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Abstract 

 

Monophasic undoped and cerium-doped Sr4Al 14O25 samples with partial substitution of calcium for 

strontium were prepared using conventional solid-state synthesis. Structural studies revealed that 

substitution of strontium by calcium in Sr4-xCaxAl 14O25 up to x=1.4 is possible without formation of 

additional phases and that the Sr2 site (of two possible) is more likely to be substituted by the 

smaller Ca ions. Photoluminescence measurements of Sr4Al14O25:Ce showed emission with double 

peak (360 and 380 nm) under 330 nm excitation wavelength. The effect of partial substitution of 

strontium by calcium on the luminescence of Sr4-xCaxAl 14O25:Ce (emission, quantum yield, decay) 

were studied as well. 

Keywords: Oxides; crystal structure; optical properties; X-ray diffraction; luminescence. 
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1. Introduction 

The discovery of advanced optical materials with multiple superior qualities for display applications 

remains a difficult problem. The specific luminescence properties of multinary oxides are highly 

sensitive to the changes in dopant composition, host stoichiometry, and processing conditions [1-4]. 

Inorganic luminescent materials in most cases consist of rear-earth ions embedded in a crystal 

matrix. Part of the widely studied matrices for luminescent materials is the group of strontium 

aluminates. In SrO-Al2O3 system, there are several well-known phases, namely Sr3Al 2O6, SrAl2O4, 

SrAl4O7, SrAl12O19, Sr4Al 2O7, Sr4Al 14O25, Sr12Al 14O33 and Sr10Al 6O19, as described in the literature 

[5]. Eu2+-doped SrAl2O4 is one of the most studied systems in the family of strontium aluminates 

and it shows strong green emission at ~530 nm [6, 7].  

However, during recent years, a great deal of attention has been paid to Sr4Al 14O25 phase [8-33]. 

The crystal structure of Sr4Al 14O25 has been determined to be orthorhombic with space group Pmma 

and a = 24.7451(2)Å, b = 8.4735(6)Å , c = 4.8808(1)Å, V = 1023.41(3) Å3, Z = 2, and D=3.66 

g/cm3 [34]. Capron et al. showed that this phase forms at 1134 ˚C and is stable up to 1500 ˚C [35]. 

Sr4Al 14O25:Eu has been focused for white LEDs, because it has a greenish-blue emission band at 

495 nm by nUV excitation and a quantum efficiency of 90% [36]. If co-doped with dysprosium, 

Sr4Al 14O25:Eu,Dy has been reported to show persistent luminescence with an afterglow of more 

than 20 h [8-11]. Other dopants have also been incorporated in this phase. Red luminescence has 

been observed in Sr4Al 14O25:Cr,Eu,Dy [12] and Sr4Al 14O25:Mn [13, 37]. Samarium doped 

compounds exhibited orange red emission [14, 15]. Blue green Sr4Al 14O25:Eu,Tm,La phosphor has 

also been reported [16]. Cerium-doped Sr4Al 14O25 phosphors have been studied previously, but the 

reported emission wavelengths are at 400 nm (λex = 350 nm) [17], at 472 and 511 nm (λex = 275 

nm) [18] or at 314 nm (λex = 262 nm) [19]. Such different results might be due to different synthesis 

methods used in researches, but still it shows that more investigation is required. 
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The effects of nonstoichiometry and cationic substitution on photoluminescence and afterglow 

characteristics of strontium aluminate phosphor (Sr4Al 14O25:Eu2+, Dy3+) has been investigated by 

Suriyamurthy and Panigrahi [30]. The authors reported that calcium-substituted samples show 

decreased photoluminescence intensities and in case of higher degree of substitution – blue shifts of 

emission spectra are visible. The photoluminescence emission intensity from barium-substituted 

samples was significantly enhanced compared with that of the unsubstituted one. A similar study 

has been carried out by Dacyl et al. [25], in which it is also reported that substitution by calcium 

resulted in a blue shift of the emission spectrum. On the other hand, both studies deal with samples 

that mostly consist of several phases. In the current study cerium was chosen as an activator since it 

is one of most promising activators in non-Eu2+-based persistent luminescent materials [38]. In 

order to investigate the effects of strontium substitution by calcium on crystal structure of 

Sr4Al 14O25 and luminescent properties of related cerium-doped samples, single-phase materials 

were synthesized and subjected to detailed investigations in the present study. 

