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Abstract. Although the problem of rational power generation has been extensively studied, tradi-
tional approaches for power optimization do not offer good solutions to this purpose, especially in a 
competitive electricity market environment where many factors are uncertain. In this paper, within 
the framework of two-stage linear stochastic programming, the method for power planning has 
been developed, with uncertain factors taken into account, through a continuously distributed set 
of scenarios. The objective is to find the structure of the power plants capacity in the region which 
minimizes the sum of the investment and the expected operating costs over the long-term plan-
ning horizon, taking into account the environmental impact. The structure of the considered task 
corresponds to a power investment planning problem that often arises in the developing regions. 
The method is developed for solving the stochastic optimization problem by the sequence of Monte-
Carlo sampling estimators. The procedures developed make it possible to solve stochastic problems 
with an admissible accuracy by means of an acceptable amount of computations. As follows from 
numerical experiments the approach presented enables us to decrease the total expected costs of 
power planning versus deterministic planning solution.

Keywords: stochastic programming, Monte Carlo method, power planning, stochastic gradient, 
statistical criteria, ε-feasible direction.

Reference to this paper should be made as follows: Sakalauskas, L.; Žilinskas, K. 2010. Power plant 
investment planning by stochastic programming, Technological and Economic Development of 
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1. Introduction

The energy sector needs to be environmentally sustainable while as being economically 
sustainable. Energy utilities need to earn an adequate return and satisfy shareholders, whilst 
understanding their corporate responsibilities and a wider social impact of their business. 
Uncertainty of the power market should be taken into account when planning the power 
system (Freund 2004; Beraldi et al. 2008; Fleten and Kristoffersen 2008). Although the prob-
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lem of rational power generation under uncertainty has been extensively studied, traditional 
planning models and methods do not offer good solutions to this problem, especially in a 
competitive electricity market environment where many factors are uncertain (Graymore 
et al. 2008; Grundey 2008). In this paper the problem is considered of an energetic concern 
that has to invest in a regional system of power plants to meet current and future demand 
for electrical power of the region. These plants are to be built for the first year only, and are 
expected to operate for some years under a certain budget, which is to be allocated for different 
types of plants. A stochastic optimization model is formulated under the presumption that the 
generation outputs and load demands can be modelled as following to specified continuous 
probability distributions. The objective is to find the structure of the power plant capacity 
that minimizes the sum of the investment cost and the expected value of the operating cost 
over the planning horizon taking into account the impact on the environment including the 
appropriated environmental costs to operating ones. The optimization problem is solved by 
means of a novel numerical approach that exploits a particular problem structure. Finally, 
we report some preliminary computational experiments.

2. Power Plant Investment Planning Problem 

The structure of the task considered corresponds to the power investment planning prob-
lem that often arises in the developing regions. The model and data considered in the paper 
involve main parts of the sustainable energetic development of the region in the long term 
perspectives and are created following to sources (Freund 2004; Hezri and Dovers 2006; 
Karger and Hennings 2009; Paiders 2008; Stepanonytė and Blynas 2008; Training Material 
in Financial Engineering 2009).

Let the plants to be projected for the open field investment. Say, the details of the prob-
lem to be solved are as follows. Let the plants be expected to operate over T = 15 years. The 
budget for the construction of power plants is S = $10 billion, which is to be allocated for n = 
4 different types of plants: gas turbine, coal, nuclear power, and hydroelectric. The budget 
should take into account the discounting factor, because usually investments in construc-
tion and building of power plants are not done once. The objective is to minimize the sum 
of the investment cost and the expected value of the operating cost over T years that leads to 
minimizing the influence upon the nature during the process of power generation. Assume, 
the prognosticated demand for electric power is distributed with a specified probability 
distribution. Assume, m=5 blocks of demand are requiring for different amount of power 
during the year.

Known solutions of power planning under uncertainty exploit the two-stage or multi-stage 
stochastic programming framework with a discrete number of scenarios (see Ruszczyński and 
Shapiro 2003; Wallace and Fleten 2003; Beraldi et al. 2008; Fleten and Kristoffersen 2008). 
However, the adequate evaluation of scenarios and its probabilities is not an easy task in 
practice, therefore the analysis of a continuously distributed set of scenarios may offer more 
opportunities. The parameters of distribution of the scenario are choosing by means of sta-
tistical analyses of historical data of energetic development of the region. Thus, without loss 
of generality assume the demands in blocks to be independently and normally distributed. 
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The mean and standard deviations of the expected power demands that with durations of 
the blocks are shown in Table 1.

