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Abstract. A general solution of the Schrödinger equation in the potential repre-
sentation has been obtained in the form of integral equations. In this representation,
the wave function for positive and negative energies or bound states can be expressed
as a product of the unperturbed solution for model potential and the function which
depends on the additional potential or potential perturbation. Here we have proved
that this method is equivalent to the method of variation of constants for negative
energies. The linearly independent solutions of Schrödinger equation for harmonic
oscillator potential have been obtained for derivation of integral equations, which are
used for finding eigenfunctions and eigenvalues for Woods–Saxon potential. Eigenval-
ues obtained by numerical iterations of these integral equations are in good agreement
with results obtained by the discretization method. The kernels of the obtained in-
tegral equations are proportional to the perturbation or difference of Woods–Saxon
and harmonic oscillator potentials.
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1 Introduction

We have obtained the analytical solutions of the one-particle radial Schrödinger
equation for negative energies in the form of the integral equations by using the
potential representation method proposed for positive [8, 9, 10], and negative [3]
energies. The main idea of this method is expressing the radial wave function
as a product of the model solution and the function, which depends on the
difference of interaction potentials. This paper is a generalization of integral
equations derived in [10] for positive energies, where the radial wave functions
can be obtained by multiplying the free solution on function which depends on
the perturbation potential. In [10], the following postulate was presented: after
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adding potential to Hamiltonian, a new radial wave function can be obtained
multiplying unperturbed or model wave function on function which depends on
added potential. We have proved this postulate [3, 4, 9] and presented it like
a theorem using the method of indefinite coefficients. From this theorem, the
connection between the solutions for short range potentials and for Coulomb
potentials has been obtained [9]. In potential representation [2, 3, 4, 15] the
perturbed radial function UαnL(r) with the set of quantum numbers αnL can
be expressed as a product of unperturbed wave function U0nL(r) with the set
of quantum numbers nL

UαnL(r) = ϕα(r)U0nL(r)

on the multiplier ϕα(r) depending on an additional potential. The main prob-
lem considered in this paper is the interpretation and convergence of the ob-
tained eigenvalues using the harmonic oscillator potential for modelling of
Woods–Saxon potential. At large distances these potentials have essentially
different asymptotical behaviour, i.e. r2 and exp[−αr], α > 0, respectively.

2 Modelling of the Schrödinger Equation Solutions with

the Harmonic Oscillator Potential

We consider the Schrödinger equation

d2

dr2
UαnL − L(L+ 1)

r2
+ c
[
E0nL +ΔEα − VD(r) − V0(r)

]
UαnL = 0, (2.1)

where c = 2μ/�2, and potentials are defined as

V0(r) =
mω2r2

2
− VS(0), VD(r) = VS(r) − V0(r), (2.2)

VS(r) = −V [1 + exp[α(r −R)]−1.

Here we have added and subtracted the potential V0(r). The energies are ex-
pressed by the sum of energies E0nL for a model potential and energy changes
ΔEα for perturbation VD(r). We are interested in finding eigenvalues E0nL +
ΔEα and eigenfunctions UαnL of the equation (2.1) with perturbed potential
VD(r) by using unperturbed analytical physical U0nL and linearly independent
nonphysical F0nL solutions and eigenvalues E0nL of the Schrödinger equation
for model potential V0(r). For the harmonic oscillator potential, we have ob-
tained the following solutions [3]:

U0nL = e−0.5ρρ0.5(L+1)
n−1∑
k=0

akρ
k, ρ =

mωr2

�
, n = 1, 2, 3, (2.3)

ak+1 =
k − 0.5(εnL − L− 1.5)

(k + 1)(k + L+ 1.5)
ak, a0 = 1, (2.4)
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F0nL = e−0.5ρρ−0.5Lw(ρ), w(ρ) =

∞∑
k=0

bkρ
k, (2.5)

bk+1 =
k − 0.5(εnL + L− 0.5)

(k + 1)(k − L+ 0.5)
bk, b0 = 1, (2.6)

and eigenvalues

E0nL = εnL�ω − VS(0), εnL = 2n+ L− 0.5,

ω = dω0, ω0 = 41A−1/3MeV

�
. (2.7)

Frequencies ω0 for harmonic oscillator potential can be determined [3] from
the radius of nuclei R and depend on nucleon number A and Vs(0) = −V from
(2.2). The coefficients of power series w(ρ) for very high powers satisfy the
abbreviated recursion relation

bk+1/bk → 1/k, k � 1.

