A two-dimensional limit theorem for Lerch zeta-functions. II

Danutė Regina Genienė

Faculty of Education, Šiauliai University P. Višinskio 25, LT-76351 Šiauliai E-mail: dana@splius.lt

Abstract. We prove a two-dimensional limit theorem for Lerch zeta-functions with transcendental and rational parameters.

Keywords: Lerch zeta-function, probability measure, weak convergence.

Let $s = \sigma + it$ be a complex variable, and $0 < \lambda < 1$ and $0 < \alpha \leq 1$ be fixed parameters. The Lerch-zeta function $L(\lambda, \alpha, s)$ is defined, for $\sigma > 1$, by the Dirichlet series $L(\lambda, \alpha, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m}}{(m+\alpha)^s}$, and, because of $0 < \lambda < 1$, is analytically continued to an entire function.

Probabilistic limit theorems for the function $L(\lambda, \alpha, s)$ with transcendental and rational parameter α were proved in [2] while the case of algebraic irrational parameter α was considered in [3, 4, 6, 7].

In [5], we proved a limit theorem on the complex plane for a pair $(L(\lambda_1, \alpha_1, s), L(\lambda_2, \alpha_2, s))$, when α_1 and α_2 are transcendental and algebraic irrational numbers, respectively. The aim of this note is to prove a limit theorem of such a kind when the number α_2 is rational. To state the theorem we need some notation and definitions. Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S, by meas $\{A\}$ the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and let

$$\nu_T(\cdots) = \frac{1}{T} \operatorname{meas}\{t \in [0,T]: \cdots\},\$$

where in place of dots a condition satisfied by t is to be written. Let $\gamma = \{s \in \mathbb{C}: |s| = 1\}$. Define $\Omega_1 = \prod_{m=0}^{\infty} \gamma_m$ and $\Omega_2 = \prod_p \gamma_p$, where $\gamma_m = \gamma$ and $\gamma_p = \gamma$ for all $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and primes p, respectively. Denote by $\omega_1(m)$ and $\omega_2(p)$ the projections of $\omega_1 \in \Omega_1$ to γ_m and of $\omega_2 \in \Omega_2$ to γ_p , respectively. Moreover, we extend the function $\omega_2(p)$ to the set \mathbb{N} by the formula $\omega_2(m) = \prod_{p^l \parallel m} \omega_2^l(p), m \in \mathbb{N}$, where $p^l \parallel m$ means that $p^l \mid m$ but $p^{l+1} \nmid m$.

Let $\Omega = \Omega_1 \times \Omega_2$. Then Ω is a compact topological Abelian group, therefore, on $(\Omega, \mathcal{B}(\Omega))$ the probability Haar measure m_H can be defined. This gives a probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Suppose that $\alpha_2 = \frac{a}{q}, 0 < a < q, (a, q) = 1$. Denote by $\omega = (\omega_1, \omega_2)$ the elements of Ω , and put, for brevity, $\underline{\alpha} = (\alpha_1, \alpha_2), \underline{\lambda} = (\lambda_1, \lambda_2), \underline{\sigma} = (\sigma_1, \sigma_2)$. On the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$, define the \mathbb{C}^2 -valued random element $\underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}, \omega)$, for $\min(\sigma_1, \sigma_2) > \frac{1}{2}$, by

$$\underline{L}(\underline{\lambda},\underline{\alpha},\underline{\sigma},\omega) = (L(\lambda_1,\alpha_1,\sigma_1,\omega_1), L(\lambda_2,\alpha_2,\sigma_2,\omega_2)),$$

where

$$L(\lambda_1, \alpha_1, \sigma_1, \omega_1) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda_1 m} \omega_1(m)}{(m+\alpha_1)^{\sigma_1}}$$

and

$$L(\lambda_2, \alpha_2, \sigma_2, \omega_2) = e^{-\frac{2\pi i a}{q}} q^s \omega_2(q) \sum_{\substack{m=1\\m \equiv a \pmod{q}}}^{\infty} \frac{e^{\frac{2\pi i m}{q}}}{m^{\sigma_2}}.$$

