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Aukšto dažnio duomenų multifraktalumas ir volatilumo
prognozavimas

Santrauka

Šio darbo tikslas yra pabrėžti duomenų multi-fraktalumo savybės svarbą nau-
dojant didesnio nei vienos dienos dažnio finansinius duomenis. Empiriniai
rezultatai yra gauti pritaikant apibendrintą Hurst eksponentę ir multifraktal-
inę nutrendintų svyravimų analizę šiems finasiniams indeksams: Dow Jones
industriniam vidurkiui, Australijos vertybinių popierių indeksui, Nikkei-225 ir
NASDAQ-100. Multifraktalumas buvo aptiktas visų išvardintų indeksų kainose.
Tam kad tinkamai panaudotumėm aukšto dažnio duomenis, buvo suskaičiuotas
faktinis volatilumas ir pritaikytas Binominis Markovo pasikeitimų multifrak-
talinis modelis. Šio modelio prognozės galia buvo palyginta su gerai žinomu
heterogeniniu auto-regresiniu modeliu. Binominis Markovo pasikeitimų mul-
tifraktalinis modelis parodė geresnes prognozes trumpiems prognozavimo hor-
izontams. Tuo tarpu heterogeninis auto-regresinis modelis buvo pranašesnis
prognozuojant daugiau nei 10 žingsnių ı̨ priekı̨.
Raktiniai žodžiai: multi-fraktalumas, volatilumas, aukšto dažnio duomenys, multi-
fraktalinis modelis

Multifractality of High Frequency Data and Volatility Forecasting

Abstract

The purpose of this thesis is to emphasize the importance of multi-fractal con-
cept by providing an empirical evidence using intra-day financial time series.
The Multifractal Detrended Fluctuation analysis and the Generalized Hurst
exponent methods were applied on the price indices of Dow Jones Industrial
Average, Australian Securities Exchange, Nikkei-225 and NASDAQ-100. The
presence of multi-scaling was detected on prices of each mentioned index. In or-
der to employ high frequency data we calculated realized volatility and applied
the Binomial Markov-Switching Multifractal model. The power of prediction ac-
curacy was compared to well-established Heterogeneous Auto-Regressive model.
The Binomial Markov-Switching Multifractal model showed better performance
on the short horizons while Heterogeneous Auto-Regressive model surpassed the
latter on long horizon.
Keywords: multi-fractality, volatility, high frequency data, multi-fractal model
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Chapter 1

Introduction

The financial theory is trying to understand how do the financial markets work
and to recognize a process generating the financial data using various meth-
ods. Empirical finding and result obtained so far helps getting more accurate
forecasts by developing and adjusting existing models. This thesis studies the
multi-fractality or so called multi-scaling property of time series. This prop-
erty have been found in financial series relatively lately Di Matteo, Aste, and
Dacorogna (2005).

This property is related to the natural feeling about complexity of markets
and at the same time it is attractive because it allows us to describe the time
series using scaling exponents. Before the explanation of what multi-fractality
is, we will provide previous studies in the theory. At the beginning the theoret-
ical work required the assumption of independent and Gaussian returns Fama
(1965) and this soon had many applications in the modeling, e.g. the Capital
Asset Pricing Model by Sharpe (1964) and the Black-Sholes model by Black and
Scholes (1973). Later this assumption has been found contradicting by number
of papers by overview of so-called stylized facts, e.g. Cont (2001). Also these
facts should be captured by the model which tries to describe the market.

Firstly, the distribution of returns was found to be leptokurtic and it was
explained by the fact that extreme events have higher probability than nor-
mal distribution would suggest. Volatility clustering is another known fact of
the financial data. Indeed, the volatility of price returns is not constant but
contrariwise it fluctuates differently within different periods. This fact is cap-
tured by the modeling of the second moment by family of the Autoregressive
conditional heteroskedasticity (ARCH) models. ARCH model was proposed by
Robert Engle in 1980s and it describes volatility conditionally on components
of past volatility and returns which are expressed by volatility and white noise
Engle (1982). Its generalized form (GARCH) is more popular and it also models
volatility conditionally on past volatility, but the squared returns are introduced
additionally T. Bollerslev (1986).
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The main weakness of ARCH family models is that they can not explain
behavior of volatility at different frequencies B. Mandelbrot and Fisher (1997).
Lauren Calvet (2004) emphasize that there is a logical reason of this feature
as long as the economical shocks have different duration and frequencies, e.g.
change in political situation, business cycle, financial crises, etc. Also, the
ARCH type models are not able to capture the property of multi-fractality in
absolute moments of fluctuations. Multi-fractality of moments is a stylized fact
which is the main subject of our thesis.

In order to generate data with all the mentioned properties above multi-
fractal models have been introduced recently. In general multi-fractal process
are retrieved on the priciple of iteration. Lauren Calvet (2004) formulated the
Markov-Switching Multifractal (MSM) model based on the idea that volatility
is composed of shocks which have different frequency and duration. Basically
the MSM model was an improvement of the earlier Multifractal Model of Asset
Returns formulated by B. Mandelbrot and Fisher (1997). In order to capture the
volatility, MSM model contains several variables which are based on switching
regimes with the values coming from the same distribution. The product of
these variables then describes the volatility. The frequency of the volatility
components is determined by regime switching probability.

1.1 Purpose of the thesis

The aim of this thesis is to investigate the theoretical framework behind the
multifractal detection methods and discrete time Markov-Switching Multifrac-
tal (MSM) model, and apply it in order to forecast the realized volatility. We
will provide basic theory on multifractality and its detection methods, which ro-
bustness will be investigated. The MSM model itself is a pure regime-switching
model, using a probability transition matrix, multiple frequencies and arbitrar-
ily many states.

By using 5 minutes closed price data from aggregated indices, we will con-
duct an empirical study of the performance of the binomial MSM model for re-
alized volatility. More specifically the MSM model will be compared to leading
realized volatilty forecasting HAR model, both in- and out-of-sample compar-
isons will be conducted in very short horizons such as one day and at longer
forecast horizons, such as 5 to 20 business days.

