ЧЕБЫШЕВСКИЙ СБОРНИК Том 15 Выпуск 1 (2014)

О НУЛЯХ НЕКОТОРЫХ ФУНКЦИЙ, СВЯЗАННЫХ С ПЕРИОДИЧЕСКИМИ ДЗЕТА-ФУНКЦИЯМИ

А. Лауринчикас (г. Вильнюс, Литва),

М. Стонцелис, Д. Шяучюнас (г. Шяуляй, Литва)

Abstract

Аннотация В статье полученно, что линейная комбинация периодической дзетафункции и периодической дзета-функции Гурвица и более общие комбинации этих функций имеют бесконечно много нулей, лежащих в правой стороне критической полосы.

Ключевые слова: нули аналитической функции, периодическая дзетафункция, периодическая дзета-функция Гурвица, универсальность.

ON THE ZEROS OF SOME FUNCTIONS RELATED TO PERIODIC ZETA-FUNCTIONS

A. Laurinčikas (Vilnius, Lithuania),
M. Stoncelis, D. Šiaučiūnas (Šiauliai, Lithuania)

Abstract

In the paper, we obtain that a linear combination of the periodic and periodic Hurwitz zeta-functions, and more general combinations of these functions have infinitely many zeros lying in the right-hand side of the critical strip.

Keywords: periodic zeta-function, periodic Hurwitz zeta-function, universality, zeros of analytic function.

1. Introduction

Let $s=\sigma+i t$ be a complex variable, and let $\zeta(s)$ and $\zeta(s, \alpha)$ with $0<\alpha \leqslant 1$ denote the Riemann and Hurwitz zeta-functions, respectively. In this paper, we deal with generalizations of the functions $\zeta(s)$ and $\zeta(s, \alpha)$. Let $\mathfrak{a}=\left\{a_{m}: m \in \mathbb{N}\right\}$ and $\mathfrak{b}=\left\{b_{m}: m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right\}$ be two periodic sequences of complex numbers with minimal periods $k \in \mathbb{N}$ and $l \in \mathbb{N}$, respectively. The periodic zeta-function $\zeta(s ; \mathfrak{a})$ and periodic Hurwitz zeta-function $\zeta(s, \alpha ; \mathfrak{b})$ are defined, for $\sigma>1$, by the Dirichlet series

$$
\zeta(s ; \mathfrak{a})=\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}} \quad \text { and } \quad \zeta(a, \alpha ; \mathfrak{b})=\sum_{m=0}^{\infty} \frac{b_{m}}{(m+\alpha)^{s}},
$$

and, in view of the equalities

$$
\begin{gathered}
\zeta(s ; \mathfrak{a})=\frac{1}{k^{s}} \sum_{m=1}^{k} a_{m} \zeta\left(s, \frac{m}{k}\right), \\
\zeta(s, \alpha ; \mathfrak{b})=\frac{1}{l^{s}} \sum_{m=0}^{l-1} b_{m} \zeta\left(s, \frac{m+\alpha}{l}\right),
\end{gathered}
$$

which are valid for $\sigma>1$, have analytic continuation to the whole complex plane, except for possible simple poles at the point $s=1$. Clearly, $\zeta(s ; \mathfrak{a})=\zeta(s)$ for $a_{m} \equiv 1$, and $\zeta(s, \alpha ; \mathfrak{b})=\zeta(s, \alpha)$ for $b_{m} \equiv 1$.

