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Introduction

Many theoretical studies in applied mathematics focus on analysis of various differential
equations, though it is impossible to define a universal method for solving all of them. A good
example is the heat equation, for which there is no general way to find solutions without any
further conditions given. The heat equation is of fundamental importance in diverse scientific
fields such as theory of partial differential equations (PDEs), physics, probability theory and
financial mathematics. It is a prototypical parabolic PDE. In case the heat equation is provided
along with some specific conditions, it may be an easy task to find a solution. However, the
more generalized solution is on demand, the more complex solving becomes and some peculiar
strategies have to be used. The principal step in this paper is to reduce our problem to
a sequence of equations for which essential insights can be applied from results for elliptic
differential equations.

Since the theory for solving parabolic differential equations is poorly developed and on
the contrary the theory for elliptic differential equations is well-developed, this thesis uses
results obtained by S.A. Nazarov, B.A. Plamenevskij in the monograph "Elliptic boundary
value problems in domains with piecewise smooth boundaries" and by V. Maz’ya, S. Nazarov,
B. Plamenevskij in the monograph "Asymptotic Theory of Elliptic Boundary Value Problems
in Singularly Perturbed Domains". Not only are these results important as a general scheme for
analysing PDEs, but also provide specific clues about the terms in asymptotic representation
formulas.

In the first chapter we define a problem for the heat equation in a bounded domain Q C R?
with a corner point. We also lay out the essential idea to use Fourier series as a key allow-
ing us to transform parabolic problem to a sequence of problems involving elliptic differential
equations. In the second chapter we introduce the notation of Sobolev spaces. The principle
of constructing asymptotic representation in €2 is examined in two simpler examples. In the
third chapter we begin a thorough analysis of previously obtained sequence of elliptic problems
aiming to attain expressions and estimates of asymptotic terms. The final chapter consists of
research on dependence between time-periodicity of asymptotic terms and time-periodicity of
heat equation’s right-hand side function f. One of the main results states the necessary space

of function f for asymptotic terms to converge in time.



Chapter 1

Statement of the problem

1.1 Problem for the heat equation

Let Ko, ={z € R?*:r > 0,0 € (0,a)} be a sector with the opening angle a € (0, 27), where
(r,p) indicates polar coordinates with the pole at the origin O. We denote by €2 a bounded
domain in R? such that inside the disk By = {z € R? : |z| < d} the domain  coincides with
the sector K,. We also define d such that QN{z € R?: 0 <r < d,p € (0,a)} is a finite sector

(see Figure 1).

d—

Figure 1
Let 02 be the boundary of domain €2. Let us assume that the origin O belongs to 02 and
the contour 02 is smooth outside any neighborhood of O. We will refer to €2 as a bounded
domain with a corner point.
We shall now consider in the domain €2 a time-periodic problem for the heat equation:
u—Au = f, x € Qx[0,2m),
u = 0, r € 00 x [0,27), (1.1)
u(z,0) = wu(z,2m), z e
where f is also 2m-periodic in time. The 27-periodicity is chosen for simplicity and any other

periodicity can be reduced to the following case.
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1.2 Reduction of a parabolic problem to a sequence of
elliptic problems

Assume that f € Ly(0,27; Lo(£2)). In such a case the function f can be rewritten in the
following form as a Fourier series:

[e.e]

f(@,t) =Y (fer(z) cos(kt) + foe(x) sin(kt)), (1.2)
k=0
2m 2
where fu, = [ f(x,t)cos(kt)dt and fg. = [ f(x,t)sin(kt)dt, for k =0,1,2, ...
0 0
Let us emphasize that the series (1.2)) converges in Lo(€2 x (0,27)). We seek a formal solution
of problem ([1.1)) in the form

(e}

u(z,t) = (uek(z) cos(kt) + ug(z) sin(kt)). (1.3)

n=0

Substituting relations (1.2)), (1.3) into equation (|1.1]) and collecting terms in cos(kt) and sin(kt)

separately, for every k = 0,1, 2, ... we obtain the following boundary value problem:

—Aue(z) + kuse(z) = fa(z), =€,
_Ausk(x) - kuck(x> = fsk(x)a YIS Q> (14)
Uek () = ug(x) = 0, x € 09.

A thorough examination of asymptotics of solutions to problem (|1.4)) will allow us to investigate
the properties of a formal solution, satisfying the original problem and having the form
©3).

In the following Chapter we present certain weighted spaces and attain asymptotic rep-
resentations of solutions to problems that are simpler than . In Chapter 3 we return to
solving with the right-hand side f., fsx decaying in the neighborhood of corner point
and describe the asymptotic behavior of corresponding solutions u.x, ug:. The final chapter is

dedicated to investigation of convergence of the series (1.3]) in weighted spaces.



Chapter 2

Weighted function spaces. Asymptotics

of solutions to related elliptic problems

2.1 Weighted Sobolev spaces

Before introducing the asymptotic representations of solutions to previously obtained equa-
tions , in this section we shall highlight the main ideas of constructing these formulas by
explaining less complicated analogous cases, since the purpose of some terms might not be clear
at first sight.

In the first place we specify weighted Sobolev spaces VWZ(Q) of functions having generalized

derivatives up to order [ and the finite norm defined as follows:

|

HUHV,\f(Q) = (/ Z 7”2('Yl+|/€)|a’;u(x)|2dx) ’

Q Isl<l

here the weight r is equal to the distance between the origin O and z = (z1,79) € R?, k =
(K1, k2) denotes a multi-index such that k1, ke € Ng = NU {0} and |s| = k1 + Ka.
In the following, we will concentrate on the cases where [ = 0 and [ = 2. The corresponding

norms are defined by the formulas

3
Hu||v$(Q) = (/r2v|u(x)‘2dx> ,

Q

2

2
dx +r¥ Z

ij=1

0?u
&Ei&rj

2 3

2

- _ ou
Q i=1

Let us describe the behavior of functions from these spaces. Assume for simplicity that

7

Q=K,={(r,¢):0<r<R,0<¢<a}. Then u=r? will be an element of the space V.)(2)



if the following integral is finite:

/7’27|u]2d95.
Ka

It is easy to see that

R «

R
/7”27|U|2d$ = //r27|rd|2rdrdg0 = 20| < oo
Ko 0 0

if v+ d+ 1> 0, or alternatively, d > —y — 1. Analogously, we can verify that the function
u = r? belongs to V(Q) if d > —y + 1.



2.2 Examples of asymptotics of solutions to some elliptic
problems

The theory concerning elliptic problems set in domains with piecewise smooth boundaries
was developed in numerous works of V. Kondratyev, V. Maz’ya and his collaborators. Many
results concerning asymptotic behavior of solutions to elliptic problems in domains with piece-
wise smooth boundaries were collected in the monographs [3], [4], [5]. In this Section we present
several examples from the book [3].

Let us consider the problem

—Au(x) +nu(z) = f(x), =€,
u(z) = 0, x € 09,

(2.1)

where n is a constant equal either to zero or unit,  C R? denotes a domain with a corner point
(see Section 1.1).
Example 1.
In the first example we take n = 0 and thus obtain a Dirichlet problem for Laplace operator in
plane domain with a corner point at the boundary:
—Au(z) = f(z), e,
u(z) = 0, x € 09.

(2.2)

The following theorems concerning existence and uniqueness of solution and its asymptotic

representation were proved in Sections 1.3.1 - 1.3.3, [3].