In short this thesis will try to answer the following research questions:

• Is there any evidence that methods to detect multi-fractality are robust
as long as they have no asymptotic theory developed?
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• Do any of selected intra-day datasets have multi-fractal trace?

• How does the MSM model performs to predict realized volatility in com-
parison with more established model?

1.2 Structure of the thesis

The thesis core is consisted of three chapters which cover the theoretical frame-
work of the thesis, the methodology and a representation of the empirical results.
The thesis is ended with a chapter of concluding remarks of the study. Thus, a
detail structure of the thesis is listed below

• Chapter 2 - The aim of this chapter is to provide the theoretical framework
which will be used throughout the thesis. Firstly, we review some frac-
tal and multifractal concepts necessary for understanding what is multi-
fractal process. Secondly, we present selected methods to detect whether
the process is multi-fractal or not. Following this, we turn to the one of
the main subject of the thesis, the Markov switching multi-fractal (MSM)
model. In this chapter we also review alternative Heterogeneous Auto-
Regressive (HAR) model for realized volatility.

• Chapter 3 - In this chapter we start by introducing the data, which is
analyzed in the empirical section. Thereafter we present the tests on ro-
bustness of multi-fractality detection methods. The results of these meth-
ods are showed in the separate section. Finally we discuss and compare
prediction accuracy between MSM and HAR model.

• Chapter 4 - The final chapter summarizes and concludes on the main
findings of the thesis.
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Chapter 2

Theoretical Framework

2.1 Fractals and Multifractals

The aim of this section is to provide a broader picture of fractal analysis and
main definitions related to fractality. The fractal theory was described by Man-
delbrot (1982) in order to study the roughness of surfaces. Mandelbrot was
studying rough and complex patterns what is the contrast to well known Eu-
clidean measures. Self-similarity, which definition will be provided later, is the
main characterization of fractals. In short we can say that if an object is self-
similar then the whole view is similar to its scaled down parts. This lets us to
observe same or at least similar patterns at every scale. Visually, self-similarity
which can be found in nature and can be understood very intuitively. Self-
similar patterns are observed in the branches of a tree (branches can be divided
to smaller ones following the same rule again and again), snowflakes, coastlines
and others phenomenons B. Mandelbrot and Hudson (2007).

A dimension of fractals is characterized by non-interger number as opposed
to well known Euclidean geometric objects which have an integer number of
dimension (e.g. a straight line has a dimension equal to one and a plane is the
two dimensional object) Cornelis (2004). From the perspective of fractals an
object is analysed at different scales in order to detect the similarities. These
similarities can be described in a form of a power law or so called scaling law.
We present the definition of scaling law based on Kantelhardt (2008).

Definition 2.1. (Scaling law) A power law with a scaling exponent (e.g. α)
describing the behaviour of a quantity F (e.g. fluctuation, spectral power) as
function of a scale parameter s (e.g. time scale, frequency) at least asymptoti-
cally: F (s) ∼ sα. The symbol ∼ denotes proportionality and asymptotically it
holds α = lims→∞

logF (s)
log s . The power law should be valid for a large range of s

values, e.g. at least for one order of magnitude.
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A system which can be described by a scaling law with a non-integer scaling
exponent is called fractal system. Fractals appear to be very complex usually,
however they have its simplicity which lies directly in the fact that they can
be described by the unique scaling exponent. In contrast, there are more com-
plicated systems called multi-fractal systems whose scaling properties cannot
be characterized by a single number but needs to be described by a function of
scaling exponents Kantelhardt (2008). Note that the definition of (multi)fractal
system does not state that the scaling law must hold for all possible scales s and
that is why we have to be carefull not to work with scales exceeding a maximum
scale when estimating scaling exponent Kantelhardt (2008). Di Matteo (2007)
says that there are two approaches of estimating scaling exponent and they are
sometimes mixed together. The first approach, which is not the object of our
interest in this thesis, is to use different length of time intervals (e.g. daily,
weekly, monthly) and analyse how the distribution is changing (for self-similar
or so called self-affine object, the distribution remains the same), e.g. for finan-
cial data which is the main object of our research it holds that the distribution
of returns have thinner tails by increasing time intervals. Another possibility
to estimate scaling exponent is observe a behavior of a process using sample
moments of increments while changing scale parameter ( e.g. time interval)
and look for a dependence of scaling law. In this research we use the second
approach and therefore in the next section we define the multifractal process
using the sample moments of increments perspective.

2.2 Multifractality

Prior to a discussion of multifractal models, we want to explore some of the
ideas of multifractality and provide basic definitions. In general a fractal is a
geometrical object which has fractional dimension

D = lim
ε→0

N(ε)
1
ε

where N(ε) is the number of "boxes" needed to cover the object as a function
of measure size ε, which goes to zero. One very important property of fractals
is self similarity, which means that the object is similar at any scale, but is not
identical. Authors often mention the branches of a tree which are similar to
each other ignoring the size, therefore each branch is also unique.

In his 1963 publication Benot Mandelbrot proposed that the distribution of
returns should be self-similar i.e. invariant to changes in the time scale.
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Definition 2.2. A stochastic process X(t) that satisfies (sign d= below means
equality of distributions)

{X(ct1), ..., X(ctk)} d= {cHX(t1), ..., cHX(tk)}

for some H > 0 and all c, k, t1, ..., tk ≥ 0 is called self similar or self-affine. The
number H is the self-similarity index or scaling exponent, of the process X(t).

As it was already mentioned, multifractal process is defined based on scaling
properties of moments of its increments. The definition works with discrete time
because of the nature of data we will be working with in the empirical part.
The definition of the multifractal process which we use in this thesis is directly
used in methods which can detect multifractal behavior of a process.

We present definition through the scaling of moments from B. Mandelbrot
and Fisher (1997)

Definition 2.3. (Multifractal Process). A stochastic process X(t) is called
multifractal if it has stationary increments and satisfies the scaling law

E(|X(t)|q) ∼ c(q)tτ(q)+1

for all t ∈ T , q ∈ Q where T and Q are real line intervals. T and Q have
positive length with 0 ∈ T , [0, 1] ⊆ Q, τ and c are functions with domain Q.