 

2. Experimental 

All Sr4Al 14O25, Sr(4-x)Al 14O25Cex and Sr(3.95-x) Al14O25Ce0.05Cax samples were synthesized using 

conventional solid-state synthesis method. Stoichiometric amounts of strontium carbonate (SrCO3, 

97.5%, AlfaAesar), calcium carbonate (CaCO3, 99%, CarlRoth) alumina (Al2O3, 99.5% 

NanoDurTM, AlfaAesar) and cerium nitrate (Ce(NO3)3 · 6 H2O, 99%, Merck) were mixed in an agate 

mortar. Also 2.5% by weight of H3BO3 (99.8 %, CarlRoth) was added as a fluxing agent. The 

starting mixtures were heated to 1300 ℃ using a heating rate of 5 º/min and held it for 10 h. In the 

case of cerium containing samples, the same heating approach was used, however, activated carbon 

powder was used to create a reducing atmosphere. In order to achieve this, smaller open crucible 

with the starting mixture was placed inside a larger crucible containing excess of activated carbon 

powder, which was closed with a lid. 
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Powder X-ray diffraction (XRD) measurements for initial phase analysis were performed using 

Rigaku MiniFlex II diffractometer working in Bragg-Brentano (ϴ/2ϴ) geometry. The data were 

collected at a step of 0.01º and at speed of 10 º/min using Cu Kα radiation. In order to obtain data 

for structural refinement, Rigaku SmartLab diffractometer was used working in a parallel beam 

(ϴ/ϴ) geometry, using 5.0º Soller slits and Cu Kα1 (λ = 1.54059 Å) radiation. Samples were spun at 

30 rpm, measurements were taken at a step of 0.01º and at speed of 4 º/min. Rietveld refinement in 

this work was performed using FullProf software[39].  

Quantum yield, excitation and emission spectra were recorded using Edinburgh Instruments 

FLS980 spectrometer equipped with double excitation and emission monochromators, 450 W Xe 

arc lamp, a cooled (–20 °C) single-photon counting photomultiplier (Hamamatsu R928) and mirror 

optics for powder samples. The excitation spectra were corrected by a reference detector. In both 

cases step width was 0.5 nm and integration time was 0.4 s. Quantum yields (QY) were calculated 

by measuring emission spectrum of the sample in Teflon coated integration sphere. The values were 

obtained by employing the following equation: 

�� =
� ���,	
���� − � ���,������
� ����,������ − � ����,	
����

× 100% 

where ∫Iem,sample and ∫Iem,Teflon are integrated emission intensities of the sample and Teflon, 

respectively; ∫Iref,sample and ∫Iref,Teflon are the integrated reflectance of the sample and Teflon, 

respectively [40]. The photoluminescence decay kinetics studies were performed on the same 

FLS980 spectrometer. Decay curves were fitted using monoexponential decay function: I(t)=I 0 e
-t/τ, 

where τ is decay constant, I(t) – intensity at a given time, I0 – initial intensity and t – time. 

 

3. Results and discussion 

3.1. Synthesis of monophasic Sr4Al14O25 
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The Sr4Al 14O25 samples prepared using boric acid as a fluxing agent (2.5 wt.%) were single phase 

compounds. Results of Rietveld refinement are shown in Figure 1. The original crystallographic 

data of Wang et al. [34] were used as a starting model for Rietveld refinement of X-ray diffraction 

data collected at room temperature. The refinement smoothly converged to the structure close to the 

starting model based on X-ray powder diffraction data. Therefore, it was determined that Sr4Al 14O25 

phase can be synthesized by heating at 1300 °C for 8 h using the solid state reaction method. 
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Figure 1. X-ray diffraction pattern of Sr4Al 14O25 refined employing Rietveld method. Sample 

prepared using H3BO3 (2.5% wt.) as a fluxing agent. Vertical bars located just below the 

background level indicate calculated positions of Bragg peaks for λ = 1.54059 Å (Cu Kα1). (Figures 

of merit: Rp= 5.75%, Rwp= 7.46%, Rexp= 3.96%, χ2= 3.55) 