Power plants are priced according to their electric production capacity, measured in 
gigawatts (GW). Table 2 shows the investment cost for each type of plants (Freund 2004).

Table 1. Power demand during the year

Demand Block Expected power 
demand, µ (GW)

The standard deviation of 
power demands, σ (GW) Block duration, (h)

1 26.0 1.3 490

2 21.5 1.1 730

3 17.3 0.9 2190

4 13.9 0.7 3260

5 11.1 0.6 2090

Table 2. Investment costs for power plants

Power plant type Cost, $ 108/GW

Gas Turbine 1.1

Coal 1.8

Nuclear power 4.5

Hydroelectric 9.5

Since the production of hydroelectric energy depends on the availability of rivers that 
may be dammed, the geography of the region constrains the hydroelectric power capacity 
no more than P = 5.0 GW.

The operating costs for the first year of each type of power plants, as well as the cost 
of purchasing power from an external source, are shown in Table 3, where the units are 
in cents per kilowatt-hour (KWh). The operating costs consist of the expenses for expen-
ditures of fuel, water and extra electric power, chemical and technological materials and 
of the taxes for air and water pollution, the discounting factor, the costs of utilization of 
waste products and of the activity for the nature safety (Hezri and Dovers 2006; Karger 
and Hennings 2009; Paiders 2008; Training Material in Financial Engineering 2009). 
These expenses depend linearly on the capacity of the plants to be built (Stepanonytė and 
Blynas 2008; Training Material in Financial Engineering 2009). The environmental issues 
of power plant construction and exploitation are related with waste and water usage. The 
waste products of the gas turbine plant are CO, CO2, NOx, while solid particles and SO2 
are additional waste products of the coal plant. The factors of emissions of coal and gas 
turbine plants are shown in Table 4. 
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Table 3. Power generation operating costs

Power plant type Operating cost, (¢/kWh)

Gas Turbine 3.92

Coal 2.44

Nuclear 1.40

Hydroelectric 0.40

External Source 15.0

Table 4. Factor of the emissions of natural gas and coal

Factor of the emissions Natural gas* Coal**

SO2 0.10 16.0

NOx 1.00 4.5

CO 0.01 0.03

Volatile organics 0.01 0.8

Solid particles 0.001 1.4

CO2 (t/TJ) 56.9 94.6
* g/kg, ** l/kg .

The amount of water usage is often of great concern for electricity generating systems 
as populations increase and droughts become a concern. General numbers for fresh water 
usage of different power sources are shown in Table 5. 

Table 5. Fresh water usage for different power sources

Power source Water usage (m3/GWh)

Natural gas 150

Coal 480

Nuclear power 550

Hydroelectric 1430

The operating costs for hydroelectric and nuclear plants are lower as these plants make 
smaller influence upon the natural environment. The operating costs for nuclear plants don’t 
estimate the costs for the utilization of the waste products after closing the plant but cor-
responding data might be easily included to the task.

Thus, the problem is modeled as a two-stage stochastic linear program (SLP) model

 

 (1)
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subject to

 

 (2)

where
S is the budget for the construction,
P is the capacity of the hydroelectric power,
T is the number of years,
n is the number of the different types of power plants,
m is the number blocks of demand,
x = (x1,x2,x3,x4) is a vector, representing the capacity to be built for each type of plant,
yijk is the amount of electricity capacity used to produce electricity by power plant type 

i for demand block j in year k in GW,
ci is the investment cost per GW of capacity for power plant type i,
qi is the operating cost of power generation for power plant type i,
hj is the duration of the demand block j,
Djk is the power demand in year k at demand block j: N(μj, σj),
wk is the limitation of the fresh water usage in year k.
Since the model aims to find the best structure of power plants capacity to satisfy the 

region power demands the vector x is assumed to be varying continuously. Of course, the 
values of the capacities should be specified implementing the solution, while the details of 
facility allocation and possible technical solutions are taken into account.