The function τ is called the scaling function. This function has an intercept
τ(0) = −1, moreover, the function is concave (for the proof see B. Mandel-
brot and Fisher (1997)). The research of scaling function is a main subject of
multifractality detection methods which will be introduced in the next section.
The definition claims that the multiscaling is able to reflect the behavour of
various size of process fluctuations because their weight in the mean changes
by changing q. The higher is q, the more weight is put on large fluctuations
Kantelhardt (2008). If τ(q) is a linear function of q we say that the processes
is uniscaling and is identified by a single exponent. For this reason all sizes of
fluctuations must be ruled by the same scaling law. In addition to that, for
self-affine processes it holds (B. Mandelbrot and Fisher (1997)):

τ(q) = qH − 1

. The H measure is the famous Hurst exponent which will be defined soon.
Usually this relationship is often generalized in the empirical analysis and so-
called generalized Hurst exponent H(q) is used
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τ(q) = qH(q)− 1 (2.1)

The second moment is in the main subject of many academics for the reason
it relates to scaling of the autocorrelation function and it helps us to detect long
memory in a process by this way. It can be defined with reference to Di Matteo
(2007):

Definition 2.4. (Hurst exponent). X(t) is a Gaussian random function for
which E(X(t)) = 0 and E(X2(t)) = 1 and C(∆t) is its auto-correlation function

C(∆t) = E|X(t)X(t+ ∆t))

If the auto-correlation function has the following behavior C(∆t) ∼ |∆t|−β

as ∆t→ +∞ where 0 < β ≤ 2. Then

H = 1− β

2

is called the Hurst exponent.

The value of the Hurst exponent could indicate if the process is correlated or
not. The case when Hurst exponent is equal to 0.5 tells us that the increments
of a process are independent or short-term correlated. When 0.5 < H < 1
the process is persistent. In other words we can say that the process has a
long memory or long-term correlated. For the latter case it is more likely that
a positive change in price will be followed by another positive and negative
one by another negative change. Also long-term correlated process has the
autocorrelation function which decays very slowly. When 0 < H < 0.5 the
process is called antipersistent. For such a process, it is more likely that an
increment will be followed by an opposite sign increment than with a positive
one Di Matteo (2007).

Up to now we discussed the global scaling properties of a process. For
completness, we also provide a definition of the Hölder exponent. Having this
exponent one can capture local scaling properties of a process. Following the
Di Matteo (2007):

Definition 2.5. (Hölder exponent). Let X(t) be a stochastic process. The
Hölder exponent α(t) is defined by the relation:

ct(∆t)α(t) ∼ E|X(t+ ∆t)−X(t)|
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as ∆t → 0. Here α(t) and ct are, respectively, the local Hölder exponent
and the prefactor at t.

At a given point t the Hölder exponent describes a roughness of a process.
The rule is: having the lower value of the Hölder exponent the rougher a process
is. It was already mentioned that unifractals are defined by a single value
of scaling exponent at every point of the process. While for the multifractal
processes the Hölder exponents is not unique but it is a continuum of local
scales Di Matteo (2007).

There is another way to characterize multifractals using a so called multi-
fractal spectrum if the scaling function τ(q) is defined. Legendre transformation
of the scaling function can be applied in order to obtain multifractal spectrum
(for the derivation see Riedi (1999)). The width of multifractal spectrum is an
indicator whether the process is multiscaling (at τ ′(q) = α). The wider is the
difference between maximum and minimum values of α the more likely process
is multifractal:

f(α) = qα− τ(q)

or alternatively using the generalized Hurst exponent (2.1)

α = H(q) + qH ′(q) and f(α) = q[α−H(q)] + 1

Before presenting methods which can detect multifractality, we will intro-
duce two types of multifractality source Kantelhardt (2008). To be more precise
multifractalty of time series can be caused by these two occurrences:

• Firstly, multifractality can be caused by the data being drawn from a
heavy-tailed probability distribution.

• Secondly, by the long-term correlations of small and large fluctuations.

Very straightforward and well known way to detect the source of multifrac-
tality is to shuffle the data randomly and apply the multifractal test. If a data
do not show multifractality after the shuffling but showed before, the source
is long-term correlations. If the shuffling did no impact on the data then the
distribution is the main reason for multifractality. Also it can be the other case
then multifratality of the data will be just weakened. This means that both
sources of multifractality exists in the data Kantelhardt and Zschiegner (2002).
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2.3 Multifractality detection methods

The previous section explained the multifractal property of the time series and
described how scaling function defines it. This section presents two methods
which will be used to conduct the multifractal analysis in the the empirical part
of this research. The first of the methods is the Generalized Hurst exponent
(GHE) method which measure the multifractality by using the increments of
the time series. Although the method is simple and easily applied, unfortu-
nately it can not be used for the nonstationary time series. For this reason the
Multifractal detrended Fluctuation (MF-DFA) analysis is introduced in order
to detect the level of multifractality of the price indices presented in the fol-
lowing chapter. The procedure, which is deployed relatively simple for both of
them, will be presented shortly by describing correct usage step by step. The
finite sample properties of each of them will be discussed as well. As usual, they
has its strengths and weaknesses and we want to implement the complex anal-
ysis of multifractality by employing both of them. The purpose of performing
the multifractal analysis is to find out if we are dealing with monofractality or
multifractality in the intra-day time series by estimating the scaling function
described in the previous section.