 

3.2. Partial substitution of Sr2+ by Ca2+  

 

To investigate the influence of partial substitution of strontium by calcium on the lattice parameters 

of Sr4Al 14O25, a series of samples Sr(4-x)CaxAl 14O25 x = 0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2, 1.4, 
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1.6, 1.8, 2.0 and 2.2 were prepared. From XRD data (representative patterns are given in Figure 2) it 

is visible that single phase compounds can be obtained with substitution up to x = 1.4. With higher 

substitutional level of Ca the secondary phase of CaAl4O7 is forming. 
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Figure 2. XRD patterns of Sr(4-x)CaxAl 14O25 samples. Red bars indicate standard pattern of 

Sr4Al 14O25 (PDF#00-074-1810) phase. Additional phase of CaAl4O7 (PDF#96-901-4426) is marked 

by blue bars. 

These data are in a good agreement with published by Suriyamurthy et al. [30]. It was reported, that 

when calcium amount in Sr(4-x)CaxAl 14O25 samples was x = 3.2 the Sr4Al 14O25 phase was barely 

detectable and CaAl4O7 phase was dominant in the synthesis product. 
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Previously refined Sr4Al 14O25 data were used as a starting model for Rietveld refinement. The Ca2+ 

ions were assumed to occupy the Sr1 (4j) and Sr2 (4i) sites in the refinements and the sum of the Sr 

and Ca occupancies of these two sites were constrained to 0.5. Crystallographic data of CaAl4O7 

(ICDS#14270) were used for the refinement when second phase was present in the samples (x 

>1.4). Refined lattice parameters a, b and c are shown in Figure 3. The crystallographic details of 

one selected representative sample (where x=1.4) refined from X-ray powder diffraction data are 

provided in Table 1. 

 

Table 1. Structural parametersa for Sr2.6Ca1.4Al 14O25
b refined from X-ray powder diffraction data 

collected at room temperature using orthorhombic space group Pmma (No. 51). 

Atom x y z Biso Occupancy Site/ 

Multiplicity 

Sr1 0.13790 (7) 1/2 0.03242 (50) 0.397 (65) 0.405 (4) 4j 

Ca1 0.13790 (7) 1/2 0.03242 (50) 0.397 (65) 0.095 (4) 4j 

Sr2 0.11965 (10) 0 0.12039 (64) 0.397 (65) 0.239 (4) 4i 

Ca2 0.11965 (10) 0 0.12039 (64) 0.397 (65) 0.261 (4) 4i 

Al1 0.18554 (16) 0.19266 (50) 0.62811 (100) 0.492 (58) 1 8l 

Al2 0.06647 (16) 0.31970 (58) 0.51039 (106) 0.492 (58) 1 8l 

Al3 1/4 0.29316 (68) 0.12979 (144) 0.492 (58) 1/2 4k 

Al4 0 0.16716 (52) 0 0.492 (58) 1/2 4g 

Al5 0 0 1/2 0.492 (58) 1/4 2c 

Al6 0 1/2 0 0.492 (58) 1/4 2e 

O1 0.04498 (28) 0.16206 (95) 0.31940 (208) 0.078 (82) 1 8l 

O2 0.13781 (30) 0.31851 (84) 0.50152 (173) 0.078 (82) 1 8l 

O3 0.18909 (27) 0.22533 (82) -0.01895 (151) 0.078 (82) 1 8l 

O4 1/4 0.23081 (122) 0.47781 (204) 0.078 (82) 1/2 4k 

O5 0.04024 (43) 0 0.83537 (264) 0.078 (82) 1/2 4i 

O6 0.05041 (40) 1/2 0.33651 (277) 0.078 (82) 1/2 4j 

O7 0.16456 (39) 0 0.56937 (233) 0.078 (82) 1/2 4i 

O8 0.04274 (26) 0.32899 (93) 0.85792 (219) 0.078 (82) 1 8l 

O9 1/4 1/2 0.10010 0.078 (82) 1/4 2f 

a: Numbers in parentheses are standard deviations of last significant digits. Values with no standard 

deviation shown were not refined. 
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b: Cell parameters: a= 24.57249 (34), b= 8.45725 (12), c= 4.86924 (7); Figures of merit: Rp= 

