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Nonstationarity testing with local alternatives in AR(1) model

Abstract

This master thesis examines unit root testing with the sequence of local alternatives. We
analyse first order autoregressive process AR(1) and as test statistics we use n(φ̂n−1), where
φ̂n is a least squares estimator of an autoregressive parameter φ. As an alternative we use
the definition and various parameterizations of nearly nonstationary AR(1) process. The
empirical cumulative distribution functions and size-adjusted test power curves are analysed
in the paper using the most famous parameterizations of coefficient of nearly nonstationary
process. We prove limiting distribution of test statistics under alternative with root near
unity, confirm the results graphically, with test power analysis we check the probability of
making type II error. According to size-adjusted test power curves there is a big possibility
to reject a null hypothesis that first order autoregressive model is nonstationary process
when it is false.

Key words: Nearly nonstationary AR(1) process, nonstationarity, distribution, limit, test
power analysis.

Nestacionarumo tikrinimas su artimomis alternatyvomis AR(1)
modelyje

Santrauka

Magistriniame darbe nagrinėjamas vienetinės šaknies testavimas su lokalių alternatyvų seka.
Analizuojant pirmos eilės autoregresinį procesą AR(1), testo statistikai naudojama n(φ̂n−1),
kur φ̂n yra parametro φ mažiausių kvadratų įvertinys. Kaip alternatyva darbe naudojamas
beveik nestacionaraus AR(1) proceso apibrėžimas ir įvairios parametrizacijos. Naudojantis
žymiausiomis beveik nestacionaraus proceso koeficiento parametrizacijomis, analizuojamos
empirinės pasiskirstymo funkcijos bei testo galios kreivės. Pagrindinis darbo tikslas – įrodyti
beveik nestacionaraus proceso testo statistikos konvergavimą su alternatyvia hipoteze apie
vienetinę šaknį arti vieneto ir patvirtinti tai grafiškai, o pasinaudojus testo galios kreivėmis
patikrinti, kokia yra tikimybė padaryti antros rūšies klaidą. Remiantis testo galios kreivė-
mis yra didelė tikimybė atmesti nulinę hipotezę, kuri teigia, kad pirmos eilės autoregresinis
modelis yra nestacionarus, kai hipotezė yra klaidinga.

Raktiniai žodžiai: Beveik nestacionarus AR(1) procesas, nestacionarumas, pasiskirsty-
mas, riba, testo galios analizė.
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1 INTRODUCTION
Time series analysis is used in many fields including economic analysis or forecasting, finan-
cial and budgetary analysis. There are many models used for time series data. One of the
most commonly used model is autoregressive (AR) model. Autoregressive processes are im-
portant in mathematics, econometrics and statistics. A lot of authors studied autoregressive
time series with roots on or near the unit circle. The interest in nearly nonstationary pro-
cesses is increasing over the time. Many financial time series data have trending behaviour
or nonstationarity. The statisticians David Dickey and Wayne Fuller developed the Dickey–
Fuller test [1] in 1979 which tests the null hypothesis of whether a unit root is present in an
autoregressive model. The alternative hypothesis is the opposite – the model is stationary.
Unit root test is useful to find out if the data needs to be transformed to avoid nonstation-
arity problem. The stationarity or nonstationarity can strongly influence the behaviour and
properties of analysed data. Persistence of shocks will be infinite for nonstationary series.

Peter C. B. Phillips and Pierre Perron [2] have also analysed theory of unit root nonsta-
tionarity. The authors developed a similar test to Dickey–Fuller test but they incorporated
an automatic correction to the Dickey–Fuller procedure to allow for autocorrelated residuals.
Phillips–Perron test is used in time series analysis to test the null hypothesis that a time
series is integrated of order 1.

Kwiatkowski–Phillips–Schmidt–Shin [3] developed KPSS test which checks a null hy-
pothesis that time series is stationary around a deterministic trend against the alternative
of a unit root. Unlike the other tests, the null hypothesis for the KPSS test is opposite to
Dickey–Fuller test and Phillips–Perron test.

Autoregressive time series with a root near unity was studied by G. B. A. Evans and N.
E. Savin [4]. By simulation experiment the authors found out that the statistical properties
of the coefficient estimator and associated t − test in a stationary AR(1) with a root near
unity are close to those that are applied when the model is a random walk, even when the
sample size is as large as 100. Also the authors reached similar results when AR(1) process
was mildly explosive.

J. Kormos [5] analysed hypothesis for nearly nonstationary AR(1) model with Gaussian
autoregressive innovations. The author proved that the limit distribution of test statistic
remains unchanged when the first-order autoregressive model is replaced by a stationary p-th
order AR process.