The distribution of zeros of the function $\zeta(s ; \mathfrak{a})$ was considered in [18], see also [20]. Define

$$
\begin{gathered}
c_{\mathfrak{a}}=\max \left(\left|a_{m}\right|: 1 \leqslant m \leqslant k\right), \quad m_{\mathfrak{a}}=\min \left\{1 \leqslant m \leqslant k: a_{m} \neq 0\right\}, \\
A(\mathfrak{a})=\frac{m_{\mathfrak{a}} c_{\mathfrak{a}}}{\left|a_{m_{\mathfrak{a}}}\right|}, \\
a_{m}^{ \pm}=\frac{1}{\sqrt{k}} \sum_{j=1}^{k} a_{j} \exp \left\{ \pm 2 \pi i j \frac{m}{k}\right\}, \\
\mathfrak{a}^{ \pm}=\left\{a_{m}^{ \pm}: m \in \mathbb{N}\right\}
\end{gathered}
$$

and

$$
B(\mathfrak{a})=\max \left\{A\left(\mathfrak{a}^{ \pm}\right)\right\}
$$

Then in [18], it was obtained that $\zeta(s ; \mathfrak{a}) \neq 0$ for $\sigma>1+A(\mathfrak{a})$. Moreover, for $\sigma<-B(\mathfrak{a})$, the function $\zeta(s ; \mathfrak{a})$ can only have zeros close to the negative real axis if $m_{\mathfrak{a}^{+}}=m_{\mathfrak{a}^{-}}$, and close to the straight line given by the equation

$$
\sigma=1+\frac{\pi t}{\log \frac{m_{a^{-}}}{m_{a^{+}}}}
$$

if $m_{\mathfrak{a}^{+}} \neq m_{\mathfrak{a}^{-}}$.

Denote by $\rho=\beta+i \gamma$ the zeros of the function $\zeta(s ; \mathfrak{a})$. The zeros with $\beta<-B(\mathfrak{a})$ are called trivial. The number of trivial zeros ρ with $|\rho| \leqslant R$ is asymptotically equal to $c R$ with some $c=c(\mathfrak{a})>0$. Other zeros of $\zeta(s ; \mathfrak{a})$ are called non-trivial, and, by the above remarks, they lie in the strip $-B(\mathfrak{a}) \leqslant \sigma \leqslant 1+A(\mathfrak{a})$.

Let $N(T ; \mathfrak{a})$ be the number of non-trivial zeros ρ of $\zeta(s ; \mathfrak{a})$ with $|\gamma| \leqslant T$. Then [18]

$$
N(T ; \mathfrak{a})=\frac{T}{\pi} \log \frac{k T}{2 \pi e m_{\mathfrak{a}} \sqrt{m_{\mathfrak{a}}-m_{\mathfrak{a}^{+}}}}+O(\log T) .
$$

Moreover, the non-trivial zeros of $\zeta(s ; \mathfrak{a})$ are clustered around the critical line $\sigma=\frac{1}{2}$.
In [15], it was obtained that the functions $F(\zeta(s ; \mathfrak{a}))$ for some classes of operators F of the space of analytic functions have infinitely many zeros in the strip $\frac{1}{2}<\sigma<1$.

The paper [2] is devoted to zeros of the function $\zeta(s, \alpha ; \mathfrak{b})$. From properties of Dirichlet series, it follows that there exists $\sigma_{1}>0$ such that $\zeta(s, \alpha ; \mathfrak{b}) \neq 0$ for $\sigma>\sigma_{1}$. For simplicity, suppose that $b_{0}=1$, and

$$
q^{ \pm}(m)=\sum_{k=0}^{l-1} b_{k} \exp \left\{ \pm 2 \pi i m \frac{\alpha+k}{l}\right\}
$$

Denote by $\rho(s, \hat{l})$ the distance of s from the line \hat{l} on the complex plane, and let, for $\varepsilon>0$,

$$
L_{\varepsilon}(\hat{l})=\{s \in \mathbb{C}: \rho(s, \hat{l})<\varepsilon\}
$$

