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Obligacijų grąžų kreivės vertinimas naudojant grąžų
skirtumus Lietuvos vyriausybės obligacijoms

Santrauka

Darbas yra skirtas obligacijų kainų nustatymui. Tuo tikslu, naudojant skirtin-

gas grąžų kreivės specifikacijas ir nuostolių funkcijas, yra sudaromos obligacijų

grąžų kreivės. Darbe pateikiama procedūra grąžų kreivės nustatymui naudojant

grąžų skirtumų minimizavimą. Ši procedūra lyginama su kainų minimizavimu

kelioms skirtingoms kreivių specifikacijoms. Modeliai vertinami remiantis kainų

kvadratinių paklaidų pokyčiais.

Raktiniai žodžiai: obligacijos, kuponinės obligacijos, grąžų skirtumai,

Nelson-Siegel grąža .

Estimation of Bond Yield Curve by Yield Differences
for Lithuanian Government Bonds

Abstract

The paper considers bond pricing. Different yield curve specifications and loss

functions are used to construct yield curves for pricing. This work introduces a

procedure for estimation by yield difference minimization. The procedure is com-

pared to price minimization for severa different curve specifications. The models

are evaluated by changes in MSE of prices.

Keywords: bonds, coupon bonds, yield differences, Nelson-Siegel yield.
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1 Introduction

Bonds are a fixed income investments that allow the issuer to borrow funds

at a fixed or variable interest rate. Essentially, the bond specifies future

cash flows that a buyer of the bond is entitled to receive. The bonds that

are modelled in this paper include zero and fixed coupon bonds. Using only

such basic bonds eliminates the uncertainty of future cash flow amounts.

The price of a bond is determined by discounting the individual future cash

flows to the present. Discounting usually is done by constructing a forward

rate, yield or discount curve for the entity issuing the bond and applying

the respective rates to cash flows. This thesis compares the performance of

two loss functions for modeling the forward and discount curves using several

curve shape models that differ in flexibility. The loss functions are based on

weighted price difference minimization and yield difference minimization.

1.1 Zero and fixed coupon bonds

The most appealing bonds to be used for yield curve construction are zero

coupon bonds. Such bonds usually have a single lump sum payment at a

future date called a notional amount and, therefore, only require a single

yield for the price of the bond to be calculated. Coupon bonds pose the

problem that a single price per coupon bond is observed in the market, but

the price is affected by several yields as both the notional amount at bond

maturity has to be discounted as well as each coupon payment. When there

are no interest payments left between the present day and bond maturity,

the coupon bond essentially becomes a zero coupon bond, however with a

larger notional value as it will pay out the notional and interest for the last

period upon maturing.
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1.2 Relation between forward rate, yield and discount

curves

The three curves are related functions and can be easily obtained from each

other Diebold and Rudebusch (2012). If we assume that the notional value of

a zero coupon bond is 1 EUR, Y (t) denotes the yield, where t is the time to

maturity, then the price P (t) given continuous compounding can be stated

as:

P (t) = exp(−tY (t)). (1.1)

Consequently, the forward rate curve F (t) can be calculated as follows:

F (t) = −P
′
(t)

P (t)
. (1.2)

From the forward rate curve we can obtain the yield curve:

Y (t) =
1

t

∫ t

0

F (u)du. (1.3)

Therefore, it is sufficient for a model to estimate any of the three curves.

1.3 Lithuanian government bond data

Lithuanian government regularly issues bonds. On 2017-12-12 the Lithuanian

government had 66 bonds (excluding bonds up to 1 year maturity) outstand-

ing with total face value of 3.45 billion EUR CSDL (2017) with maturities up

to 10 years. This signifies an active market that may benefit from accurate

yield curve estimation.

The used data set was retrieved from Bloomberg database on 2016-12-17

for the period from 1996-12-19 to 2016-12-16. The bond security identi-

fier (ISIN) list was retrieved from Central Securities Depository of Lithuania

CSDL (2017). From the total list, at least partial price data was available for
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103 bonds. Old price data was not collected consistently and was not avail-

able for full issuance of the bonds. Therefore, the data set was restricted to

the period from 2012-09-07 to 2016-12-16. This period ensured at least 6 zero

coupon bonds for initial value estimation for the Nelson-Siegel based models

as the most extensive Nelson-Siegel type model has 6 estimated parameters.

In the selected period the total amount of zero coupon bonds was 17 and 65

for coupon bonds. However, the Lithuanian bond quote data is relatively ir-

regular as the number of quoted bonds each day varies. Within the restricted

date range the number of quoted coupon bonds is at least 20 for most of the

sample. Whereas there are only up to 2 zero coupon bonds quotes for half

the period. The quote number distributions are given in Figures 1 and 2.