Theorem 1. (see Theorem 1.3.2 in [3] )
Suppose that | — 1| < w/a, f € VQ(Q). Then there exists a unique solution u € V() of
problem (2.2)) and the following estimate holds:

||UHVﬁ2(Q) < C||f||vg(9)-

Theorem 2. (see Theorem 1.3.7 and Theorem 1.5.8 in [3])
Let f € V)(Q), v € (1 - W,l - %) ,m € N . Then the solution u of (2.2)) from the
space VE(Q) with | — 1| < m/a possesses the following representation.:

u(x) = x(r) i \/Cz_ﬂ rkT/e sin (kzgp) + w(z), (2.3)

where w € VWQ(Q), X is a cut-off function from C*[0,00) which is equal to 1 for r < d/2 and

equal to 0 for r > d. The constants ci are defined by

!Let us emphasize that by taking larger m we require a higher decay rate, as » — 0, from the right-hand

side function f of (2.2)



cp=[fmdx, k=1,...,m,
Q
where
e = X(r)U_x(z) + 2(v),

Ui(z) = F= 4/ sin(t22),

3

2z € VE(Q) is a solution of the problem

—Az(r) = AX(U-(x), =€Q\0,
zp(z) = 0, x € 0N\ 0.

Remark 1. According to Remark 1.3.20 in [3], representation (2.3) is valid if w/a is not
a rational number. Otherwise the asymptotic expansion of solution u € VWQ(Q) shall contain
additional terms of type logr. In the following we will avoid this type of generalization and

assume that /o & Q.

According to Theorem asymptotic representation of the solution u € VZ(Q2),|8—1| < 7/a,
to (2.2)) consists of the following terms: @; = <& 7™/ sin(%2), iy = 2 P/ gin(252) ..

= /5 Van o
Uy = \/C# pm/e sin(*2#) and w, which belongs to VWQ(Q). The functions 4z, k=1,...,m, are

solutions of the homogeneous problem (2.2)). Let us recall that the function u = r¢ belongs to
V2(Q) only with d > —v + 1. Since in our case

then

—v+1le (,
a
Obviously, none of the functions 4, k& = 1,...,m, belong to the space Vf(Q), where
v € (1 — W,l — %) According to Theorem , w is an element of Vf(Q) Therefore,
it decays faster than r™™/® as r — 0.
As one can see from , the accuracy of asymptotics is determined by m. By taking
larger m we obtain an asymptotic representation having more members and thus more accurate.
Example 2. (see Section 1.3.6 in [3])

In the second example we take n = 1:

Au—u = f, €,
u = 0, €

(2.4)



The first equation of this problem has an additional term on the left-hand side in comparison
to problem . Due to the presence of this term, asymptotic representation of a solution is
more complex. Below we will describe in details the main points of constructing asymptotic
terms for the solution.

We start with the theorem concerning solvability of (2.4]) in weighted Sobolev spaces.

Theorem 3. (see Lemma 1.53.13, Theorems 1.5.14 and 1.3.18 in [3])
Let | — 1| < m/a and f € V)(Q). Then there exists a unique solution u € VF(Q) of problem
(2.4), and the following estimate holds:

HU”Vg(Q) < C”f”vg(ﬂ)

Furthermore, assuming that fin (2.4) has the form
N ~
f=x(r) X r " Py(p,logr) + f(2),
n=0
where 1 — B < po < pg < ... < uy < mm/a, P,(0,t) is a polynomial in t whose coefficients
are smooth functions of ¢ and f € V,YO(Q) for some v € (1 — @, 1— %), the following

asymptotic formula for solution u holds:

m

u= Z r*nQn (e, logr) + x(r Z r‘”/a sin <q7rg0) + 1 (2.5)
n=0 = o
Here u € Vf(Q), Cl,...,Cm are certain constants, and Qn(go,t) is a polynomial in t of degree

Kn, where k, = deg P, if p, # krw/a for k=1,...,q and K, = 1 + deg P, otherwise.

Remark 2. In Example 2 we will analyse f of general form and will only use the existence
and estimate of solution from Theorem @ while representation (2.5)) will be regarded in later

sections.

(m‘gl)ﬂ7 1 — M) :

«

Let us assume that f belongs to a class of functions V.)(Q), where v € (1 -
m € N, ie. f decays faster than 7™/*2 as r — 0. Since V. C VJ, we have, according to
Theorem , for f € V) a solution u from V3 (Q), with |§ — 1] < 7/a.. We look for the asymptotic
representation of this solution in the form
m My M,
u(z) = x(r) (Z cq 77 sin <Q7oré<p) +> ugl)(x) +.+ ) ugm)(a:)) + w(z), (2.6)
=1 j=1 j=1

where w(z) € V(). For i = 1,...,m the summation bounds M; satisfy the inclusion

Mie(;(1—7—Z>—1,;<1—7—Z>}. (2.7)

2If we take, for example, a = /2, m = 4, then v € (=9, 7). Let us take v = —8. Then, according to
formula (2.6), M; € (7/2 —14,9/2 —1i),ie. My =3, My =2,Ms=1,M,=0.
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The formula for M; will be explained later in this example. We aim to find an asymptotic rep-
resentation in the corner point, therefore we will assume for a moment that we have an infinite
corner K, (see Section and will take x = 1. After we find the asymptotic representation
of solution in the corner K, we will multiply it by the cut-off function x in order to obtain the
asymptotic representation of solution to the problem set in the whole domain.
L)

Let us explain in more detailed way the procedure of constructing terms 3° u;
j=1

entation (2.6). First of all let us notice that the functions r9™/¢ sin (%) satisfy the Laplace

in repres-

equation E|
. qmy
A(WW >:Q =1,...,m. 2.8
ri7/% sin ( - ) q m (2.8)
. . . My (1) . .
Now we investigate the construction of terms - u; (). By taking M; = 1 in (2.6]), we get the
j=1
following:
u(z) =Y ™/ sin (@) +ul) w(z). (2.9)
Q@

q=1
Employing (2.9) into (2.4]), taking into account (2.8]) and leaving only the term Augl) on the

left-hand side we obtain
m
Augl) = 7™/ sin (M) + Z cqrq”/a sin (w) + ugl) +w+ f— Aw.

a o a
Since ¢/ sin (%) is the term that approaches zero slower than any other term of the right-
hand side, as r — 0, it will thus determine the asymptotic behavior of ugl). Cancelling the rest
of the terms, we obtain the following problem:

Aul) = cprm/esin (Z2 ,in K,

; ! () (2.10)

ug ) = 0, on 0K,.

Looking for the function ugl) in the form

1 T/ 1
u = U (),

and substituting this expression into (2.10]), we get for the function Ul(l)(np) a boundary value

problem for the second order differential equation

277(1)
PO 4 (2122 U () = asin(%2), ¢ € (0,0),
UM (0) =0, U (p) = 0.

By solving it we obtain Ul(l) = 22~ sin(%#) and finally deduce that

4(m+a)
ore) T
WV = 5 pm/etagy (cp) : (2.11)
4(m + ) a
3The Laplace operator in polar coordinates is given by Af = gi{ + %a—{ + T%%

11



If /oo +2 > —v + 1, then the function ulV e V2(€) and ul! is represented by w. Con-
sequently, we do not include it in the asymptotic representation formula as a separate member.
In the other case, when /o + 2 < —vy 4 1, uM ¢ V2(Q) and thus u{" has to be included into
the asymptotic representation as a separate term. Assume, that 7/a + 2 < —v + 1 and take
M; = 2. Expression ([2.6) now takes the following form

x) =Y e/ sin (W> +ul +ul) + w(a), (2.12)
o

g=1
with ul ) defined by - Substituting (2.12)) into ) delivers
Ault) = zk: ¢ 7™ sin ((17;90) +ul 1 ul b w— Al — Aw f. (2.13)
g=1
Since Aug = ¢,7™/sin ( ) two terms on the right-hand side of (2.13)) cancel and we reduce
this equation to
Augl) = i ¢,/ sin (qu) + ugl) + uél) +w—Aw+ f. (2.14)
q=2
Let us assume that in the right-hand side of ([2.14 - ) the function u( )is the term which approaches

zero at a slowest rate, as r — 0. Analogously, we obtain for the function u2 ) the problem

Buy) = g/ sin(5)in Ka,

ug) = 0, on 0K,.