Then in [2], it is obtained that there exist constants $\sigma_{0}<0$ and $\varepsilon_{0}>0$ such that $\zeta(s, \alpha ; \mathfrak{b}) \neq 0$ for $\sigma<\sigma_{0}$ and

$$
s \notin L_{\varepsilon_{0}}\left((\sigma-1) \log \frac{r_{1}}{r_{2}}-\pi t=\log \left|\frac{q^{-}\left(r_{2}\right)}{q^{+}\left(r_{1}\right)}\right|\right),
$$

where $r_{1}=\min \left\{m \in \mathbb{N}: q^{+}(m) \neq 0\right\}$ and $r_{2}=\min \left\{m \in \mathbb{N}: q^{-} \neq 0\right\}$. Using the above result, non-trivial zeros of $\zeta(s, \alpha ; \mathfrak{b})$ are defined. Namely, the zero $\rho=\beta+i \gamma$ of $\zeta(s, \alpha ; \mathfrak{b})$ is called non-trivial if $\sigma_{0} \leqslant \beta \leqslant \sigma_{1}$. The zero $\hat{\rho}$ is called trivial if

$$
\hat{\rho} \in L_{\varepsilon_{0}}\left((\sigma-1) \log \frac{r_{1}}{r_{2}}-\pi t=\log \left|\frac{q^{-}\left(r_{2}\right)}{q^{+}\left(r_{1}\right)}\right|\right),
$$

It is known that the function $\zeta(s, \alpha ; \mathfrak{b})$ has infinitely many trivial zeros.
Denote by $N(T, \alpha ; \mathfrak{b})$ the number of non-trivial zeros ρ of the function $\zeta(s, \alpha ; \mathfrak{b})$ with $|\gamma| \leqslant T$ according multiplicities. Then in [2], it was proved that

$$
N(T, \alpha ; \mathfrak{b})=\frac{T}{\pi} \log \frac{T k}{2 \pi e \alpha}+O(\log T)
$$

Moreover,

$$
\sum_{|\gamma|<T}\left(\beta-\frac{1}{2}\right)=-\frac{T}{2 \pi} \log \frac{k}{\alpha}+\frac{T}{2 \pi}\left(\log \left|q^{+}\left(r_{1}\right)\right|+\log \left|q^{-}\left(r_{2}\right)\right|\right)+O(\log T)
$$

The latter formula shows that the non-trivial zeros of the function $\zeta(s, \alpha ; \mathfrak{b})$ are clustered around the line $\sigma=\frac{1}{2}$.

The aim of this paper is to show that the function $\zeta(s, \alpha ; \mathfrak{b})$ with some, for example,transcendental parameter α, and some combinations of the functions $\zeta(s ; \mathfrak{a})$ and $\zeta(s, \alpha ; \mathfrak{b})$ have infinitely many zeros in the strip $D=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$. Denote by $A_{T}\left(\sigma_{1}, \sigma_{2}, c\right)$ the assertion that, for any $\sigma_{1}, \sigma_{2}, \frac{1}{2}<\sigma_{1}<\sigma_{2}<1$, there exists a constant $c=c\left(\sigma_{1}, \sigma_{2}, f\right)>0$ such that, for sufficiently large T, the function $f(s)$ has more than $c T$ zeros in the rectangle

$$
\sigma_{1}<\sigma<\sigma_{2}, \quad 0<t<T
$$

Let

$$
L(\alpha)=\left\{\log (m+\alpha): m \in \mathbb{N}_{0}\right\}
$$

Theorem 1. Suppose that the set $L(\alpha)$ is linearly independent over the field of rational numbers \mathbb{Q}. Then, for the function $\zeta(s, \alpha ; \mathfrak{b})$, the assertion $A_{T}\left(\sigma_{1}, \sigma_{2}, c\right)$ is true.

