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1 Introduction

Let s = σ + it denote a complex variable, and {am: m ∈ N} and {λm: m ∈ N}
be a sequence of complex numbers and an increasing sequence of real numbers,
respectively, limm→∞ λm = +∞. The series of the type

∞∑

m=1

ame−λms

is called a general Dirichlet series. It is well known that the region of conver-
gence as well as of absolute convergence of Dirichlet series is a half-plane.

The first probabilistic results for Dirichlet series were obtained by Bohr and
Jessen [2, 3]. They obtained prototypes of modern limit theorems in the sense
of weak convergence of probability measures for the Riemann zeta-function
ζ(s) which, for σ > 1, is defined by an ordinary Dirichlet series (λm = logm)

∗ Supported by grant No MIP-94 from the Research Council of Lithuania



40 J. Genys and A. Laurinčikas

with coefficients am ≡ 1. Modern limit theorems for ζ(s) and other zeta and
L-functions can be found in [11, 12, 18, 21, 22]. Limit theorems of such a type
for general Dirichlet series were proved in [4, 5, 8, 13, 14, 15, 16, 17, 20].

Weighted limit theorems for general Dirichlet series were began to study in
[6], where the case of weak convergence of probability measures on the complex
plane was investigated. In [9], a joint generalization with a fixed system of ex-
ponents of theorems from [6] was given. Finally, in [7] weighted limit theorems
in the space of meromorphic functions for general Dirichlet series were obtained.
The aim of this paper is to prove joint weighted limit theorems on the complex
plane for general Dirichlet series with a non-fixed system of exponents.

For r ∈ N \ {1}, let {amj: m ∈ N} and {λmj: m ∈ N} be a sequence
of complex numbers and an increasing sequence of real numbers, respectively,
lim

m→∞
λmj = +∞, and, for σ > σaj ,

fj(s) =
∞∑

m=1

amje
−λmjs, j = 1, . . . , r.

Additionally, we assume that the function fj(s), j = 1, . . . , r, can be meromor-
phically continued to the region σ > σ1j , σ1j < σaj , all poles in this region are
included in a compact set, and that, for σ > σ1j , σ is not the real part of a
pole of fj(s), the estimates

fj(σ + it) = O (|t|aj ) , aj = aj(σ) > 0, |t| ≥ t0 > 0, (1.1)

and ∫ T

−T

|fj(σ + it)|2 dt = O(T ), T → ∞, (1.2)

are satisfied.
Let w(t) be a positive function of bounded variation on [T0,∞), T0 > 0,

and

U = U(T,w) =

∫ T

T0

w(t) dt.

We suppose that limT→∞ U(T,w) = +∞, and that, for σ > σ1j , σ is not the
real part of a pole of fj(s), and all v ∈ R, the estimate

∫ T+v

T0+v

w(t − v)|fj(σ + it)|2 dt = O(U(1 + |v|)), j = 1, . . . , r, (1.3)

holds. For example, if w(t) = t−1, then the estimate (1.2) implies (1.3).
Denote by B(S) the class of Borel sets of a metric space S, and define the

probability measure

PT,σ,w(A) =
1

U

∫ T

T0

w(t)I{t: f(σ+it)∈A} dt, A ∈ B(Cr),

where IA denotes the indicator function of the set A, C is the complex plane,
C

r = C× · · · × C
︸ ︷︷ ︸

r

, σ = (σ1, . . . , σr), and

f(σ + it) = (f1(σ1 + it), . . . , fr(σr + it)).
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Theorem 1. For j = 1, . . . , r, suppose that σj > σ1j , and the functions fj(s)
and w(t) satisfy (1.1) and (1.3). Then on (Cr,B(Cr)) there exists a probability

measure Pσ,w such that the measure PT,σ,w converges weakly to Pσ,w as T → ∞.

It is important to identify the limit measure Pσ,w in Theorem 1. For this,
we need additional hypotheses on the functions w(t) and fj(s), j = 1, . . . , r, as
well as some notation and definitions. First of all, we suppose that

λmj ≥ c(logm)θj (1.4)

with some positive constants cj and θj , j = 1, . . . , r.
Denote by γ the unit circle {s ∈ C: |s| = 1} on the complex plane, and define

the infinite-dimensional torus Ω =
∏∞

m=1 γm, where γm = γ for all m ∈ N. By
the Tikhonov theorem, with the product topology and pointwise multiplication,
the torus Ω is a compact topological Abelian group. Therefore, on (Ω,B(Ω))
the probability Haar measure m̂H exists, and this leads to a probability space
(Ω,B(Ω), m̂H).

