge independent, however from Eq. (44) we see that
the mass counterterm has the §, contribution, which is gauge
dependent. Hence in this way the bare masses become gauge
dependent as well.

Recalling the discussion at the end of Sec. IlI: to define
the gauge invariant mass counterterm we need to identify
the bare mass with the proper VEV [31]. Thus the bare
relation Eq. (38) is modified to:

Moy = mpy, — mps. Yov* = 2mimig, (47)
so that there is no &, in the definition of &), s. From vy =
v(1 + 8,) and comparing Eq. (38) with Eq. (47), we get the
relationship between primed (FJ scheme) and unprimed
(usual tadpole scheme) mass parameters:

Bg=20M00 3y

. (48)
Moy +mgy

mo; = my; + Ay,

As the seesaw mixing parameters depend on the masses,
they are shifted as well:

2 2 2 2 (.2 2
St34 = Staa + 20,¢5345%34 (€34 — St34)
2 2 2 2 (.2 2
€34 = Co3a — 200C3345034 (Chaa — S334)- (49)
However, these shifts of the mixing parameters become
relevant only at higher loops than one, so we can drop them
from our one loop expressions. At one loop level, every-
thing is the same as in Eq. (40), except that the bare mass
term Lagrangian for neutrinos becomes:
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1 1
Linass = =7 (M + Do) vo3zvos = 3 (moy + Do)voavos-  (50)

2

Starting from this bare Lagrangian, Eq. (46) is modified to:

o1 A
Si = 5 (o, + Zo5, + Zos, + Z5,) R
for m; # 0, (51)
where:
A = o M3Ms0 (52)
my + ms

is defined with the renormalized masses m; and m,. We see
that A is the same for v3 and vy. To check if A cancels the
gauge invariance, we analytically calculate the gauge
dependent parts of Eqgs. (46) and (52) for v; and vy.
Note that in both tadpole schemes the renormalized masses
are the same CMS masses, while the bare masses m; differ
from my; by A, as in Eq. (48).

V. ARRIVING AT THE EXPRESSIONS FOR
RENORMALIZATION CONSTANTS

We use FEYNARTS [22] and FORMCALC [23] to arrive at
one loop expressions for self energies and tadpoles. For
making the FEYNARTS model file we found the SARAH [20]
package to be useful, which allows to quickly generate a
model file from an input of the Lagrangian in terms of Weyl
spinors and scalars in the user specified gauge group
representations. It also has some built in functions to check
the consistency of the model. We choose the Higgs basis by
simply putting the VEV of the second Higgs doublet to zero
in the input file. We leave all the other parameters arbitrary
for generating the FEYNARTS model file and make replace-
ment rules for the FEYNARTS model file parameters to
implement our parametrization afterwards. As we work at
the one loop level, tree level relations to simplify one loop
diagrams can be used. As discussed in Sec. II, the CMS
keeps the algebraic structure of the bare theory. This means
that for the algebraic simplifications, all the properties and
the relations of bare parameters can be used for the
renormalized parameters in the CMS as well. Hence we
can implement these properties and relations into the
assumptions of the Mathematica file in which we do these
simplifications. Then the results can be consistently con-
tinued to the complex domain afterwards. In the following
subsection we show how we implemented the parametri-
zations into the FEYNARTS model file and the assumptions
for the bare parameters that carry over to the algebraic one
loop simplifications. Then we present the results that we
got for the gauge dependent terms in mass and tadpole
renormalization.

035034-7

A. Getting FEYNARTS model file

(1) We generate a FEYNARTS model file using SARAH:

®

(i)

(iii)

(iv)

(v)

(vi)

We take a SARAH model file for a 2HDM, and
define 1 additional gauge singlet like this:

FermionFields|[6]] =
{n, 1, conj[nR],0, 1, 1}

where the last three entries are the charges
under the gauge groups (singlets under all of
them), the second is the number of families, the
first and the third is the name of the field and its
component, respectively (see [20]).