Define the function

$$
\underline{\zeta}(s, \alpha ; \mathfrak{a}, \mathfrak{b})=c_{1} \zeta(s ; \mathfrak{a})+c_{2} \zeta(s, \alpha ; \mathfrak{b}), \quad c_{1}, c_{2} \in \mathbb{C} \backslash\{0\} .
$$

Theorem 2. Suppose that the number α is transcendental, the sequence \mathfrak{a} is multiplicative, and, for each prime p, the inequality

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{\left|a_{p^{m}}\right|}{p^{\frac{\sigma}{2}}} \leqslant c<1 \tag{1}
\end{equation*}
$$

is satisfied. Then, for the function $\underline{\zeta}(s, \alpha ; \mathfrak{a}, \mathfrak{b})$, the assertion $A_{T}\left(\sigma_{1}, \sigma_{2}, c\right)$ is true.
The next theorem is devoted to zeros of more general composite functions of $\zeta(s ; \mathfrak{a})$ and $\zeta(s, \alpha ; \mathfrak{b})$. We recall that $D=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$. Denote by $H(D)$ the space of analytic on D functions equipped with the topology of uniform convergence on compacta, and $H^{2}(D)=H(D) \times H(D)$. Let $\beta_{1}>0$ and $\beta_{2}>0$. We say that the operator $F: H^{2}(D) \rightarrow H(D)$ belongs to the class $\operatorname{Lip}\left(\beta_{1}, \beta_{2}\right)$ if it satisfies the following hypotheses:
1° For each polynomial $p=p(s)$, and any compact subset $K \subset D$ with connected complement, there exists an element $\left(g_{1}, g_{2}\right) \in F^{-1}\{p\} \subset H^{2}(D)$ such that $g_{1}(s) \neq 0$ on K;
2° For any compact subset $K \subset D$ with connected complement, there exist a positive constant c, and compact subsets K_{1}, K_{2} of D with connected complements such that

$$
\sup _{s \in K}\left|F\left(g_{11}(s), g_{12}(s)\right)-F\left(g_{21}(s), g_{22}(s)\right)\right| \leqslant c \sup _{1 \leqslant j \leqslant 2} \sup _{s \in K_{j}}\left|g_{1 j}(s)-g_{2 j}(s)\right|^{\beta_{j}}
$$

for all $\left(g_{r 1}, g_{r 2}\right) \in H^{2}(D), r=1,2$.

Theorem 3. Suppose that the number α is transcendental, the sequence \mathfrak{a} is multiplicative, inequality (1) is satisfied and $F \in \operatorname{Lip}\left(\beta_{1}, \beta_{2}\right)$. Then, for the function $F(\zeta(s ; \mathfrak{a}), \zeta(s, \alpha ; \mathfrak{b}))$, the assertion $A_{T}\left(\sigma_{1}, \sigma_{2}, c\right)$ is true.

We note that the class $\operatorname{Lip}\left(\beta_{1}, \beta_{2}\right)$ is not empty. For example, in [6] it is proved that the operator $F: H^{2}(D) \rightarrow H(D)$,

$$
F\left(g_{1}, g_{2}\right)=c_{1} g_{1}^{\left(k_{1}\right)}+c_{2} g_{2}^{\left(k_{2}\right)}
$$

where $c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}, k_{1}, k_{2} \in \mathbb{N}$ and $g^{(k)}$ denotes the k th derivative of g, belongs to the class $\operatorname{Lip}(1,1)$. To prove this, it suffices to apply the integral Cauchy formula.

2. Lemmas

Proof of Theorems 1-3 are based on universality theorems for the corresponding functions, and the classical Rouché theorem. We remind that the universality of zeta-functions was discovered by S. M. Voronin who proved [21] an universality theorem for the Riemann zeta-function. For brevity, we denote by \mathcal{K} the class of compact subsets of the strip D with connected complements, by $H_{0}(K), K \in \mathcal{K}$, the class of non-vanishing continuous functions on K which are analytic in the interior of K, and by $H(K), K \in \mathcal{K}$, the class of continuous functions on K which are analytic in the interior of K. Let meas A stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then the latest version of the Voronin theorem is the following assertion, see, for example, [8].

