MATHEMATICAL MODELLING AND ANALYSIS Volume 17 Number 5, November 2012, 673–685 http://dx.doi.org/10.3846/13926292.2012.735260 © Vilnius Gediminas Technical University, 2012

Joint Universality of Dirichlet *L*-Functions and Periodic Hurwitz Zeta-Functions^{*}

Kęstutis Janulis^{*a*}, Antanas Laurinčikas^{*a*}, Renata Macaitienė^{*b*} and Darius Šiaučiūnas^{*b*}

^a Vilnius University
Naugarduko 24, LT-03225 Vilnius, Lithuania
^b Šiauliai University
P. Višinskio 19, LT-77156 Šiauliai, Lithuania
E-mail: kestutis.janulis@gmail.com
E-mail: antanas.laurincikas@mif.vu.lt
E-mail: renata.macaitiene@mi.su.lt
E-mail(corresp.): siauciunas@fm.su.lt

Received June 29, 2012; revised September 20, 2012; published online November 1, 2012

Abstract. In the paper, we prove that every system of analytic functions can be approximated simultaneously uniformly on compact subsets of some region by a collection consisting of shifts of Dirichlet *L*-functions with pairwise non-equivalent characters and periodic Hurwitz zeta-functions with parameters algebraically independent over the field of rational numbers.

Keywords: Dirichlet *L*-function, limit theorem, periodic Hurwitz zeta-function, space of analytic functions, universality.

AMS Subject Classification: 11M06; 11M41.

1 Introduction

Since a remarkable Voronin's work [24] on the universality of the Riemann zeta-function $\zeta(s)$, $s = \sigma + it$, it is known that the majority of other zeta and L-functions also are universal in the sense that their shifts approximate uniformly on compact subsets of certain regions wide classes of analytic functions, for results and references, see [1, 4, 6, 7, 12, 17, 22]. Also, a more complicated approximation property of zeta and L-functions – the joint universality – is known. In this case, we deal with a simultaneous approximation of a given system of analytic functions. The first result in this direction also is due to Voronin who obtained [23] the joint universality of Dirichlet L-functions. The

 $^{^{*}}$ The third author is partially supported by the project LYMOS (1.2.1 activity), No. VPI- 3.2-ŠMM-02-V-02-001.

joint universality for Hurwitz zeta-functions was proved in [20] and [9]. We observe that Dirichlet *L*-functions have Euler product over primes while Hurwitz zeta-functions $\zeta(s, \alpha)$, $0 < \alpha \leq 1$, do not have Euler product, except for the cases $\zeta(s, 1) = \zeta(s)$ and $\zeta(s, 1/2) = (2^s - 1)\zeta(s)$.

In [19] H. Mishou began to study the joint universality for zeta-functions having and having no Euler product over primes. He proved a joint universality theorem for the Riemann zeta-function and Hurwitz zeta-function with transcendental parameter α .

Let $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$. Denote by \mathcal{K} the class of compact subsets of D with connected complements. Moreover, let $\mathcal{H}_0(K)$ and $\mathcal{H}(K), K \in \mathcal{K}$, be the classes of continuous non-vanishing and continuous on K functions, respectively, which are analytic in the interior of K. Denote by meas $\{A\}$ the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then the Mishou theorem is stated as follows: Suppose that α is transcendental. Let $K_1, K_2 \in \mathcal{K}$, and $f_1 \in \mathcal{H}_0(K_1), f_2 \in \mathcal{H}(K_2)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \max \left\{ \tau \in [0, T] \colon \sup_{s \in K_1} \left| \zeta(s + i\tau) - f_1(s) \right| < \varepsilon \right\}$$
$$\sup_{s \in K_2} \left| \zeta(s + i\tau, \alpha) - f_2(s) \right| < \varepsilon \right\} > 0.$$

We call a property of $\zeta(s)$ and $\zeta(s, \alpha)$ in the later theorem the mixed joint universality.

In [5], the Mishou theorem was generalised for a periodic zeta-function and a periodic Hurwitz zeta-function. Let $\mathfrak{a} = \{a_m : m \in \mathbb{N}\}$ and $\mathfrak{b} = \{b_m : m \in \mathbb{N}\}$ $\mathbb{N}_0 = \mathbb{N} \cup \{0\}\}$ be two periodic sequences of complex numbers. Then the periodic zeta-function $\zeta(s; \mathfrak{a})$ and the periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{b})$ are defined, for $\sigma > 1$, by

$$\zeta(s;\mathfrak{a}) = \sum_{m=1}^{\infty} \frac{a_m}{m^s}$$
 and $\zeta(s,\alpha;\mathfrak{b}) = \sum_{m=0}^{\infty} \frac{b_m}{(m+\alpha)^s}$,

respectively, and by analytic continuation elsewhere, except for a possible poles at s = 1.

In [10] a mixed universality theorem was extended to a collection consisting of several periodic zeta-functions and periodic Hurwitz zeta-functions.