From this ratio and [4, 12] and (2.3) we can make a conclusion that for ρ→∞
we have

w(ρ)→ eρ, F0nL → e0.5ρ. (2.8)

From the asymptotical expressions limρ→0 U0nL = ρL+1 and limρ→0 F0nL =
ρ−L we can obtain the Wronskian [3]

W0(F0nL, U0nL) = F0nL
dU0nL

dr
−U0nL

dF0nL

dr
, W0 = (2L+1)

(mω
�

) 1
2

. (2.9)

The perturbed UαnL and unperturbed U0nL solutions must have the same
boundary condition at the origin rL+1 and at the infinity:

lim
r→0

ϕα = 1, lim
r→∞

ϕα(r)U0nL(r) = 0. (2.10)

3 Green’s Functions for the Potential Representation

The multiplicative or potential representation perturbation theory can be re-
alized by using the modified method of Lagrange [2, 4, 15]. In this case per-
turbed solution UαnL of equation (2.1) for perturbation potential VD(r) can be
expressed in the following way

UαnL = C1(r)F0nL(r) + C2(r)U0nL(r), (3.1)

where F0nL(r) and U0nL(r) are linearly independent solutions for model po-
tential V0(r). Using the same factorization like in [15]

UαnL =

[
C1(r)

F0nL(r)

U0nL(r)
+ C2(r)

]
U0nL(r), UαnL(r) = ϕαU0nL(r), (3.2)

and the additional condition [15] for derivatives of indefinite coefficients

C ′1(r)
F0nL(r)

U0nL(r)
+ C′2(r) = 0 (3.3)
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we obtain derivatives

ϕ′α = −W0
C1(r)

U0nL
2(r)

, W0 = F0nLU
′
0nL − U0nLF

′
0nL, (3.4)

ϕ′′α = −W0

[
C′1(r)

U0nL
2(r)

− 2C1(r)
U ′0nL(r)

U0nL
3(r)

]
. (3.5)

Here W0 is Wronskian of linearly independent solutions F0nL(r) and U0nL.
Substituting (3.2), (3.4) and (3.5) into (2.1) and including expression (3.3) we
get

C′1α(r) = −
1

W0
U0nLcVdϕαU0nL, Vd = VD −ΔEα, (3.6)

C′2α(r) =
1

W0
F0nLcVdϕαU0nL. (3.7)

Integrating the last equation and taking into account boundary conditions
(2.10) we obtain

C1α(r) = − 1

W0

∫ r

0

U0nLcVdϕαU0nL dr1,

C2α(r) = βα − 1

W0

∫ ∞

r

F0nLcVdϕαU0nL dr1,

βα = 1 +
1

W0

∫ ∞

0

F0nLcVdϕαU0nL dr1. (3.8)

Substituting these equations into (3.1) we obtain the integral equation for per-
turbed eigenfunctions

ϕαU0nL = U0nLβα − F0nL

W0

∫ r

0

U0nLcVdϕαU0nL dr1

− U0nL

W0

∫ ∞

r

F0nLU0nLcVdϕαU0nL dr1. (3.9)

The presented equation can be rewritten as

ϕαU0nL = U0nLβα +

∫ ∞

0

G0(r>, r<)VdϕαU0nL dr1,

where according to [9] the kernel of this integral equation is Green’s function

G0 = −F0nL(r>)U0nL(r<)/W0. (3.10)

Using (3.8) we can reduce equation (3.9) into a more convenient form

ϕαU0nL = U0nL+
U0nL

W0

∫ r

0

F0nLcVdϕαU0nLdr1−F0nL

W0

∫ r

0

U0nLcVdϕαU0nL dr1,

Vd(r) = VS(r)− V0(r) −ΔEα. (3.11)
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446 A.J. Janavičius, D. Jurgaitis and S. Turskienė

Here we have the kernels of integral equation

M1(r) = F0nL(r)Vd(r), M2(r) = U0nL(r)Vd(r). (3.12)

Requiring that perturbed solution ϕαU0nL would satisfy boundary condition
(2.10) and taking in into account (2.8), we obtain the following expression for
calculation of perturbed eigenvalues at N -th iteration

EαnLN = E0nL +ΔEαN , ΔEαN =

∫∞
0

U0nLVD(r)ϕαNU0nL dr∫∞
0 U0nLϕαUnL dr

,

VD(r) = VS(r) − V0(r). (3.13)

The integral equations (3.11), (3.13) can be solved by the iteration method.
For the first iteration of ΔEαnL0 and ϕα0U0nL in the integrals (3.13) and the
right hand side of (3.11) we must take ϕα0 = 1, N = 0. For calculation of
more exact values of energy EαnL and perturbed eigenfunctions, we must solve
integral equations using the obtained values of ΔEα0 and ϕα1U0nL.