Lemma 1. Suppose that $K \in \mathcal{K}$, and $f(s) \in H_{0}(K)$. Then, for every $\varepsilon>0$,

$$
\underline{l i m}_{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K}|\zeta(s+i \tau)-f(s)|<\varepsilon\right\}>0
$$

The majority of other zeta and L-functions, among them the periodic zetafunction, [14], [5], the Hurwitz zeta-function with transcendental [10] or rational parameter [3], [1], the periodic Hurwitz zeta-function with transcendental parameter [4], zeta-functions of cusp forms [12], [13], L-functions from the Selberg class [19], [16], and others are universal in the Voronin sense. We state universality theorems for periodic and periodic Hurwitz zeta-functions.

Lemma 2. Suppose that the sequence \mathfrak{a} is multiplicative and inequality (1) is satisfied. Let $K \in \mathcal{K}$, and $f(s) \in H_{0}(K)$. Then, for every $\varepsilon>0$,

$$
\varliminf_{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K}|\zeta(s+i \tau ; \mathfrak{a})-f(s)|<\varepsilon\right\}>0
$$

Proof of the lemma is given in [14].

Lemma 3. Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q}. Let $K \in \mathcal{K}$, and $f(s) \in H(K)$. Then, for every $\varepsilon>0$,

$$
\underline{\lim }_{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K}|\zeta(s+i \tau, \alpha ; \mathfrak{b})-f(s)|<\varepsilon\right\}>0
$$

The lemma with transcendental parameter α has been obtained in [4], and, under hypotheses of the lemma, has been proved in [11].

In universality theory of zeta-functions, an important role is played by joint universality theorems when a collection of given analytic functions is approximated simultaneously by shifts of a collection of zeta-functions. The first joint universality result also was obtained by S. M. Voronin. In [22], investigating the functional independence of Dirichlet L-functions, he first of all infact obtained their joint universality. We remind a modern version of the Voronin theorem, see, for example, [9].

Lemma 4. Suppose that $\chi_{1}, \ldots, \chi_{r}$ be pairwise non-equivalent Dirichlet characters, and $L\left(s, \chi_{1}\right), \ldots, L\left(s, \chi_{r}\right)$ be the corresponding Dirichlet L-functions. For $j=1, \ldots, r$, let $K_{j} \in \mathcal{K}$, and $f_{j}(s) \in H_{0}(K)$. Then, for every $\varepsilon>0$,

$$
\varliminf_{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|L\left(s+i \tau, \chi_{j}\right)-f_{j}(s)\right|<\varepsilon\right\}>0
$$

The joint universality of the periodic zeta-function and the periodic Hurwitz zeta-function has been considered in [6], and the following assertion has been proved.

Lemma 5. Suppose that the sequence \mathfrak{a} is multiplicative, inequality (1) is satisfied, and the number α is transcendental. Let $K_{1}, K_{2} \in \mathcal{K}$, and $f_{1}(s) \in H_{0}\left(K_{1}\right)$ and $f_{2}(s) \in H\left(K_{2}\right)$. Then, for every $\varepsilon>0$,

$$
\begin{array}{r}
\frac{\lim _{T \rightarrow \infty}}{} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K_{1}}\left|\zeta(s+i \tau ; \mathfrak{a})-f_{1}(s)\right|<\varepsilon\right. \\
\left.\sup _{s \in K_{2}}\left|\zeta(s+i \tau, \alpha ; \mathfrak{b})-f_{2}(s)\right|<\varepsilon\right\}>0
\end{array}
$$

Now we state a generalization of Lemma 5 from the paper [7].
Lemma 6. Suppose that the sequence \mathfrak{a} is multiplicative, inequality (1) is satisfied, the number α is transcendental, and that $F \in \operatorname{Lip}\left(\beta_{1}, \beta_{2}\right)$. Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\varepsilon>0$,

$$
\varliminf_{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K}|F(\zeta(s+i \tau ; \mathfrak{a}), \zeta(s+i \tau, \alpha ; \mathfrak{b}))-f(s)|<\varepsilon\right\}>0
$$

For the proof of theorems on the number of zeros of zeta-functions and their certain combinations, the classical Rouché theorem is useful. For convenience, we state this theorem as a separate lemma.