Now let Ωr = Ω1 × · · · × Ωr, where Ωj = Ω for j = 1, . . . , r. Denote
by ω = (ω1, . . . , ωr) the elements of Ωr, with ωj ∈ Ωj , j = 1, . . . , r. Then
Ωr again is a compact topological group, and on (Ωr,B(Ω)r), the probability
Haar measure mH can be defined. Thus, we obtain a new probability space
(Ωr,B(Ω)r,mH). Note, that the Haar measure mH is the product of Haar’s
measures mjH on (Ωj ,B(Ωj)), j = 1, . . . , r.

The estimates (1.2) and (1.4) imply [15] that, for σ > σ1j ,

fj(σ, ωj) =

∞∑

m=1

amjωj(m)e−λmjσ,

where ωj(m) denotes the projection of ωj ∈ Ω to the coordinate space γm, m ∈
N, is a complex-valued random element on the probability space (Ωj ,B(Ωj),
mjH), j = 1, . . . , r. On the probability space (Ωr ,B(Ω)r,mH), define the
Cr-valued random element F (σ, ω) by the formula

F (σ, ω) = (f1(σ1, ω1), . . . , fr(σr , ωr)),

and denote by PX the distribution of the random element X . In particular,
the distribution PF of the random element F (σ, ω) is defined by

PF (A) = mH (ω ∈ Ωr: F (σ, ω) ∈ A) , A ∈ B(Cr).

For identification of the limit measure in Theorem 1, we need one more
hypothesis on the weight function w(t). Denote by EX the expectation of the
random element X . Let X(τ, ω) be an arbitrary ergodic process, E|X(τ, ω)| <
∞, with sample path integrable almost surely in the Riemann sense over every
finite interval. We suppose that

1

U

∫ T

T0

w(t)X(t + v, ω) dt = EX(0, ω) + rT (1 + |v|)
α

(1.5)
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almost surely for all v ∈ R with some α > 0, where rT → 0 as T → ∞. If in (1.5)
w(t) ≡ 1 and v = 0, then (1.5) becomes the well-known Birkhoff–Khintchine
theorem. Define µ(T ) = inft∈[T0,T ] w(t). If

w(T )µ−1(T ) = O(1),

then the weight function w(t) satisfies (1.5) with α = 1 [19]. Let

Λ = {λmj : m ∈ N, j = 1, . . . , r}.

Theorem 2. Suppose that the set Λ is linearly independent over the field of

rational numbers, and inequality (1.4) holds. For j = 1, . . . , r, let σj > σ1j,

and let the functions fj(s) and w(t) satisfy (1.1)–(1.3) and (1.5). Then the

probability measure PT,σ,w converges weakly to the measure PF as T → ∞.

2 Limit Theorems on Ω
r

In this section, we consider the weak convergence of the probability measure

QT,w(A) =
1

U

∫ T

T0

w(t)I{t: ((e−iλm1t:m∈N),...,(e−iλmrt:m∈N))∈A} dt, A ∈ B(Ωr),

as T → ∞.

Theorem 3. On (Ωr,B(Ωr)), there exists a probability measure Q such that

the measure QT converges weakly to Q as T → ∞.

Proof. The dual group of Ωr is isomorphic to D =
r⊕

j=1

∞⊕

m=1
Zmj , where Zmj =

Z for all m ∈ N and j = 1, . . . , r. An element k = (kmj) ∈ D, where only finite
number of integers kmj are distinct from zero, acts on Ω by the formula

ω → ωk =

r∏

j=1

∞∏

m=1

ω
kmj

j (m).

Therefore, the Fourier transform gT (k) of the measure QT is of the form

gT (k) =

∫

Ωr

r∏

j=1

∞∏

m=1

ω
kmj

j (m)dQT =
1

U

∫ T

T0

w(t)

r∏

j=1

∞∏

m=1

e−iλmjkmjt dt,

where, as above, only a finite number of integers kmj are distinct from zero.
Thus, we have that

gT (k) =
1

U

∫ T

T0

w(t)exp
{

− it

r∑

j=1

∞∑

m=1

λmjkmj

}

dt.

If

(Λ, k)
def
=

r∑

j=1

∞∑

m=1

λmjkmj = 0,
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then, clearly, gT (k) = 1. If (Λ, k) 6= 0, then the integration by parts shows that

gT (k) = O
(
(U(Λ, k))−1

)
.