Figure 1: Distribition of coupon

bond quotes

Figure 2: Distribition of non-

coupon bond quotes

The time to maturity for zero coupon bonds was at most 2.9 years,

whereas for coupon bonds it was 20 years. This suggests that zero coupon

bonds cover a relatively small fraction of the yield curve and most of the curve

will have to be built using coupon bond data. A sample day distribution of

yields by maturity is presented in Figure 3.

The coupon bonds also had significantly different coupon rates, ranging

from 0.3% to 9.95% (Figure 4) with higher coupons related to longer ma-

turities. Taking into account the distrubution of bond yields to maturity,
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Figure 3: Y ields by time to maturity and bond type

that would suggest that there was high uncertainty about the Lithuanian

government long term yields as the coupons are significantly higher than the

observed rates after bond release.

Figure 4: Coupon bond coupon rate distribution by percentages
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2 Model specifications for bond yield curves

The aim of the paper is to compare the performance of yield models when

estimation is done by yield difference minimization to the baseline estimation,

which is done by minimizing price differences. In order to extensively test the

performance, three different yield curve specifications are used that vary in

their flexibility. The Nelson-Siegel specification is the most basic one with the

least parameters to be estimated. The Nelson-Siegel-Svensson specification

adds an additional mid term yield component, allowing more flexibility in the

yield curve. The Merrill-Lynch exponential spline specification is the most

flexible with significantly more terms and it also models the discount curve

rather than the yield curve directly. The curve specifications are provided in

the sections below.

2.1 Nelson-Siegel specification

The Nelson-Siegel specification suggests that there are three parts relating to

the yield curve. A long term rate that is represented by β0, a short term yield

component represented by the term near β1 and a medium term component

represented by the term near β2 (Figure 4). The yield for a zero coupon bond

with remaining time to maturity t is given by Guirreri (2010); Consiglio and

Guirreri (2011):

Ŷ (t) = β0+β1

[1 − exp(−t/λ1)
t/λ1

]
+β2

[1 − exp(−t/λ1)
t/λ1

−exp(−t/λ1)
]
, (2.1)

where β0,β1,β2 and λ1 are coefficients estimated during fitting. The β0, β1, β2
coefficients determine the magnitude of each of the terms, while the λ1 coef-

ficient determines the timing and is also referred to as the decay coefficient.

The larger the λ1 value, the faster the short and mid term components ap-

proach zero.
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Figure 5: Distribition of coupon

bond quotes

Figure 6: Distribition of non-

coupon bond quotes

2.2 Nelson-Siegel-Svensson specification

The Svensson (1994) extention adds an additional mid term yield component

to the Nelson-Siegel specification to allow for a secondary hump or trough in

the yield curve. It is done to capture a wider range of yield curve shapes at

the cost of 2 additional parameters. With the Svensson extention the yield

for a zero coupon bond with remaining time to maturity t is given by Guirreri

(2010); Consiglio and Guirreri (2011):

Ŷ (t) = β0 + β1

[1 − exp(−t/λ1)
t/λ1

]
+ β2

[1 − exp(−t/λ1)
t/λ1

− exp(−t/λ1)
]

(2.2)

+ β3

[1 − exp(−t/λ2)
t/λ2

− exp(−t/λ2)
]
,

where β0,β1,β2 ,β3, λ1 and λ2 are coefficients estimated during fitting.

2.3 Merrill-Lynch Exponential Spline specification

The Merill-Lynch Exponential Spline specification specifies the discount curve

instead of the yield curve. This specification was chosen due to its high flex-

ibility in the number of terms that are used to construct the discount curve

and relatively fast calculation time. The discount factor for a zero coupon
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bond with time to maturity equal to t is given by Bolder et al. (2005):

D̂(t) =
9∑

k=1

zke
−kαt, (2.3)

where z1,..,z9 and α are coefficients estimated during fitting. The Yield curve

can be derived by the following equation:

Ŷ (t) = −(ln(D̂(t))/t), (2.4)

2.4 Applied estimation procedures

The estimation procedures have to differ for price and yield difference mini-

mization due to the fact that for yield difference method an individual yield

has to be assigned to each bond cash flow that results in the market price

for each bond.

Two optimization algorithms are used for the estimation. One method

is Differential Evolution (DE) Ardia et al. (2016), that is used only to find

the best set of starting values for the Merrill-Lynch exponential spline speci-

fication. The algorithm is essentially creating a random population of coeffi-

cient sets. Then randomly combining the population members using random

weights to form new sets and after a certain number of such mutations the

best set is chosen. The algorithm is based on a random generator and there-

fore does not necessarily yield the same result every time, even when the

same parameters are used.