We modify the Yukawa Lagrangian of that
model file to include the general Yukawa
couplings of neutrinos with the first and the
second Higgs doublet as in Eq. (32) in a direct
analog to the quark sector and add the Majorana
mass term for the sterile neutrino:

LagYukawan = -(-YnlHl.n.l
-Yn2H2.n.1+1/2Mnn)

In the definitions for the “EWSB” phase, we set
the VEV of the second Higgs doublet to zero to
implement the Higgs basis as in Eq. (16):

DEFINITION[EWSB|[VEVs|=
{{H10,{v, 1/Sqrt[2]},
{sigmal,\[ImaginaryI|/Sqrt[2]},
{phil,1/Sart[2]}},

{#20, {0,1/5qrt[2]},

{sigma2, \[ImaginaryI]/Sqrt[2]},
{ohi2,1/sarc2]

We leave the definition of mixing between
Higgses h and H as in the 2HDM model, but
omit mixings between the pseudoscalars and
the charged scalars as they do not appear in the
Higgs basis with CP conserved potential.

We define an additional mixing matrix
for neutrinos in the DEFINITION [EWSB]
[MatterSector], combining the flavor
basis SM neutrinos vL with the sterile neutrino
conj (nR) as:

[{{vL.conjmR]}, {vL.Un}}|

where the VL is the combined four-vector of the
neutrino mass eigenstates and Un is the mixing
matrix U* from Eq. (37).

We generate the FEYNARTS model file by the
SARAH command MakeFeynArts [].
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(2) We make modifications to the FEYNARTS model file:

(i) To achieve the parametrization of Eq. (34) we

make the replacements in the model file for the
neutrino-neutrino—Higgs vertices:

3
ZUU j (0,0, —ic3,y. S34Y) (53)
Jj=1

3
> U= (0.d —icyd' s3d);. (54)

J=1

We do not replace the neutrino—electron—
scalar vertices, hence they depend on Y and Y?
instead of the y, d and d’ parameters in the model
file. We leave them general, because it is easier to
make algebraic simplifications of amplitudes in
the general couplings for these vertices. After the
expressions are simple enough, we invert
Egs. (53) and (54) to express Y! and Y? in terms
of U, y, d and d' in the Mathematica note-
book file.
After setting up the FEYNARTS model file, we generate 1
loop diagrams for the wanted correlation functions. The
parametrizations and relations of Secs. III and IV are
imposed as replacement rules during the algebraic sim-
plifications of the expressions. The summary of the
parameters and their relations is given in the Appendix A.

B. Mass renormalization

We construct the mass renormalization constants as in
Eq. (46) to isolate the gauge dependent part so that we can
later check if the definition in Eq. (51) really cancels it.
The FormCalc output is easy to use in Weyl spinor notation
as the spinor products in the result of the amplitude
appear in “WeylChains”. By collecting terms near those
“WeylChains” we can take separately all four components
presented in Eq. (3). The structure of the correction to a
propagator is:

(ii)Uy, (00 Us, + VipoD) 2y 5, 4 (0ip6V1) X,
(55)

For Majorana particles only two of the scalar self energies
are independent, since X,; is the same as X;, and I',, is
related to I'; ;. At one loop, this relation is just the Hermitian
conjugation of couplings that enter the loop functions.

To make algebra simplifications easier and faster we
separate different one loop contributions to self energies
according to the particles that appear in the loop. Those
contributions are from the neutral Higgs scalars, the charged
scalar Higgs, the neutral Goldstone boson, the charged
Goldstone boson, the W boson and the Z boson. We label
them as =0, oA+ 370 37+ $W and 27, respectively. Note
that the Xs are the dimensionless one loop self energy
functions defined in Eq. (14). Analogously, we write the

dimensionful self energies as Fg%z Fgl :, , etc..

F,f",? and F do not depend on any gauge parameter. As the
ﬁrst results of the calculations give us:

. Naturally,

r, =0 and T, =TM0 (56)

1228

Note that v, and v; do not have mass renormalization
constants coming from Eq. (4), since they do not have bare
mass parameters. The nonvanishing contribution for the
mass of v, is gauge independent and finite. This is a good
first crosscheck to see that the implementation of the model
gives us expected results.