In the case of periodic Hurwitz zeta-functions, the following more general joint universality can be considered. For j = 1, ..., r, α_j , let $0 < \alpha_j \leq 1$ be a fixed parameter, $l_j \in \mathbb{N}$, $\mathfrak{a}_{jl} = \{a_{mjl} \colon m \in \mathbb{N}_0\}$ be a periodic sequence of complex numbers with minimal period $k_{jl} \in \mathbb{N}$, and $\zeta(s, \alpha_j; \mathfrak{a}_{jl})$ be the corresponding periodic Hurwitz zeta-function. In [8, 14, 15], the joint universality for the functions

$$\zeta(s,\alpha_1;\mathfrak{a}_{11}),\ldots,\zeta(s,\alpha_1;\mathfrak{a}_{1l_1}),\ldots,\zeta(s,\alpha_r;\mathfrak{a}_{r1}),\ldots,\zeta(s,\alpha_r;\mathfrak{a}_{rl_r})$$
(1.1)

was obtained. Later, the mixed joint universality for system (1.1) extended by some zeta-functions having Euler product was began to study. In [3], the Riemann zeta-function was added to the system (1.1). In the subsequent papers [13, 16, 21], the function $\zeta(s)$ was replaced by zeta-functions of certain cusp forms. Namely, the paper [21] is devoted to a mixed joint universality theorem for the zeta-function $\zeta(s, F)$ attached to a normalized Hecke eigen cusp form Fand the functions (1.1), in [16], the function $\zeta(s, F)$ was replaced by a zetafunction of a new form, and in [13], the case of a zeta-function of a cusp form Fwith respect to the Hecke subgroup with Dirichlet character was considered.

The aim of this paper is to extend the system (1.1) by a collection of Dirichlet *L*-functions. The extension of the class of jointly universal functions is motivated by wide theoretical and practical applications of universality (functional independence, zero-distribution, various value denseness problems, approximation and estimation of complicated analytic functions and their functionals).

Let χ be a Dirichlet character modulo q. We remind that the corresponding Dirichlet *L*-function $L(s, \chi)$ is defined, for $\sigma > 1$, by the series

$$L(s,\chi) = \sum_{m=1}^{\infty} \frac{\chi(m)}{m^s},$$

and is analytically continued to an entire function provided χ is a non-principal character. For the principal character χ_0 ,

$$L(s,\chi_0) = \zeta(s) \prod_{p|q} \left(1 - \frac{1}{p^s}\right).$$

Let $k_j = [k_{j1}, \ldots, k_{jl_j}]$ be the least common multiple of the periods k_{j1}, \ldots, k_{jl_j} , and

$$A_{j} = \begin{pmatrix} a_{1j1} & a_{1j2} & \dots & a_{1jl_{j}} \\ a_{2j1} & a_{2j2} & \dots & a_{2jl_{j}} \\ \dots & \dots & \dots & \dots \\ a_{k_{j}j1} & a_{k_{j}j2} & \dots & a_{k_{j}jl_{j}} \end{pmatrix}, \quad j = 1, \dots, r.$$

The main result of the paper is contained in the following theorem.

Theorem 1. Suppose that χ_1, \ldots, χ_d are pairwise non-equivalent Dirichlet characters, the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over the field of rational numbers, and that $\operatorname{rank}(A_j) = l_j, j = 1, \ldots, r$. For $j = 1, \ldots, d$, let $K_j \in \mathcal{K}$ and $f_j \in \mathcal{H}_0(K_j)$, and, for $j = 1, \ldots, r$, $l = 1, \ldots, l_j$, let $K_{jl} \in \mathcal{K}$ and $f_{il} \in \mathcal{H}(K_{il})$. Then, for every $\varepsilon > 0$,

$$\begin{split} \liminf_{T \to \infty} \frac{1}{T} \max \left\{ \tau \in [0,T] \colon \sup_{1 \le j \le d} \sup_{s \in K_j} \sup_{l \le j \le r} \left| L(s+i\tau,\chi_j) - f_j(s) \right| < \varepsilon, \\ \sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} \left| \zeta(s+i\tau,\alpha_j;\mathfrak{a}_{jl}) - f_{jl}(s) \right| < \varepsilon \right\} > 0 \end{split}$$

2 Multidimensional Limit Theorem

The main ingredient of the proof of Theorem 1 is a limit theorem for probability measures in the multidimensional space of analytic functions.

Denote by H(D) the space of analytic functions on D endowed with the topology of uniform convergence on compacta, and let

$$H_{d,u} = H_{d,u}(D) = H^d(D) \times H^u(D), \quad u = \sum_{j=1}^r l_j.$$

Let $\mathcal{B}(S)$ stand for the σ -field of Borel sets of the space S. This section is devoted to weak convergence of probability measures defined by terms of Dirichlet L-functions and periodic Hurwitz zeta-functions in the space $(H_{d,u}, \mathcal{B}(H_{d,u}))$.

Let $\gamma = \{s \in \mathbb{C} : |s| = 1\}$ be the unit circle on the complex plane, and

$$\Omega = \prod_{p} \gamma_{p}, \qquad \Omega_{1} = \prod_{m=0}^{\infty} \gamma_{m},$$

where $\gamma_p = \gamma$ for all primes p, and $\gamma_m = \gamma$ for all $m \in \mathbb{N}_0$. The tori Ω and Ω_1 are compact topological Abelian groups. Define

$$\Omega^{\kappa} = \Omega \times \Omega_{11} \times \cdots \times \Omega_{1r},$$

where $\Omega_{1j} = \Omega_1$, for all j = 1, ..., r, and $\kappa = 1 + r$. Then Ω^{κ} also is a compact topological group. Therefore on $(\Omega^{\kappa}, \mathcal{B}(\Omega^{\kappa}))$, the probability Haar measure m_H^{κ} can be defined. This gives the probability space $(\Omega^{\kappa}, \mathcal{B}(\Omega^{\kappa}), m_H^{\kappa})$. Let $\Omega_1^r = \Omega_{11} \times, \cdots, \times \Omega_{1r}$. Then we have that the measure m_H^{κ} is the product of the probability Haar measures m_H and m_H^r on $(\Omega, \mathcal{B}(\Omega))$ and $(\Omega^r, \mathcal{B}(\Omega^r))$, respectively.