Lemma 7. Let the functions $g_{1}(s)$ and $g_{2}(s)$ are analytic in the interior of a closed contour L and on L, and let on L the inequalities $g_{1}(s) \neq 0$ and $\left|g_{2}(s)\right|<$ $\left|g_{1}(s)\right|$ be satisfied. Then the functions $g_{1}(s)$ and $g_{1}(s)+g_{2}(s)$ have the same number of zeros in the interior of L.

Proof of the lemma can be found, for example, in [17].

3. Proofs of theorems

Proof of Theorem 1. Let

$$
\sigma_{0}=\frac{\sigma_{1}+\sigma_{2}}{2}, \quad r=\frac{\sigma_{2}-\sigma_{1}}{2},
$$

and let the number $\varepsilon>0$ satisfy the inequality

$$
\begin{equation*}
\varepsilon<\frac{1}{10} \min _{\left|s-\sigma_{0}\right|=r}\left|s-\sigma_{0}\right|=\frac{r}{10} \tag{2}
\end{equation*}
$$

Suppose that $\tau \in \mathbb{R}$ satisfies the inequality

$$
\begin{equation*}
\sup _{\left|s-\sigma_{0}\right| \leqslant r}\left|\zeta(s+i \tau, \alpha ; \mathfrak{b})-\left(s-\sigma_{0}\right)\right|<\varepsilon . \tag{3}
\end{equation*}
$$

Then, in view of (2), we have that the functions $\zeta(s+i \tau, \alpha ; \mathfrak{b})-\left(s-\sigma_{0}\right)$ and $s-\sigma_{0}$ in the disc $\left|s-\sigma_{0}\right| \leqslant r$ satisfy the hypotheses of Lemma 7. Hence, the function $\zeta(s, \alpha ; \mathfrak{b})$ has a zero in the disc $\left|s-\sigma_{0}\right| \leqslant r$. Since, by Lemma 3, the set of τ satisfying inequality (3) has a positive lower density, we obtain that there exists a constant $c=c\left(\sigma_{1}, \sigma_{2}, \alpha, \mathfrak{b}\right)>0$ such that for the function $\zeta(s, \alpha ; \mathfrak{b})$ the assertion $A_{T}\left(\sigma_{1}, \sigma_{2}, c\right)$ is true.

Proof of Theorem 2. We preserve the notation for σ_{0} and r, and take in Lemma 5

$$
f_{1}(s)=\varepsilon, \quad f_{2}(s)=\frac{1}{c_{2}}\left(s-\sigma_{0}\right)
$$

where the positive number ε satisfies the inequality

$$
\begin{equation*}
\left(\left|c_{1}\right|+\left|c_{2}\right|\right) \varepsilon<\frac{1}{10} \min _{\left|s-\sigma_{0}\right|=r}\left|s-\sigma_{0}\right|=\frac{r}{10} \tag{4}
\end{equation*}
$$

Suppose that $\tau \in \mathbb{R}$ satisfies the inequalities

$$
\begin{equation*}
\sup _{\left|s-\sigma_{0}\right| \leqslant r}\left|\zeta(s+i \tau ; \mathfrak{a})-f_{1}(s)\right|<\varepsilon \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\left|s-\sigma_{0}\right| \leqslant r}\left|\zeta(s+i \tau, \alpha ; \mathfrak{b})-f_{2}(s)\right|<\varepsilon \tag{6}
\end{equation*}
$$

Then, for these τ, we have that

$$
\begin{array}{r}
\sup _{\left|s-\sigma_{0}\right| \leqslant r}\left|\left(c_{1} \zeta(s+i \tau ; \mathfrak{a})+c_{2} \zeta(s+i \tau, \alpha ; \mathfrak{b})\right)-\left(c_{1} f_{1}(s)+c_{2} f_{2}(s)\right)\right| \\
<2\left(\left|c_{1}\right|+\left|c_{2}\right|\right) \varepsilon .
\end{array}
$$