We are interested in the gauge dependent part of §,,; and
8,ua» 50 We are interested only in 320, 3¢, W and 7. &,
will appear only in &+ and % and &, only in $*° and T2. As
one can check, the charged loop for masslike terms vanishes:

, = FZ'J; =0. (57)
Hence the potentially &, dependent contribution for
m35m3 is

1
5 (PE +T0) + msZ)

After some effort (see the Appendix B), we arrive at the &y,
dependent part of the mass counterterm [recall Eq. (5)]:

-
J + m32031/;. (58)

2
msm, A
M e 2Ag(myéy).  (59)

1)
" (m3 + my) 167°m% sy,

myéw —

where s,y = 2sycyy 18 the sine of a double Weinberg angle
Eq (AS). For calculating 6,,:, one should note that

Wl # 0. Apart from that, everything is analogous to the
&y case. Atthe end the full gauge dependence of the neutrino
mass counterterms is

M36,,e = MyOp,
2
n3my Je

N (m3+my) 167r2m)%55w [Ao(mZE7) +2A0(miy€w)].

(60)

C. VEV renormalization
When separating the gauge parameter dependent part of

TLI] we first observe that tadpoles with physical Higgs
bosons and fermions in the loop do not have any gauge
dependence. The gauge dependent part of loops with gauge
bosons and ghosts exactly cancel when these contributions
are summed up. Hence the only gauge dependent terms in
the tadpole contributions are the tadpoles with Goldstone
bosons in the loops, which are

TL.g] 21;:2 [Ag(m3E7) + 240 (m3yEw)). (61)
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This is exactly the same term that we would get for the
Higgs tadpole in the SM. This again shows the convenience
of the Higgs basis in the tadpole equations. From Egs. (30)
and (52) we have:

msmy 1

A —
£ (my + my) 16220

[Ao(m7&7) + 240 (miéw)]. (62)
which, inserting the SM relations of Eq. (AS) gives exactly
the same result as Eq. (60).

VI. DISCUSSION AND CONCLUSIONS

We analytically checked in the CMS or the OS scheme
that the gauge dependent term of the mass counterterms
for the neutrinos of the GN model comes only from the
tadpole contributions, Eq. (60), as suggested in [18]. Using
multiplicative renormalization constants and the relations
between them, shown in Eqgs. (44) and (45), we present how
the gauge dependence of neutrino mass counterterms can
be seen as a contribution coming from §,, the renormal-
ization constant of the VEV in the usual tadpole renorm-
alization (e.g., [36]). We also get that this tadpole
contribution is the same for both neutrino counterterms:

myé = A.f- (63)

This is one of the features of the GN model: the single
sterile neutrino leads to the single value of the Yukawa
coupling y to the first Higgs doublet in the Higgs basis.
This single value is coupled to the VEV, hence only the
single value A, related to the VEV shift §,, is possible for
the neutrino mass counterterms in this setup.

The alternative tadpole scheme, or the FJ scheme [31],
consistently omits this gauge dependence from the mass
renormalization constants by identifying the bare masses
with the proper VEV. Following this scheme, we modify the
definition of the mass counterterms to include this tadpole
contribution in Eq. (51). This definition now exactly cancels
the gauge dependent contribution as can be seen from
Eq. (63). The factor A gives the same contribution for the
mass counterterms as if we would add the contribution of
diagrams with tadpoles connected to the propagators as in
[18]. The fact that the procedures of [31] works for the seesaw
neutrinos just in the same way as with the Dirac particles is
explained by the fact that only the Dirac mass [~m3m, from
Eq. (38)] is directly related to the VEV. The other crosscheck
is that the result of Eq. (63), using Eq. (45), gives

ope =0, (64)

m351113§ = m45

or in other words, the Majorana mass term M, does not
acquire gauge dependence in any of these schemes. This
again confirms the statement that the Majorana mass term of
the sterile part of the neutrino does not affect the application
of the FJ scheme for mass counterterms for the neutrinos.
Hence using the FJ scheme is straightforwardly applicable in
the GN model.
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APPENDIX A: PARAMETRIZATIONS,
ASSUMPTIONS, AND RELATIONS