Therefore, for any final optimization a quasi-Newton algorithm based on

Broiden, Fletcher, Goldfarb and Shanno (BFGS) R Core Team (2015) is

used. The method is based on constructing a Hessian approximation of the

function being optimized and taking small iterative steps in the direction of

the largest improvement in the function value according to the approximated
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Hessian matrix. The method performance is significantly impacted by the

initial values as the number of iterations required to reach a stationary point

decreases if the initial values are close.

Procedure for Nelson-Siegel and Nelson-Siegel-Svensson specifica-

tion optimization by price difference minimization:

1. Obtain initial coefficient values for the estimation. The initial values for

the first day of estimation are equal to the coefficient estimates from only zero

coupon bonds using an existing R implementation Guirreri (2010); Consiglio

and Guirreri (2011). For all next days, previous day final coefficient estimates

are used.

2. The following price difference is minimized using BFGS method to obtain

final coefficients: ∑
i∈I

(Pi − P̂i)
2,

where I is the set of all bonds with market price quotes on the estimation

day; Pi is the market price quote of bond i;

P̂i =
∑

k∈Ki
ni,k exp(−ti,kŶ (ti,k));

Ki is the index of all future cash flows of bond i;

ti,k is the time to maturity of cash flow k of bond i;

ni,k is the amount of future cash flow k of bond i;

Ŷ (ti,k) is the result of the Nelson-Siegel or Nelson-Siegel-Svensson speci-

fication with current iteration coefficients for time to maturity ti,k.

Procedure for Merril-Lynch specification optimization by price dif-

ference minimization:

1. Obtain initial coefficient values for the estimation. The initial values for

the first day of estimation are equal to the set of coefficients obtained from
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differential evolution optimization algorithm that result in the lowest price

difference: ∑
i∈I

(Pi − P̂i)
2, (2.5)

where I is the set of all bonds with market price quotes on the estimation

day;

Pi is the market price quote of bond i;

P̂i =
∑

k∈Ki
ni,k exp(−ti,kŶ (ti,k));

Ki is the index of all future cash flows of bond i;

ti,k is the time to maturity of cash flow k of bond i;

ni,k is the amount of future cash flow k of bond i;

Ŷ (ti,k) is the result of Merrill-Lynch specification with tested differential

evolution coefficient set for time to maturity ti,k.

For all next days, previous day final coefficient estimates are used.

2. The following price difference is minimized (same as Nelson-Siegel opti-

mization) using BFGS method to obtain final coefficients:∑
i∈I

(Pi − P̂i)
2.

Procedure for all specification optimization by yield difference min-

imization:

1. Obtain initial coefficient values for the estimation. The initial values for

the first day of estimation are equal to the corresponding specification initial

values in optimization by price difference. For all next days, previous day

final coefficient estimates for the corresponding specification are used.

2. Using initial coefficients assign yields to all i and k so that:

ŷi∈I,k∈Ki
= Ŷ initial(ti,k), (2.6)
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where I is the set of all bonds with market price quotes on the estimation

day;

Ki is the index of all future cash flows of bond i;

ti,k is the time to maturity of cash flow k of bond i;

Ŷ initial(ti,k) is the result of Nelson-Siegel, Nelson-Siegel-Svensson or Merrill-

Lynch specification with initial coefficient values for time to maturity ti,k.

3. Perform shift of assigned ŷi,k:

ŷshifti,k = ŷi,k + ci, (2.7)

where ci is a constant for each bond that satisfies the condition:

Pi =
∑
k∈Ki

ni,k exp(−ti,kŷshifti,k ), (2.8)

where Pi is the market price quote of bond i;

ni,k is the amount of future cash flow k of bond i;

ti,k is the time to maturity of cash flow k of bond i.

4. Optimize ŷshifti,k values to minimize:∑
i∈I,k∈K

ti,kni,k(ŷ
shift
i,k − Ŷ opt(ti,k))

2, (2.9)

where:

Ŷ opt(ti,k) is the Nelson-Siegel, Nelson-Siegel-Svensson or Merrill-Lynch spec-

ification with coefficients obtained from BFGS algorithm that minimize the

yield difference above for a given set of ŷshifti∈I,k∈K . The initial values for the

first day of estimation are equal to the coefficient estimates from only zero

coupon bonds using an existing R implementation Guirreri (2010); Consiglio

and Guirreri (2011). For all next days, previous day final coefficient estimates

are used.
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5. Final coefficients are equal to those obtained by BFGS minimization for

the best values of ŷshifti,k .