2.3.1 Generalized Hurst Exponent

The first selected method in our research is the Generalized Hurst Exponent.
The word "generalized" stamds for the fact that this method is capable to detect
not only monofractal process, but multifractal as well. The provided GHE
procedure is based on Di Matteo, Aste, and Dacorogna (2005):

• For the given a time series of prices Pt, calculate the logarithmic returns
rt = logPt − logPt−1 where t = 1, ..., T

• Calculate statistics for which the properties of fractality will be studied:

Kq(∆t) =
∑T−∆t
t=0 |r(t+ ∆t)− r(t)|q∑T−∆t

t=0 |r(t)|q

• Repeat the previous step with different values of ∆t . The minimum value
for ∆t is one unit of time of price series

• Analyze log-log plots of ∆t versus Kq(∆t) for different values of q. If there
are any traces of fractality in the time series, then the statistics Kq(∆t)
has scaling behavior:

Kq(∆t) ∼ c∆tqH(q)
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• In order to estimate the Hurst exponent H(q), a simple linear regression
can be applied on logarithm of both sides of scaling behavior.

2.3.2 Multifractal Detrended Fluctuation Analysis

The Multifractal Detrended Fluctuation Analysis (MF-DFA) was selected as
a second method in order to disregard the nonstationarities in the analyzed
time series. It is a generalization of the Detrended Fluctuation Analysis that
is capable to detect monofractality only. The Detrended Fluctuation Analysis
is appropriate method for measuring the scaling properties of time series and
its generalization was derived to estimate the generalized Hurst exponent Kan-
telhardt and Zschiegner (2002). The provided MF-DFA procedure is based on
Kantelhardt (2008):

• Calculate the so called profile in the first step :

Y (t) =
t∑

k=1

(
r(k)− 1

T

T∑
k=1

r(k)
)
, t = 1, ..., T.

• Divide the profle Y (t) into Ts equal segments which do not overlap:

Ts =
⌊
T

s

⌋

• Estimate the local trend yν,s(i) for each of the ν = 1, ..., Ts segments by
fitting the polynomial order m (order can be chosen freely, e.g. linear,
quadratic, cubic, etc.). Then calculate the variance:

F 2(s, ν) = 1
s

s∑
i=1
{Y [(ν − 1) + i]− yν(i)}2, ν = 1, ..., Ts

• Average the variance over all segments in order to obtain the q-th order
fluctuation function:

Fq(s) =
(

1
Ns

Ns∑
ν=1

[F 2(s, ν)]q/2
)1/q

where q ∈ R/{0}. For q = 0 adjusted fluctuation function is introduced:

F0(s) = exp

(
1

2Ns

Ns∑
ν=1

ln[F 2(s, ν)]
)
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• Repeat the previous steps for various lengths s to retrieve the rule how
the function Fq(s) depends on s.

• Analyze log-log plots of s versus Fq(s) for different values of q.If there are
any traces of fractality in the time series, then:

Fq(s) ∼ sH(q)

• In order to estimate the Hurst exponent H(q), a simple linear regression
can be applied on logarithm of both sides of scaling behavior.

2.4 Volatility forecasting models

In the following section we briefly discuss the general concept of volatility which
will provide the background for the subsequent sections on volatility forecasting
models. Also the estimator of realized volatility will be presented which con-
cept will be implemented into standard Binomial Markov-Switching Multifractal
model in order to compare forecasting accuracy to well-known Heterogeneous
Auto-Regressive model of realized volatility.

2.4.1 The concept of volatility

This section uses the discussion based on the Andersen (2006) of the volatil-
ity modeling. In the most cases the models of volatility takes the following
definition of financial returns over the points in time t = 1, ..., T :

rt = µt + σtεt (2.2)

where rt = ln(Pt/Pt−1), Pt is the asset price, µt = Et−1[rt] is the time t− 1
conditional mean of the returns, σ2

t = V art−1[rt] is the conditional volatility or
variance process and εt is the error component which is an independently and
identically distributed with mean zero and variance equal to one. In this thesis
we consider the error term to be distributed according to standard normal. Also
we will use so called ‘centered’ returns which can be modeled as

rt = σtεt (2.3)

It is important to note that the volatility σ2
t is unobservable, i.e. it is a latent

process. However Andersen (2006) showed that so called realized volatilty (RV)
obtained from high frequency (intra-day) data is an consistent estimator of the
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actual volatility at period t. According to authors the empirical estimation of
volatility can be efficiently obtained via RV:

RVt =

1
∆∑
j=1

r2(t−1+j·∆,∆) =

1
∆∑
j=1

(lnP (t−1+j·∆)−lnP (t−1+j·∆−∆))2 (2.4)

with 0 < ∆ < 1 and 1
∆ integer.

T. Andersen and Bollerslev (2001) also showed that returns standardized to
the realized volatility are distributed normally.

2.4.2 The Markov-Switching Multifractal (MSM) model

In this part of the thesis, the discrete-time version of the main model called
the Markov-Switching Multifractal (MSM) is presented. This model was firstly
proposed by Lauren Calvet (2004). The MSM model has intuitive economic
interpretation, since it employs the fact that financial markets are driven by a
number of economic units with different levels of persistence. The model is quite
simple to understand and only requires only four parameters in the binomial
version.

Lets take a financial series Pt and centered log returns defined in the previous
section. The MSM model considers a market which is driven by a first-order
Markov state vector with k volatility components:

Mt = (M1,t,M2,t, ...,Mk,t) ∈ Rk
+

The volatility is estimated by multiplying together the random first-order
Markov components. For simplicity it is assumed that the components of Mt

have the identical marginal distribution, but may vary at different frequencies.
Lets assume that the volatility state vector contains observations up to date
t− 1. For each k ∈ 1, ..., k, the multiplier of the next period Mk,t is taken from
some fixed distribution M with probability γk, and otherwise is equal to the
previous value: Mk,t = Mk,t−1. The dynamics of Mk,t may be stated as

• Mk,t Drawn from distribution M with probability γk

• Mk,t = Mk,t−1 with probability 1− γk,

it is important that these outcomes are independent across k and t. The
distribution of M has a positive support and mean equal to one: M > 0 and
E[M ] = 1 Lauren Calvet (2004).
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The multipliersMk,t are persistent and positive, also they satisfy E[Mk,t] = 1
under the assumptions mentioned above. In addition to that the multipliers are
different only by their probabilities of transition k, but not by the marginal
distribution M . The components of the different frequencies are independent:
to be more precise, the variables Mk,t and Mk′,t′ are independent when k is not
equal to k′.