Here we collect all parameters and relations used in our 1
loop calculations. The assumption that some bare param-
eter py is real, is reflected in the renormalized theory in the
sense of Eq. (13). In the FORMCALC output for one loop
corrections for masses, we implement this assumption by
the replacement rule p* — p, for p, € R.

1. Scalar sector and the SM relations

The assumptions of CP conservation of the Higgs
potential give:

m(z),-j,ﬂ()keR; i,j=1,2, k=1,...,7. (A1)
The minimum conditions are
1
m} =—-2v> and m}, = 5/161;2. (A2)

The Higgs basis is given by:

+ +
Xow H;
H = |, H,= ] a3
1 (%(v-ﬁ-h-&-z;m)) 2 <%(H+1A)) (

The mixing matrix for scalars is only between /& and H:

C, s .
b _ a a ass ¢ pHiggs
0t = ( ) dpes = of e,

—Sq  Cq

Higgs
¢ = (h.H),. (A4)
where s,, ¢, are sine and cosine functions of the mixing
angle a.

The relations of the electroweak sector are

Saw = 2sweyw, my = mzcy, (AS5)

where sy and cy are sine and cosine functions of
Weinberg angle.

2. Yukawa sector

As the first thing after generating the FEYNARTS model
file we make the replacements Eqs. (53) and (54):

ZUU j
ZUU Jj

(0,0, —icayy, Y34)’)

(0,d, —icyd', sud');. (A6)
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The parametrization of Yukawa couplings are summa-
rized as:

ViYi=0,  VyY; =0,  VyY) =y,
VY3 =0, VY3 = dy, VY3 = dj,
do.yo €R, dy eC, (A7)
where the neutrino mixing matrix is
U =U*V =U*Ufou*ol o (A8)
with the relations
v§; = (noes oy oz No) v = Uy Vo, (A9)

The parametrization of the mixing matrix can be written as:
2 2 _

Soij+ oy =1
AB __

o5 =1

80ij+Coij»00:P0 € R;
; fori,j#A,B,;
O/A;g = —0§§ = S04B> Oﬁ = O3 = Coap’
Ug=e fori=j=1; Uj=1; fori,j#1;
Upy=e fori=j=2; Uj=1; fori,j#2;
Ult=i-U¥=i-spy; Ud=—i-Ull=—i-cps
U =1 fori,j#3.4. (A10)
J

=/ M3y
4v27% (m3 + my)v

+ m2Y 1 s13Bo(m3, mf, &y . m)).

Ti, (m3) =

Expressing Y! from Egs. (53) and (54) gives:

L Tyymamy

™t 2
Uzb%( 3) 4\/‘7[ (m3+m4)

2yl 2 2
[=mzY " ci3003Bo (m3, miy &y,

The seesaw mechanism is realized with:

_ 200 _
My = mos — mg3, YoV = 2mozmog, (A11)
mos Moy
Sy =——"— and yy=——"——. (Al2)
T mgg - me3 T Mgy +me

APPENDIX B: ARRIVING AT EQ. (59)

Here we show some intermediate steps for arriving at the
gauge parameter &y dependent term for the J,,3 counter-
term shown in Eq. (59). We start from Eq. (58):

v+ 2+ w 2+
(T + FDM) + m3zv3u§ + m32b3b§. (B1)

0| =

Let us first look at the loop with the Goldstone
boson %4, (m3). We set up the model file in FEYNARTS
following the steps in Sec. V A. After generating diagrams
with FeynArts, creating an amplitude with FORMCALC,
implementing the parametrization that is summarised in
Appendix A by the replacement rules, the standard
Mathematica “Simplify” command should give:

m3) + mY Y 13503 Bo(m3, mi, &y, m)