9.26%, Rwp= 13.3%, Rexp= 4.58%, χ2= 8.48. 
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Figure 3. Refined lattice parameters a, b and c for Sr(4-x)CaxAl 14O25 plotted as a function Ca2+ 

doping level x. 

 

As expected, substituting Sr2+ with Ca2+ (ionic radii 118 and 100 pm [41], respectively) caused unit 

cell volume and lattice parameters to shrink. The rate of change of all three lattice parameters a, b 

and c is seen to abruptly decrease when x reaches a value of approximately 1.3 which is close to the 

critical Ca2+ concentration x = 1.4 which is the upper limit for formation of single phase samples. 

The refined Ca occupancies of the Sr1 and Sr2 sites are plotted in Figure 4. 
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Figure 4. Refined occupancy parameters for two strontium sites in Sr4-xCaxAl 14O25 samples plotted 

as a function Ca2+ doping level x. 

 

Except for the lowest calcium concentrations, the Sr2 site is more likely to be substituted by 

calcium. Furthermore, the rate of Ca substitution in the Sr2 site is seen to decrease for x > 1.2 which 

again reflects the onset of second phase formation. Figure 5 Shows the Sr4Al 14O25 crystal structure. 

The Sr1 sites are surrounded by AlO4-tetrahedra while the Sr2 sites are surrounded by both AlO4-

tetrahedra and AlO6-octahedra. The Sr2 sites (coordination number 7, average Sr2-O distance 2.636 

Å) are more susceptible for Ca substitution as sites are less spacious than Sr1 sites (coordination 

number 10, average Sr1-O distance 2.811 Å). 
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Figure 5. Projection of Sr4Al 14O25 crystal structure viewed along c-axis. Sr1 (red circles with 

squared patterns), Sr2 (red circles), AlO4-tetrahedra (green) and AlO6-octahedra (yellow). 

 

 

3.3. Synthesis of Ce-doped Sr4Al14O25  

 

Cerium-doped Sr4-yAl 14O25:Cey samples were prepared using the same synthetic approach and 

phase analysis of synthesis products was also performed. As seen from the XRD patterns presented 

in Figure 6, two compounds with the largest amount of cerium contain additionally traces of ceria 

(cerium(IV) oxide). 
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Figure 6. XRD patterns of Sr4-yAl 14O25:Cey. Red bars indicate standard pattern of Sr4Al 14O25 
(PDF#00-074-1810) phase. The impurity phase is marked: * – CeO2. 

 

The Rietveld refinement for these samples was performed as well. The results obtained from the 

refinement imply that the amount of CeO2 (the crystallographic data were obtained from COD – 

crystallographic open database, #4343161) present in the compounds are 1 % and 0.4 % for y = 0.1 

and y = 0.05 accordingly. These results clearly show that even CeO2 phase is forming as impurity, 

the largest part of cerium is still embedded into the structure of Sr4-yAl 14O25:Cey (e.g. when y = 

0.05, the total mol % of cerium is 1.25, so at least 0.75 mol % should be incorporated in the 
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structure). Attempts to refine the Ce occupancies Sr1 and Sr2 sites following the procedure used for 

Ca-doping were unsuccessful. 
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Figure 7. Excitation (λem = 360) at left and emission (λex = 330 nm) at right spectra of Sr4-

yAl 14O25:Cey
3+ samples. 