The function minimized in step 4 is weighted by time to maturity and cash

flow amount. This weighting is chosen for three reasons. First being that

the yields become relatively high for very short maturities as any change in

price suggests a large yield. This happens due to prices being discrete values

as only a limited set of decimal places is recorded. Secondly, yields assigned

to longer maturity cash flows have a more significant impact on the price.

To compensate for these two properties the yields are weighted by time to

maturity that assigns lower significance for the low maturity cash flow yields.

Thirdly, for each bond, only 1 price is observed. In cases when it is a zero

coupon bond the only cash flow of the bond comprises all of the bond price.

However, for coupon bonds the price can consist of many cash flows and the

part in the market price is determined by the yield and amount of the cash

flow. As yields are being estimated by the model, the weighting is done o!

nly by the cash flow amount.
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2.5 Evaluation statistics

The aim is to evaluate the shape fit of the yield curve, rather than the

closeness of fit of the specifications on the day of estimation. Additionally,

comparing by MSE of price differences would obviously result in superiority of

the price difference method as it is exactly the function minimized. Therefore,

the statistic that will be used to evaluate the estimation is the change of price

MSE between the day of estimation and the next available price quote date

when using the estimation day coefficients. This will test whether the fitted

yield curve suggests the correct change in yield from the initial estimation

day to the next price quote day.

The statistic should ideally yield slightly negative values due to the fact

that bond prices converge to the bond cash flow amount as maturity decreases

and consequently the discount factor approaches 1.

Definition for statistic calculation

From the optimization procedures we obtain optimal coefficients for each

of the three model specifications for each day which are then used to construct

the optimal yield curves for each model. For each specification the following

is calculated for each day w:

∆MSEw =
1

Iw

∑
i∈I

(Pi,w+1 −
∑
k

ni,k,w+1 exp(−ti,k,w+1Ŷ
opt
w (ti,k,w+1)))

2

(2.10)

− 1

Iw

∑
i∈I

(Pi,w −
∑
k

ni,k,w exp(−ti,k,wŶ opt
w (ti,k,w)))2,

where ∆MSEw denotes the change in mean squared error of the specification

for day w;
1
Iw

is a weight that is equal to 1 divided by the number of unique bonds

with quoted prices on both day w and w + 1;
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Pi,w is the quoted market price of bond i on day w;

ni,k,w is amount of kth future cash flow of bond i as at day w;

ti,k,w is the time to maturity of the kth future cash flow of bond i as at

day w.

3 Empirical results

3.1 Data processing

The bond price quote data from Bloomberg database was retrieved in the

form of clean prices at market close. Clean bond prices do not include the

accrued interest of the bond for the next coupon payment. These prices are

used due to the property that they do not fluctuate significantly at the time

of a bond coupon payment. Using such prices means that the cash flow of an

upcoming bond coupon payment has to be calculated at each day separately

as the coupon cash flow reaches 0 at the time of its maturity. These upcoming

coupon payment cash flows were generated assuming a actual/actual coupon

accrual scheme.

The time to maturity was calculated assuming that 1 year equals 365.25

days. Time was processed without separation into working and non-working

days.

When calculating bond yields to maturity from observed bond prices,

part of bonds had yields above 100%. All such bonds were close to their

maturity, usually 1 week to maturity. Because such yields are caused due

to bond prices being tracked to limited number of decimal places, the bond

price quotes that suggest higher than 100% yields were removed from the

dataset.
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3.2 Model fitting results

The model fittings were done for the Nelson-Siegel specification, Nelson-

Siegel-Svensson specification and Merill-Lynch specification with k = 5 and

k = 9. The additional Merill-Lynch model with k = 5 was introduced due

to high fluctuations in quoted bond price counts, which resulted in over

parametrization by the specification with k = 9 in part of the sample.

The fittings by the price and yield difference minimization resulted in

similar fittings for a significant part of the sample. Figures 7 and 8 show an

example fit of the Nelson-Siegel model for two selected days, where one shows

a relatively close fit by both procedures and a divergence in the second.