According to the MSM model the volatility process σt in (2.3) is defined by
the product of k volatility components and a scale factor σ, which is a positive
constant:

σt = σ(Mt) = σ

(
k∏
i=1

Mi,t

)1/2

(2.5)

because of the fact that multipliers are statistically independent, the param-
eter σ coincides with the unconditional standard deviation of the rt.

Now let RV (d)
t be an estimate of daily realized variance. In order to apply

the MSM model for RV (d)
t , we only consider the volatility specification in (2.5):

RV
(d)
t = RV (d)

k∏
i=1

Mi,t (2.6)

By using E[Mi,t] = 1 one can derive the equality E[RV (d)
t ] = RV (d). There-

fore, we may obtain an estimate of the scaling factor RV (d) as

R̂V
(d) = 1

T

T∑
t=1

RV
(d)
t (2.7)

The transition probabilities γ = (γ1, γ2, ..., γk) of each Markov component
was proposed by Laurent Calvet and Fisher (2001) as follows:

γk = 1− (1− γ1)bk−1
, where γ1 ∈ (0, 1), b ∈ (1,∞) (2.8)

For a process with very persistent components, i.e. a low value of γ1 and
for a small value of k, the quantity γ1b

k−1 remains small, and the transition
probability satisfies:

γk ≈ γ1b
k−1 (2.9)

The parameter b measures the rate the transition probabilities grow for low
frequencies. The rate of increase slows down as k gets closer to the final k,
and condition (2.9) ensures that the parameter γk to be lower than 1. In em-
pirical applications the parameters k and b needs to be estimated. By having
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the transition probability k estimated, we can isolate γ1, and thus calculate the
probabilities recursively at all k volatility components using relationship (2.9).
As it was mentioned the MSM uses only a few restrictions on the marginal distri-
bution of the multipliers: M > 0 and E[M ] = 1. This allows flexible parametric
or non-parametric specifications of the multipliers M . In the small number of
available literature on multifractals, the multipliersM have been assumed to be
either a Binomial or a Lognormal distributed. In this research we will employ
the Binomial version for the distribution of the volatility components as there
is no huge difference in performance, but Binomial case is more simple.

2.4.3 The Binomial Markov-Switching Multifractal (MSM)
model

Based on Lauren Calvet (2004) the Binomial MSM (BMSM) is constructed by
specifying the random variableM as a Binomial random variable with only two
possible values, m0 andm1. For simplicity we assume that these two values have
equal probability of occurring by specifying thatm1 = 2−m0. This guarantees a
mean equal to one for all components ofM . We may freely choose the number of
frequency components we want to use in the MSM model. However the optimal
number depends upon the number of observations and type of the considered
data. Once the number of k volatility components has been chosen, the BMSM
model with Gaussian error term is a specified Markov-Switching process with
2k states and the vector of parameters:

φ = (m0, σ, b, γk)

wherem0 describes the distribution of the multipliers, σ is the unconditional
standard deviation of returns, which defines the average level of volatility, b and
γk define the set of probabilities to switch the value. To be more precise, k
controls the frequency or persistence of the highest frequency component, and b
determines the frequency of all the other frequency components relative to the
highest one. by having specified the full parameter vector one may proceed to
Maximum Likelihood estimation.

Maximum Likelihood Estimation

If one assumes that the multipliers M has a discrete distribution, then there
exist a finite number of volatility states. This allows standard methods to pro-
vide the likelihood function of the MSM model in closed form.
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Updating the State Vector
Under the above assumption, the Markov state vector Mt takes d = 2k

number of values m1, ...,md ∈ Rk
+, and its dynamics are characterized by the

transition matrix A = (ai,j)1≤i,j≤d with components ai,j = P(Mt+1 = mj|Mt =
mi), i.e. the probability of being in state j at time t+ 1 conditional on being in
state i at time t. Conditional on the volatility state, the error term εt is assumed
to have Gaussian density f(rt|Mt = mi) = n[0;σ2(mi)], where n(0;σ2(mi))
denotes the density of normal distribution with 0 mean and variance equal
to σ2(mi). The researcher does not directly observe Mt but can compute the
conditional probabilities:

Πj
t = P(Mt = mj|r1, ..., rt)

i.e. the probability of being in state j depends on all available information.
The row vector of these probabilities can be stacked as Πt = (Π1

t , ...,Πd
t ) ∈ Rd

+,
and the conditional probability vector is then can be computed recursively.
Using the Bayes rule, Πt can be expressed as follows:

Πt = ω(rt) ∗ (Πt−1A)
[ω(rt) ∗ (Πt−1A)]1′

where 1 = (1, ..., 1) ∈ Rd, x∗y stands for the Hadamard product (x1y1, ..., xdyd)
for any x, y ∈ Rd, and

ω(rt) = (n[µ;σ2(m1)], ..., n[µ;σ2(md)])

In empirical applications, the initial vector Π0 is chosen to be the ergodic
distribution of the Markov process. Since the multipliers are mutually indepen-
dent, the ergodic distribution is given by Πj

0 = Πk
l=1P(M = mj

l ) for all j, i.e. in
the first iteration we assign equal probability to all the possible states, which is
Π0 = 1/d.

Closed-Form Likelihood
Lauren Calvet (2004) has shown that, based on the comments above, a

closed-form log-likelihood function can be expressed as

lnL(r1, ..., rT ;φ) =
T∑
t=1

ln[ω(rt) · (Πt−1A)]
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where x · y denotes the inner product x1y1, ..., xdyd for any x, y ∈ Rd. For
a fixed k, it is known that the ML estimator is consistent and asymptotically
efficient as T →∞.

Even-though the development of a closed form likelihood algorithm was a
large step forward for the improvement of MSM model, it has restrictions in the
distributional assumptions of the multipliers by the sense that it only works for
discrete distributions and is not applicable for continuous ones, e.g. a Lognormal
distribution. ML estimation, in the Binomial case, also encounters bounds of
computational performance for selecting the more than about k = 10 volatility
components due to the large vector of the possible states. For this reason we
will use k = 10 components in the empirical part.