4 The Accuracy of Obtained Solutions

Theorem 1. The changes ΔEα of the unperturbed eigenvalues E0nL and po-
tential representation functions ϕα depend on perturbation of potential energy
Vd and weakly depend on the parameter of the integral equation.

Proof. Convergence of eigenvalues EαnL depends on absolute values of kernels
(3.12) of the integral equation (3.11). For that consideration, we can present
the integral equation (3.11) in the following way

ϕαU0nL = U0nL + λ
[
U0nL

∫ z

0

F0nLVdϕαU0nL dz1

− F0nL

∫ z

0

U0nLcVdϕαU0nL dz1

]
, λ =

cF 2

W0
, (4.1)

where we have introduced new dimensionless variable z expressed by F -Fermi
unite 10−15 m. From (2.7), (2.9) we calculate values of parameters λ1 =
0.73701·10−3/

√
d and λ2 = 0.79991·10−3/

√
d of integral equation (4.1) for neu-

trons of nucleus A1 = 208 and A2 = 340. Taking into account that d ∈ [0.6; 1.2]
we can use the method proposed in [14], where the solution of integral equation
can be expressed by power series of λ. Using this method, we suppose that for
sufficiently large number N of iterations we can present approximately

ϕα =

N∑
m=0

ϕmαλ
m, ϕ0α = 1. (4.2)

For the first approach we take in (3.13) ϕ0α = 1 and energy improvement (3.13)
ΔEα0 not depending on λ we obtain 1 + ϕ1αλ. Then we obtain that ϕ1α does
not depend on λ

λϕ1αU0nL = λ
[
U0nL

∫ z

0

F0nLVd0U0nL dz1 − F0nL

∫ z

0

U0nLVd0U0nL dz1

]
, (4.3)
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but depends only on differences VdN (r) = VS(r) − V0(r) − ΔEα,N , V0(r) =
mω2r2/2−VS(0) of the Woods–Saxon (2.2) VS(r) and model V0(r) potentials for
variable parameter ω = dω0. The U0nL and F0nL are physical and nonphysical
solutions [3] of Schrödinger equation for the model potential. Substituting (4.2)
into (4.1) and (3.13) for any iterations N we obtain

ϕN+1,αU0nL=U0nL

∫ r

0

F0nLVdNϕNαU0nLdz−F0nL

∫ r

0

U0nLVdNϕNαU0nL dz,

VdN (r) = VS(r) − V0(r) −ΔEα,N , (4.4)

Eα,N =

∫ ∞

0

U0nLVDU0nL dr + λ

∫ ∞

0

U0nLVDϕ1αU0nL dr

+ · · ·λN
∫ ∞

0

U0nLVDϕNαU0nL dr.

It is well known in quantum mechanics that the first iteration for ΔEα of
perturbation calculations is the most important for a small perturbation [11].
Providing variation of d or ω we can solve integral equations (3.13), (4.1) for the
small potential perturbation VD = VS − V0 in the region z ∈ [0;Rm] with the
minimum number of iterations N for definite precisely. The second iteration
for ΔEα will be obtained substituting in (3.13) approximate function ϕα =
1 + λϕ1α depending on λ (4.1), (2.7) or

√
d. We have the kernels (3.12) of

integral equation (4.1) where perturbations of the energies ΔEα depending on
quantum states are included. In this case, the optimal values of parameter d
must be different for different quantum states or energy levels EαnL.

In [14], it was proved that solutions of integral equations like (4.1) converge
uniformly, when the following conditions

|U0nL| < NU , U0nL

∫ Rm

0

F0nLVd dz − F0nL

∫ Rm

0

U0nLVdN dz < M, (4.5)

are satisfied. Thus in our case, we should prove that the following conditions

|ϕmαU0nL| < NUM
m, |λ| < 1

M
− ε (ε > 0), (4.6)

are satisfied. We can normalize [5] the eigenfunctions U0nL and then we have
in (4.5) that NU < 1. Theoretical evaluation of M is a hard task, but ex-
perimentally we have obtained the convergence of eigenvalues (3.13), (4.4)

ΔEαnLN and eigenfunctions (4.1) ϕαU0nL for 0.73701·10−3

√
d

≤ λ ≤ 0.79991·10−3

√
d

when d ∈ [0.6; 1.2]. For small values of ω or parameter d the eigenvectors EαnL

depend on perturbation Vd and very weakly on λ, parameter M has a finite
value. Theorem 1 is proved. ��

It follows that model potential V0(r) for r → Rm is increasing like r2 but
U0nL are rapidly decreasing like exp(−Cr2). We have a convergence of eigen-
values EαnL and eigenfunctions for equations (3.13) and (4.1) at large distances
Rm when Theorem 1 is satisfied and eigenvalues weakly depend on parameter
λ.