Let $\underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma} + it) = (L(\lambda_1, \alpha_1, \sigma_1 + it), L(\lambda_2, \alpha_2, \sigma_2 + it)).$

Theorem 1. Suppose that the number α_1 is transcendental, $\alpha_2 = \frac{a}{q}$, 0 < a < q, (a,q) = 1, and $\min(\sigma_1, \sigma_2) > \frac{1}{2}$. Then the probability measure

$$P_T(A) \stackrel{\text{def}}{=} \nu_T(\underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma} + it) \in A), \quad A \in \mathcal{B}(\mathbb{C}^2),$$

converges weakly to the distribution of the random element $\underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}, \omega)$ as $T \to \infty$.

Let \mathcal{P} denote the set of all prime numbers. Since α_1 is transcendental, the set $\{\log(m + \alpha_1): m \in \mathbb{N}_0\}$ is linearly independent over the field of rational numbers \mathbb{Q} . The set $\{\log p: p \in \mathcal{P}\}$ is also linearly independent over \mathbb{Q} . Therefore, it is not difficult to prove that the set

$$L(\alpha_1) \stackrel{\text{def}}{=} \left\{ \log(m + \alpha_1) \colon m \in \mathbb{N}_0 \right\} \cup \left\{ \log p \colon p \in \mathcal{P} \right\}$$

is linearly independent as well. This leads to the following lemma.

Lemma 1. (See [8].) Suppose that the number α_1 is transcendental. Then the probability measure

$$Q_T(A) \stackrel{\text{def}}{=} \nu_T\big(\big(\big((m+\alpha_1)^{-it} \colon m \in \mathbb{N}_0\big), \big(p^{-it} \colon p \in \mathcal{P}\big)\big) \in A\big), \quad A \in \mathcal{B}(\Omega),$$

converges weakly to the Haar measure m_H as $T \to \infty$.

Let $\sigma_1 > \frac{1}{2}$ be a fixed number, and $v_n(m, \alpha_1) = \exp\{-(\frac{m+\alpha_1}{n+\alpha_1})^{\sigma_1}\}, v_n(m) = \exp\{-(\frac{m}{n})^{\sigma_1}\}$. Define $\underline{L}_n(\underline{\lambda}, \underline{\alpha}, s) = (L_n(\lambda_1, \alpha_1, s), L_n(\lambda_2, \alpha_2, s))$, where

$$L_n(\lambda_1, \alpha_1, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda_1 m} v_n(m, \alpha_1)}{(m+\alpha_1)^s}$$

and

$$L_n(\lambda_2, \alpha_2, s) = \sum_{\substack{m=1\\m \equiv a(\text{mod}q)}}^{\infty} \frac{e^{\frac{2\pi i m}{q}} e^{-\frac{2\pi i a}{q}} q^s v_n(m)}{m^s}.$$

By contour integration it is proved, see, for example, [2], that the series for $L_n(\lambda_1, \alpha_1, s)$ and $L_n(\lambda_2, \alpha_2, s)$ both converge absolutely for $\sigma > \frac{1}{2}$. Let, for $\omega = (\omega_1, \omega_2) \in \Omega$,

$$\underline{L}_n(\underline{\lambda},\underline{\alpha},\omega,s) = \left(L_n(\lambda_1,\alpha_1,\omega_1,s), L_n(\lambda_2,\alpha_2,\omega_2,s)\right),$$

where

$$L_n(\lambda_1, \alpha_1, \omega_1, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda_1 m} \omega_1(m) v_n(m, \alpha_1)}{(m+\alpha_1)^s}$$

and

$$L_n(\lambda_2, \alpha_2, \omega_2, s) = \sum_{\substack{m=1\\m \equiv a(\text{mod}q)}}^{\infty} \frac{e^{\frac{2\pi i \lambda_2 m}{q}} e^{-\frac{2\pi i a}{q}} \omega_2(m) \omega_2(q) q^s v_n(m)}{m^s}.$$