In this paper, big attention will be paid on the local power of unit root tests when
alternative hypothesis is close to the null hypothesis, so-called "local alternatives".

The main purpose of master thesis is to test whether the selected test statistic can be
used as a unit root test with local alternatives and to check at which parameter values we
can distinguish between the null hypothesis and alternative hypothesis.

In master thesis first order autoregressive model will be analysed with different param-
eterization of coefficient φn. In Chapter 2 we will take a look how two parameterizations
change limiting distribution theoretically and in Chapter 3 these results will be checked with
simulated AR(1) process. Test power analysis will be analysed in Chapter 4.
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2 FIRST ORDER AUTOREGRESSIVE AR(1) MODEL
In this chapter the first order autoregressive AR(1) model will be defined. We will take a
look how model structure changes with different parameterizations of unknown parameter
φ. Also the convergence of parameters will be explained in chapter 2.2.2.

An autoregressive model is used to describe certain time-varying processes in economics,
finance, etc. A value from a time series is regressed on previous values from the same time
series. In the AR(1) model the observations yt at time t with starting point y0 at time t = 0
are generated according to the scheme

yt = φyt−1 + εt, t ≥ 1, (1)

where the εt’s are random disturbances or innovations, φ is an unknown parameter and εt is
an i.i.d sequence with zero mean and variance σ2

ε . There exist three cases:

• if |φ| < 1, then AR(1) is stationary process;

• if |φ| > 1, then AR(1) is explosive process;

• if φ = 1, then AR(1) is nonstationary process.

If φ is close to 0, then the process behaves like white noise, but as φ approaches 1,
the output gets a larger contribution from the previous term relative to the noise. For
|φ| > 1, the model (1) is called explosive. It means that the system is highly affected by
the past information. The process (1) has a unit root if the coefficient φ is equal to 1. A
nonstationary process has a variance that depends on time and diverges to infinity. If the
process is nonstationary when shocks have permanent effect which does not decay contrary
to stationary process.

The main task of master thesis is to test hypotheses:

H0 : φ = 1 alternatively H0 : γ = 0
H1 : φ = φn = eγ/n alternatively H1 : γ/n→ 0, as n→∞ and γ < 0

and

H0 : φ = 1
H1 : φ = φn = 1 − γn

n
, where γn → ∞, as n → ∞ and γn

n
→ 0, as n → ∞ and γn tends

to infinity slower than n

with test statistic n(φ̂− 1), when φ is unknown.

2.1 Least squares estimator (LSE)
The least square estimate of φ based on observations y1, ..., yn is defined as

φ̂ =
∑n
t=1 ytyt−1∑n
t=1 y

2
t−1

. (2)
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When |φ| < 1 H. B. Mann and A. Wald (1943) [6] and T. W. Anderson (1959) [7] showed
that the standardized LSE is asymptotically normal:

(
n∑
t=1

y2
t−1)1/2(φ̂− φ) D−−−→

n→∞
N (0, 1).

With another standardization:
√
n(φ̂− φ) D−−−→

n→∞
N (0, 1− φ2).

For φ > 1 T. W. Anderson (1959)[7] showed that:

(
n∑
t=1

y2
t−1)1/2(φ̂− φ) D−−−→

n→∞
N (0, 1)

is true when εk’s are i.i.d. For general εk’s the author showed that limiting distribution of
(∑n

t=1 y
2
t−1)1/2(φ̂− φ) may not exist.

When φ = 1 J. S. White (1958) [8] and M. M. Rao (1978) [9] showed that the limit
distribution of the properly standardized sequence of the LSE is non-normal:

(
n∑
t=1

y2
t−1)1/2(φ̂− φ) D−−−→

n→∞

1
2(W 2(1)− 1)
(
∫ 1

0 W
2(t)dt) 1

2

or

n(φ̂− 1) D−−−→
n→∞

∫ 1
0 W (t)dW (t)∫ 1

0 W
2(t)dt

, (3)

where (W (t), 0 ≤ t ≤ 1) is a standard Brownian motion.

2.2 Nearly nonstationary AR(1) process
Suppose we have first order autoregressive process defined as

yn,t = φnyn,t−1 + εt, k = 1, ..., n; n = 1, 2, ... , (4)

where φn → 1, as n → ∞, (εt) is a sequence of i.i.d random variables with zero mean
and finite variance σ2

ε , n is a sample size. The process generated by (4) is called nearly
nonstationary AR(1) process.