Seeking ug) in the form r7/e+4 Uz(l)(gp), we obtain a boundary value problem for the function

03" ():

82U(1) s Clx T/
o () + (5 +4) UV () = Ty e Sm( ) € (0,a),

UsP(0) =0, UM (a) =0,

aa T/« : s 1
from which we get u$") = = sty T /at4sin (F“D) If 7/ +4 > —y+1, then ul) € V2(Q)
and we incorporate this term into w. Then M; = 1. Otherwise, if 7/a +4 < —y + 1, ie.
ult ¢ V2(Q), we include this function into asymptotic representation (2.6) as a separate term

() pm/a+6 il) ~ r™/et8 - until

and continue the above procedure to construct functions us U

we reach, after a finite number of steps, the situation when ug\lfl ~ /e t2M g guch that
uMl ¢ V2(Q), while ug\ff)ﬁl ~ /o200 belongs to V2(€2). This condition is satisfied if, on
one hand, 7/a+2(M;+1) > —y+1, on the other hand, 7/a+2M; < —y+1. These conditions
are equivalent to, respectively, conditions M; > % (1 e g) —1and M; < % (1 e g)

Therefore, M; is an integer from the interval

we(30-0-D) 1500 o



Detailed computations yield that the functions ugl), e ,ug\z are defined by the formulas

) ¢ /ot i (790>
us) = : sin [ — ).
J g . !
g4 T (o + i)
i=1
oo Nxm
Now we can repeat the same procedure for the terms 3 u;”,..., > u; '. In the same way

=1 j=1

we obtain for j =1,...,M,, ¢=1,...,m

qr/o+2j J
= T T i qw) . (2.16)
314 ] (@ + im) “
i=1
We wish to emphasize once again that these functions, namely ugq), . ,ug\?[)q, g=1,...,m, do
not belong to the space VVQ(Q), while the functions u§2+1(§2), g=1,...,m, should be elements

of V(Q). Therefore, considering the fact that the integral in the norm of V*(€2) has to converge
for a function to belong to VWZ(Q), the bounds of M;,7 =1,...,m, follow from this reasoning.

Arguing in the same way as above, we find that fort =1,....m

1 s 1 s
M; —(1l-y—-—)=-1,=(1=7=-—]].
6(2( 7 a) 2( 7 oz)]

Now we will explain the procedure for determining constants ¢,. First of all, we introduce

functions &,, satisfying the homogeneous problem

A —¢ = 0, e,
& = 0, ze ol

(2.17)

We look for £, in the form
& =x2"+ %, (2.18)

where

zéo) = 71"/ gin (W) .
o}

This function serves as a principal term to the asymptotics of £, and satisfies the equation

Az(go) = 0. Substituting ([2.18) into (2.17) we get for Z, the problem
Azy— 7= —A(xzl") + 29 = fo. (2.19)

Since the cut-off function satisfies y = 1 for r < d/2, the terms Ay and V are equal to zero in
the neighborhood of the corner point. Therefore, support of the function A(lego)) is detached
from O and the right-hand side fy of (2.19) coincides in the neighborhood of O with the term

20 If 20 € VP(Q) with some 3 such that |3 — 1| < m/c, then we have a unique solution

13



Z, € VZ(Q) of problem (2.17). We can easily check that z ~ r=7/* € VZ(Q) if g7 /o0 < 2+ 7 /v
In this case we have ¢, = Xz(go) + Z,;. Furthermore, we also deduce that z, ~ r=97/*+2 However,
if gm /o > 247/, then instead of we set & = x (219 + 2{V) + Z, , where 2{V is a solution
of the problem

AzD(z) = Z{go) (x), =€,

(
q
z,(cl)(x) = 0, x € 09.

By solving it we obtain

ar?2=97/ gin(qrp/a
z)(x) = (o kfr% 2o,
Then Z, is a solution of the problem
A2q fq + XZ = fqa

where fq incorporates all terms with supports not containing the corner point of 2.
Going further, in cases gr/a > 4+ 7/a (ie. f1 € Vg?(Q) with some 3 € (1 - 72,14 7), we
set & = x(2l% 4 2V) + Z, with Z, € V}(Q) being a solution to (2.17)). Otherwise we repeat the

7T(k: 1)

described procedure. Let m be an index defined by © ) —l<m< . We continue the

procedure until we reach a right-hand side f,, € V.)(Q ), |1 — 8| < m/a and after that define the

function &, by the following relation
&i(2) = x(2) X_ 2P () + Z4(2), (2.20)

where

zéj)(x) = <j>j —am/a+2) (]' I (na — gn) >_1 sin (W) (2.21)

Now we can derive expressions for the constants ¢, in (2.6) and (2.16). We denote Q5 =
Q\ Bs, where Bs = {z € R?: || < §}. Multiplying (2.4), by &, and integrating over Qs delivers
/fﬁqd:c = /(Au —u)é,dx. (2.22)
Qs
We now apply integration by parts for the right-hand side of (2.22)) and thus obtain

[ (@u =g, - (A& — &)y e = | <§qgu g@) s

Q o0

4Formulas (2.19)-(2.21) were derived in Section 1.3.6 in [3]

14



Since A, — &, = 0, we get
B ou 0§,
/fqux N / (5(1 on 8n> ds.
Qs 8
0 = (0Bs N Q) U (0 \ Bs) and the functions u and &, equal zero in 0§25 \ B, therefore
B (9u 0,
/ feda = / (gq — an> ds. (2.23)
Qs 0BsNQ

Converting from Cartesian coordinates to polar coordinates, also adding into account that

9 _ _% and r = § in 0Bs N Q delivers

on
/ffkdl"_/< ag:—fk ) dep. (2.24)
05 0

r=4§

The following equation holds for the terms sin ( ) with q,7 € Z:

i ' 0, J#4q
/sin (W> sin (W) dp = (2.25)
0 “ “ a/2, j=q,
therefore we obtain
/ffqu = —qmcy + /F ) de, (2.26)
where the term F'(§ Hstands for various multiplication products, each equlvalent to some 6™
with a positive integer power of m. It was shown in Section 1.3.6 in [3] that f F(0,¢) dp 220, .

Therefore, as § — 0, (2.26]) tends to a limit

1
Cqg=—— /fﬁqu, qg=1,... k.
qWQ

SWe will analyse the function F(d, ) more precisely in Section

15



Chapter 3

Asymptotic representation of solutions
to problems related to the heat

equation

3.1 Elliptic systems

We now return to solving the sequence of problems for k& € Ny:

—Auey, + kusy, = for, x € ),
—Augy — kue, = [k, x €9, (3.1)
Uep =0, ug, = 0, x € 0N.
Let us assume that £y = (fex, fsk) € L2(€2). In a standard way (see, e.g., [6]) one can show that

for every k € N problem (3.1) has a unique generalized solution uy = (ue, ug) € W5 (Q) and

derive the estimate
gz @) < cllfillza@)- (3.2)

Moreover, for any positive constant d the inclusion u;, € WZ(2\ By) is valid and the estimate

Huk||W22(Q\Bd) <C (||fk||Lz(Q\Bd/2) + HukHW21(Q\Bd/2)> (3.3)

holds.
Following the ideas of Section 1.3.1, [3] we will show the inclusion u; € V() and validity

of the estimate

Jurllve) < Clifkllvog, (3.4)

16



i.e., the inequality

/\u 224 (Va2 + Y [ DiwPride < C/|f 2r2da.