However, an advantage of the ML procedure is that it is able to obtain
optimal forecasts by updating of the conditional probabilities Πj

t = P(Mt =
mj|r1, ..., rt) for the volatility states mj.

Forecasting Volatility using the MSM model

In a very simple way one can extend the likelihood function algorithm of the
MSM model to produce volatility forecasts by the any horizon. In order to
obtain the optimal forecasts a vector of forward state probabilities needs to be
calculated, i.e. a vector of elements P(Mt+h = mj|r1, ..., rt), where h denotes the
number of steps ahead. The forward vector can be derived using the transition
matrix A and the conditional probability vector, such that

Π̂t,h = ΠtA
h

where A is the one period ahead transition matrix. Thus Π̂t,h is the time
t conditional forecast of the probability of being in each state at time t + h.
Finally the dot-product is taken of this future vector and the vector of possible
volatility levels in order to obtain the time t+ h volatility.

2.4.4 Heterogeneous Auto-Regressive (HAR) model

The HAR model as introduced in Corsi (2009) appeared to be popular as it
has good forecasting accuracy, allows for economic interpretation and is easy to
estimate. These are the reasons we choose this model to compare the precision
level of volatility forecast with MSM model presented in the previous section.
Also there are many versions and modifications of the HAR model, however we
stick to the original model to focus on the actual volatility dynamics. For this
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reason we ignore other temporary effects, such as the leverage, which might be
employed in a HAR framework as well. Then the HAR model is defined as

lnRV (d)
t+1 = c+ β(d) lnRV (d)

t + β(w) lnRV (w)
t + β(m) lnRV (m)

t + εt+1 (2.10)

where lnRV (w)
t = 1

5
∑5
i=1 lnRV (d)

t−i+1 and lnRV (m)
t = 1

22
∑22
i=1 lnRV (d)

t−i+1 are
the weekly and monthly averages of daily log realized variances, and εt is an
error term. When these log realized variances are known, the model can be
consistently evaluated by the simple least squares method to calculate values
for c, β(d), β(w), β(m).

It was noticed by Corsi (2009) that the HAR model can be rewritten to a
constrained AR(22) model:

lnRV (d)
t+1 = φHAR +

22∑
i=1

φHARi lnRV (d)
t−i+1 + εt+1 (2.11)

where the restrictions as employed by (2.10) are required to be

φHARi =


β(d) + 1

5β
(w) + 1

22β
(m), for i = 1

1
5β

(w) + 1
22β

(m), for i = 2, ..., 5
1
22β

(m), for i = 6, ..., 22

(2.12)
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Chapter 3

Empirical Results

This chapter introduce data sets used for research in section 2.1. Also it repre-
sents the reliability of multifractality detection methods based on Monte Carlo
simulations in section 2.2. Section 2.3 contains a discussion on the results from
detection methods of multifractality. Finally section 2.4 presents MSM and
HAR models results and includes discussion on volatility forecasting.

3.1 Data Selection

For the purpose of applying the theories and methods described in the previous
chapter, a dataset with a history from the beginning of 2017 has been selected.
The dataset contains four major aggregated indices, which individually are com-
posed of a number of minor indices. The selected indices are the Dow Jones
Industrial Average (D&J), Australian Securities Exchange (ASX), Nikkei-225
(NI225) and NASDAQ-100 (NDX). These indices covers a wide range of indus-
try sectors except the ASX index which is for security exchanges. The datasets
were exported from finam.ru and the index prices are quoted in USD. Observa-
tions of 5 minutes frequency were obtained for each of the indices in the time
period from January 1, 2017 to November 2, 2017. This gives a collection of
17437 synchronized 5 minutes observations for D&J index, 15714 - for ASX
index, 12867 - for NI225 and 16615 for NDX index. The count of observations
is inconsistent among these indices due to different working days and hours.

All the selected and derived data (returns, realized volatility) is depicted
graphically in the appendix A.
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3.2 Robustness of Multifractality Detection Meth-
ods

In this subsection we present the robustness of both selected methods to detect
multifractality in the previous chapter. It is known that none of the mentioned
methods have asymptotic theory. This leads to natural question about cor-
rectness of methods. In order to evaluate whether the multifractality detection
methods are working as expected, we performed simple test by simulating a set
of realizations in both mono-fractal and multifractal cases. Fractional Brownian
motion (fBm) represents mono-fractal process. The fBm is a continuous-time
Gaussian process BH(t) on [0, T ], which starts at zero, has expectation zero for
all t in [0, T ], and has the following covariance function:

E[BH(t), BH(s)] = 1
2(|t|2H + |s|2H − |t− s|2H),

where H is a real number in (0, 1), called the Hurst exponent associated
with the fractional Brownian motion.

One hundred Monte Carlo simulations of Fractional Brownian motion with
various Hurst exponents were generated to obtain mono-fractal processes. Table
3.1 depicts means and standard deviations of GHE estimates of Monte Carlo
simulations. At the lower values of H the GHE method vary less than on higher
values. Standard deviations for H = 0.9 fluctuates around 0.02, while at the
lowest level of H = 0.1 it is observed to be from 0.007 to 0.009. Nevertheless, it
is relatively small variations and we can state that GHE can detect mono-fractal
process properly.