Thus, we have that

lim
T→∞

gT (k) =

{
1 if (Λ, k) = 0,

0 if (Λ, k) 6= 0.

Now, by Theorem 1.4.2 of [10], we find that the measure QT converges weakly
to the measure Q defined by the Fourier transform

{
1 if (Λ, k) = 0,

0 if (Λ, k) 6= 0,

as T → ∞. ut

Theorem 4. Suppose that the set Λ is linearly independent over the field of

rational numbers. Then the measure QT converges weakly to Haar measure

mH as T → ∞.

Proof. Since the set Λ is linearly independent over the field of rational num-
bers, (Λ, k) = 0 if and only if k = 0. Therefore, repeating the proof of Theorem
3, we obtain that the measure QT converges weakly to the measure with Fourier
transform {

1 if k = 0,

0 if k 6= 0.

Since the latter Fourier transform is of the Haar measure mH , the theorem is
proved. ut

3 Absolutely Convergent Series

Let σ2j > σaj − σ1j , and, for m,n ∈ N,

vmj(n) = exp
{

−e(λmj−λnj)σ2j

}

, j = 1, . . . , r.

For σ > σ1j and ω̂ ∈ Ωr, define

fnj(s) =

∞∑

m=1

amjvmj(n)e
−λmjs,

fnj(s, ω̂j) =
∞∑

m=1

amjvmj(n)ω̂j(m)e−λmjs, j = 1, . . . , r.

In [15], it was proved that the series for fnj(s), and thus for fnj(s, ω̂j), is
absolutely convergent for σ > σ1j , j = 1, . . . , r. Let

f
n
(σ + it) = (fn1(σ1 + it), . . . , fnr(σr + it))
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and

f
n
(σ + it, ω̂) = (fn1(σ1 + it, ω̂1), . . . , fnr(σr + it, ω̂r)).

In this section, we consider the weak convergence of the probability measures

PT,n,σ,w(A) =
1

U

∫ T

T0

w(t)I{t: f
n
(σ+it)∈A} dt, A ∈ B(Cr),

P̂T,n,σ,w(A) =
1

U

∫ T

T0

w(t)I{t: f
n
(σ+it,ω̂)∈A} dt, A ∈ B(Cr).

Theorem 5. For j = 1, . . . , r, let σj > σ1j. Then on (Cr,B(Cr)), there exists

a probability measure Pn,σ,w such that the measure PT,n,σ,w converges weakly

to Pn,σ,w as T → ∞.

Proof. Define the function hn,σ : Ωr → Cr by the formula

hn,σ(ω) =
( ∞∑

m=1

am1vm1(n)ω1(m)e−λm1σ1 , . . . ,

∞∑

m=1

amrvmr(n)ωr(m)e−λmrσr

)

.

Since the series
∞∑

m=1

amjvmj(n)e
−λmjσj

converges absolutely, the series

∞∑

m=1

amjvmj(n)ωj(m)e−λmjσj

converges uniformly in ωj , j = 1, . . . , r. Therefore, the function hn,σ is contin-
uous. Moreover,

hn,σ

(
(e−iλm1t: m ∈ N), . . . , (e−iλmrt: m ∈ N)

)
= f

n
(σ + it).

Therefore, PT,n,σ,w = QT,wh
−1
n,σ, where QT,w is the measure in Theorem 3.

Hence, the continuity of hn,σ, Theorem 3 and Theorem 5.1 of [1] show that the
measure PT,n,σ,w, as T → ∞, converges to Qh−1

n,σ, where Q is the limit measure
in Theorem 3. ut

Theorem 6. For j = 1, . . . , r, let σj > σ1j, and suppose that the set Λ is

linearly independent over the field of rational numbers. Then on (Cr,B(Cr)),
there exists a probability measure Pn,σ,w such that the measures PT,n,σ,w and

P̂T,n,σ,w both converge weakly to Pn,σ,w as T → ∞.

Proof. Since the set Λ is linearly independent over the field of rational num-
bers, using Theorem 4 and repeating the proof of Theorem 5, we find that the
measure PT,n,σ,w converges weakly to mHh−1

n,σ as T → ∞.
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Now consider the measure P̂T,n,σ,w. Define ĥn,σ : Ωr → C
r by the formula

ĥn,σ(ω) =

(
∞∑

m=1

am1vm1(n)ω̂1(m)ω1(m)e−λm1σ1 , . . .

∞∑

m=1

amrvmr(n)ω̂r(m)ωr(m)e−λmrσr

)

.