3. Monte-Carlo estimators for stochastic optimization

The adaptive method for solving SLP (1), (2) by series of Monte-Carlo samples is applied, 
exploiting the asymptotic properties of Monte-Carlo sampling estimators. This method is 
based on the handling of a statistical simulation error in a statistical manner and the rule for 
iterative control of the size of Monte-Carlo samples (Sakalauskas 2002, 2004). 

Details of the method are as follows, in general. Let a two-stage SLP problem with a 
complete recourse be considered:

 ( )( )( ) , min
nx D

F x c x E Q x
+∈ ⊂ℜ

= ⋅ + ξ →  (3)

subject to a feasible set
 { }, nD x A x b x += ⋅ = ∈ℜ , (4)
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where
 ( )( , ) min | , m

y
Q x q y W y T x h y +ξ = ⋅ ⋅ + ⋅ ≤ ∈ℜ  (5)

(See details in Sakalauskas and Zilinskas 2009).
We have by the duality that the gradient of the objective function might be expressed as

 ( )( )( ) ,x F x E g x∇ = ξ , (6)

where ( ) *,g x c T uξ = − ⋅  is given by a set of solutions of a dual problem (Sakalauskas and 
Zilinskas 2009)
 *( ) max [( ) | 0, ]T T T m

uh T x u h T x u u W q u− ⋅ ⋅ = − ⋅ ⋅ ⋅ + ≥ ∈ℜ . (7)

Assume that Monte-Carlo samples 1 2( , ,..., ),NY y y y=  where iy  are independent ran-
dom variables identically distributed at density ( , ),p x ⋅  are provided for any x D∈ . Then the 
sampling objective estimator

 
1

1( ) ( , )
N j

j
F x f x y

N =
= ∑  (8)

and the sampling variance estimator

 ( )22

1

1( ) ( , ) ( )
N j

j
d x f x y F x

N =
= −∑

  (9)

can be obtained from these samples. Next, the gradient can be evaluated using the same 
random sample:

 
1

1( ) ( , )jN
jG x g x y

N == ∑  (10)

for any x D∈  (Sakalauskas and Zilinskas 2006, 2009). The sampling covariance matrix

 ( ) ( )( ) ( )( )'
1

1 , ,
N j j

j
Z x g x y G g x y G

N n =
= − ⋅ −

−
∑    (11)

is introduced, too. 

4. Stochastic procedure for optimization

To create an optimizing sequence, the gradient search approach with projection to a ε–feasible 
set is applied to avoid problems of “jamming” or “zigzagging” (Sakalauskas and Zilinskas 
2009). The set of feasible directions is defined as follows:

 ( ){ }1( ) 0, 0, 0n
i n j jV x g Ag g if x≤ ≤= ∈ℜ = ∀ ≤ = ,

where Ug  is assumed as projection of vector g onto the set U and the ε – feasible set is also 
defined by similar way (Sakalauskas 2004):

 ( )( ){ }1( ) 0, 0, 0 ( )n
i n j j xV x g Ag g if x gε ≤ ≤= ∈ℜ = ∀ ≤ ≤ ≤ ε .

The stochastic optimization procedure is defined in a recurrent manner:

 ( )1t t t tx x G x+
ε= −ρ ⋅  , (12)
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where tGε
  is a projection of stochastic gradient estimator (10) to the ε-feasible set, 

( )t t
t t

x
G
ε

ρ = ρ   is a step-length multiplier taken at the point tx , and 0x D∈  is some initial 

point (Sakalauskas and Zilinskas 2006). Let the initial sample be generated of size N0. Note that 
is no great necessity to compute estimators with a high accuracy when starting the optimization 
process, because then it suffices only to approximately evaluate the direction leading to the op-
timum. Therefore, one can obtain not so large samples at the beginning of the optimum search 
and, later on, increase the size of samples so as to get the estimate of the objective function with 
a desired accuracy just at the time of decision making on finding the solution to the optimisation 
problem. Thus, the following rule is proposed for regulating the sample size (Sakalauskas 2004):

  (13)

Minimal Nmin (usually ~ 100) and maximal Nmax (usually ~ 1 000 000) values are intro-
duced to avoid great fluctuations of sample size in iterations. Nmax can also be chosen from 
the conditions on the permissible confidence interval of estimates of the objective function.