Table 3.2 depicts means and standard deviations of MF-DFA estimates of
Monte Carlo simulations. The similar tendency is observed on MF-DFA method
as well. Lower values of H varies less than higher Hurst exponents. Standard
deviations for H = 0.1 fluctuates around 0.009, while at the higher level of
H = 0.9 it is observed to be from 0.02 to 0.041. In addition to that standard
deviations tend to be smaller at the positive order of moments.
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Table 3.1: H estimations by GHE: mono-fractal case

Moment
order

HHH
HHHH

Measure
H

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1
Mean 0.100 0.199 0.300 0.400 0.498 0.599 0.690 0.776 0.862
SD 0.009 0.011 0.012 0.015 0.014 0.016 0.019 0.022 0.021

2
Mean 0.100 0.202 0.300 0.398 0.499 0.595 0.690 0.781 0.858
SD 0.007 0.009 0.011 0.014 0.020 0.018 0.017 0.021 0.021

3
Mean 0.010 0.198 0.298 0.397 0.498 0.595 0.692 0.777 0.859
SD 0.008 0.010 0.013 0.014 0.015 0.017 0.020 0.019 0.020

Table 3.2: H estimations by MF-DFA: mono-fractal case

Moment
order

HH
HHH

HH
Measure

H
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-3
Mean 0.124 0.215 0.316 0.410 0.513 0.619 0.714 0.824 0.916
SD 0.009 0.015 0.010 0.029 0.028 0.035 0.035 0.030 0.041

0
Mean 0.114 0.206 0.306 0.402 0.504 0.607 0.670 0.809 0.901
SD 0.009 0.015 0.020 0.030 0.028 0.033 0.034 0.034 0.041

3
Mean 0.105 0.198 0.297 0.395 0.494 0.595 0.686 0.795 0.885
SD 0.008 0.010 0.013 0.014 0.015 0.017 0.012 0.019 0.020

In order to obtain robustness test on multi-fractal processes we choose to
generate one hundred Monte Carlo simulations using MSM model, presented
in the previous chapter, with various sets of parameters. Sets of parameters
are showed in the 3.3 and 3.4 tables. Table 3.3 depicts means and standard
deviations of GHE estimates of multi-fractal Monte Carlo simulations. It can
be seen that standard deviations remains small in all cases regardless the set of
parameters and order of moments. It fluctuates only from 0.002 to 0.012 and
state that GHE method is stable to detect multifractality in the process.

Table 3.4 depicts means and standard deviations of MF-DFA estimates of
multi-fractal Monte Carlo simulations. The very similar tendency is observed on
MF-DFA method as well. It shows only small standard deviations disregarding
the set of parameters and order of moments. In MF-DFA case it fluctuates only
from 0.001 to 0.009 and state as well that MF-DFA method is robust to detect
multifractality in the process. The brighter difference is that estimates of MF-
DFA significantly differ from GHE estimates. This happens due to difference
of methods and the fact that different H is observed for different ∆t.
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Table 3.3: H estimations by GHE: multi-fractal case

Moment
order

XXXXXXXXXXXXXX
Measure

Parameters

k = 10
b = 2

m0 = 1.5
γk = 0.9
σ = 0.1

k = 10
b = 2

m0 = 1.5
γk = 0.9
σ = 0.2

k = 15
b = 5

m0 = 1.5
γk = 0.8
σ = 0.1

k = 15
b = 5

m0 = 1.5
γk = 0.8
σ = 0.2

k = 15
b = 10
m0 = 1.5
γk = 0.5
σ = 0.1

1
Mean 0.525 0.532 0.526 0.529 0.581
SD 0.003 0.006 0.004 0.002 0.004

2
Mean 0.449 0.436 0.438 0.440 0.497
SD 0.003 0.007 0.008 0.003 0.006

3
Mean 0.326 0.280 0.377 0.316 0.370
SD 0.004 0.009 0.012 0.004 0.010

Table 3.4: H estimations by MF-DFA: multi-fractal case

Moment
order

XXXXXXXXXXXXXX
Measure

Parameters

k = 10
b = 2

m0 = 1.5
γk = 0.9
σ = 0.1

k = 10
b = 2

m0 = 1.5
γk = 0.9
σ = 0.2

k = 15
b = 5

m0 = 1.5
γk = 0.8
σ = 0.1

k = 15
b = 5

m0 = 1.5
γk = 0.8
σ = 0.2

k = 15
b = 10
m0 = 1.5
γk = 0.5
σ = 0.1

-3
Mean 0.466 0.576 0.660 0.838 0.783
SD 0.004 0.004 0.007 0.006 0.004

0
Mean 0.371 0.411 0.420 0.506 0.526
SD 0.002 0.001 0.001 0.001 0.002

3
Mean 0.213 0.149 0.166 0.161 0.182
SD 0.002 0.002 0.005 0.007 0.009

3.3 Results of Multifractality Detection Meth-
ods

When we are sure that GHE and MF-DFA methods are robust enough to de-
tect multi-fractality, we present the results received by using the real financial
indices. Firstly, we estimated GHE statistics for q = 1, q = 2 and q = 3. The
figure 3.1 depicts the results: logarithm values of GHE statistics lie on the ver-
tical axis while horizontal axis marks the logarithm of ∆t. Blue line stands for
q = 1, green line - for q = 2 and red line - for q = 3. It can be seen that all four
indices have similar behaviour of the GHE statistics. Set of the statistic’s values
for q = 2 and q = 3 have more similar slope while the slope for the blue line
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differs significantly. These results make a colculsion that GHE method found
the trace of multifractality in all of the selected indices.

(a) D&J index (b) ASX index

(c) NI225 index (d) NDX index

Figure 3.1: GHE values for q = 1 (blue), q = 2 (green) and
q = 3 (red)

Secondly, we estimated MF-DFA statistics for q = −5, q = 0, q = 5 and
evaluated Hurst exponent. The figure 3.2 depicts the results of D&J index:

• the first graph shows the relations of MF-DFA statistics Fq and different
segment sizes for different order of moments;

• the second graph depicts the relationship between Hurst exponent and
the q order of moments;

• the third graph shows the dependancy of τ function and the q order of
moments;

• the last graph indicates multifractal spectrum and its width.

It can be seen that statistics of MF-DFA and the slope of different moment
order behaves similar to the GHE results. The second and the third graph
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illustrates that H and τ functions have non linear dependancy of q order of
moments. According to theory, this indicates that D&J index has property of
multi-fractality. In addition to that we calculated the multi-fractal spectrum
described in the previous chapter. Typical width of multi-fractal spectrum
for mono-fractal process fluctuates from 0.142 to 0.168. It was calculated by
measuring multi-fractal width of the fBM simulations used for robustness test
of multi-fractal detection methods in the previous section. In comparison, we
observed 0.46 width of multi-fractal spectrum for D&J index and that also
indicates the multi-fractal process.