|r|=2

For sufficiently small d the intersection 2 N B, coincides with the corner Ky = {(r,p: 0 <1 <

d,0 < ¢ < a)}. Since uy is equal to zero on 0 \ {O}, for any r € (0,d) Poincare’s inequality

implies
uck ‘ de.
Using this we get
9 2
/ ek (2)[*r~*da < C / Sgter(rp)| T < C / |V |*da. (3.5)
QNBy QNBy Sp QNBy

Analogous inequality is valid for the function u.y, therefore the generalized solution u;, € W} (Q)

satisfies
/WMPH%M)QM+/IWMI+WMM < C [(fal? + | fonl)d
) o)
and, consequently, belongs to the weighted space V().
Multiplying (3.1), by ek, (3.1)), by usk, integrating over 2 and applying standard inequal-

ities we get

/(|Vuck:| +|vusk| /fckuck+fskusk C / |fck| +|fsk| ) 2d1’
Q Q

Q

/(\uckﬁ g2 2da.
Q

Using estimates of type (3.5 and taking suitable € we conclude from the last inequality that
[ (190l + [Vug ) de < c/(\fckﬁ | faP)yrde.
Q Q
Multiplying (3.1); by wsk, (3-1)2 by ue in a similar way we derive the estimate
[ (al? + ) o < © [0l + 1Py
Q Q

Since the inequality [ |v|?*r?’dz < C [ |v[*dx is valid for any v € Ly(f2), we see from the two last
0 0

estimates that

/ (IVue|? + [Vua|?) rde + k:/ (lutek* + [uar]?) r2da < C’/(|fek|2 + | fal)ride.  (3.6)
Q Q

Q

17



Now we rearrange (3.1)); by moving the term kug to the right-hand side of equation and

treat u., as a solution to the problem
_Auck = fck + kuska T e Qa
u = 0, x € 0N,
It is easy to see that the product yu., (a restriction of ug, in the corner part of ) satisfies in
sector K the following boundary value problem:
—A(XUek) = fex + kugy —2Vx - Vug, —ugAx =: Fr, x € K,
Xt = 0, xe€dK\{O}.

Estimate (3.6]) yields the inclusion F}, € V?(K). Therefore, according to Theorem 1.2.1 in [3],
Xuexr belongs to V2(K) and the estimate

Ixterllve iy < CllFellvo)
holds. Taking into account the structure of Fj, we get that

[ Fsllvory < C (chkHvlo(K) + kllxuskllvory + VX - Vuer|lvor) + H(AX)uchHVP(K)>
< C (I fallvpy + I fsellveqey ) -

Here we exploited estimate (3.6) and the fact that, due to the cut-off function y, supports of
Xtsk, VX - Vg, and (Ax)ue are located in the intersection K N Q. Two last estimates yield
inequality

Ixueellvage < C (I feallvewy + fsllvoe) - (3.7)

Applying analogous procedure for (3.1))2, we can see that inclusion yug, € V2(K) is valid and

the following estimate holds

||Xusk||v12(1<) <C (||fck||V10(Q) + ||fsk||v10(sz)) : (3.8)

and || are equivalent for any 3 € R if Q is a

Let us notice that the norms || -

le.@) ' ||vg(§)

bounded domain detached from the origin O, for example, if Q=0 \ Bg. Therefore we have

from (33)
||uk||V12(Q\Bd) <c (ka||v10(n\3d/2) + ||uk||V1°(Q\Bd/2) + Hvuk||V1°(Q\Bd/2)) .

This estimate together with inequalities (3.7)), (3.8) and (3.6 implies the estimate (3.4)).
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3.2 Asymptotic expression

Assume now that f;, = (f, fsx) in problem belongs to the space Vf(Q), where v €
(1-— W, 1 — %) for some m € N. It is obvious that 7 < 1. Consequently V() C V()
and, according to results of the previous Section, there exists a unique solution uy, = (e, us) €
V() of (3.1). Following the scheme presented in Section 1.3.6 of [3], where problem was
considered, one may obtain the asymptotic representation of the solution of . Since this
problem has a structure similar to problem , the representation uy shall have a form similar
to . However, asymptotic expansion of uy shall depend on the parameter k explicitly. This
dependence becomes very important when one analyses convergence of the series to the
solution of the time-periodic problem . Therefore we will present below the most important
steps of construction of asymptotic formula and will emphasize derivation of estimates which
depend on k explicitly.

As in the previous Section, one shall rearrange system and consider functions u. and

Ugr as solutions to problems

—Auck = Fck, T € Q, —Ausk = Fsk, T € Q,
(3.9)
Uele — 0, IE@Q, Usl, — 0, .TE@Q,
Fck :fck+kusk7 Fsk:fsk_kuck~

Since ue, use € V() € VO (Q), the functions Fi and Fg belong to V3 (Q), for 8 =
max{—1,7}.

First we consider the case —1 < ~, i.e., 1 = . Taking into account the assumption
that 1 — W < v < 1— "% we apply Theorem [2| and conclude that uc and ug admit

representations

Uek = X Z C((:%)TQF/O[ sin <W> + acka Usk, = X Z Cg(l]e)rqﬂ/a sin <W) + a’sk- (310)
q=1 o g=1 «

Here functions ., s, belong to the space Vf(Q) and satisfy estimates
[derllve@) < Cllfer + kusillvow),  [skllva@) < Cllfse — kuekllvoq)-
Since —1 < < 1 and (3.4) holds, we have the following inequalities
Jugllvee) < Cllukllvo, ) < Clifillvo) < Clifillvoe)-
Hence for the function uy = (U, Usx) the estimate

[0k [vz2@) < C(L+ k)|[fkllvoe) (3.11)
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is valid. In this case, construction of asymptotic representation is completed.

Let us now consider the case v < —1, i.e., when the function Fy = (F, Fy) in belongs
to V9 (). The further step depends on whether the interval [—1,1) contains any of numbers
AN =1—gr/a,g=1,...,m, or not. We will start with the first situation.

If \i,..., A, € [—1,1), then applying Theorem [2f we obtain asymptotic representations

uck—xZu +ay), usk—xzu +aly). (3.12)
Here
uil” = cflr/sin (qm)) w1 = W pan/agiy (qmp) ; (3.13)
a a
while ﬁ,(cl) = (ﬁgi), ESC)) belongs to V2 () and satisfies inequalities

16" vz, () < ClIFkllvo, o) < Clifllvo ) < Clfillvog- (3.14)

Notice that the numbers Aq,..., A, belong to the interval [—1,1) if @1 = max{qg € N: ¢ <
2a/m}, de., if Q1 = [2a/7] ([z] denotes an integer part of a number z).

If A\; < —1, the function uy itself belongs to the space V% (2) and the estimate
Jugllvz, ) < Ck[/fkvo) (3.15)

holds. This estimate yields inequality [[uy|lyo, ) < Ckl/fi[vo(q). Consequently Fiy, and Fg in
(.9) belong to V() for By = max{—3,~}. If )\1 < —3 (in this case also v < —3) we get, in

the same way as above, inclusion uy, € V?;(Q) and estimates
Jugllyz, @ < C (||fk||V93(Q) + k”uk“VE3(Q)) < Ok2||fk||V$(Q)' (3.16)

If |A\;| is sufficiently large, one can carry on this procedure and obtain, step by step, inclusions

u € V12_Qj(Q), j=3,4,...,nq, and the corresponding estimates

laellve, @ < CK lifillvew)

until such ny € N that A; € (1 —2(ny + 1),1 — 2n,) is reached. In this case the estimate

lagllvz

Q) < Ck™ ||kaV10—2n1(Q)
is valid and it implies the following inequality

) < CE™ ||y

1-2nq

-
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Consequently, u; belongs to ‘/10—2(711 +1)(§2) and (uek, ug,) may be treated as a solution to (3.9)
with Fy = (F,, Fy) € ‘/1072(711“)((2). Since \; = 1 — 7/« is contained in the interval (1 —

2(n1 +1),1 — 2n,), Theorem [2|leads to the following asymptotic representations:

Uk = Xu((:ko) + ﬂgi), Ugp, = Xugk ) + u(k), (3.17)

in which ﬁé? and ﬂé? belong to V12—2(m +1)(Q2) and satisfy

[t ||v2 )@ S CE™ HIfk[lvo o). (3.18)

The next step is to obtain asymptotic representations of aﬁ?, ﬂg?

case of representation (3.12]), while the case of (3.17) can be analysed in the same way with

. Below we consider the

obvious modifications.