A possible decision on finding of optimal solution should be examined at each step of the 
optimization process. Since we know only the Monte-Carlo estimates of the objective func-
tion and that of its gradient, we can test only the statistical optimality hypothesis. As far as 
the stochastic error of these estimates depends in essence on the Monte-Carlo samples size, 
a possible optimal decision could be made, if, first, there is no reason to reject the hypothesis 
of equality to zero of the gradient, and, second, the sample size is sufficient to estimate the 
objective function with the desired accuracy. The following criteria used for the making of 
decision on the optimal solution finding and the termination of the algorithm:

1. The optimality hypothesis is accepted for some point xt with the significance 1 – µ, if

 ( ) ( ) ( )( ) ( ) ( )1
1 , , .t t t t t
n N n G x Z x G x Fish n N n

−
⋅ − ⋅ ⋅ ⋅ ≤ µ −   (14)

2. The objective function is estimated with permissible accuracy δ, if

 ( )2 t

t

D x

N

βη ⋅
≤ δ



, (15)

where ( )tD x  is a sampling variance of the objective function, βη  is the β  – quantile of a 
standard normal distribution (Sakalauskas 2002, 2004). 

The procedure (12) is iterated adjusting the sample size according to (13) and testing 
conditions (14) and (15) at each iteration. If the latter conditions are met both at some itera-
tion, then there are no reasons to reject the hypothesis on the optimum finding. Therefore, 
there is a basis to terminate the optimization and make a decision on the optimum finding 
with an admissible accuracy. If at least one condition is unsatisfied, then the next sample is 
generated and the optimization is continued. The convergence analysis shows that optimi-
zation process should terminate after generating a finite number of Monte-Carlo samples 
(Sakalauskas 2002).
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5. Implementation in power investment planning

The approach developed is implemented to solve the two-stage SLP problem of power in-
vestment planning defined above. The limit for the fresh water usage is 5∙104 m3 per year 
(wk = 5∙104, k = 1, 2, … 15). 

Thus, the first stage contains 6 variables and 4 restrictions, while the second stage contains 
375 variables and 375 restrictions. The solving algorithm was terminated after 123 itera-
tions. The size of the last Monte-Carlo sample is 15887, whereas the size of all Monte-Carlo 
samples is 290932. Hence, the method requires only 18.3 times (ratio) more computations 
in total than the calculation of one function value. Details of the computational experiment 
performed are reported in Fig’s 1–4 to illustrate the behavior of the optimization process, 
where the dependencies of the objective function, the sample size, the confidence interval of 
the objective function and the Hotelling statistic by the iteration number t are given.

The optimal cost of power plant investment planning problem is $16.508± 0.028 billion 
versus the deterministic cost $17.137± 0.053 billion which illustrates the importance of 
uncertainty to be taken into account when investments are planned. Traditional planning 
methods are using deterministic approach to describe the demand. Thus the deterministic 
problem was constructed solving the problem (1), (2) while the demand of the electric power 
is equal to the expected demand µj (σj = 0, j = 1, 2, … 5).

The problem solution is shown in Table 6. The structure of the optimal construction 
decision based on stochastic data shows that no power is taken from the external sources 
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and most of the electric power is generated in hydroelectric and nuclear plants which the 
operating costs for environmental safety are lower. 

The approach developed enables us also to investigate the impact of closure costs of the 
nuclear power plant on profitability of a power generation system. Namely, in the fourth column 
of Table 6, the optimal decision without nuclear power plants is given, to which the cost of the 
power plant investment planning problem $19.725 ± 0.037 billion corresponds. Thus, if the 
closure costs exceed about $3.7 billion, there is no reason to build the nuclear power plants.

The results of numerical experiments with various limits on the fresh water usage per 
year are shown in Table 7. 

The changes of optimal construction of power plant capacity are given in Fig. 5 to a con-
siderable extent by the limits of the fresh water usage for energy production. 

The number of iterations, the total number of the Monte Carlo trials used for solution 
finding as well as the ratio of the total number of trials to number of trials taken at the last 
iteration are shown in Table 8 (varying the limits for the fresh water usage).

Hence, the optimization process requires only several times more computations in the 
whole as compared with the computation of one function value at the last iteration. The nu-
merical experiments corroborate the theoretical conclusions on the convergence the method 
(Sakalauskas 2002, 2004) and shows that the approach developed makes it possible to solve 
stochastic power plant investment problems with an admissible accuracy by means of an 
acceptable amount of computations.

