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Chapter 1

Introduction

The Navier-Stokes equations, named after the Claude-Louis Navier (1785-
1836) and George Gabriel Stokes (1819-1903), were derived in the early
1800’s: Naviers original but inconsistent proof in 1822, later the equations
were rediscovered by Cauchy in 1823, by Poisson in 1829, by Saint-Venant
in 1837, and by Stokes in 1845 (see [5]). These equations are coupled partial
differential equations used in fluid mechanics to describe the motion of an
incompressible viscous fluid (for example water, oil, etc.). The Navier-
Stokes equations illustrate the relation between the velocity, pressure and
external force of a moving fluid (see [2]).

If we denote by Ω ⊂ Rn, n = 2, 3, some domain and by [0, T ) a fixed
time interval with 0 < T ≤ ∞, then the full nonlinear Navier-Stokes system
in Ω× [0, T ) has the form (see, e.g. [46])

ut − ν∆u + u · ∇u +∇p = f , x ∈ Ω,

divu = 0, x ∈ Ω,

u|∂Ω = a, x ∈ ∂Ω,

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

Here u = u(x, t) = (u1(x, t), ..., un(x, t)) is the unknown velocity, p = p(x, t)
the unknown pressure, f = f(x, t) = (f1(x, t), ..., fn(x, t)) the given density
of the exterior force, ν > 0 the viscosity coefficient (which depends on
physical properties of the fluid and is constant throughout the dissertation),
a = a(x, t) = (a1(x, t), ..., an(x, t)) the given boundary value and u0(x) the
given initial velocity with t ∈ [0, T ), x = (x1, ..., xn) ∈ Ω.

The Navier-Stokes equations are derived from the basic principles of
continuity of mass, momentum, and energy (see, e.g. [2]). The first equation
(1.1)1 describes the balance of forces. The second one (1.1)2 means that the
fluid is homogeneous and incompressible. The third and fourth equations
(1.1)3,4 give the boundary and initial conditions.
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The Stokes equations are in fact the linearized Navier-Stokes equations,
i.e. they can be described by the same system (1.1) without the nonlinear
term u · ∇u: 

ut − ν∆u +∇p = f , x ∈ Ω,

divu = 0, x ∈ Ω,

u|∂Ω = a, x ∈ ∂Ω,

u(x, 0) = u0(x), x ∈ Ω.

(1.2)

The Navier-Stokes equations were (and still are) in the area of interest
of many acknowledged mathematicians (see, e.g. [9], [18], [47]). Never-
theless the Navier-Stokes equations are still the source of many interesting
problems, such as: Navier-Stokes existence and smoothness problem stated
by the Clay Mathematics Institute on May 24, 2000, as one of the seven
Millenium Prize problems, or the so-called Flux Leray’s problem which was
open for more than 80 years and was only recently solved in two dimen-
sional and three dimensional axially-symmetric cases (see [15]) leaving the
general three dimensional case still open. There are also many useful and
interesting applications of the Navier-Stokes equations such as designing
aerodynamically stable footballs, predicting the weather or simulating the
fluids in computer animation.

Actuality and literature review
In order to solve the Navier-Stokes (1.1) or Stokes (1.2) equations one has
to find the functions u and p. However, practice shows that these equations
for most problems are too difficult to solve analytically. Therefore, it be-
came usual to look for certain approximations or/and simplifications of the
equations which could be solved1. Consequently, the asymptotic behaviour
of the solutions to the Stokes and Navier-Stokes equations became a very
important topic.

The asymptotic behaviour of the solutions to the Stokes and Navier–
Stokes equations in singularly perturbed domains become of growing interest
during the last fifty years. There is an extensive literature concerning these
issues for various elliptic problems, see, e.g., [23], [25], [26], [30]–[37], [49],
[12], [4], [3]. In particular, the steady Navier-Stokes equations are studied
in a punctured domain Ω = Ω0 \ {O} with O ∈ Ω0 assuming that the point
O is a sink or source of the fluid [14], [44], [45] (see also [16] for the review
of these results). Although the steady Navier–Stokes equations in singulary

1Note, that nowadays these groups of simplified equations can be solved using the high
speed computers. To do so, computational fluid dynamics uses different techniques: finite
difference, finite volume, finite element, spectral methods.
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perturbed domains are well studied, there are few papers studying the initial
boundary value problem for the non-stationary Navier-Stokes equations in
such domains (e.g., [38]–[40]). We can also mention the recent paper [17]
where the Dirichlet problem for the nonstationary Stokes system is studied
in a three-dimensional cone.