2.2.1 Parameterization of φn
When φn is close to unity the limiting law of the standardized LSE of φn may not be an
approximation of the exact distribution of the standardized LSE of φ. Nearly nonstationary
AR(1) process (4) has a lot of parameterizations which makes φn be as close as possible to
unity. P. C. B. Phillips (1987) [10] suggested to parameterize φn by φn = eγ/n with constant
γ < 0.

Another parameterization was suggested by P. C. B. Phillips and L. Giraitis (2006)
[11]. The coefficient of nearly nonstationary AR(1) process the authors parameterized by
φn = 1 − γn

n
, γn → ∞, as n → ∞ and γn

n
→ 0, as n → ∞ and γn tends to infinity slower

than n.
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2.2.2 Test statistic under alternatives

The limiting distribution of nearly nonstationary AR(1) process depends on the parameter-
izations of the coefficient φn.

Lemma 1: Let the first order autoregressive model be generated by (1) with test statistic
n(φ̂− 1), where φ̂ is least squares estimator of an autoregressive parameter φ.

Then under alternative that φ = φn = eγ/n, γ/n→ 0, as n→∞ and γ < 0 :

n(φ̂− 1) D−−−→
n→∞

γ +
∫ 1

0 Uγ(t)dW (t)∫ 1
0 (Uγ)2(t)dt

.

Proof:
Suppose that first order autoregressive process is generated by (1) and φ̂ is estimated by

(2).
Using the parameterization that suggested P. C. B. Phillips (1987) (φn = eγ/n with

constant γ < 0) the limit of n(φ̂− 1) is:
n(φ̂− 1) = n(φ̂n − φn + φn − 1) = n(φ̂n − φn) + n(φn − 1).

• P. C. B. Phillips (1987) showed that

n(φ̂n − φn) D−−−→
n→∞

∫ 1
0 Uγ(t)dW (t)∫ 1
0 (Uγ)2(t)dt

, as n → ∞, when φn = eγ/n, γ < 0, where Uγ(t) is

Ornstein–Uhlenbeck process defined by Uγ(t) =
∫ s

0 e
γ(s−t)dW (t).

• n(φn − 1) = n(eγ/n − 1) = n((1 + γ
n

+ ( γ
n

)2

2! + ( γ
n

)3

3! + ...+ ( γ
n

)n
n! + ...)− 1)

= n( γ
n

+ ( γ
n

)2

2! + ( γ
n

)3

3! + ...+ ( γ
n

)n
n! + ...)

= (γ + 1
2!n

γ2

n2 + 1
3!n

γ3

n3 + 1
n!n

γn

nn
+ ...)

= (γ + 1
2!
γ2

n
+ 1

3!
γ3

n2 + 1
n!

γn

nn−1 + ...) −−−→
n→∞

γ,

as ( 1
2!
γ2

n
+ 1

3!
γ3

n2 + 1
n!

γn

nn−1 + ...) −−−→
n→∞

0.

In Figure 1 red line indicates density plots of γ+
∫ 1

0 Uγ(t)dW (t)∫ 1
0 (Uγ)2(t)dt

with γ = −1,−2,−3,−5

and black line indicates density plots of test statistic n(φ̂ − 1) under null hypothesis
that φ̂ = 1 and generated by (3). From figure below we can say that as γ increases
density plots become more similar to the limiting distribution in Lemma 1.
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Figure 1: Plots of Kernel Density Estimations, when γ = −1,−2,−3,−5

Lemma 2: Let first order autoregressive model be generated by (1) with test statistic
n(φ̂ − 1), where φ̂ is the least squares estimator of an autoregressive parameter φ. Then
under alternative that φ = φn = 1− γn

n
, where γn →∞, as n→∞ and γn

n
→ 0, as n→∞

and γn tends to infinity slower than n:

n(φ̂n − 1) D−−−→
n→∞

−∞.

Proof:
Suppose that first order autoregressive process is generated by (1) and φ̂ is estimated by

(2).
Using the parameterization that was suggested P. C. B. Phillips and L. Giraitis (2006)

(φn = 1 − γn
n

, γn → ∞, as n → ∞ and γn
n
→ 0, as n → ∞ and γn tends to infinity slower

than n) the limit of n(φ̂− 1) is:
n(φ̂− 1) = n(φ̂n − φn + φn − 1) = n(φ̂n − φn) + n(φn − 1).

• P. C. B. Phillips and L. Giraitis (2006) showed that

n
1
2

(1− φ2
n) 1

2
(φ̂n − φn) D−−−→

n→∞
N (0, 1), (5)

when φn = 1− γn
n

.