Then, similarly to the case of PT,n,σ,w, we obtain that the measure P̂T,n,σ,w

converges weakly to mH ĥ−1
n,σ as T → ∞. It remains to show that mHh−1

n,σ =

mH ĥ−1
n,σ. For this, we take h : Ωr → Ωr defined by h(ω) = ω ω̂. Then

ĥn,σ(ω) = hn,σ(h(ω)), and the invariance of the Haar measure mH shows that

mH ĥ−1
n,σ = mH(hn,σ(h))

−1 = (mHh−1)h−1
n,σ = mHh−1

n,σ. ut

4 Approximation in the Mean

Let, for ω ∈ Ωr,

f(σ + it, ω) = (f1(σ1 + it, ω1), . . . , fr(σr + it, ωr)).

In this section, we will approximate f(σ + it) and f(σ + it, ω) in the mean by
f
n
(σ+ it) and f

n
(σ+ it, ω), respectively. Let, for z1 = (z11, . . . , z1r) ∈ C

r and
z2 = (z21, . . . , z2r) ∈ Cr,

%r(z1, z2) =
( r∑

j=1

|z1j − z2j |
2
) 1

2

be the metric in Cr inducing its topology.

Theorem 7. For j = 1, . . . , r, let σj > σ1j . Then, under hypotheses of Theo-

rem Theorem 1,

lim
n→∞

lim sup
T→∞

1

U

∫ T

T0

w(t)%r(f(σ + it), f
n
(σ + it)) dt = 0.

Proof. Under hypotheses of the theorem, in [6], Theorem 9, it was proved that

lim
n→∞

lim sup
T→∞

1

U

∫ T

T0

w(t)|fj(σj + it)− fnj(σj + it)| dt = 0, j = 1, . . . , r. (4.1)

In view of the inequality (|a|+ |b|)
1

2 ≤ |a|
1

2 + |b|
1

2 , we have that

%r(z1, z2) ≤

r∑

j=1

|z1j − z2j|.

Therefore, the theorem is a result of (4.1). ut
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Theorem 8. For j = 1, . . . , r, let σj > σ1j . Then, under hypotheses of Theo-

rem 2,

lim
n→∞

lim sup
T→∞

1

U

∫ T

T0

w(t)%r(f(σ + it, ω), f
n
(σ + it, ω) dt = 0

for almost all ω ∈ Ωr.

Proof. Since the set Λ is linearly independent over the field of rational num-
bers, obviously, each set {λmj : m ∈ N}, j = 1, . . . , r, is as well. Therefore, by
Theorem 13 from [6], we have that, for j = 1, . . . , r,

lim
n→∞

lim sup
T→∞

1

U

∫ T

T0

w(t)|fj(σj + it, ωj)− fnj(σj + it, ωj)| dt = 0

for almost all ωj ∈ Ωj . Since the Haar measure mH is the product of the
measures mjH , j = 1, . . . , r, hence the theorem follows in the same way as
Theorem 7. ut

5 Proof of Theorem 1

By Theorem 5, the probability measure PT,n,σ,w converges weakly to Pn,σ,w as
T → ∞.

Lemma 1. The family of probability measures {Pn,σ,w: n ∈ N} is tight.

Proof. For M > 0, we have

1

U

∫ T

T0

w(t)I{t: %r(f
nj

(σ+it,0)>M} dt ≤
1

MU

∫ T

T0

w(t)%r(fn
(σ + it, 0) dt

≤
1

MU

∫ T

T0

w(t)%r(f(σ + it), f
n
(σ + it)) dt+

1

MU

∫ T

T0

w(t)%r(f(σ + it), 0) dt.

Therefore, Theorem 7 and (1.3) with v = 0 show that

sup
n∈N

lim sup
T→∞

1

U

∫ T

T0

w(t)I{t: %r(f
n
(σ+it,0)>M} dt

≤ sup
n∈N

lim sup
T→∞

1

MU

∫ T

T0

w(t)%r(f(σ + it), fn(σ + it)) dt

+ sup
n∈N

lim sup
T→∞

1

MU

r∑

j=1

∫ T

T0

w(t)|fj(σj + it)| dt

�
1

M
+ lim sup

T→∞

1

MU

r∑

j=1

( ∫ T

T0

w(t) dt

∫ T

T0

w(t)|fj(σj + it))|2 dt
) 1

2

≤ R/M, (5.1)
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where R < ∞. Now let ε be an arbitrary positive number, and M = Rε−1.
Then (5.1) and properties of weak convergence of probability measures imply