Substituting (3.12]) into (3.9)) we obtain the following problem for ﬁ&):

~ATY = FY zeq,

C

(3.19)
@) = 0, zeod,

P = ft bl = (x (ul? oo o20)) k(o7 @) (320)

Let us examine the terms in F, C(,i) Estimate (3.14)) gives the following inequality

1
1G5 vo, ) < Chlifillvo

(q0

Therefore f, + kﬂg? belongs to Vj, (§2), where 52 = max{—3,~v}. Functions u, ) are harmonic

in sector K, therefore
A (X (uéio) +- 4 ug,?lo )) =2Vx -V (ugio) -+ uﬁfl“ ) (Ax) ( IR ugglo)) :

The cut-off function xy = x(r) is constant in the vicinity of corner point O and for large r,
therefore the third term on the right-hand side of (3.20]) has a compact support detached from

4 is an element

the origin and, consequently, is a smooth function. We recall that the function r
of the space Vi(Q) only if d > —3 — 1. Since —1 < A, <... < Ay, ie., @im/a <2, neither of
functions uSCO), . .ug(",glo) belong to V9%(Q2). In the case 85 = 7, i.e., when —3 < ~, there may be
such a number @ < @; that the functions USCO), qg=1,...,Q7 do not belong to VO(Q), while

qO) € V(Q) for ¢ = Q7 +1,...,Q,. Taking all this into account we decompose F( ) a

FY =k (ul) + -+ ) + B (3.21)

C
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where F ok ) denotes the part of ( (3-20) belonging to V3 (Q). Notice that Q7 = @1 in the case
v < —3. Applying Theorem [3] to problem (3.19) with the right-hand side (3.21) we get the

. . . ~(1
following expression of function uﬁ,}:

ck—XZu +x Z ulf (3.22)

=Qi+1

where

(q1) _ (a1), qr/o+2 <q7r<p) (¢1) _ S B (Q) 3.93
(T Co T sin o) Cok = Igr o (3.23)

functions u( ) are given by (3.13) and u uck is an element of Vﬁ (©). The summation index Qo
in (3.22)) is such that Ag,+1,..., g, € (f2, —1). Namely, if v < —3, then Q)» = [4/7], and in
the case Py = ~v one shall take Qs =

The following remarks concern construction of .

According to Theorem , the asymptotic expression of ﬂé? should contain, in general, the

linear combination dﬁi)uio) +--+ dgfl (Ql . This combination is not present in (3.22) due to
the fact that aﬁ? is an element of V2 (2), while none of the functions ugk ). Q10 belong

to this space.

Secondly, let us comment on construction of the first sum in ([3.22)), which corresponds to
the first term of (3.21). For ¢ = 1,...,Q%, function ug?cl) satisfies the following problem set in
sector K (see details in Section 1.3.5 of [3])

AU = g g e K,
1 (3.24)
W9V =, xedK\O.

We look for solution of this problem in the form

1 T/ 1
u = r U ().

Substituting this expression into (3.24)) and writing the Laplace operator in polar coordinates

the problem is reduced to a boundary value problem for the ordinary differential equation

d
LU )+ (T r2) U0 = —kelsin (TF) UV 0) = U@ =0, (329

The general solution of ([3.25) is

Ui = A cos <W - 2> o + B sin (W - 2) + O sin <q (p) :
a o o

where C’,qu) = kci',? a/(4qm + 4a). If gr+2a # 27, z € 7, the homogeneous boundary conditions

imply A@) = BY) = (0. Consequently, solution ugf) is given by (3.23). In the case ¢m + 2a0 =
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7z* for some z* € Z, the homogeneous boundary conditions are satisfied for any constant B

and therefore, function u(q ) takes the following form

ufj,i” — pla)par/a+2 g ( + 2) o+ Cy (a1) /ot gy (q SO)
a

The identity ¢m 4+ 2o = 7z* is equivalent to gm/a + 2 = 7wz*/«, hence the first term in the

formula above is equal to

Bla)pz"m/a gin <Z*7T90> .
Q

As we will see in the following, this term will be included in the asymptotic representation of
Uk, as one of the functions uck ,l=gq+1,...,m. In this case the constant B(“Y is determined
together with cﬁ%) (see Chapter 4 below).

Let us also notice that, according to Theorem [3] in the case ¢m + 2o = 7z* asymptotic
representation of aﬁ? should contain certain logarithmic terms. These terms are not present in
, since the right-hand side of equations in satisfies certain compatibility conditions
(see the proof of Lemma 1.3.13 and Remark 1.3.20 in [3] about the similar issue for problem
E9).

Next we derive the estimate of @} in space V5 (). Substituting expression into

(13-19) we see that ﬂﬁi) is a solution to

—ATY = FQ zeq,

C

(3.26)
aﬁ?} = 0, x € 01,

where

Fc(;?:fc’“_ (XZU +x Z u )—i—xkzu +kusk

q=Q7+1

Taking into account relations (3.24]) we rewrite F C(,f) as follows

F = foo+ kil — 29 - V(Zu S u<q0>> Ax (Zu S u<qo>>‘

q=1 a=Q7+1 g=Q;+1

In the same way as in the case of F, k , see , we get that F2 ok belongs to Vﬁ (2) and derive
the following

@1 Q2
IF& ve @ < © ((1 + ) feallve @ + B Dl + D rci?ﬁw) .
q=1 q=Q7+1
Then, repeating considerations of Subsection 1.2 in [3], we obtain in sector K the estimate

1@ lvz ey < NFS v o
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and conclude that in the whole domain 2 the estimate
@ vz @ < C (k?ﬂfcknvo S SR S )
2 g=1 9=Q7+1
holds.

Analogously we derive the asymptotic representation of the function ﬂg? as in (3.22)):

sk—xZu + X Z ull (3.27)

=Q;+1

where

N

k
@) _ _ kel pamfoct2 g (W> 7 (3.28)
4gm + 4o e}

~(2) € V3 (Q) and satisfies the estimate

Q2
(% ||v2 o <C (k2||fsk||V0 @ t kZ D]+ > |CS?|) ~
q=1 q=Q7+1
Combining (3.12)), (3.22) and (3.27) we have

Uk = X Z u(qo +x Z uck ) ¢ u(k), Usk = X Z u(qo) +x Z u(ql) + u(z) (3.29)

q=1 q=1 q=1
Let us recall that in this formula Qs = [4a/7], the index Q1 = [2a//7] in the case v < —3 and
Q1 < [2a/7] if =3 < ~. Functions u'%”, u!?”) are defined by (3-13), while 0 and w2 are
given by and (3.28). The function ﬁ,(f) = (~£i), ) belongs to V3, () and satisfies the

estimate

Q7 Q2

~(2

||u1(c)||vgz(§z)SC(k2||fk||v$(sz)+kZ(|CS§|+|CS€)|)+ > (el + el |>). (3.30)
g=1 q=Q7+1

If B3 = 7, the construction of asymptotic expansion of u; € VIQ(Q) is completed. In the case
fa = —3, we continue by substituting expressions ([3.29)) into and considering function u( )

as a solution of the problem

~ATY = FY zeq,

C

(3.31)
a2 = 0, xzeod,

where

q=Q1+1 q=1
Taking into account equations (|3 which hold for ¢ = 1,..., @1, we see that