Now, on the probability space $(\Omega^{\kappa}, \mathcal{B}(\Omega^{\kappa}), m_{H}^{\kappa})$, define a $H_{d,u}$ -valued random element. We denote by ω_{p} the projection of $\omega \in \Omega$ to γ_{p} , and by $\omega_{j}(m)$ the projection of $\omega_{j} \in \Omega_{1j}$ to γ_{m} . Let, for brevity, $\underline{\omega} = (\omega, \omega_{1}, \ldots, \omega_{r})$, $\underline{\alpha} = (\alpha_{1}, \ldots, \alpha_{r}), \ \underline{\chi} = (\chi_{1}, \ldots, \chi_{d})$ and $\underline{\mathfrak{a}} = (\mathfrak{a}_{11}, \ldots, \mathfrak{a}_{ll_{1}}, \ldots, \mathfrak{a}_{rl_{r}})$. Let the $H_{d,u}$ -valued random element $F(s, \chi, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$ be given by

$$F(s, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) = \left(L(s, \omega, \chi_1), \dots, L(s, \omega, \chi_d), \zeta(s, \alpha_1, \omega_1; \mathfrak{a}_{11}) \dots, \zeta(s, \alpha_1, \omega_1; \mathfrak{a}_{1l_1}), \dots, \zeta(s, \alpha_r, \omega_r; \mathfrak{a}_{r1}), \dots, \zeta(s, \alpha_r, \omega_r; \mathfrak{a}_{rl_r}) \right),$$

where

$$L(s,\omega,\chi_j) = \prod_p \left(1 - \frac{\chi_j(p)}{p^s}\right)^{-1}, \quad j = 1,\dots,d,$$

and

$$\zeta(s,\alpha_j,\omega_j;\mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}\omega_j(m)}{(m+\alpha_j)^s}, \quad j = 1,\dots,r, \ l = 1,\dots,l_j.$$

Denote by P_F the distribution of the random element $F(s, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$, i.e., for $A \in \mathcal{B}(H_{d,u})$,

$$P_F(A) = m_H^{\kappa} \big(\underline{\omega} \in \Omega^{\kappa} \colon F(s, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A \big).$$

Moreover,

$$F(s,\underline{\chi},\underline{\alpha};\underline{\mathfrak{a}}) = \left(L(s,\chi_1),\ldots,L(s,\chi_d),\zeta(s,\alpha_1;\mathfrak{a}_{11})\ldots,\zeta(s,\alpha_1;\mathfrak{a}_{1l_1}),\ldots,\zeta(s,\alpha_r;\mathfrak{a}_{r1}),\ldots,\zeta(s,\alpha_r;\mathfrak{a}_{rl_r})\right).$$

Theorem 2. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over the field of rational numbers \mathbb{Q} . Then

$$P_T(A) \stackrel{def}{=} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0,T] \colon F(s+i\tau,\underline{\chi},\underline{\alpha};\underline{\mathfrak{a}}) \in A \right\}, \quad A \in \mathcal{B}(H_{d,u}),$$

converges weakly to P_F as $T \to \infty$.

Limit theorems for as a wide system of functions as in Theorem 2 are not known, however, their proofs differ from that, for example, in [4] only by details. Therefore, we present a shortened proof of Theorem 2. Denote by \mathcal{P} the set of all prime numbers.

Lemma 1. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then

$$Q_T(A) \stackrel{def}{=} \frac{1}{T} \max\{\tau \in [0,T] \colon \left(\left(p^{-i\tau} \colon p \in \mathcal{P} \right), \left((m+\alpha_1)^{-i\tau} \colon m \in \mathbb{N}_0 \right), \dots, \\ \left((m+\alpha_r)^{-i\tau} \colon m \in \mathbb{N}_0 \right) \right) \in A \}, \quad A \in \mathcal{B}(\Omega^{\kappa}),$$

converges weakly to the Haar measure m_H^{κ} as $T \to \infty$.

Proof of the lemma is given in [10, Theorem 3]. Let $\sigma_0 > \frac{1}{2}$ be a fixed number, and

$$v_n(m) = \exp\left\{-\left(\frac{m}{n}\right)^{\sigma_0}\right\}, \qquad v_n(m,\alpha) = \exp\left\{-\left(\frac{m+\alpha}{n+\alpha}\right)^{\sigma_0}\right\}.$$

Define

$$L_n(s,\chi_j) = \sum_{m=1}^{\infty} \frac{\chi_j(m)v_n(m)}{m^s}, \quad j = 1,...,d,$$

$$\zeta_n(s,\alpha_j;\mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}v_n(m,\alpha_j)}{(m+\alpha_j)^s}, \quad j = 1,...,r, \ l = 1,...,l_j,$$

and, for $\underline{\omega}_0 = (\omega_0, \omega_{10}, \dots, \omega_{r0}) \in \Omega^{\kappa}$,

$$L_{n}(s,\chi_{j},\omega_{0}) = \sum_{m=1}^{\infty} \frac{\chi_{j}(m)\omega_{0}(m)v_{n}(m)}{m^{s}}, \quad j = 1,...,d,$$

$$\zeta_{n}(s,\alpha_{j},\omega_{0j};\mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}\omega_{0j}(m)v_{n}(m,\alpha_{j})}{(m+\alpha_{j})^{s}}, \quad j = 1,...,r, \ l = 1,...,l_{j}.$$

All later series are absolutely convergent for $\sigma > \frac{1}{2}$. Here $\omega(p)$ is extended to the set \mathbb{N} by the formula

$$\omega(m) = \prod_{\substack{p^k \mid m \\ p^{k+1} \nmid m}} \omega^k(p), \quad m \in \mathbb{N}.$$