Pn,σ,w ({s ∈ C
r: %r(s, 0) > M})

≤ lim inf
T→∞

PT,n,σ,w ({s ∈ C
r: %r(s, 0) > M})

= lim inf
T→∞

1

U

∫ T

T0

w(t)I{t: %r(f
n
(σ+it,0)>M} dt

≤ lim sup
T→∞

1

U

∫ T

T0

w(t)I{t: %r(f
n
(σ+it,0)>M} dt ≤ ε. (5.2)

Let Kε = {s ∈ Cr: %r(s, 0) ≤ M}. Then the set Kε is compact in Cr, and,
by (5.2),

Pn,σ,w(Kε) ≥ 1− ε

for all n ∈ N. This means that the family of probability measures {Pn,σ,w: n ∈
N} is tight. ut

Proof of Theorem 1. On a certain probability space (Ω̂,B(Ω̂),P), define a
random variable θ = θT by

P(θ ∈ A) =
1

U

∫ T

T0

w(t)IA dt, A ∈ B(R).

LetXT,n,w(σ) = f
n
(σ+iθT ). Then the assertion of Theorem 5 can be rewritten

in the form
XT,n,w(σ)

D
−→

T→∞
Xn,w(σ), (5.3)

where Xn,w(σ) is a Cr-valued random element with the distribution Pn,σ,w,

and
D
−→ denotes the convergence in distribution.

Since the family {Pn,σ,w: n ∈ N} is tight, by the Prokhorov theorem, see [1],
it is relatively compact. Thus, there exists a sequence {Pnk,σ,w} ⊂ {Pn,σ,w}
such that Pnk,σ,w converges weakly to a certain probability measure Pσ,w on
(Cr,B(Cr)) as k → ∞. In other words,

Xnk,w
(σ)

D
−→

k→∞
Pσ,w. (5.4)

Define XT,w(σ) = f(σ + iθT ). Then, by Theorem 7, for every ε > 0,

lim
n→∞

lim sup
T→∞

P
(
%r(XT,w(σ), XT,n,w(σ)) ≥ ε

)

= lim
n→∞

lim sup
T→∞

1

U

∫ T

T0

w(t)I{t: %r(f(σ+it),f
n
(σ+it))≥ε} dt

≤ lim
n→∞

lim sup
T→∞

1

Uε

∫ T

T0

w(t)%r(f(σ + it), f
n
(σ + it)) dt = 0.

This, relations (5.3) and (5.4) together with Theorem 4.2 of [1] yield

XT,w(σ)
D
−→

T→∞
Pσ,w, (5.5)

hence, PT,σ,w converges weakly to Pσ,w as T → ∞. ut

Math. Model. Anal., 16(1):39–51, 2011.
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6 Proof of Theorem 1.2

Define one more probability measure

P̂T,σ,w(A) =
1

U

∫ T

T0

w(t)I{t: f(σ+it,ω)∈A} dt, A ∈ B(Cr).

Theorem 9. Under hypotheses of Theorem 2 on (Cr,B(Cr)), there exists a

probability measure Pσ,w such that the measures PT,σ,w and P̂T,σ,w both con-

verge weakly to Pσ,w as T → ∞.

Proof. By Theorem 6, the probability measures PT,n,σ,w and P̂T,n,σ,w both
converge weakly to the same measure Pn,σ,w as T → ∞. As in the proof of
Theorem 1, we have that relations (5.3)–(5.5) hold, and the measure PT,σ,w

converges weakly to Pσ,w. Moreover, the relation (5.5) shows that the measure
Pσ,w is independent on the sequence {Pnk,σ,w}. Therefore, we have that

Xn,w(σ)
D
−→

n→∞
Pσ,w. (6.1)

Now define

Y T,n,w(σ) = f
n
(σ + iθT , ω), Y T,w(σ) = f(σ + iθT , ω).

Then repeating the arguments of the proof of Theorem 1, applying Theorem 8
and using (6.1), we find that

Y T,w(σ)
D
−→

T→∞
Pσ,w.

This means that the measure P̂T,σ,w also converges to the measure Pσ,w as
T → ∞. ut

Define, for t ∈ R,

at =
{(

(e−iλm1t: m ∈ N), . . . , (e−iλmrt: m ∈ N)
)}

.