 

Excitation and emission spectra of the Sr4-yAl 14O25:Cey
 samples were also measured and are 

presented in Figure 7. Two emission maximums can be noticed: the first around 360 nm and the 

second around 380 nm, the excitation maximum is around 330 nm. The emission peaks are broad, 

this is due to the transition in Ce3+ ions from [Xe]4d1 to [Xe]5f1. As it can be seen from the spectra 

in Figure 7 the sample with y = 0.05 has the highest emission intensity. Higher level of doping 

results in decrease of intensity due to concentration quenching. Therefore, the doping with y = 0.05 

was chosen for further investigations. 
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3.4. Partial substitution of Sr2+ by Ca2+ in cerium-doped samples 

Cerium-doped strontium aluminates where strontium was partially substituted by calcium were 

synthesized to investigate the effects on the structural changes of the Sr3.95Al 14O25:Ce0.05. A series 

of Sr3.95-xCaxAl 14O25:Ce0.05 samples where x=0.1, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 were prepared using 

the same synthesis method. XRD data of the representative compounds are shown in Figure 8. 
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Figure 8. XRD patterns of Sr3.95-xCaxAl 14O25:Ce0.05. Red bars indicate standard pattern of 

Sr4Al 14O25 (PDF#00-074-1810) phase. 

 

All compounds from the synthesized series were refined using the Rietveld method. The result of 

Sr3.95Al14O25:Ce0.05 refinement which was performed earlier was used as basis for this series 
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refinement. The refinement results for cell parameters and their dependence are depicted in Figure 

9. As in undoped samples described previously, all cell parameters are decreasing linearly with 

increasing the level of Sr2+
 substitution by Ca2+.  
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Figure 9. Refined lattice parameters a, b and c for Sr3.95-xCaxAl 14O25:Ce0.05 plotted as a function 

Ca2+ doping level x. 

 

Occupation factors were refined by introducing the constraints as explained previously (Sr1 + Ca1 

= 0.5, Sr2 + Ca2 = 0.5). Once again, both Ca1 and Ca2 occupancies are increasing linearly when 

substitution level is increased. Also it can be seen that Sr2 is a much more preferred site for 

calcium, and except for the smallest amounts it was at least 3-4 times more substituted by calcium. 

Excitation and emission spectra of photoluminescence measurements are presented in Figure 10. 

The decrease of excitation and emission intensities was observed by substituting even small amount 

of Sr by Ca, however, at higher levels of substitution the intensities of emission monotonically 

increase. Unsubstituted sample falls around the middle of our range of substitution and its 
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integrated intensity is close to that of the Sr3.35Ca0.6Al14O25:Ce0.05 sample (see inset of Figure 10). 

The highest intensity was determined for the most substituted aluminate (x = 1.4). 
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Figure 10. Excitation (λem = 360 nm) at left and emission (λex = 330 nm) at right spectra of Sr3.95-

xCaxAl 14O25:Ce0.05 samples. Figure inset – integrated emission intensities plotted as a function Ca2+ 

doping level x. 

 

Quantum yields and luminescence kinetics for the synthesized samples were also measured. Decay 

curves are presented in Figure 11. Decay constants of monoexponential fits are presented in Table 2 

along with quantum yield calculation results and positions of emission peak maximums. Both, 

quantum yields and decay times, slightly increase with increasing amount of Ca while unsubstituted 

sample is in the middle of the range. 
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Figure 11. Decay curves for Sr3.95-xCaxAl 14O25:Ce0.05 samples. (λex = 330 nm, λem = 360 nm)  

 

 

Table 2. Emission maximums, quantum yields and τ1 constant determined for Sr3.95-

xCaxAl 14O25:Ce0.05 samples (numbers in parenthesis note the deviation of last significant digit).  

x= 0.0 0.1 0.4 0.6 0.8 1.0 1.2 1.4 

Ca amount (%) 0 2.5 10 15 20 25 30 35 

λem maximum 

(nm) 

356 357 360 359 359 359 359 359 

Quantum yield 

(%) 

16.93 6.16 10.63 16.86 22.42 22.88 22.26 27.11 

τ1 (1/ns)  27.87 (4) 27.56 (4) 27.54 (5) 28.11 (4) 28.34 (4) 28.17 (4) 28.35 (4) 28.39 (4) 

 