Fc(lz):fck_ (XZU + X Z u )—i—kau(ql)—l—ku(Q)

Q2
FQ = fuo—2Vx - VY Wl — (Ay) Zu + xk Z Y 4 kg,

q=1 q=Q1+1
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Now we can split F(k) into the sum of two terms

FP = FQ 4 vk Z ulth, (3.32)
q=Q1+1
The first one is a function from Vj) (Q), f3 = max{—5,~} while the second one is a combination
of functions usk g VO%(Q) for ¢ = Q1 + 1,...,Qs. Applying Theorem [3| for problem (3.31))
with , one obtains the following representation

N(Q) =X Z u(qQ +x Z u (3.33)
q=Q@Q1+1 q=Q2+1

Here aﬁ‘}? € Vi (Q), u(q ) are given by (3.13), while u ? has a form

ck

2

(¢2) _ (42), qr/a+4 (qu) (q2) _ @ JRNC)
ek~ = Cok T PR A (4qm + 4a) (8qm + 16) Cok -
More precisely, functions u((f,]f), q=Q1+1,...,0Q9, are solutions to the following problems
Augf) = kugj), reK,
WP = 0 r€IK\O
ck - ’ :

The bounds for ¢ in the second sum of are such that the numbers Ag,41,...,Ag; €
(B3, —3). Analogously one can derive the asymptotic expansion of the function ﬁgg and the
corresponding estimates. In a similar way we continue the procedure described above to obtain
the complete asymptotic representation of the solution (ue, usy) € V() of the problem ({3.1]).

Namely we construct step by step functions

u(?cj) = 0.(q)— o K0 ra™/o+ 2 gin <q7rg0) ,
( ) . . *
u(%j) =0,5(q) = Co K0 a2 gin <q7r90) .
) i=1(4gim + (2i)a) a

In the expressions above c((:%), cg?c) are constants that will be determined below (see Section 4),

while 0.(¢) and o4(q) are defined by formulas

o.(q) = sign (sin (2q—£3)7r> ,  0s(q) = sign <sin (2q;|;1)7r> : (3.35)

i.e., the function o.(q) for values ¢ = 1,2, ... generates the sequence of signs +———++——++.. .,
while o4(q) for ¢ = 1,2, ... produces — — + 4+ — — + 4 .. ..

For every ¢ = 1,...,m, one shall construct functions ugij ), ik ) ji=1,. ., M, where M, is
such that

ulMe) M e vOo(Q). (3.36)
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Since uﬁZM‘J), ug‘iM") ~ r97/a+2My in the neighborhood of the corner point O, condition (3.36)) is
satisfied if g/ +2M, > —y — 1, i.e., if

—1—~ g
2 200

M, >
It is clear that condition (3.36)) is satisfied if we set

1 —
we 152 g]

2 2x

where [2] denotes an integer part of a number z. Furthermore, taking into account that v €

(1 — (mtDm g %) we see that the inclusion ([3.36]) is guaranteed if

M, = [W] | (3.37)

Considerations of this section may be summed up in the following statement.
Lemma 1. Assume that v € (1 — W,l — %) and f, = (fex, fsx) belongs to the space

V2(Q). In this case the solution u = (uek, usk) € V() of problem (3.1)) can be represented in
the form

m My ) m My )
Uk = XSS U f g, ug = xS S ulY 4 g (3.38)
a=17=0 =1 j=0
Here G = (Uek, Usk) € V2(Q), functions u&%o), ug‘,’f) and uﬁ%j), ug‘fcj), j=1,...,M,, are defined

in (3.13)) and (3.34), respectively, while the summation bounds M, are given by (3.37)).

Moreover, repeating the same steps as in derivation of the estimate (3.30)), one can obtain
the following inequality

n Qi
uﬁknmmsc(k"ufkuvm+2k"‘z 3 (rcﬁfmci?\)). (3.39)
i=1 q=Qi—1

Here n € Nis such that v € [1—2n,1—-2(n—1)), while, Qy = 1, Q; = [2ia/7|, fori=1,...,n—1

and @, = m.
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3.3 The adjoint problem

To determine the coefficients @, c¢? in (3.34), we will need to solve a problem formally

adjoint to (3.1)) (see, e.g., Subsections 1.3.2, 1.3.6 in [3]). Let us take 7., ns € C®(Q).
Multiplying (3.1]), by ek, (3-1]), by ns, and integrating by parts twice, for k € Ny we derive our

adjoint problem

_Anck - knsk = 07 S Qa
—Ang. +knee = 0,  z €, (3.40)

Nek = O, Nske — 0, €T € 0.
(@) :

., i1 the form

We look for nck s Mok

0 ~ -
0 = O 4 7@l — 0 gl (3.41)

where x is a cut-off function defined in Theoreml Let the main asymptotic terms of nck ,niZ)

be given by
14" =nl” = =17/ sin (qWSO)
«

Substituting 1722), ni%) into ((3.40) we get for 7, 77¢k; ,nsk the problem

~AY - ki = +/<rxnsq0) =FY, zeq,
AT 4 D = (40 a0 WO e k=0,1,. .. (3.42)
i =0, 7 =0, € 99,
where
¢ =29 - Vil + 0 Ax, Y =2y Vil + {0 Ay (3.43)

Due to the definition of the cut-off function y we get that the supports of ( C(Z), CS(Z) are detached
from O, therefore the functions F¢* and F$° in (3.42) coincide near the corner point O with

(q0)

the terms kn,, ' and —k:nézo), respectively. If

o _q, (3.44)

«

then nck ) and nsk ) belong to Ly(€2). This inclusion immediately follows from the inequality

R «
R
/]r’q”/o‘|2dx: //|r’q”/a\2rdrdgo = cr’zq“/o‘”‘o < 00,
00

which is valid if —2¢m/a +2 > 0, i.e. gr/a < 1. Then we get that FII” FU ¢ [,(Q) in
problem (3.42)), therefore it has a unique solution n((:k), e ) in the space W4 (). Indeed, consider
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the corresponding homogeneous problem

—ARY kR =0, zeq
“ATD k7Y =0, zeQ k=01,... (3.45)

790 =0, 59 = 0, zeoQ.

Multiplying (| -1 by 775 -2 by néz), integrating by parts once and summing the ob-

tained relations we get that
B [OER + i)z = 0.
K.

Consequently, the elliptic homogeneous problem has only a trivial solution. Using the
Fredholm theorem, we get the existence of a unique generalized solution ngi), nsk € W3(Q) for
every F\10 Fl0) ¢ LQ(Q) (see, for example, Theorem 4.4 in [I]).

If condition (3 is not satisfied, i.e. if gm/a > 1, then instead of 7, 77¢k ,nsk defined by (3.41)

we consider the functions

0 1 0 1
i) =x (0" +nS) + 70 0l = x (nf” + nliD) + A,

where nﬁ%l), niil) solves in corner K, the equations

At = k!

S

g = by

and satisfies the homogeneous boundary conditions. We find that

(a1) _ ko

e 7,7(]71‘/&4’2
¢

? ), ) = _ ke erjera gy (9.

S ( bR T Yo — gm) a

(o —gm)

The right-hand side of in this case is, respectively, Cck + kxn(q ) and (ot (a1) k;xnizl)
where (. (@) and (sk are smooth functions, defined in an analogous way as (3.43]). The functions
ﬁgk), ﬁik) now can be found by solving problem ([3.42)) with the right-hand side

1 1 1 1 1 1)
FV = G+ ke, B = G = boongt?,

C

which coincides in the neighborhood of O with kn(zl) and —k’n(zl), respectively.
If gn/a < 3, then F™, FYY ¢ [,(Q) and we find a unique solution 7%, 7% € W1(Q).