Since $|\omega_1(m)| = |\omega_2(m)| = 1$, the later two series also converge absolutely for $\sigma > \frac{1}{2}$. On $(\mathbb{C}^2, \mathcal{B}(\mathbb{C}^2))$, define the probability measures $P_{T,n}(A) = \nu_T(\underline{L}_n(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}+it) \in A)$

and $\widehat{P}_{T,n}(A) = \nu_T(\underline{L}_n(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma} + it) \in A).$

Lemma 2. Suppose that $\min(\sigma_1, \sigma_2) > \frac{1}{2}$. Then on $(\mathbb{C}^2, \mathcal{B}(\mathbb{C}^2))$, there exists a probability measure P_n such that both the measures $P_{T,n}$ and $\hat{P}_{T,n}$ converge weakly to P_n as $T \to \infty$.

Proof. Define the function $h_n : \Omega \to \mathbb{C}^2$ by the formula $h_n(\omega) = \underline{L}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma})$. Then the function is continuous, and

$$h_n(((m + \alpha_1)^{-it}: m \in \mathbb{N}_0), (p^{-it}: p \in \mathcal{P})) = \underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma} + it).$$

Therefore, $P_{T,n} = Q_T h_n^{-1}$. This, the continuity of h_n , Lemma 1, and Theorem 5.1 of [1] show that $P_{T,n}$ converges weakly to $m_H h_n^{-1}$ as $T \to \infty$.

By the same arguments, using the invariance of the Haar measure m_H , we obtain that the measure $\hat{P}_{T,n}$ also converges weakly to $m_H h_n^{-1}$ as $T \to \infty$. \Box

For
$$\underline{z}_1 = (z_{11}, z_{12}), \, \underline{z}_2 = (z_{21}, z_{22}) \in \mathbb{C}^2, \, \text{let } \rho_2(\underline{z}_1, \underline{z}_2) = (\sum_{j=1}^2 |z_{j1} - z_{j2}|^2)^{\frac{1}{2}}.$$

Lemma 3. Suppose that $\min(\sigma_1, \sigma_2) > \frac{1}{2}$. Then

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_2 \left(\underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma} + it), \underline{L}_n(\underline{\lambda}, \underline{\alpha}, \underline{\sigma} + it) \right) dt = 0,$$

and, for almost all $\omega \in \Omega$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_2 \left(\underline{L}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma} + it), \underline{L}_n(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma} + it) \right) dt = 0.$$

Proof. The lemma follows from corresponding one-dimensional relations, see [2], and from the definition of the metric ρ_2 . \Box

Define one more probability measure

$$\widehat{P}_T(A) = \nu_T \big(\underline{L}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma} + it) \in A \big), \quad A \in \mathcal{B}(\mathbb{C}^2)$$

Liet. mat. rink. LMD darbai, 52:7-12, 2011.

Lemma 4. Suppose that $\min(\sigma_1, \sigma_2) > \frac{1}{2}$. Then on $(\mathbb{C}^2, \mathcal{B}(\mathbb{C}^2))$, there exists a probability measure P such that both the measures P_T and \hat{P}_T converge weakly to P as $T \to \infty$.

Proof. We remind that P_n is the limit measure in Lemma 2. First we observe that the family of probability measures $\{P_n: n \in \mathbb{N}_0\}$ is tight. This is obtained by using Lemma 2 and the fact that

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \left| L_n(\lambda_1, \alpha_1, \sigma_1 + it) \right|^2 dt = \sum_{m=0}^\infty \frac{v_n^2(m, \alpha_1)}{(m + \alpha_1)^{2\sigma_1}} \leqslant \sum_{m=0}^\infty \frac{1}{(m + \alpha_1)^{2\sigma_1}} < \infty$$

and

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \left| L_n(\lambda_2, \alpha_2, \sigma_2 + it) \right|^2 dt = \sum_{\substack{m=1\\m \equiv a(\text{mod}q)}}^\infty \frac{q^{2\sigma_2} v_n^2(m)}{m^{2\sigma_2}} \leqslant \sum_{\substack{m=1\\m \equiv a(\text{mod}q)}}^\infty \frac{q^{2\sigma_2}}{m^{2\sigma_2}} < \infty.$$