The figure 3.3 depicts the results of ASX index, figure 3.4 - NI225 index,
figure 3.5 - NDX index. Basically, all the figures represents very similar results
to D&J index. All cases distinguish oneselfs by multifractality. Each figure
illustrates that H and τ functions depends on q order of moments in a non
linear way. Multi-fractal spectrum is wide enough to state that data is multi-
fractal as well.

Figure 3.2: MF-DFA results for D&J
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Figure 3.3: MF-DFA results for ASX

Figure 3.4: MF-DFA results for NI225
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Figure 3.5: MF-DFA results for NDX

3.4 Estimated Models and Accuracy of Predic-
tion

In this subsection we show the accuracy results of realized volatility forecasts by
Markov switching multifractal model and compare it to forecasts of well-know
Heterogeneous auto-regressive model. Models were fitted to realized volatility
of each of selected index. Fitted models were used to predict the future values
and compare it by two methods: in sample and out of sample. By using in
sample method we are forecasting for an observations that was part of the data
sample while forecasting for an observation that was not part of the data sample
is defined by out of sample method. We used four different prediction horizons
for comparison of accuracy: 1, 5, 10 and 20 steps ahead. Mean absolute error
(MAE) was chosen as a measure of prediction goodness and let us to compare
forecast errors between two models.

Table 3.5 represents the in sample MAE results retrieved from predictions
by both models and real values of realized volatility . For D&J index it was clear
that at lower horizons MSM performs better in terms of prediction. We can say
the same about NI225 and NDX - for horizons up to 10 MSM predicts more
accurate compared to HAR model. Meanwhile MSM model showed slightly
worse results for one step ahead for ASX index, however it was better at 5 and
10 horizons as well. Clearly, the HAR model performed better at the highest
horizon of 20 steps ahead for all selected indices.
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Table 3.6 depicts out of sample MAE results obtained from difference of
predictions by both models and real values of realized volatility. The better
prediction of D&J index was observed for one step ahead only by MSM model
while HAR model performed better at other horizons. Similar tendency remains
on NI225 index, however MSM was better on h = 2 as well. The HAR model
was outperformed fully by MSM on all horizons for ASX index, but the opposite
results were obtain for NDX index where results are in favor of HAR model.
All in all we can conlude that MSM model predict better at shorter horizons,
while HAR model performs well at long horizons.

Table 3.5: MAE ∗ 107: In Sample

Data
set

PPPPPPPPPModel
Horizon

h = 1 h = 5 h = 10 h = 20

D&J MSM 0.119 0.284 0.240 0.451
HAR 0.440 0.307 0.324 0.318

ASX MSM 0.494 0.707 0.926 1.165
HAR 0.430 1.216 1.012 0.957

NI225 MSM 0.681 1.156 1.300 0.969
HAR 1.477 1.149 1.452 1.396

NDX MSM 1.226 1.372 1.277 1.502
HAR 1.468 0.949 1.270 1.108

Table 3.6: MAE ∗ 107: Out of Sample

Data
set

PPPPPPPPPModel
Horizon

h = 1 h = 5 h = 10 h = 20

D&J MSM 0.111 0.388 0.344 0.362
HAR 0.202 0.278 0.281 0.258

ASX MSM 0.241 0.508 0.538 0.489
HAR 0.317 0.717 0.656 0.862

NI225 MSM 0.069 0.864 1.175 1.241
HAR 1.326 1.329 1.071 0.929

NDX MSM 0.768 0.915 1.150 1.257
HAR 0.306 0.366 0.484 0.618
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Chapter 4

Conclusions

In this thesis we have focused on multifractality detection of intra-day financial
data and modeling realized volatility using discrete time model. More specifi-
cally, we have examined the properties of the multi-fractality and discrete time
Markov Switching Multifractal model, and compared it to other model of real-
ized volatility.

Firstly, we presented the main concepts of multi-fractality and some of its
detection methods, then following this we introduced the main model of the
paper and the HAR model we wanted to make comparison with MSM model.

In the empirical part of the paper, we introduced the selected data and
measured how robust multi-fractality detection methods are as and used them
to ascertain whether the intra-day financial indices have multifractal traces or
not. Also we compared the prediction accuracy of models by mean absolute
error in two ways: in-sample and out-of-sample.

The results of robustness of multi-fractal detection methods showed that
both GHE and MF-DFA are stable and reliable to determine whether the proces
is multifractal or not. Following this conclusion we could apply these methods
on four real financial indices. Comparing to similar studies on daily returns
data, both methods GHE and MF-DFA revealed that each of the four selected
intra-day indices have the property of multi-fractal as well.

In the comparison of realized volatility forecasts with in-sample method by
MSM and HAR models, we found slight evidence suggesting that the MSM
model is competitive on the short horizons and is outperformed on long horizon
by HAR model in the most cases. The similar results were observed by out-of-
sample method as well.
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Appendix A

Appendix

Figure A.1: D&J index 5-minutes prices from January 1, 2017
to November 2, 2017

Figure A.2: ASX index 5-minutes prices from January 1, 2017
to November 2, 2017
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Figure A.3: NI225 index 5-minutes prices from January 1,
2017 to November 2, 2017

Figure A.4: NDX index 5-minutes prices from January 1, 2017
to November 2, 2017
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Figure A.5: D&J 5-minutes returns from January 1, 2017 to
November 2, 2017

Figure A.6: ASX 5-minutes returns from January 1, 2017 to
November 2, 2017
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Figure A.7: NI225 5-minutes returns from January 1, 2017 to
November 2, 2017

Figure A.8: NDX realized daily volatility from January 1, 2017
to November 2, 2017
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Figure A.9: D&J realized daily volatility from January 1, 2017
to November 2, 2017

Figure A.10: ASX realized daily volatility from January 1,
2017 to November 2, 2017
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Figure A.11: NI225 realized daily volatility from January 1,
2017 to November 2, 2017

Figure A.12: NDX realized daily volatility from January 1,
2017 to November 2, 2017
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