Then {at: t ∈ R} is a one-parameter group. Define the one-parameter family
{ϕ

t
: t ∈ R} of transformations on Ωr by ϕ

t
(ω) = atω, ω ∈ Ωr . Then {ϕ

t
: t ∈

R} is a one-parameter group of measurable measure preserving transformations
on Ωr. A set A ∈ B(Ωr) is invariant with respect to the group {ϕ

t
: t ∈ R} if,

for every t ∈ R, the sets A and At = ϕ
t
(A) differ one from another only by a

set of zero mH-measure. The one-parameter group {ϕ
t
: t ∈ R} is called ergodic

if its σ-field of invariant sets consists only from sets having mH-measure 0 or 1.

Lemma 2. Suppose that the set Λ is linearly independent over the field of ra-

tional numbers. Then the one-parameter group {ϕ
t
: t ∈ R} is ergodic.

Proof. Let χ be a character of Ωr. As we have seen in the proof of Theorem
Theorem 3,

χ(ω) =
r∏

j=1

∞∏

m=1

ω
kmj

j (m),
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where only a finite number of integers kmj are distinct from zero.
Suppose that χ is a non-trivial character. Then we have

χ(at) =

r∏

j=1

∞∏

m=1

e−iλmjkmj t,

where only a finite number of integers kmj are distinct from zero. Since the set
Λ is linearly independent over the field of rational numbers,

r∏

j=1

∞∏

m=1

eλmjkmj 6= 1

for k 6= 0. Consequently, there exists a t0 ∈ R such that χ(at0) 6= 1.
Now we take an invariant set A ∈ B(Ω) with respect to {ϕ

t
: t ∈ R}. Then,

for almost all ω ∈ Ωr with respect to the measure mH ,

IA(at ω) = IA(ω).

Therefore, the Fourier transform ÎA of IA is

ÎA(χ) =

∫

Ωr

χ(ω)IA(ω)mH(dω) =

∫

Ωr

χ(ω)IA(at0 ω)mH(dω)

= χ(at0)

∫

Ω

χ(ω)IA(ω)mH(dω) = χ(at0)ÎA(χ).

Since χ(at0) 6= 1, hence we have that ÎA(χ) = 0 for all non-trivial characters χ
of Ωr.

Now let χ0 be the trivial character of Ωr, that is, χ0(ω) = 1 for all ω ∈ Ωr.
We put ÎA(χ0) = u. Then, using the orthogonality of characters

∫

Ωr

χ(ω)mH(dω) =

{
1 if χ = χ0,
0 otherwise,

we obtain that, for any character χ of Ωr,

ÎA(χ) = u

∫

Ωr

χ(ω)mH(dω) = u1̂(χ) = û(χ).

This shows that IA(ω) = u for almost all ω ∈ Ωr. Since u = 0 or u = 1, either
mH(A) = 0 or mH(A) = 1, i. e., the group {ϕ

t
: t ∈ R} is ergodic. ut

Proof of Theorem 2. In view of Theorem 9, it suffices to show that the limit
measure Pσ,w coincides with PF .

Let A ∈ B(Cr) be an arbitrary fixed continuity set of the measure Pσ,w.
Then, by Theorem 9 and Theorem 2.1 of [1],

lim
T→∞

1

U

∫ T

T0

w(t)I{t: f(σ+it)∈A} dt = Pσ,w(A). (6.2)
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On the probability space (Ωr,B(Ωr)), define the random variable θ by the
formula

θ(ω) =

{
1 if F (σ, ω) ∈ A,

0 if F (σ, ω) 6∈ A.

Clearly,

Eθ =

∫

Ωr

θ(ω)dmH = mH (ω ∈ Ωr: F (σ, ω) ∈ A) = PF (A). (6.3)

Lemma 2 implies the ergodicity of the random process θ(ϕ
t
(ω)). Therefore,

(1.5) with v = 0 shows that

lim
T→∞

1

U

T∫

T0

w(t)θ(ϕ
t
(ω)) dt = Eθ. (6.4)

Moreover, the definitions of θ and ϕ
t
(ω) yield

1

U

∫ T

T0

w(t)θ(ϕ
t
(ω)) dt =

1

U

∫ T

T0

w(t)I{t: F (σ,ϕ
t
(ω))∈A} dt

=
1

U

∫ T

T0

w(t)I{t: f(σ+it,ω)∈A} dt.

This together with (6.3) and (6.4) shows that

lim
T→∞

1

U

∫ T

T0

w(t)I{t: f(σ+it,ω)∈A} dt = PF (A).

Therefore, in view of (6.2), for all continuity sets A of Pσ,w, the equality

Pσ,w(A) = PF (A)

holds. Hence, it is true for all A ∈ B(Cr). This completes the proof. ut
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