Let, for brevity,

$$F_n(s,\underline{\chi},\underline{\alpha};\underline{\mathfrak{a}}) = \left(L_n(s,\chi_1),\ldots,L_n(s,\chi_d),\zeta_n(s,\alpha_1;\mathfrak{a}_{11})\ldots,\zeta_n(s,\alpha_1;\mathfrak{a}_{1l_1}),\ldots,\zeta_n(s,\alpha_r;\mathfrak{a}_{r1}),\ldots,\zeta_n(s,\alpha_r;\mathfrak{a}_{rl_r})\right),$$

and

$$F_n(s,\underline{\chi},\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) = \left(L_n(s,\omega,\chi_1),\ldots,L_n(s,\omega,\chi_d),\zeta_n(s,\alpha_1,\omega_1;\mathfrak{a}_{11})\ldots,\zeta_n(s,\alpha_1,\omega_1;\mathfrak{a}_{1l_1}),\ldots,\zeta_n(s,\alpha_r,\omega_r;\mathfrak{a}_{r1}),\ldots,\zeta_n(s,\alpha_r,\omega_r;\mathfrak{a}_{rl_r})\right).$$

Lemma 2. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then on $(H_{n,r}, \mathcal{B}(H_{n,r}))$, there exists a probability measure P_n such that

$$P_{T,n}(A) \stackrel{def}{=} \frac{1}{T} \max\{\tau \in [0,T] \colon F_n(s+i\tau,\underline{\chi},\underline{\alpha};\underline{\mathfrak{a}}) \in A\}, \quad A \in \mathcal{B}(H_{d,u}),$$
$$\hat{P}_{T,n}(A) \stackrel{def}{=} \frac{1}{T} \max\{\tau \in [0,T] \colon F_n(s+i\tau,\underline{\chi},\underline{\alpha},\underline{\omega}_0;\underline{\mathfrak{a}}) \in A\}, \quad A \in \mathcal{B}(H_{d,u}),$$

both converge weakly to P_n as $T \to \infty$.

Proof. Define $h_n : \Omega^{\kappa} \to H_{d,r}$ by the formula $h_n(\underline{\omega}) = F_n(s, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$. In view of the absolute convergence of the series for $L_n(s, \chi_j, \omega)$ and $\zeta_n(s, \alpha_j, \omega_j; \mathfrak{a}_{jl})$, the function h_n is continuous, and

$$h_n((p^{-i\tau}: p \in \mathcal{P}), ((m + \alpha_1)^{-i\tau}: m \in \mathbb{N}_0), \dots, ((m + \alpha_r)^{-i\tau}: m \in \mathbb{N}_0))$$

= $F_n(s + i\tau, \chi, \underline{\alpha}; \underline{\mathfrak{a}}).$

Thus, we have that $P_{T,n} = Q_T h_n^{-1}$. This, continuity of h_n , and Lemma 1 show that $P_{T,n}$ converges weakly to $P_n = m_H^{\kappa} h_n^{-1}$ as $T \to \infty$.

The invariance of the Haar measure m_H^{κ} allows to prove that the measure $\hat{P}_{T,n}$ also converges weakly to P_n . \Box

Define

$$\hat{P}_T(A) = \frac{1}{T} \max\{\tau \in [0,T] \colon F(s+i\tau,\underline{\chi},\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) \in A\}, \quad A \in \mathcal{B}(H_{d,u}).$$

Lemma 3. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then on $(H_{d,u}, \mathcal{B}(H_{d,u}))$, there exists a probability measure P such that P_T and \hat{P}_T both converge weakly to P as $T \to \infty$.

Proof. To prove the lemma it suffices to pass from $F_n(s, \underline{\chi}, \underline{\alpha}; \underline{\mathfrak{a}})$ and $F_n(s, \underline{\chi}, \underline{\alpha}, \underline{\alpha}; \underline{\mathfrak{a}})$ to $F(s, \underline{\chi}, \underline{\alpha}; \underline{\mathfrak{a}})$ and $F(s, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$, respectively. For this, define a metric on $H_{d,u}$ which induces the topology of uniform convergence on compacta. Let $\{K_v : v \in \mathbb{N}\} \subset D$ be a sequences on compact subsets such that $D = \bigcup_{v=1}^{\infty} K_v$, $K_l \subset K_{l+1}, l \in \mathbb{N}$, and if $K \subset D$ is a compact subset, then $K \subset K_v$, for some v. For $g_1, g_2 \in H(D)$, define

$$\rho(g_1, g_2) = \sum_{v=1}^{\infty} 2^{-v} \frac{\sup_{s \in K_v} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K_v} |g_1(s) - g_2(s)|}.$$

Then ρ is a metric on H(D) inducing the topology of uniform convergence on compacta. For $\underline{g}_j = (g_{j1}, \ldots, g_{j,d+u}) \in H_{d,u}, j = 1, 2$, we put

$$\rho_{d+u}(\underline{g}_1, \underline{g}_2) = \max_{1 \le l \le d+u} \rho(g_{1l}, g_{2l}).$$