Figure 7: Nelson-Siegel fitting re-

sults for sample day 2012-10-30

Figure 8: Nelson-Siegel fitting re-

sults for sample day 2013-12-19

Table 1 gives the summary statistics for the fitted models. The average

∆MSE for yield difference models is lower than price for all specifications

and the Merill-Lynch models have an expected negative average, which would

suggest a better fit to the bond data. It has to be noted, that due to over

parametrization on some days, the Merill-Lynch specifications were fitted on

a lower number of days from the sample than the Nelson-Siegel specifica-

tions. However, when yield models are compared to the price models by the

percentage of times that the ∆MSE was lower, only the Nelson-Siegel and

Nelson-Siegel-Svensson specifications are higher for the yield difference mod-
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Yield Diff Price Diff ∆MSEY <

Specification A∆MSE StDev A∆MSE StDev T-value ∆MSEP

NS 0.00494 0.00321 0.01395 0.01583 -2.178 52.1%

NSS 0.00338 0.00433 0.00526 0.00411 -0.682 50.2 %

ML, k = 5 -0.00538 0.02255 0.00252 0.01517 -1.499 13.0%

ML, k = 9 -0.00282 0.01517 0.00705 0.00194 -2.190 27.3%

Table 1: Model fitting summary

Specification Yield Diff kurtosis Price Diff kurtosis

NS 161.712 36.911

NSS 58.079 287.73

ML, k = 5 170.172 188.275

ML, k = 9 946.411 287.729

Table 2: Kurtosis of ∆MSE

els. This is due to the fact that Merill-Lynch models fitted by yield differences

have higher negative values than price differencing (Figure 13). This makes

the price difference models more consistent at predicting changes, although

in some cases the yield differencing gives a significantly better prediction.

The T-values presented in Table 1 are given assuming a normal distribu-

tion. However, the ∆MSE distributions of the models are not normally

distributed. The distributions are leptokurtic (Table 2), which would sug-

gest that the T-values are a conservative approximation. This still supports

that the Nelson-Siegel model estimated by yield differences was significantly

more accurate than the price difference model. For other models the differ-

ences are not significant and for Merill-Lynch specification with k = 9 the

yield difference model is inconsistent.

The correlations between ∆MSE show that for Nelson-Siegel and Nelson-
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Specification Correlation of ∆MSE

NS 0.5680

NSS 0.7438

ML, k = 5 0.0129

ML, k = 9 -0.0333

Table 3: Correlations of ∆MSE

Siegel-Svensson models the errors occur in a similar pattern, whereas for the

Merill-Lynch model the errors are completely uncorrelated between yield

and price minimization models (Table 3) . This suggests that Merill-Lynch

models are influenced by different factors when estimated by yield and price

difference minimization.

3.3 Time consumption of yield difference optimization

The applied optimization procedure for yield differences does have significant

disadvantages when compared to price differencing that arise from its nature.

The main disadvantage is the time it takes to minimize the yield differences.

The method requires to assign yields to each cash flow that may deviate

from the fitted curve by different amounts. In the case of zero coupon bonds,

both the price and yield difference difficulty is the same as there is only 1

yield per bond and it is observed through market price quote. However, for

coupon bonds yield differences increases as it adds an additional optimization

parameter for each coupon payment. This significantly increases the time

required to reach a stationary value for the yield difference method and during

the model fittings for the sample the time required for 1 day computation

differed by up to a factor of 10ˆ3 for some days, where there were only

coupon bond quotes observed. This factor is significantly reduced for days
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with coupon bonds available as the zero coupon bonds provide the basis of

the yield curve and the optimization only slightly adjusts the coefficients

from the initial values.

4 Conclusions

The goal of this study was to compare yield curve estimation by yield dif-

ferences to price differences in terms of predicting the next day change in

yields. For this purpose Nelson-Siegel, Nelson-Siegel-Svensson and Merill-

Lynch yield models were implemented for Lithuanian government bonds.

Yield difference minimization showed significantly more accurate results

for the Nelson-Siegel specification with lower variance than the price differ-

ence minimization. However, for other models the accuracy was not signifi-

cantly different or was inconsistent.

The introduced yield difference minimization method had significantly

higher time costs when estimating curves while using mainly coupon bonds.

However, the estimation time decreases significantly when more zero coupon

bonds are observed.
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A Appendices

Figure 9: ∆MSE for Nelson-

Siegel specification by price differ-

ences

Figure 10: ∆MSE for Nelson-

Siegel specification by yield differ-

ences

Figure 11: ∆MSE for Nelson-

Siegel-Svensson specification by

price differences

Figure 12: ∆MSE for Nelson-

Siegel-Svensson specification by

yield differences
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Figure 13: ∆MSE for Merrill-

Lynch, k = 5 specification by price

differences

Figure 14: ∆MSE for Merrill-

Lynch, k = 5 specification by yield

differences

Figure 15: ∆MSE for Merrill-

Lynch, k = 9 specification by price

differences

Figure 16: ∆MSE for Merrill-

Lynch, k = 9 specification by yield

differences
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