By the Prokhorov theorem, the tightness implies a relative compactness. Therefore, there exists a subsequence $\{P_{n_k}\} \subset \{P_n\}$ such that P_{n_k} converges weakly to a certain probability measure P on $(\mathbb{C}^2, \mathcal{B}(\mathbb{C}^2))$ as $k \to \infty$.

Let θ be a random variable defined on a certain probability space $(\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P})$ and uniformly distributed on [0, 1]. Define $\underline{X}_{T,n}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}) = \underline{L}_n(\underline{\lambda}, \underline{\alpha}, \underline{\sigma} + i\theta T)$, and denote by $\xrightarrow{\mathcal{D}}$ the convergence in distribution. Then, by Lemma 2, we have that

$$\underline{X}_{T,n}(\underline{\lambda},\underline{\alpha},\underline{\sigma}) \xrightarrow[T \to \infty]{\mathcal{D}} \underline{X}_n(\underline{\lambda},\underline{\alpha},\underline{\sigma}), \tag{1}$$

where $\underline{X}_n(\underline{\lambda}, \underline{\alpha}, \underline{\sigma})$ is the \mathbb{C}^2 -valued random element with distribution P_n . Moreover, by the above remark, we have that

$$\underline{X}_{n_k}(\underline{\lambda},\underline{\alpha},\underline{\sigma}) \xrightarrow[T \to \infty]{\mathcal{D}} P.$$
⁽²⁾

Let $\underline{X}_T(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}) = \underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma} + i\theta T)$. Then we deduce from Lemma 3 that, for every $\varepsilon > 0$,

$$\begin{split} &\lim_{n\to\infty}\limsup_{T\to\infty}\mathbb{P}\big(\rho_2(\underline{X}_T(\underline{\lambda},\underline{\alpha},\underline{\sigma}),\underline{X}_{T,n}(\underline{\lambda},\underline{\alpha},\underline{\sigma}))\geqslant\varepsilon\big)\\ &\leqslant \lim_{n\to\infty}\limsup_{T\to\infty}\frac{1}{T}\int_0^T\rho_2\big(\underline{L}(\underline{\lambda},\underline{\alpha},\underline{\sigma}+it),\underline{L}_n(\underline{\lambda},\underline{\alpha},\underline{\sigma}+it)\big)\,dt=0. \end{split}$$

This, (1), (2) and Theorem 4.2 of [1] show that $\underline{X}_T(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}) \xrightarrow[T \to \infty]{\mathcal{D}} P$, or, in other words, the measure P_T converges weakly to P as $T \to \infty$. The latter relation also shows that the measure P is independent on the choice of the sequence $\{P_{n_k}\}$. Thus, we have that

$$\underline{X}_n(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}) \xrightarrow[n \to \infty]{\mathcal{D}} P.$$
(3)

Define $\underline{\widehat{X}}_{T,n}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma}) = \underline{L}_n(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma} + i\theta T)$ and $\underline{\widehat{X}}_T(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma}) = \underline{L}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma} + i\theta T)$. Then, repeating the above arguments for the random elements $\underline{\widehat{X}}_{T,n}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma})$

 $(\omega, \underline{\sigma})$ and $\underline{\widehat{X}}_T(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma})$ with using of Lemmas 2 and 3, and the relation (3), we obtain that the measure \widehat{P}_T also converges weakly to P as $T \to \infty$. \Box

Proof of Theorem 1. In view of Lemma 4, it remains to show that the measure P coincides with the distribution of the random element \underline{L} .