Math. Model. Anal., 16(3):442–450, 2011.



448 A.J. Janavičius, D. Jurgaitis and S. Turskienė

In computational experiments we have used different limits of integration
Rm in (3.13), (4.1) from 0 till 1.5R or 2.4R, where R = 1.24A1/3 is a nucleus
radius expressed in Fermi units. Integration limits are increasing for decreas-
ing energies of nucleons |EαnL| [4]. In order to get approximate solutions we
must find eigenvalues which only weakly depend on d in the some region of Δd,
because the exact eigenvalues do not depend on the parameters ω of model
potential. Practically, we can find approximate solutions by changing ω = dω0

in the interval d ∈ [0.6; 1.2] [3]. We must choose solutions giving minimum val-
ues of |ΔEαnL| and minimum iterations numbers for calculation of eigenvalues
with some given accuracy.

In [4], calculations of energies EnLj were done for Woods–Saxon potential
of one-nucleon energy levels for neutrons of nucleus 197 Au. Integral equations
were solved with the variation of parameters d and ω of the model poten-
tial. The energies EnLj expressed in MeV (Mega-electron-Volt) were compared
with the eigenvaluesEnLj obtained by the discretization method, in the interval
14fm(10−15m) with the step 0.2fm by using program EIGEN [13]. Results for
quantum states with principal quantum numbers n, orbital-momentum quan-
tum numbers L = 0 (s state) and resulting momentum quantum numbers
j = 1/2 are presented in Table 1. Here N is the number of iterations.

Table 1. The energy levels EnLj and EnLj of neutrons of nucleus 197 Au.

nLj EnLj ,MeV EnLj ,MeV d N

1s1/2 −39.03 −39.36 1.00 6
2s1/2 −28.05 −28.42 1.00 14
3s1/2 −13.42 −13.98 1.00 18

The same energy levels were calculated with program EIGEN [13] and by
solving integral equations (3.12), (4.1), with the parameter d and ω of the
model potential (2.2) for nucleus 208 Pb. The results are presented in Table 2.

Table 2. The energy levels EnLj and EnLj of neutrons of nucleus 197 Pb.

nLj EnLj ,MeV EnLj ,MeV d N

1s1/2 −39.97 −39.93 0.67 3
2s1/2 −29.56 −29.48 0.83 13
3s1/2 −15.38 −15.32 0.82 17

5 Conclusions

Comparing the energy levels presented in Tables 1 and 2, we see that using
the variation of the parameter d of model potential, the significantly better
coincidence of eigenvalues with the control calculations using standard program
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EIGEN [13] has been obtained. We found that results obtained solving integral
equations (3.13), (4.1) weakly depend on the parameter d or ω of the model
potential for a minimum number of iterations N , if the step and limits of
integration Rm are chosen correctly.

Here we have proposed a new method and derived integral equations for
negative energies, where the expansion of perturbed eigenfunctions by infinite
number of unperturbed eigenfunctions [1] can be avoided. We have used pre-
viously obtained [3] linearly independent solutions for finding Green functions
(3.10), which are expressed by series [1]

G(r, r′) =

∞∑
α=0

Uα0(r)Uα0(r
′)/Eα0

of unperturbed eigenfunctions Uα0 and eigenvalues Eα0. We note that such
expansions are very complicated for practical solution of integral equations.

The solutions (4.1) ϕαU0nL at large distances are proportional to U0nL or
exp(−mωr2/�) and represent continuous functions. In this case, those solu-
tions have derivatives of the order larger than the second and therefore they
can be applied for semi-relativistic model of atomic nuclei [5]. In order to
find relativistic corrections of eigenvalues, derivatives of the solution must be
calculated till the fourth order. By using simple discretization methods this
problem can be solved only very approximately because here derivatives are
defined only till the second order.

The convergence conditions of eigenfunctions are presented in (4.5)–(4.6).
These results are important for practical calculations of superheavy nucleus
stability [7] and the energy spectrum of charmed and bottom mesons [6].
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