There are many applications of source singularities in fluid mechanical
modelling. Point source-sink pairs are often of use as simple models for
driving flow through a gap in a wall. The use of localized suction to control
vortices around aerofoil sections is one of such problems. In oceanography,
it is common to use point sources to model the influx of fluid from channels
and holes. There are also applications of pulsed source-sink systems in the
study of chaotic advection and many others.

Constructing the asymptotic representation of the solution to the Stokes
problems near the cusp point O we use the ideas proposed in the pa-
per [33] where the asymptotic behaviour of the solutions to stationary
Stokes and Navier-Stokes problems was studied in unbounded domains with
paraboloidal outlets to infinity. In turn the method used in [33] is a vari-
ant of the algorithm of constructing the asymptotics for solutions to elliptic
equations in slender domains, see, e.g., [20], [21], [27], [22] for arbitrary el-
liptic problems, [28], [32] for the stationary Stokes and Navier–Stokes equa-
tions and [38]–[40] for the nonstationary and time-periodic Navier–Stokes
equations.

It is mentioned in [33] that for solutions of the stationary Stokes and
Navier–Stokes problems the asymptotic representation near a power cusp
point on the boundary can be constructed just by the same arguments as
for the case of a "paraboloidal outlet to infinity". The distinction between
the cusp point and the "paraboloidal outlet" is that in the first case the
asymptotic representation is constructed as xn goes to 0, while in the second
case the problem is considered as xn goes to infinity. In both cases the same
coordinate transformation is used. However, in [33] the explicit formulas
were not presented.
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Figure 1.1: Domain Ω.

In the thesis we consider stationary, time-periodic and nonstationary
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Stokes problems in domains Ω = ΩH ∪Ω0 having a singular point O on the
boundary (for more detailed description of the domain see Figure 1.1 and
Chapter Notation and auxiliary results). We assume that there is a source or
a sink of the fluid in the cusp point O. Therefore, the solutions are necessary
singular. We prove the existence of singular solutions to stationary, time-
periodic and nonstationary Stokes problems in the case when the boundary
value a has nonzero fluxes.

Aims and problems
The main aim of the dissertation is the analysis of Stokes problems (sta-
tionary, time-periodic and nonstationary) in bounded domains having a
peak-type singularity (power cusp singularity). More precisely, our objec-
tive is to prove the existence of singular solutions for Stokes problems in
power cusp domains. In order to do that, we:

• construct the formal asymptotic expansion of the solutions to the
Stokes problems (stationary, time-periodic and nonstationary) near
the singular point of the boundary,

• prove the existence of singular solutions for the Stokes problems (sta-
tionary, time-periodic and nonstationary) in power cusp domains.

Methods
In the thesis we use methods of functional analysis, properties of Sobolev
spaces, both ordinary and partial differential equations theory. We ap-
ply matched asymptotic expansion ideas and techniques. We construct a
boundary-layer-in-time with the fast time depending on the space variable.

Novelty
All results obtained in the thesis are new. To our best knowledge, the
formal asymptotical representation for singular solutions of stationary, time-
periodic and nonstationary Stokes problems in a power cusp domain are
presented for the first time. The existence of such solutions was not known.
As far as we know, the construction of the boundary-layer-in-time with the
fast time depending on the space variable is new. We do not know any
papers considering fast time variable depending on spacial variables.
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Structure of the dissertation and main results
The dissertation consists of five Chapters, Conclusions and Bibliography.
The first Chapter is an introduction to the area of research. It contains his-
tory and actuality of the problem as well as required information concerning
the dissemination of results presented in the thesis.

For the reader convenience in Chapter 2 we present the notation which
we use in the dissertation. Some auxiliary results are also given.

In Chapter 3 we consider the stationary Stokes problem. We construct
the formal asymptotic expansion of the solution near the singular point of
the boundary. Then we prove that a solution to the given problem exist as
a sum of the asymptotic expansion and the term with finite energy.

In Chapter 4 we consider the time-periodic Stokes problem. As before we
construct the formal asymptotic expansion of the solution near the singular
point of the boundary and then prove the existence of the solution which is
represented as a sum of the asymptotic expansion and the term with finite
energy.