Then ρ_{d+u} is a desired metric on $H_{d,u}$. Let ρ_d and ρ_r be analogical metrics on $H^d(D)$ and $H^u(D)$, respectively. We put

$$\underline{L}(s,\underline{\chi}) = (L(s,\chi_1),\ldots,L(s,\chi_d)),$$

$$\underline{\zeta}(s,\underline{\alpha};\underline{\mathfrak{a}}) = (\zeta(s,\alpha_1;\mathfrak{a}_{11}),\ldots,\zeta(s,\alpha_1;\mathfrak{a}_{1l_1}),\ldots,\zeta(s,\alpha_r;\mathfrak{a}_{r1}),\ldots,\zeta(s,\alpha_r;\mathfrak{a}_{rl_r}))$$

and

$$\underline{L}_n(s,\underline{\chi}) = \left(L_n(s,\chi_1),\ldots,L_n(s,\chi_d)\right), \quad \underline{\zeta}_n(s,\underline{\alpha};\underline{\mathfrak{a}}) = \left(\zeta_n(s,\alpha_1;\mathfrak{a}_{11}),\ldots,\zeta_n(s,\alpha_1;\mathfrak{a}_{1l_1}),\ldots,\zeta_n(s,\alpha_r;\mathfrak{a}_{r1}),\ldots,\zeta_n(s,\alpha_r;\mathfrak{a}_{rl_r})\right).$$

Then, from the proof of a limit theorem for Dirichlet L-functions in [11], it follows that

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_d \left(\underline{L}(s + i\tau, \underline{\chi}), \underline{L}_n(s + i\tau, \underline{\chi}) \right) d\tau = 0$$

Similarly, in [8], it was obtained that

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_u \big(\underline{\zeta}(s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}), \underline{\zeta}_n(s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}) \big) \, \mathrm{d}\tau = 0.$$

Two last equalities together with the definition of the metric ρ_{κ} show that

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_{d+u} \left(F(s+i\tau,\underline{\chi},\underline{\alpha};\underline{\mathfrak{a}}), F_n(s+i\tau,\underline{\chi},\underline{\alpha};\underline{\mathfrak{a}}) \right) \mathrm{d}\tau = 0.$$
(2.1)

Now let θ be a random variable defined on a certain probability space $(\hat{\Omega}, \mathcal{A}, \mathbb{P})$ and uniformly distributed on [0, 1]. Define the $H_{d,u}$ -valued random element $\underline{X}_{T,n} = \underline{X}_{T,n}(s) = (X_{T,n,1}(s), \ldots, X_{T,n,d}(s), \hat{X}_{T,n,1,1}(s), \ldots, \hat{X}_{T,n,1,l_1}(s), \ldots, \hat{X}_{T,n,r,1}(s), \ldots, \hat{X}_{T,n,r,l_r}(s)) = F_n(s + i\theta T, \underline{\chi}, \underline{\alpha}; \underline{\mathfrak{a}})$, and denote by $\xrightarrow{\mathcal{D}}$ the convergence in distribution. Then, by Lemma 2, we have that

$$\underline{X}_{T,n} \xrightarrow[T \to \infty]{\mathcal{D}} \underline{X}_n, \tag{2.2}$$

where $\underline{X}_n = (X_{n,1}, \ldots, X_{n,d}, \hat{X}_{n,1,1}, \ldots, \hat{X}_{n,1,l_1}, \ldots, \hat{X}_{n,r,1}, \ldots, \hat{X}_{n,r,l_r})$ is a $H_{d,r}$ -valued random element having the distribution P_n (P_n is the limit measure in Lemma 2). We will prove that the family of probability measures $\{P_n : n \in \mathbb{N}\}$ is tight.

Since the series for $L_n(s, \chi_j)$ converges absolutely for $\sigma > \frac{1}{2}$, we find that

$$\limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K_v} \left| L_n(s + i\tau, \chi_j) \right| d\tau \le C_v R_{jv}, \tag{2.3}$$

K. Janulis, A. Laurinčikas, R. Macaitienė and D. Šiaučiūnas

where

$$R_{jv} = \left(\sum_{m=1}^{\infty} \frac{1}{m^{2\sigma_v}}\right)^{\frac{1}{2}}, \quad j = 1, \dots, d, \ l \in \mathbb{N},$$

with some $C_v > 0$ and $\sigma_v > \frac{1}{2}$. Similarly, the absolute convergence for $\zeta_n(s, \alpha_j,; \mathfrak{a}_{jl})$ leads to the estimate

$$\limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K_v} \left| \zeta_n(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) \right| \mathrm{d}\tau \le \hat{C}_v R_{jlv}, \tag{2.4}$$

where

$$R_{jlv} = \left(\sum_{m=0}^{\infty} \frac{|a_{mjl}|^2}{(m+\alpha_j)^{2\hat{\sigma}_v}}\right)^{\frac{1}{2}},$$

with some $\hat{C}_v > 0$ and $\hat{\sigma}_v > \frac{1}{2}$. Now let $\varepsilon > 0$ be arbitrary fixed number,

$$M_{jv} = M_{jv}(\varepsilon) = C_v R_{jv} 2^{v+1} d\varepsilon^{-1}, \quad j = 1, \dots, d,$$

and

$$M_{jlv} = M_{jlv}(\varepsilon) = \hat{C}_v R_{jlv} 2^{\nu+1} u \varepsilon^{-1}, \quad j = 1, \dots, r.$$

Then the bounds (2.3) and (2.4) imply

$$\begin{split} &\limsup_{T \to \infty} \mathbb{P} \Big(\exists j = 1, \dots, d \colon \sup_{s \in K_v} \left| X_{T,n,j}(s) \right| > M_{jv} \\ & \text{ or } \exists (j,l), \ j = 1, \dots, r, \ l = 1, \dots, l_j \colon \sup_{s \in K_v} \left| \hat{X}_{T,n,j,l}(s) \right| > M_{jlv} \Big) \\ & \leq \sum_{j=1}^d \limsup_{T \to \infty} \mathbb{P} \Big(\sup_{s \in K_j} \left| X_{T,n,j}(s) \right| > M_{jv} \Big) \\ & + \sum_{j=1}^r \sum_{l=1}^{l_j} \limsup_{T \to \infty} \mathbb{P} \Big(\sup_{s \in K_j} \left| \hat{X}_{T,n,j,l}(s) \right| > M_{jlv} \Big) \\ & \leq \sum_{j=1}^d \frac{1}{M_{jv}} \sup_{n \in \mathbb{N}} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K_v} \left| L_n(s + i\tau, \chi_j) \right| d\tau \\ & + \sum_{j=1}^r \sum_{l=1}^{l_j} \frac{1}{M_{jlv}} \sup_{n \in \mathbb{N}} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K_v} \left| \zeta_n(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) \right| d\tau \\ & < \frac{\varepsilon}{2^{v+1}} + \frac{\varepsilon}{2^{v+1}} = \frac{\varepsilon}{2^v}, \quad v \in \mathbb{N}. \end{split}$$