Otherwise, we continue this procedure by constructing the functions

nézj) _ ; JC(é)k]aj : ,',,—q7r/a+2j sin <q7rg0>’
11(45%a — 4jmq) el (3.46)
ngj) _ Og (j)kJaJ 7,,*!]71‘/014“2]' sin (Q?TQO),

3:1(41204 — 4j7q) o
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satisfying relations

An CI]) knskJ 1) AnSCI]) — kanI] 1) (347)

ck

In (3.46) the constants o.(j) and o4(j) are defined by (3.35). Now we can define the functions
U(EZ), ngi) as follows

0 —Xqu]) N —xZns )7 (3.48)
7=0

there the functions ngz), ﬁgk) are weak solutions in W3 (2) to the problem

—AR = ki) = S + o = FIY, e

—ATD kil = 4 eyt = F p e Q) k=0,1,... (3.49)
7w =0, 79 =0, x € 09,
where
a) Jq . J Jq . Jq )
G =2vyv (Z ne” ) +Ax (Z nﬁi”) LG =2V v (Z nﬁij)) +Ax (Z nﬁZ”) :
j=1 j=1 j=1 j=1
(3.50)

The functions ¢} (@J2) and ¢\ pelong to C5°(€2) while the terms kexn®”? and kyn'’? contain
multipliers r2/a=9™/«_ Tet us take J, in (3.48) such that 2.J, — gn/a > —2, i.e., assume that J,

is the smallest non-negative integer satisfying the inequality

qm

— — 1.
2w

Jg >
This requirement is equivalent to the condition

J, = {gg] . (3.51)

Assumption (3 ensures that the functions 77((: ), néZJq and, consequently, the data of (3.49)),
belong to the space V(). Now in the same way as in Subsection 3.1, we can prove existence

of the unique solution ﬁéz), nck € V2(Q) to problem (3.49)) and derive the estimate

(gJq) (¢Jq) (qJ.
175 v + IS Tva@y < C (IKE Ivow + 165 Ivow + Flxanss™ lvow + kIl llvow) -

Having in mind the structure of the functions C(qu , Cé,‘i‘]q) and explicit dependence of nézj ),

nik 9) on the parameter k (see (3.46)), we estimate the right-hand side of the last inequality as

follows:
(9Jq) (qJ
1 lvpy + 16 lvoy < CR7 - kIl lvowy + k™ llvow < R
Taking into account (3.51)), we conclude that

175 vz + 1750 ey < ChIT/2et1, (3.52)
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Remark 3. Ezpressions contain o — qm, 2a — qm, ..., Jya — qm in denominators.
In general, some of these terms may be equal to zero. In such cases formulas become
meaningless (we refer the reader to Remark 1.3.20 in [3] where this issue is discussed in details).
In our case none of the denominators are equal to zero, since the number J, is bounded by g7 /2«

from above and, consequently,

™
i&—qwg—%<0, forany i=1,...,J,
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3.4 Representation and estimates of constants ngil)p CECS%

Using results from the adjoint problem ([3.40]), the representation and estimates of constants
cgk), S‘Q will be derived. We multiply (| .1 by nck and .2 by nsk , integrate by parts over

the domain 25 = '\ Bs and add, side by side, the two resulting relations. Since nc ) and 775

satisfy (3.40)), we find

(9) (9)
(@) @Y .. _ Mer,  (q) Ok Mg (q) Ousk
/ (kanck + fsknsk ) dr = / (uCk on — Nek: on + Usk, on — Nk on ds.

Qs 005

We now separate 0€2s into the union of 9Bs N and 90\ Bs. In Bs; N ) we have % = —%
and r = §. The functions wu., usk,néz),ngz) equal zero in 025 \ Bs. Therefore, converting to
polar coordinates we derive the following

% (@) (@)
q) ausk ansk (q) 8u0k N 877ck:
/ (fckn + fsknsk )dl‘ - *0/ (nsk or — Usk or + Nek or Uck or

Qs

dp  (3.53)
r=4

If we substitute the asymptotic representations, perform differentiation and multiplication pro-
cedures, after a careful examination we see that each of the four terms in the right-hand side
integral of produces exactly one term not depending on ¢, while the remaining terms
possess a positive integer power of § or depend on e (9), Usk(0), Fer (6), sk (9) which tend to zero
as 0 — 0 (we do not rewrite these terms due to the large extent of the formulae). Consequently

we have
«

/ Usk) ag -

0
Treating in the same way the rest products under the integral sign on the right-hand side of

do = ci‘?% + 0(9).

=4

(3.53) and passing to the limit 6 — 0, we conclude that this integral converges to (cg,? + cg(,?)ﬂq.

Therefore, for every k € Ny and ¢ = 1, ..., m we have the following relation

1
4t} = — [ (fonD) + fonly) d. (3.5
7TqQ

Remark 4. Let us instead take 5\ = —p=97/osin <W) nd n' = p-av/ogin (W> in
o

o
and thus construct corresponding functions n:,gq),n:,gq) as in the previous Section. Using

UZ;S;Q)WS;E;(I) as test functions in the procedure described above, we derive the relation, analogous

to (3.54), namely:
1 . .
(Q) + Cg@) = / (fckn @ + fsknslgq)) dr. (355)
Tq )

Denoting the right-hand sides of (3.54)) and (3.55) by 49 o and dsk , respectively, we see that

0 _ 1 (a9 —d), o= (d +d9). (3.56)
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Let us now derive estimates of the constants c((;,?, cg‘}g) in terms of functions fu, for and

parameter k. In the case when (fe, fsx) € Vf(Q), v E (1 — W, 1— %), from (3.56|) we
have that

@< / [ Ferl ) = | + ol 0 = miiPld < | ferllvacey (1m0 llve. oy + Ik llve. o))

+ farllvowy (105 llve, @y + 132 llve. ) -
(3.57)

(q

ok ) has the following structure

Let us recall that, for example, 71

19 = Z ol v/t 23y ) 4 () (3.58)
7=0

where V) (94) ,j=0,...,J,, are smooth functions depending on ¢ only (see (3.46))). Therefore
() N 2 () ()
118 Ivo @ < 3K IVl llvo o) + 174 v, (o). (3.59)

Since —2v € <2m’r -2, w — 2)7 the quantities

1/2
||XT2J qﬂ/av(qa ||VBW(Q) _ (/|XT2j—q7r/aVC(élj)|27,—2vdx)

are finite for every j = 0,...,J, and may be bounded by a constant C' independent of k.

Furthermore,

1/2 1/2
I ve, o (/ i (v %) - (/ ’ﬁii)<x>l2“r“”dx) < Ol lyo, @y < ORI,
Q

Here we exploited the fact that 2 — 2y > 0 and the estimate ||7~7((:Z)||V91 (@ < Ck7™/2t which is
a consequence of . Coming back to (3.59)) and estimating J, by ¢m /2« from above (see
(3.51))) we conclude that

[P llve, @) < CRT™/241,

Analogous estimates are valid for the functions nii), nz,gq), n:,iq). Therefore the estimate (3.57))

can be rewritten as follows

1P| < /2ot (||fck||v$(sz) + ||fsk||v$(9)) : (3.60)

In the same way we derive the estimate

9| < Cam/es (||fck||v$(9) + ”fsk||V$(Q)) : (3.61)
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Chapter 4

Asymptotic representation of a

solution to the time-periodic problem

Let us consider again the time-period boundary value problem for the heat equation

u —Au = f, xr € Q x[0,27),
u = 0, xr € 00 x [0,27), (4.1)
u(z,0) = wu(z,2m), x €.