7



Using P. C. B. Phillips and L. Giraitis limit (5), we obtain
n(φ̂n − φn) = n

1
2

(1−φ2
n)

1
2
(φ̂n − φn)n 1

2 (1− φ2
n) 1

2

and n
1
2

(1−φ2
n)

1
2
(φ̂n − φn) = Op(1).

Also, n 1
2 (1− φ2

n) 1
2 = n

1
2 ((1− φn)(1 + φn)) 1

2 .
Next note that (1 + φn) ≤ 2 and (n(1− φn)) 1

2 −−−→
n→∞

∞.

Finally n(φn − 1) = n((1− γn
n

)− 1) = −nγn
n

= −γn D−−−→
n→∞

−∞.

Since n 1
2 (1−φ2

n) 1
2 tends to infinity slower than −γn tends to −∞, so the result is proved.
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3 TESTING NEARLY NONSTATIONARY AR(1) PRO-
CESS

In this chapter empirical cumulative distribution functions will be analysed when parameters
of nearly nonstationary AR(1) process change. The graphical results will be compared with
theoretical analysis made in Chapter 2.

3.1 Nonstationary AR(1) process
When φ = 1 J. S. White (1958) and M. M. Rao (1978) showed that the limit distribution
of the properly standardized sequence of the LSE is non-normal and the limit (3) is valid.
Here 1000 realizations of test statistic n(φ̂n − 1) with the sample size 1000 of nonstationary
AR(1) process were computed. The limit distribution was computed with 5000 realizations
of test statistics and with sample size 5000. The values of the standard Brownian motion
(W (t)) were approximated by

W (t) = 1√
n

∑[nt]
k=1 ε(k), t ∈ [0, 1],

where ε(k) are standard normally distributed random variables.
In Figure 2 red line indicates empirical cumulative distribution function of

∫ 1
0 W (t)dW (t)∫ 1

0 W 2(t)dt
and

black line indicates empirical cumulative distribution function of n(φ̂n− 1). From the figure
below we can say that empirical cumulative distribution functions behaves very similarly.
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0

x
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n(
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Figure 2: Empirical cumulative distribution functions
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Next, we compute sample quantiles from the empirical distribution function, that might
help with the hypothesis testing. If the value of test statistic n(φ̂n − 1) is higher than value
with selected probability from Table 1, then null hypothesis is accepted.

1% 2.5% 5% 10% 15%
-29.14975 -18.21477 -12.54647272 -7.49989742 -5.30053633

Table 1: Sample Quantiles

3.2 Nearly nonstationary AR(1) process when φn = eγ/n

P. C. B. Phillips (1987) showed that

n(φ̂n − φn) D−−−→
n→∞

∫ 1
0 Uγ(t)dW (t)∫ 1

0 (Uγ)2(t)dt
,

as n → ∞, when φn = eγ/n, γ < 0, where Uγ(t) is Ornstein–Uhlenbeck process. Here
1000 realizations of test statistic n(φ̂n − φn) with the sample size n = 100; 500; 1000 of
nonstationary AR(1) process and γ = −0.5;−1;−2;−5;−20;−50 were computed. The
Ornstein–Uhlenbeck process was approximated by

S(j) = S(j − 1)eγ/n +

√√√√1− e2γ/n

−2γ ε(j),

where ε(j)’s are standard normal random variables with zero mean and variance equal to
one. Black line indicates empirical cumulative distribution function of n(φ̂n−φ) and red line
indicates empirical cumulative distribution function of

∫ 1
0 Uγ(t)dW (t)∫ 1
0 (Uγ)2(t)dt

. From the figures below
(Figure 3 - Figure 8) we can say that empirical cumulative distribution functions behave
very similarly, also when γ → −∞ empirical cumulative distribution functions become more
similar.
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Figure 3: Empirical cumulative distribution
functions
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Figure 4: Empirical cumulative distribution
functions
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Figure 5: Empirical cumulative distribution
functions
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Figure 6: Empirical cumulative distribution
functions
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Figure 7: Empirical cumulative distribution
functions
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Figure 8: Empirical cumulative distribution
functions

3.3 Nearly nonstationary AR(1) process when φn = 1− γn

n

P. C. B. Phillips and L. Giraitis (2006) showed that the limit (5) is valid , when φn =
1 − γn

n
. Here 1000 realizations of test statistic n

1
2

(1−φ2
n)

1
2
(φ̂n − φn) with the sample size n =

100; 500; 1000 of nonstationary AR(1) process and γn = n
log(n) ; log(n);n3/4 were computed.