This together with (2.2), for all $n \in \mathbb{N}$, gives

$$\mathbb{P}\Big(\exists j=1,\ldots,d\colon \sup_{s\in K_v} \left|X_{n,j}(s)\right| > M_{jv} \text{ or } \exists (j,l), \ j=1,\ldots,r,$$
$$l=1,\ldots,l_j\colon \sup_{s\in K_v} \left|\hat{X}_{n,j,l}(s)\right| > M_{jlv}\Big) \le \frac{\varepsilon}{2^v}, \quad v\in\mathbb{N}.$$
(2.5)

680

Define the set

$$K_{d,u} = K_{d,u}(\varepsilon) = \left\{ (g_1, \dots, g_d, \hat{g}_{11}, \dots, \hat{g}_{1l_1}, \dots, \hat{g}_{r1}, \dots, \hat{g}_{r,l_r}) \in H_{d,u} : \\ \sup_{s \in K_v} |g_j(s)| \le M_{jv}, \ j = 1, \dots, r, \\ \sup_{s \in K_v} |\hat{g}_{jl}(s)| \le M_{jlv}, \ j = 1, \dots, r, \ l = 1, \dots, l_j, \ v \in \mathbb{N} \right\}.$$

Then $K_{d,u}$ is a compact subset in $H_{d,u}$. Moreover, in view of (2.5), for all $n \in \mathbb{N}$,

$$\mathbb{P}(\underline{X}_n \in K_{d,u}) > 1 - \varepsilon \sum_{v=1}^{\infty} \frac{1}{2^v} = 1 - \varepsilon,$$

or, by the definition of \underline{X}_n , we find that $P_n(K_{d,u}(\varepsilon)) > 1 - \varepsilon$, for all $n \in \mathbb{N}$.

Thus, we have proved that the family of probability measures $\{P_n: n \in \mathbb{N}\}$ is tight. Hence, by the Prokhorov theorem, see [2], it is relatively compact. Therefore, there exists a sequence $\{P_{n_k}\} \subset P_n$ such that P_{n_k} converges weakly to a certain probability measure P on $(H_{d,u}, \mathcal{B}(H_{d,u}))$ as $k \to \infty$. In other words,

$$\underline{X}_{n_k} \xrightarrow[k \to \infty]{\mathcal{D}} P. \tag{2.6}$$

Now, using (2.1), (2.2), (2.6) and Theorem 4.2 of [2], we obtain that

$$\underline{X}_T \xrightarrow[T \to \infty]{\mathcal{D}} P, \qquad (2.7)$$

where, $\underline{X}_T = \underline{X}(s) = F(s + i\theta T, \underline{\chi}, \underline{\alpha}; \underline{\mathfrak{a}})$. Thus, we proved that P_T converges weakly to P as $T \to \infty$.

Similarly to a relation (2.1), we find that, for almost all $\underline{\omega} \in \Omega^{\kappa}$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_{d+u} \left(F(s+i\tau, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}), F_n(s+i\tau, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \right) \mathrm{d}\tau = 0.$$
(2.8)

Let

$$\underline{\hat{X}}_{T,n} = \underline{\hat{X}}(s) = F_n(s + i\theta T, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}).$$

Then, by Lemma 2

$$\underline{\hat{X}}_{T,n} \xrightarrow[T \to \infty]{\mathcal{D}} P_n.$$
(2.9)

Moreover, (2.7) shows that

$$\underline{\hat{X}}_n \xrightarrow[n \to \infty]{\mathcal{D}} P. \tag{2.10}$$

Now (2.8)–(2.10) and Theorem 4.2 of [2] show that

$$\underline{\hat{X}}_T \xrightarrow[T \to \infty]{\mathcal{D}} P$$

where

$$\underline{\hat{X}}_T = \underline{\hat{X}}_T(s) = F(s + i\theta T, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}).$$

Then, \hat{P}_T also converges weakly to P as $T \to \infty$. The lemma is proved. \Box

Proof of Theorem 2. We apply standard arguments. Let A be a fixed continuity set of the measure P in Lemma 3. Then we have that

$$\lim_{T \to \infty} \frac{1}{T} \operatorname{meas}\left(\tau \in [0, T] \colon F(s + i\tau, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A\right) = P(A).$$
(2.11)

We have to prove that $P = P_F$. For this, on the probability space $(\Omega^{\kappa}, \mathcal{B}(\Omega^{\kappa}), m_H^{\kappa})$, define the random variable

$$\xi(\underline{\omega}) = \begin{cases} 1, & \text{if } F(s, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Obviously, the expectation $\mathbb{E}\xi$ of $\xi(\underline{\omega})$ is of the form:

$$\mathbb{E}\xi = \int_{\Omega^{\kappa}} \xi(\underline{\omega}) \,\mathrm{d}m_{H}^{\kappa} = m_{H}^{\kappa} \big(\underline{\omega} \in \Omega^{\kappa} \colon F(s, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A\big).$$
(2.12)