with the 27-periodic in time function f which is represented in the following form

fx,t) = (fer(z) cos(kt) + fo(x) sin(kt)). (4.2)
k=0
Assume that f € Ly(0,2m; V() with v € (1 — W, 1-— %) for some m € N. Then for

every k = 0,1, ..., the Fourier coefficients f.., fs belong to the space Vf(Q) and the following
inequality holds:

o0

> (et oy + [ Fskl o) < 0. (4.3)
k=0

For each £ = 0,1, ... we consider the problem
—Auc () + kug(z) = fa(x), x€Q,
—Aug,(z) — kugp(z) = fal(z), x€Q, (4.4)
Uek () =0, ug(z) = 0, x € 0.
If k = 0, this system splits into two boundary value problems for the Poisson equation. Asymp-
totic representations of the solutions u., usy € Vﬁz (Q), |8 — 1| < m/a are obtained using
Theorem [2| For the cases corresponding to k& > 0, we use results presented in Chapter 3 and

have the following representations of the functions ., ug € VBZ(Q):

m My My,
T . mi 5
uer(z) = x(r) (Z cg?c) ram/e gin (q(;o) + Zuiij)(x) + ot Z u((:kj)(x)> + (), (4.5)
=1 = =1
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ugi(z) = y(r) (i (9 pan/a gin (T") +§ W09 - Z ul ) + (). (4.6)

=1
Substituting (4.5)) and ( into

i (te () cos(kt) + ugk () sin(kt)) , (4.7)

we get series which can be divided into terms of the three following types:

Type 1:  777/%sin (ﬂ) ioj ( 9 cos(kt) + 7 sm(kt)) g=1,....m;
a / k=0

Type2: ri™/o+2sin (W> » ()\gqj)cg?c)kj cos(kt) + AP gi sin(kt)), g=1,....m,j=1,...
oY

)\(qj) _ UC(Q)aj A(Qj) — UC(Q)aj
T L (gim + 20)%a)" ©° T TIL, (dgim + (20)2a)

o0

Type 3: Y (Uer () cos(kt) + Usk(x) sin(kt)) .

The terms of Type 1 and Type 2 consist of a part which depends on the spatial variables r
and ¢ only, and a time dependent part determined by the series
o)
> ( 9 cos(kt) + cl? sm(k:t)) g=1,...,m (4.8)
k=0
in the terms of Type 1 and by the series
S (@) @) 1 () o9) . _ _
S (AN ek cos(kt) + AP e K sin(kt)), ¢=1,...,m, j=1,..., M, (4.9)
k=0
in the terms of Type 2. We will show that under certain assumptions on the function f = f(z,t)
series (4.8) and (4.9) converge in L (0, 27).
From estimates (3.60)), (3.61) we have for every ¢ =1,....m
SRR+ 1P < O R (oo + sk lPocey) - (4.10)
k=0 k=0
Assume that f = f(x,t) has time derivatives ' f/0t' € L*(0,2m, V(Q)) up to the order N
for some N; € N|I| This ensures that the following series, obtained after differentiating (4.2))

with respect to t, converges:
];)kl (||fck”%c9(9) + Hfsk”%/g(m) <oo, ¢q=1,...,Ny.
By taking N; satisfying the condition

Ny = [mn/2a + 1], (4.11)

'Let us recall that the space of functions having time derivatives 9'f/8t" with values in V() up to the
order Ny is denoted by the symbol HY* (0,2, V(9)). See, for example, [2].
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we ensure that the series in (4.10) converge. Consequently we obtain the convergence of series
(4.8)) in Ly(0,27) for every ¢ = 1,...,m.
Let us examine convergence of the Type 2 series (4.9). Among them the series corresponding

to j = M, contains the highest power of k, namely the term k. Since /\ngq) and /\ngq) are

independent of k, we have, combining (3.37)) and (3.60), (3.61)

Z |)\£qu)6£;1€)qu|2 + ‘)\ngq)ci(ilc)quF <C Z Lar/a+2 ) (m+l—q)m/a ("fck"%/$(g) + “fsk”%/,?(ﬂ)) .
k=0 k=0
The series on the right-hand side of the last inequality converges if f € HM2(0,2m; Vf(Q)),

where

Ny =[(m+1)r/2a+1].

It remains to prove the convergence of Type 3 series. Estimates (3.39)), (3.60) and (3.61))
yield that

n Qi
||ﬁk||V$(Q) <C (]4;” —+ ij”—z Z kqw/?a-l—l) ||fk||V$(Q)
=1 q=Qi—1
Having in mind that Q; = [2ia/7], i =1,...,n — 1 and @Q,, = m, we have
n Qi n n—1
Z k,n—i Z kqw/2a+1 < Cz kn—iinw/2a+1 < C (Z kn—iki+1 + kmw/2a+1>
i=1 q=Qi—1 i=1 i=1
Therefore,
8kllvzg@) < C (K™ + K724 |[fiflvoca)- (4.12)

Since 1 —2n <~y <1—-2(n—1) (see Lemma and v € (1 — (mdr g %), the inequality

[0}

1— 1
ntle =¥ g (mtDT
2 2c

+2
holds. Consequently we derive, using , the estimate

[z < CET 2226 o). (4.13)
Assume that f belongs to the space H™3(0,2m; V.)(€2)), where

Ny =[(m+ 1)7/2a + 3].

This assumption and estimate (4.13]) guarantee convergence of the Type 3 series in the space
Ls(0, 27; Vf(Q)) Since we have the convergence of all types of series, the previous results can

be summarized as the following statement.
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Theorem 4.
Assume that a time-periodic function f = f(x,t) belongs to the space HN (0, QW;VVO(Q)) with
N = [(m+ 1)7/2a + 3] and v € (1 — W,l — %) for some m € N. Then the main
asymptotic part of a time-periodic solution to the problem in the meighborhood of the
corner point O admits the following representation:

m My My,

Z ra sin (W) C(Q)(t) + Z rat?sin (720) ct) ) +...+ Z ria % gin <ﬂz(’0) C/(ma) (1).
g=1

o q:]_ q=1

Here M, = max{n € N:n < %}, while the time-periodic functions C\9 CY  ClaMd)

qg=1,...,m, belong to the space Ls(0,27) and are defined by the series (4.8)) and (4.9).

)
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Summary

In this thesis "Asymptotics of a solution to the time-periodic heat equation set in domains with
corner points" by Vytenis Sumskas, a time-periodic boundary value problem for the heat equation is
considered. It is assumed that the problem is set in a two dimensional domain €2 having a corner point
on the boundary. The time-periodic problem was reduced to a sequence of elliptic problems in the
domain with a corner point. Asymptotic representations of solutions to these problems were obtained
using methods proposed in numerous works of V. Maz’ya, S. Nazarov and B. Plamenevskij. Estim-
ates of asymptotic terms were derived. These estimates together with representations of solutions to
elliptic systems were used to determine the time-periodicity of solution to the time-periodic problem

in a neighborhood of the corner point of domain 2.

Santrauka

Vytenio Sumsko darbe ,,Laike periodinio $ilumos laidumo uzdavinio sprendinio asimptotika srityse
su kampiniu tasku“ tiriamas laiko atzvilgiu periodinis krastinis Silumos laidumo uzdavinys. Uzdav-
inys nagrinéjamas dvimatéje srityje €2, turinc¢ioje kampinj taska. Darbe parabolinis uzdavinys yra
iSskaidomas j elipsiniy uzdaviniy seka, kuriy tolimesnei analizei taikoma elipsiniy uzdaviniy srityse
su kampiniais taskais teorija, placiai iSvystyta V. Maz’ya, S. Nazarov ir B. Plamenevskij darbuose.
Sukonstravus sprendinio asimptotine iSraiska kampinio tasko aplinkoje, randami j asimptotika jein-

anc¢iy nariy jverciai. Sie rezultatai panaudojami uzdavinio sprendinio periodiskumui laike tirti.
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