In Chapter 5 we consider the initial boundary value problem or the
Stokes system in a power cusp domain. We construct the formal asymp-
totic expansion of the solution near the singular point of the boundary. In
this case the asymptotic expansion consists of two parts: outer and inner
(boundary layer) asymptotics. We finish given chapter with the main result,
i.e. we prove that a solution to the given problem exists as a sum of the
asymptotic expansion and the term with finite energy.

Dissemination
The results of this thesis were presented at the following conferences

• Asymptotic Problems, Elliptic and Parabolic Issues, Vilnius, Lithua-
nia, June 1 - 5, 2015.

• Classical Problems and New Trends in Mathematical Fluid Mechanics,
Ferrara, Italy, September 29 - October 3, 2014.

• Advances in Mathematical Fluid Mechanics, Lisbon, Portugal, June
30 - July 5, 2014.

• 55th Conference of Lithuanian Mathematical Society, Vilnius, Lithua-
nia, June 26 - 27, 2014.

School

• 12th School "Mathematical Theory in Fluid Mechanics", Kacov, Czech
Republic, May 24 - 31, 2013.
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Chapter 2

Notation and auxiliary
results

For the reader convenience we shall first introduce some notation. In the
thesis vector-valued functions are denoted by bold letters. The vector valued
function u = (u1, ..., un) belongs to a Banach space V, if ui ∈ V , i = 1, . . . , n,

and ‖u‖V =
n∑
i=1
‖ui‖V .

We use C, Cj , j = 1, 2, . . . , to denote constants whose numerical val-
ues or whose dependence on parameters is unessential. Therefore, these
constants may have different values in a single computation.

By bxc we denote the integer part of the number x.
Let G be a bounded domain in Rn. In the thesis, we use usual notations

of functional spaces (e.g., [1]). By Lp(G) and Wm,p(G), 1 ≤ p < ∞, we
denote the usual Lebesgue and Sobolev spaces, respectively. The norms in
Lp(G) and Wm,p are indicated by ‖ · ‖Lp and ‖ · ‖Wm,p , respectively, or, to
be exact,

‖u‖Lp(G) =

∫
Ω

|u(x)|pdt

1/p

and
‖u‖Wm,p(G) =

∑
|α|≤m

‖Dα
xu‖Lp(G),

where Dα
x =

∂|α|

∂α1x1∂αnxn
, |α| = α1 + · · ·+ αn. Space Wm−1/p,p(∂G) is the

trace space of functions from Wm,p(G) on ∂G with the norm

‖u‖Wm−1/p,p(∂G) = inf{‖û‖Wm,p : û = u on ∂G}.

We denote by C∞(G) the set of all infinitely differentiable functions
defined on G and by C∞0 (G) the subset of all functions from C∞(G) with
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compact supports inG. By W̊ k,q(G) we denote the completion of the C∞0 (G)
in the ‖ · ‖Wm,p norm. We shall write u ∈Wm,p

loc (G) if u ∈Wm,p(G′) for any
bounded subdomain G′ such that G′ ⊂ G. The space Lp(0, T ;X) consists
of all measurable functions u : [0, T ]→ X with

‖u‖Lp(0,T ;X) =

 T∫
0

‖u(t)‖pdt

1/p

<∞, 1 ≤ p <∞.

A vector field v is called solenoidal (or divergence free) if

∇ · v = divu = 0.

If functions u, v ∈W 1,2(G) then there holds the so-called integration by
parts formula:∫

G

∂u(x)

∂xk
v(x) dx = −

∫
G

u(x)
∂v(x)

∂xk
dx+

∫
∂G

u(x)v(x)nk(x) dS, (2.1)

where (here and below) n is the unit outward (with respect to G) normal
to ∂G, nk = cos(n, xk) - cosine of an angle between normal n and xk-axis.

Domain Ω

Let Ω ⊂ Rn, n = 2, 3, be a bounded domain described as a union Ω =
ΩH ∪ Ω0 (see Fig. 2.1), where ΩH is the power cusp domain:

ΩH =
{
x ∈ Rn : |x′| < ϕ(xn), xn ∈ (0, H]

}
,

ϕ(xn) = γ0x
λ
n, γ0 = const, λ > 1, x′ = (x1, ..., xn−1), ∂Ω0 is Lipschitz and

the intersection ΩH
⋂

Ω0 is the plane xn = H.

0

xn

h H

σ(h)

H

0

Ω

Ω

Figure 2.1: Domain Ω.