Table 7. Power plant capacity optimal construction, costs and decisions with respect to fresh water usage

Fresh water 
usage

(104 m3)

Gas Turbine
(GW)

Coal
(GW)

Nuclear
(GW)

Hydro-
electric
(GW)

Optimal cost
(billion $)

5 4.5 4.4 4.6 5.0 16.508

4 6.9 1.9 6.5 3.1 17.854

3 6.9 1.9 8.8 0.8 19.705

2 8.8 0 9.6 0 24.113

1 15.4 0 3.1 0 38.911

Table 6. Power plant capacity optimal construction decisions

Power plant type Decision based on 
expected data (GW)

Decision based on 
stochastic data (GW)

Decision based on stochas-
tic data without nuclear 

power plant (GW)

Gas Turbine 1.78 4.45 9.31

Coal 3.23 4.36 10.87

Nuclear 4.07 4.60 0

Hydroelectric 5.00 5.00 5.00

Cost (billion $) 17.137 ± 0.053 16.508 ± 0.028 19.725 ± 0.037
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6. Conclusions

The energetic planning problem taking into account the environmental impact has been 
considered containing the energetic situation of the region. The model and data of the prob-
lem solved involve main parts of the sustainable regional energetic development in the long 
term perspectives. 

The main data consists of investment costs, operational generating costs with assumption 
of the ecological costs and energetic demand. The dynamics of demand depends on the need 
of the energy for particular periods of the year and is described by continuous distribution 
of scenarios. The generating of the power is related with large ecological costs: the expenses 
for expenditures of fuel, water and extra electric power, chemical and technological materials 

Table 8. Number of iterations, the total number of Monte Carlo trials used for optimal solution finding, 
the ratio of the total number of trials to the number of trials taken at the last iteration by the limit on 
the fresh water usage

Fresh water usage
(104 m3)

Confidence interval
(billion $)

Number of 
iterations

Total number 
of trials Ratio

5 0.028 123 290932 18.3
4 0.027 127 291224 18.4
3 0.033 119 289745 18.2
2 0.034 133 292335 18.1
1 0.035 135 293457 18.5
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and of the taxes for air and water pollution, the costs of utilization of waste products and of 
the activity for the nature safety. 

The analysis of the problem in the paper indicates that effective solution can be done by 
stochastic programming methods. The stochastic iterative method has been developed to solve 
SLP problems by a finite sequence of Monte-Carlo sampling estimators applied to solve the 
stochastic power planning problem. The approach developed enables us to decrease the total 
expected costs of building and operating of regional power system versus the deterministic 
planning solution taking into account the impact on the environment as well as to evaluate 
the closure costs of nuclear plant for which a building of the nuclear power plant is profitable.
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STOCHASTINIO PROGRAMAVIMO NAUDOJIMAS PLANUOJANT ELEKTROS  
ENERGIJOS INFRASTRUKTŪRĄ IR GAMYBĄ 

L. Sakalauskas, K. Žilinskas

Santrauka. Nors elektros energijos infrastruktūros ir gamybos uždavinys sprendžiamas intensyviai, tradi-
ciniai optimizavimo metodai nepateikia tinkamų sprendinių, ypač kai elektros energijos rinkoje daugelis 
veiksnių yra neapibrėžti. Šiame straipsnyje pateikiamas elektros energijos gamybos planavimo metodas, 
sukurtas remiantis dviejų etapų stochastiniu programavimu, kai neapibrėžtumas aprašomas tolydžiaisiais 
pasiskirstymo scenarijais. Uždavinio tikslas  – rasti tinkamą regiono elektros jėgainių struktūrą, kuri 
minimizuotų investavimo ir ilgalaikes energijos gamybos sąnaudas. Sprendžiant uždavinį atsižvelgiama 
į gamtosaugos problemas. Taikant optimizavimo metodą naudojami baigtinių Monte Karlo sekų įverčiai. 
Siūloma procedūra leidžia išspręsti stochastinius uždavinius gana tiksliai, naudojant priimtinus skaičiavi-
mo išteklius. Skaitiniai eksperimentai rodo, kad siūlomas metodas padeda sumažinti bendrąsias elektros 
energijos gamybos sąnaudas, palyginti su deterministiniu uždavinio sprendiniu.

Reikšminiai žodžiai: stochastinis programavimas, Monte Karlo metodas, elektros energijos gamyba, 
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