4. Conclusions 

It was demonstrated that partial substitution of calcium for strontium in Sr4-xCaxAl 14O25 is possible 

up to x=1.4 obtaining monophasic samples, while higher concentrations of Ca result in occurrence 

of additional phases. Refinement of crystal structures showed that such substitution results in 
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shrinkage of unit cell parameters due to smaller radius of Ca2+ ion. Moreover, cerium-doped 

samples Sr4-yAl 14O25:Cey
3+ and Sr3.95-xCaxAl 14O25:Ce0.05 were prepared as well. The luminescent and 

structural properties of these samples were investigated. Refinement of site occupancy parameters 

revealed that Sr2 site (of two strontium sites in the crystal structure) is more likely to be substituted 

by the smaller calcium ion, however, the site preference of cerium could not be reliably determined 

using X-ray diffraction analysis. Evidently, further investigation on cerium substitutional effects 

should be performed in future. Examination of luminescence properties showed that the 

Sr4Al 14O25:Cey
3+ sample with y = 0.05 showed the highest emission intensity. In overall, for the 

Sr3.95-xCaxAl 14O25:Ce0.05 samples all measured properties (excitation and emission intensities, decay 

times and quantum yields) increased with increasing substitutional level of calcium. However, the 

values of unsubstituted sample were close to the middle of the range of substituted samples. 
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List of figures: 

Figure 1. X-ray diffraction pattern of Sr4Al 14O25 refined employing Rietveld method. Sample 

prepared using H3BO3 (2.5% wt.) as a fluxing agent. Vertical bars located just below the 

background level indicate calculated positions of Bragg peaks for λ = 1.54059 Å (Cu Kα1). (Figures 

of merit: Rp= 5.75%, Rwp= 7.46%, Rexp= 3.96%, χ2= 3.55) 

Figure 2. XRD patterns of Sr(4-x)CaxAl 14O25 samples. Red bars indicate standard pattern of 

Sr4Al 14O25 (PDF#00-074-1810) phase. Additional phase of CaAl4O7 (PDF#96-901-4426) is marked 

by blue bars. 

Figure 3. Refined lattice parameters a, b and c for Sr(4-x)CaxAl 14O25 plotted as a function Ca2+ 

doping level x. 

Figure 4. Refined occupancy parameters for two strontium sites in Sr4-xCaxAl 14O25 samples plotted 

as a function Ca2+ doping level x. 

Figure 5. Projection of Sr4Al 14O25 crystal structure viewed along c-axis. Sr1 (red circles with 

squared patterns), Sr2 (red circles), AlO4-tetrahedra (green) and AlO6-octahedra (yellow). 

Figure 6. XRD patterns of Sr4-yAl 14O25:Cey. Red bars indicate standard pattern of Sr4Al 14O25 
(PDF#00-074-1810) phase. The impurity phase is marked: * – CeO2. 

Figure 7. Excitation (λem = 360) at left and emission (λex = 330 nm) at right spectra of Sr4-

yAl 14O25:Cey
3+ samples. 

Figure 8. XRD patterns of Sr3.95-xCaxAl 14O25:Ce0.05. Red bars indicate standard pattern of 

Sr4Al 14O25 (PDF#00-074-1810) phase. 

Figure 9. Refined lattice parameters a, b and c for Sr3.95-xCaxAl 14O25:Ce0.05 plotted as a function 

Ca2+ doping level x. 

Figure 10. Excitation (λex = 330 nm) at left and emission (λex = 360 nm) at right spectra of Sr3.95-

xCaxAl 14O25:Ce0.05 samples. Figure inset – integrated emission intensities plotted as a function Ca2+ 

doping level x. 

Figure 11. Decay curves for Sr3.95-xCaxAl 14O25:Ce0.05 samples. (λex = 330 nm, λem = 360 nm)  
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Highlights: 

• Monophasic pure and modified Sr4Al14O25 samples were prepared 
• Sr was partially substituted by Ca without change in phase composition 
• Ce-doped Sr4Al14O25 samples (unsubstituted and partially substituted) were prepared 
• Effect of partial substitution on luminescence was studied 