Moreover, by the definition of $f_{1}(s)$ and $f_{2}(s)$,

$$
\sup _{\left|s-\sigma_{0}\right| \leqslant r}\left|c_{1} f_{1}(s)+c_{2} f_{2}(s)-\left(s-\sigma_{0}\right)\right|=\left|c_{1}\right| \varepsilon .
$$

Therefore,

$$
\sup _{\left|s-\sigma_{0}\right|=\rho}\left|\left(c_{1} \zeta(s+i \tau ; \mathfrak{a})+c_{2} \zeta(s+i \tau, \alpha ; \mathfrak{b})\right)-\left(s-\sigma_{0}\right)\right|<3\left(\left|c_{1}\right|+\left|c_{2}\right|\right) \varepsilon .
$$

This and (4) show that the functions

$$
\left.c_{1} \zeta(s+i \tau ; \mathfrak{a})+c_{2} \zeta(s+i \tau, \alpha ; \mathfrak{b})\right)-\left(s-\sigma_{0}\right)
$$

and $s-\sigma_{0}$ on the disc $\left|s-\sigma_{0}\right| \leqslant r$ satisfy the hypotheses of Lemma 7 . Therefore, the function $\left.c_{1} \zeta(s+i \tau ; \mathfrak{a})+c_{2} \zeta(s+i \tau, \alpha ; \mathfrak{b})\right)$ has a zero in the disc $\left|s-\sigma_{0}\right| \leqslant r$. However, by Lemma 5 , the set of τ satisfying inequalities (5) and (6) has a positive lower density. Hence, there exists a constant $c=c\left(\sigma_{1}, \sigma_{2}, \alpha, \mathfrak{a}, \mathfrak{b}\right)>0$ such that, for the function $\left.c_{1} \zeta(s+i \tau ; \mathfrak{a})+c_{2} \zeta(s+i \tau, \alpha ; \mathfrak{b})\right)$, the assertion $A_{T}\left(\sigma_{1}, \sigma_{2}, c\right)$ is valid.

Proof of Theorem 3. We argue similarly as above. Suppose that $\tau \in \mathbb{R}$ satisfies the inequality

$$
\begin{equation*}
\sup _{\left|s-\sigma_{0}\right| \leqslant r}\left|F(\zeta(s+i \tau ; \mathfrak{a}), \zeta(s+i \tau, \alpha ; \mathfrak{b}))-\left(s-\sigma_{0}\right)\right|<\varepsilon \tag{7}
\end{equation*}
$$

and ε satisfies (2). Then the functions

$$
F(\zeta(s+i \tau ; \mathfrak{a}), \zeta(s+i \tau, \alpha ; \mathfrak{b}))-\left(s-\sigma_{0}\right)
$$

and $s-\sigma_{0}$ in the disc $\left|s-\sigma_{0}\right| \leqslant r$ satisfy the hypotheses of Lemma 7. Therefore, the function $F(\zeta(s+i \tau ; \mathfrak{a}), \zeta(s+i \tau, \alpha ; \mathfrak{b}))$ has a zero in the disc $\left|s-\sigma_{0}\right| \leqslant r$. However, in view of Lemma 6 , the set of τ satisfying inequality (7) has a positive lower density. Thus, there exists a constant $c=c\left(\sigma_{1}, \sigma_{2}, \alpha, \mathfrak{a}, \mathfrak{b}, F\right)>0$ such that, for the function $F(\zeta(s+i \tau ; \mathfrak{a}), \zeta(s+i \tau, \alpha ; \mathfrak{b}))$, the assertion $A_{T}\left(\sigma_{1}, \sigma_{2}, c\right)$ is valid.