Now we can express v in terms of Eq. (AS) and y in terms of Eq. (42) to get:

F”( 2) _gem3m4
Pt 47 (my + my)mb sy,

(B2)
[micfgcégBo(mﬁ,mﬁvfw,M)
+m cnsBB(,(mz m¥Ey, m )+m s3,Bo(m3, m3, &y, m3)]. (B3)
[m?ctyc3;Bo(m3, miy &y, m3)
m;) + msiyBo(m3, my &y, m})). (B4)

+ m”c]3s2380(m3, miEw,

The result for I,", is the same, as it should be, since v3 is a Majorana fermion and the couplings can be taken real for the one

3”3
loop correction, hence we can write:

—2mym
(F),f;z—&-lﬂ”)* Gemmzhiy

N =

22 2 2 0
+mﬂcl3s23Bo(m3,mW§W,

v’ An?(ms + my)mys

x [mZcise3sBo(m3, myyéy, m3)

myy) + mistyBo(m3, myy &y, my)]. (BS)
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We follow exactly the same steps for ¥ tf to get:
v3ly

2
Gely
877 (3 +my)mzs3y,
22 2 2 .2
+ mzciyc33Bo(m3, my, &y, m
22 2 2 0
+m3ctye33By (m3.myy.

2.2 2 2 2
+mzctye3 By (m3.myy.

[m3ci3¢33Bo(m3, miy &y, m7) + m3ciys33Bo(m3, miyy,m

m3) +m3013s23Bl (m3’mw§W’

2 22 2 2 2
mz) +myciysyy By (m3, myy,

) +m3 VnBO(mymWéW m, )

m?) +mZiciys3; Bo(mb, m3 &y, m?%) + m2styBo(m3, my,éy, m2)

mﬂ) +m3st3By (m3, miy, . mg)

my;) +mgsis By (m3,mi &y m)]. (B6)

The loop with the W boson EW J will have gauge invariant contributions from the transverse polarization of the W boson.

These can be dropped out from the expression by formally differentiating and integrating with respect to &y in
Mathematica. Then every step for simplifying the expression is the same as before with the result:

2
Gelly 22 2 2 2 2

—————————[—m5ciy¢c5,Bo(m3, my, &y, m
8ﬂ2(m3+m4)m%S%W[ 3%13%23 0( 3 Mtwews 1)
20 2 2 2 2
+ mzciyc33Bo(m3, miyEy, ms

22 2 2 2

— m3ciseasBy(m3, myyéy, my) —

2.2 .2 2 2
- m,c]3c23Bl(m3, miy Sy, mr)

20 2 2 2 2
— m3ci3533Bo(m3, miySw, my)

—mﬁcmsz}Bl(m%,m%VgW,m )—

+ 1363340 (mfyy) + c3533A0 (miyéw) + sT3A0(miyéw)].

22 2 2 2
— m3s13Bo(m3, miyy&w, mg)

) + miclys3Bo(m3, my &y, m2) + mistiBo(m3, my &y, m2)

m%cﬁs%Bl (m3, mw‘fw, m )

m3sty By (m3, miy &y, mz)
meénB (mgqmwé:Wq 2)
(B7)

Comparing Eq. (B7) with Eq. (B6) we notice that the first, third and fourth lines of both expressions cancel and the second
line of both equations is the same. Trigonometric functions near the A, integrals in Eq. (B7) sum to one. The sum of

Eqgs. (B7) and (B6) multiplied by m5 then gives
gemams 20 2 2 0
ar*(ms + m4)m%sgw[mfcl3C23BO(m3’ My

gemyms
+ e e
8% (m3 + my)m7 sy,

2 202 2 2 2
mz) + myciys53Bo(m3, miyy,

) Ao(mwfw)

my) + mgsisBo(m3, miy &y, my)]

(B8)

The second line cancels with the contribution of the Goldstone loop from Eq. (B5) giving exactly Eq. (59).
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