The limit distribution is the standard normal distribution. In Figures 9-11 red lines indicate
standard normal distribution and black lines indicate nearly nonstationary AR(1) processes
with different sample size and three cases of constant γ. From the figures below (Figure 9 -
Figure 11) we can say that empirical cumulative distribution functions behave very similarly,
in all cases as sample size increases empirical cumulative distribution functions get closer to
standard normal distribution functions.
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Figure 9: Empirical cumulative distribution
functions
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Figure 10: Empirical cumulative distribution
functions
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Figure 11: Empirical cumulative distribution functions
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4 TEST POWER ANALYSIS
The hypothesis tests are used to make a decision to reject the null hypothesis then the p-
value is below a fixed value α or to accept it. There are four possible decisions: two correct
and two with possible errors. The decision making combinations are:

Accept H0 Reject H0

H0 is true Correct decision Type I error
H0 is false Type II error Correct decision

Table 2: Errors in hypothesis tests

In Table 2 a type I error means that the null hypothesis is rejected when it is true. The
probability of a type I error is called the significance level of a test and is denoted by α:

α = P(Type I error).

A type II error is not rejecting a null hypothesis when it is false. The power of a hypothesis
test for a specified alternative hypothesis is

β = 1− P(Type II error).

In this chapter the power of test statistics will be checked using size-adjusted test power
curves [12]. Here two experiments were performed using the same sequence of random
numbers. In the first experiment the null hypothesis holds (first order autoregressive model
is nonstationary (φ = 1)) and in the second hypothesis it does not hold. Two cases with
different parameterization of coefficient φn were analysed changing sample size and constant
γ.

4.1 Size-adjusted power curves for nearly nonstationary AR(1)
process when φn = eγ/n

Fifteen experiments were performed with hypothesis:

H0 : γ = 0
H1 : γ/n→ 0, as n→∞ and γ < 0,

where n = 100; 500; 1000, γ = −2;−5;−10;−20;−50.

In Figures 12-16 black lines indicate size-adjusted test power when sample size is 100, blue
and red lines indicate size-adjusted test power when sample size is 500 and 1000 accordingly.
The closer the line to the left upper point – the higher the power of that test is. It means
that the probability to make type II error is small. From figures we can say that the power
of test does not depends drastically on sample size but there is a tendency that as sample
size increases the power of test increases too. From Figures 12-14 we can conclude that
when γ = −2;−5;−10 the probability to make type II error is big. When γ = −20;−50 the
probability to accept the null hypothesis when it is false is very small.
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Figure 12: Size-power curve when φn = e−2/n
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Figure 13: Size-power curve when φn = e−5/n
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Figure 14: Size-power curve when φn = e−10/n
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Figure 15: Size-power curve when φn = e−20/n
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Figure 16: Size-power curve when φn = e−50/n

4.2 Size-adjusted power curves for nearly nonstationary AR(1)
process when φn = 1− γn

n

Twelve experiments were performed with hypothesis:

H0 : φ = 1
H1 : φ = 1− γn

n
, γn/n→ 0, as n→∞ and γn →∞,

where n = 100; 500; 1000, γ = n3/4;n1/4; n
log(n) ; log(n).

In Figures 17-20 black lines indicate size-adjusted test power when sample size is 100, blue
and red lines indicate size-adjusted test power when sample size is 500 and 1000 accordingly.
From Figures 17-18 we can say that as sample size increases, the power of test increases
too but the probability to make type II error remains very big. When γn = n

log(n) ;n
3/4 the

probability of accepting null hypothesis when it is false is very small.
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Figure 17: Size-power curve when φn = 1−n1/4
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Figure 18: Size-power curve when φn = 1 −
log(n)
n
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Figure 19: Size-power curve when φn = 1 −
n/log(n)
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Figure 20: Size-power curve when φn = 1−n3/4

n
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5 CONCLUSIONS
In this master thesis nearly nonstationary AR(1) processes and nonstationarity testing with
local alternatives were examined. The test statistic under local alternatives was investigated
in this paper. The results obtained in Chapter 2 were graphically showed in Chapter 3 with
empirical cumulative distribution functions. From size-adjusted test power analysis we can
conclude that when coefficient φn in AR(1) model is replaced by eγ/n with γ = −2,−5,−10
there is a big possibility to make Type II error accepting that the process is nonstationary.
When coefficient γ = −20,−50 from size-adjusted test power we can conclude that the
possibility to make Type II error is very small. When coefficient φn in AR(1) model is
replaced by 1− n1/4

n
and 1− log(n)

n
from size-adjusted test power analysis we can say that there

is a big possibility to make Type II error. When coefficient of AR(1) model is φn = 1− n/log(n)
n

and φn = 1− n3/4

n
, the possibility to accept null hypothesis when it is false is very small.
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