REFERENCES

1. Bagchi B. The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph. D. Thesis. Calcutta: Indian Statistical Institute, 1981.
2. Garunkštis R., Tamošiūnas R. Zeros of the periodic Hurwitz zeta-function// Šiauliai Math. Semin. 2013. V. 8(16). P. 49-62.
3. Gonek S. M. Analytic properties of zeta and L-functions. Ph. D. Thesis. University of Michigan, 1979.
4. Javtokas A., Laurinčikas A. Universality of the periodic Hurwitz zeta-function// Integral Transforms Spec. Funct. 2006. V. 17, No. 10. P. 711-722.
5. Kaczorowski J. Some remarks on the universality of periodic L-functions// New Directions in Value-Distribution Theory of Zeta and L-functions/ R. Steuding, J. Steuding (Eds) - Aachen: Shaker Verlaag. 2009. P. 113-120.
6. Kačinskaitė R., Laurinčikas A. The joint distribution of periodic zeta-functions// Studia Sci. Math. Hungarica. 2011. V. 48, No. 2. P. 257-279.
7. Korsakienė D., Pocevičienė V., Šiaučiūnas D. On universality of periodic zetafunctions// Šiauliai Math. Semin. 2013. V. 8(16). P. 131-141.
8. Laurinčikas A. Limit Theorems for the Riemann Zeta-Function. Dordrecht, Boston, London: Kluwer Academic Publishers, 1996.
9. Laurinčikas A. On joint universality of Dirichlet L-functions// Chebyshevskii Sb. 2011. V. 12, No. 1. P. 129-139.
10. Laurinčikas A., Garunkštis R. The Lerch zeta-function. Dordrecht, Boston, London: Kluwer Academic Publishers, 2002.
11. Laurinčikas A., Macaitienė R., Mokhov D., Šiaučiūnas D. On universality of certain zeta-functions// Izv. Sarat. u-ta. Nov. ser. Ser. Matem. Mekhan. Inform. 2013. V. 13, No. 4. P. 67-72.
12. Laurinčikas A., Matsumoto K. The universality of zeta-functions attached to certain cusp forms// Acta Arith. 2001. V. 98, No. 4. P. 345-359.
13. Laurinčikas A., Matsumoto K., Steuding J. The universality of L-functions associated with newforms// Izv. Math. 2003. V. 67, No. 1. P. 77-90.
14. Laurinčikas A., Šiaučiūnas D. Remarks on the universality of periodic zetafunction// Math. Notes. 2006. V. 80, No. 3-4. P. 711-722.
15. Laurinčikas A., Šiaučiūnas D. On zeros of periodic zeta-functions// Ukrainian Math. J. 2013. V. 65, No. 6. P. 953-958.
16. Nagoshi H., Steuding J. Universality for L-functions in the Selberg class// Lith. Math. J. 2010. V. 50, No. 3. P. 293-311.
17. Привалов И. И. Введение в теорию функций комплексного переменного. М.: Наука, 1967.
18. Steuding J. On Dirichlet series with periodic coefficients// Ramanujan J. 2002. V. 6. P. 295-306.
19. Steuding J. Universality in the Selberg class// Special Activity in Analytic Number Theory and Diophantine Equations, Proc. Workshop at the Max PlankInstitute Bonn 2003/ D. R. Heath-Brown, B. Moroz (Eds) - Bonn: Bonner Math. Schiften. 2003. V. 360.
20. Steuding J. Value-Distribution of L-functions. Lecture Notes in Math. vol. 1877. Berlin, Heidelberg: Springer Verlag, 2007.
21. Воронин С. М. Теорема об "универсальности" дзета-функции Римана // Изв. АН СССР. Сер. Математика. 1975. Т. 39, №3. С. 475-486.
22. Voronin S. M. The functional independence of Dirichlet L-functions// Acta Arith. 1975. V. 27. P. 493-503.

Вильнюский университет (Литва)
Шяуляйский университет (Литва)
Поступило 06.02.2014