Let A be a continuity set of the measure P. Then by Lemma 4 we have that

$$\lim_{T \to \infty} \nu_T \left(\underline{L}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma} + it) \in A \right) = P(A).$$
(4)

On the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$, define the random variable ξ by

$$\xi(\omega) = \begin{cases} 1 & \text{if } \underline{L}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma}) \in A, \\ 0 & \text{otherwise.} \end{cases}$$

Then, clearly, the expectation

$$\mathbb{E}\xi = \int_{\Omega} \xi(\omega) \, dm_H = m_H \big(\omega \in \Omega \colon \underline{L}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma}) \in A \big) = P_{\underline{L}}(A), \tag{5}$$

where $P_{\underline{L}}$ is the distribution of the random element \underline{L} .

Let, for $t \in \mathbb{R}$, $a_t = (((m + \alpha_1)^{-it}: m \in \mathbb{N}_0), (p^{-it}: p \in \mathcal{P}))$, and $\varphi_t(\omega) = \omega a_t, \omega \in \Omega$. Then $\{\varphi_t: t \in \mathbb{R}\}$ is a one-parameter group of measurable measure preserving transformations on Ω . Since the set $L(\alpha_1)$ is linearly independent over \mathbb{Q} , by a standard method can be proved that the group $\{\varphi_t: t \in \mathbb{R}\}$ is ergodic. Hence, the random process $\xi(\varphi_t(\omega))$ is ergodic as well. Therefore, the Birkhoff–Khintchine theorem shows that

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \xi(\varphi_t(\omega)) \, dt = \mathbb{E}\xi.$$
(6)

On the other hand, by the definition of ξ and φ_t we find that

$$\frac{1}{T} \int_0^T \xi\big(\varphi_t(\omega)\big) \, dt = \nu_T\big(\underline{L}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma} + it) \in A\big).$$

This, (5) and (6) yield

$$\lim_{T \to \infty} \nu_T \big(\underline{L}(\underline{\lambda}, \underline{\alpha}, \omega, \underline{\sigma} + it \in A \big) = P_{\underline{L}}(A).$$

Therefore, by (4), $P(A) = P_{\underline{L}}(A)$ for all continuity sets A of P. Hence, $P(A) = P_{\underline{L}}(A)$ for all $A \in \mathcal{B}(\mathbb{C}^2)$. \Box

References

- [1] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.
- [2] A. Laurinčikas and R. Garunkštis. The Lerch Zeta-Function. Kluwer, Dordrecht, London, Boston, 2002.
- [3] V. Garbaliauskienė, D. Genienė and A. Laurinčikas. Value-distribution of the Lerch zetafunction with algebraic irrational parameter. I. Lith. Math. J., 47(2):163–176, 2007.

Liet. mat. rink. LMD darbai, 52:7-12, 2011.

- [4] D. Genienė. The Lerch zeta-function with algebraic irrational parameter. *Liet. mat. rink.*, *LMD darbai*, **50**:9–13, 2009.
- [5] D. Genienė. A two-dimensional limit theorem for Lerch zeta-functions. Šiauliai Math. Seminar, 5(13):19–29, 2010.
- [6] D. Genienė, A. Laurinčikas and R. Macaitienė. Value-distribution of the Lerch zetafunction with algebraic irrational parameter. II. Lith. Math. J., 47(4):394–405, 2007.
- [7] D. Genienė, A. Laurinčikas and R. Macaitienė. Value-distribution of the Lerch zetafunction with algebraic irrational parameter. III. Lith. Math. J., 48(3):282–293, 2008.
- [8] H. Mishou. The joint value distribution of the Riemann zeta function and Hurwitz zeta-functions. Lith. Math. J., 47(1):32–47, 2007.

REZIUMĖ

Dvimatė ribinė teorema Lercho dzeta funkcijoms. II

D.R. Genienė

Straipsnyje įrodoma dvimatė ribinė teorema Lercho dzeta funkcijoms su transcendenčiuoju ir racionaliuoju parametrais.

Raktiniai žodžiai: Lercho dzeta funkcija, tikimybinis matas, silpnasis konvergavimas.