In the sequel, we apply the ergodic theory. We consider the one parameter group $\{\Phi_{\tau} : \tau \in \mathbb{R}\}$ of measurable measure preserving transformations on Ω^{κ} given by

$$\Phi_{\tau}(\underline{\omega}) = \left(\left(p^{-i\tau} : p \in \mathcal{P} \right), \left((m + \alpha_1)^{-i\tau} : m \in \mathbb{N}_0 \right), \dots, \left((m + \alpha_r)^{-i\tau} : m \in \mathbb{N}_0 \right) \right) \underline{\omega}.$$

In [10, Lemma 7], it is proved that the group $\{\Phi_{\tau} : \tau \in \mathbb{R}\}$ is ergodic. Hence, the random process $\xi(\Phi_{\tau}(\underline{\omega}))$ is ergodic as well. Therefore, the Birkhoff–Khintchine theorem implies the inequality

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \xi \left(\Phi_\tau(\underline{\omega}) \right) d\tau = \mathbb{E}\xi.$$
(2.13)

On the other hand, the definitions of ξ and Φ_{τ} yield

$$\frac{1}{T} \int_0^T \xi(\varPhi_\tau(\underline{\omega})) \, \mathrm{d}\tau = \frac{1}{T} \max\{\tau \in [0,T] \colon F(s+i\tau,\underline{\chi},\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) \in A\}.$$

This, (2.12) and (2.13) show that

$$\lim_{T \to \infty} \frac{1}{T} \max \left\{ \tau \in [0, T] \colon F(s + i\tau, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A \right\} = P_F(A).$$

Then in view of (2.11), $P(A) = P_F(A)$. Since A was an arbitrary continuity set of P, the later equality holds for all continuity sets of P. It is well known that continuity sets constitute a determining class. Consequently, $P(A) = P_F(A)$ for all $A \in \mathcal{B}(H_{d,u})$, and the theorem is proved. \Box

3 Support

This section is devoted to the explicit form of the support S_{P_F} of the probability measure P_F . By the definition, S_{P_F} is a minimal closed subset of $H_{d,u}$ such that $P_F(S_{P_F}) = 1$. Define

$$S = \left\{ g \in H(D) \colon g(s) \neq 0 \text{ or } g(s) \equiv 0 \right\}.$$

Theorem 3. Suppose that χ_1, \ldots, χ_d are pairwise non-equivalent Dirichlet characters, and parameters $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then the support of P_F is the set $S^d \times H^u(D)$.

Proof. The set $H_{d,u}$ is separable, therefore [2],

$$\mathcal{B}(H_{d,u}) = \mathcal{B}(H^d(D)) \times \mathcal{B}(H^u(D)).$$

Therefore, it suffices to consider $P_F(A \times B)$, where $A = \mathcal{B}(H^d(D))$ and $B = \mathcal{B}(H^u(D))$. Let

$$\underline{L}(s,\underline{\chi},\omega) = (L(s,\chi_1,\omega),\ldots,L(s,\chi_d,\omega)),$$

$$\underline{\zeta}(s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) = (\zeta(s,\alpha_1,\omega_1;\mathfrak{a}_{11}),\ldots,\zeta(s,\alpha_1,\omega_1;\mathfrak{a}_{1l_1}),\ldots,\zeta(s,\alpha_r;\mathfrak{a}_{rl_r},\omega_r)),$$

where $\omega = (\omega_1, \dots, \omega_r)$. Since the measure m_H^{κ} is a product of the measures m_H and m_H^r , we have that

$$P_F(A \times B) = m_H^{\kappa} (\underline{\omega} \in \Omega^{\kappa} : F(s, \underline{\chi}, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A \times B)$$
$$m_H (\omega \in \Omega : \underline{L}(s, \underline{\chi}, \omega) \in A) \times m_H^{r} (\underline{\omega} \in \Omega^{r} : \underline{\zeta}(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in B).$$
(3.1)

In [11], it was obtained that S^d is a minimal closed set such

$$m_H(\omega \in \Omega : \underline{L}(s, \underline{\chi}, \omega) \in S^d) = 1,$$

and in [8], it was proved that $H^u(D)$ is a minimal closed set such that

$$m_H^r(\omega \in \Omega^r \colon \zeta(s, \underline{\alpha}, \omega; \underline{\mathfrak{a}}) \in H^u(D)) = 1.$$

These equalities together with (3.1) prove the theorem. \Box

4 Proof of Theorem 1

We will apply the Mergelyan theorem on approximation of analytic functions by polynomials [18] which asserts that if $K \subset \mathbb{C}$ is a compact subset with connected complement, and g(s) is a function continuous on K and analytic in the interior of K, then, for every $\varepsilon > 0$, there is a polynomial p(s) such that

$$\sup_{s \in K} \left| g(s) - p(s) \right| < \varepsilon.$$

Proof of Theorem 1. By the Mergelyan theorem, there exist polynomials $p_j(s)$, j = 1, ..., d, and $p_{jl}(s), j = 1, ..., r, l = 1, ..., l_j$, such that

$$\sup_{1 \le j \le d} \sup_{s \in K_j} \left| f_j(s) - p_j(s) \right| < \frac{\varepsilon}{4}$$

$$\tag{4.1}$$

and

$$\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} \left| f_{jl}(s) - p_{jl}(s) \right| < \frac{\varepsilon}{2}.$$
(4.2)

If ε is sufficiently small, we have that $p_j(s) \neq 0$ on K_j , $j = 1, \ldots, d$. Therefore, there exists a continuous branch $\log p_j(s)$ which is analytic in the interior of K_j , $j = 1, \ldots, d$. Applying the Mergelyan theorem once more, we can find polynomials $q_j(s)$, $j = 1, \ldots, d$, such that

$$\sup_{1 \le j \le d} \sup_{s \in K_j} \left| p_j(s) - \mathrm{e}^{q_j(s)} \right| < \frac{\varepsilon}{4}.$$

Combining this with (4.1) gives

$$\sup_{1 \le j \le d} \sup_{s \in K_j} \left| f_j(s) - e^{q_j(s)} \right| < \frac{\varepsilon}{2}.$$
(4.3)

By Theorem 3,

$$\left(e^{q_1(s)},\ldots,e^{q_d(s)},p_{11}(s),\ldots,p_{1l_1}(s),\ldots,p_{r_1}(s),\ldots,p_{rl_r}(s)\right) \in S_{P_F}$$

Therefore, setting

$$G = \left\{ \underline{g} \in H_{d,r} \colon \sup_{1 \le j \le d} \sup_{s \in K_j} \left| g_j(s) - e^{q_j(s)} \right| < \frac{\varepsilon}{2}, \\ \sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} \left| g_{jl}(s) - p_{jl}(s) \right| < \frac{\varepsilon}{2} \right\},$$

we obtain, by Theorem 2, that

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] \colon F(s + i\tau, \underline{\chi}, \underline{\alpha}; \underline{\mathfrak{a}}) \in G \right\} \ge P_F(G) > 0.$$

This, definition of G and (4.2) and (4.3) complete the proof of the theorem. \Box

References

- B. Bagchi. The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. PhD Thesis, Calcutta, Indian Statistical Institute, 1981.
- [2] P. Billingsley. Convergence of Probability Measures. Wiley and Sons, New York, 1968.
- [3] J. Genys, R. Macaitienė, S. Račkauskienė and D. Šiaučiūnas. A mixed joint universality theorem for zeta-functions. *Math. Model. Anal.*, 15(4):431–446, 2010. http://dx.doi.org/10.3846/1392-6292.2010.15.431-446.
- [4] S.M. Gonek. Analytic properties of zeta and L-functions. PhD Thesis, University of Michigan, 1979.
- [5] R. Kačinskaitė and A. Laurinčikas. The joint distribution of periodic zetafunctions. *Studia Sci. Math.*, **74**(3):257–279, 2010.
- [6] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.

- [7] A. Laurinčikas. The universality of zeta-functions. Acta Appl. Math., 78(1– 3):251–271, 2003. http://dx.doi.org/10.1023/A:1025797802722.
- [8] A. Laurinčikas. The joint universality for periodic Hurwitz zeta-functions. *Izv. Ross. Akad. Nauk Ser. Mat.*, **72**(4):121–140, 2008. (in Russian); translated in Izv. Math., **72**(4):741–760, 2008
- [9] A. Laurinčikas. The joint universality of Hurwitz zeta-functions. Šiauliai Math. Semin., 3(11):169–187, 2008.
- [10] A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. *Izv. Ross. Akad. Nauk Ser. Mat.*, **74**(3):79–102, 2010. (in Russian); translated in Izv. Math. **74**(3):515–539, 2010
- [11] A. Laurinčikas. On joint universality of Dirichlet L-functions. Chebyshevskii Sb., 12(2):182–191, 2011.
- [12] A. Laurinčikas and R. Garunkštis. *The Lerch Zeta-Function*. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
- [13] A. Laurinčikas and D. Šiaučiūnas. A mixed joint universality theorem for zetafunctions. III. Anal. Probab. Methods Number Theory (to appear).
- [14] A. Laurinčikas and S. Skerstonaitė. A joint universality theorem for periodic Hurwitz zeta-functions. I. Lith. Math. J., 48(3):287–296, 2008.
- [15] A. Laurinčikas and S. Skerstonaitė. Joint universality for periodic Hurwitz zetafunctions. II. In R. Steuding and J. Steuding(Eds.), New Directions in Value-Distribution Theory of Zeta and L-Functions, pp. 161–170, Aachen, 2009. Shaker Verlag.
- [16] R. Macaitienė. On joint universality for the zeta-functions of newforms and periodic Hurwitz zeta-functions. RIMS Kôkyûroku Bessatsu (to appear).
- [17] K. Matsumoto. Probababilistic value-distribution theory of zeta-functions. Sugaku Expositions, 17(1):51–71, 2004.
- [18] S.N. Mergelyan. Uniform approximations to functions of complex variable. Uspekhi Mat. Nauk, 7:31–122, 1952. (in Russian)
- [19] H. Mishou. The joint value distribution of the Riemann zeta-function and Hurwitz zeta-functions. Lith. Math. J., 47(1):32–47, 2008. http://dx.doi.org/10.1007/s10986-007-0003-0.
- [20] T. Nakamura. The existence and the non-existence of joint t-universality for Lerch zeta-functions. J. Number Theory, 125:424–441, 2007. http://dx.doi.org/10.1016/j.jnt.2006.12.008.
- [21] S. Račkauskienė and D. Šiaučiūnas. A mixed joint universality theorem for zetafunctions. II. Lith. Math. J. (submitted).
- [22] J. Steuding. Value-Distribution of L-Functions, volume 1877 of Lecture Notes in Math. Springer-Verlag, Berlin, Heidelberg, New York, 2007.
- [23] S.M. Voronin. On the functional independence of Dirichlet L-functions. Acta Arith., 27:493–503, 1975. (in Russian)
- [24] S.M. Voronin. Theorem on the "universality" of the Riemann zeta-function. Izv. Akad. Nauk. SSSR, Ser. Matem., 39(3):475–486, 1975. (in Russian); translated in Math. USSR Izv., 9(3):443–453, 1975