We denote by σ(h) the cross-section of ΩH by the plane xn = h (see Fig.
2.1):

σ(h) = {x ∈ ΩH : xn = h = const} .
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In the thesis we also use notation

ΩH/2,H =
{
x ∈ Rn : |x′| < ϕ(xn), xn ∈ [H/2, H]

}
∪ Ω0. (2.2)

In the thesis we will use the cut-off function ξ

ξ(t) =

{
1, t ≤ H/2,
0, t ≥ H. (2.3)

Poisson problem

Throughout the thesis the same Poisson problem appears −ν∆′ϕ = 1, y′ ∈ ω,
ϕ = 0, y′ ∈ ∂ω, (2.4)

where y′ = (y1, ..., yn−1) and

ω =
{
y′ ∈ Rn−1 : |y′| < γ0

}
.

The solution ϕ to (2.4) has the form

ϕ(y′) =
1

2ν(n− 1)

(
|y′|2 − γ2

0

)
. (2.5)

Obviously the function ϕ obeys the estimates

|∂jiϕ(y′)| ≤ Ck, i = 1, ..., n− 1, j = 0, 1, ... (2.6)

Moreover, ∫
ω

ϕ(y′) dy′ = −ν
∫
ω

|∇′ϕ(y′)|2dy′ ≡ κ0 < 0 (2.7)

and ∫
ω

y′ · ∇′ϕ(y′) dy′ = −(n− 1)

∫
ω

ϕ(y′) dy′ = −(n− 1)κ0, (2.8)

where κ0 = − π

8ν
γ4

0 for n = 3 and κ0 = − 2

3ν
γ3

0 for n = 2.

Auxiliary results
Let G be an arbitrary bounded domain in Rn.
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The Dirichlet problem for the Laplace operator

Consider the Dirichlet problem for the Laplace operator −∆u = f , x ∈ G,
u = 0, x ∈ ∂G, (2.9)

Definition 2.1. The weak solution of the problem (2.9) is a vector field
u ∈ W̊ 1,2(G) satisfying the integral identity∫

G

∇u(x) · ∇η(x) dx =

∫
G

f(x) · η(x) dx,

for every function η ∈ W̊ 1,2(G).

Here and in all dissertation by∇u·∇v we mean∇u : ∇v =
n∑
j=1

n∑
k=1

∂uj
∂xk

∂vj
∂xk

.

There holds the following theorem (e.g. [8]).

Theorem 2.1. Let f ∈ L2(G). Then the problem (2.9) admits a unique
weak solution u ∈ W̊ 1,2(G) and there holds the estimate

‖u‖W 1,2(G) ≤ c‖f‖L2(G). (2.10)

Moreover, if ∂G is C∞ and f ∈ C∞(G), then solution u ∈ C∞(G).

The initial boundary value problem for the heat equation

Consider the initial boundary value problem for the heat equation
ut −∆u = f , x ∈ G,

u = 0, x ∈ ∂G,
u(x, 0) = u0(x), x ∈ G.

(2.11)

Definition 2.2. The weak solution of the problem (2.11) is a vector field u ∈
L2(0, T ; W̊ 1,2(G)) with ut ∈ L2(0, T ;L2(G)) satisfying the initial condition
u(x, 0) = u0(x) and the integral identity

t∫
0

∫
G

uτ (x, τ) · η(x, τ) dxdτ +
t∫

0

∫
G

∇u(x, τ) · ∇η(x, τ) dxdτ

=
t∫

0

∫
G

f(x, τ) · η(x, τ) dxdτ,

for every function η ∈ L2(0, T ;C∞0 (G)).
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There holds the following theorem (e.g. [8]).

Theorem 2.2. Let f ∈ L2(0, T ;L2(G)), u0 ∈ W̊ 1,2(G). Then the prob-
lem (2.11) admits a unique weak solution u ∈ L2(0, T ; W̊ 1,2(G)) with ut ∈
L2(0, T ;L2(G)) and there holds the estimate

max
t∈[0,T )

‖u(·, t)‖2W 1,2(G) + ‖u‖2L2(0,T ;W 1,2(G)) + ‖ut‖2L2(0,T ;L2(G))

≤ c‖f‖L2(0,T ;L2(G)).
(2.12)

Moreover, if ∂G is C∞, f ∈ C∞(0, T ;C∞(G)) and u0 ∈ C∞(G), then
solution u ∈ C∞(0, T ;C∞(G)).

The divergence problem

Consider the divergence problem divu = g, x ∈ G,
u = 0, x ∈ ∂G. (2.13)

From integration by parts formula (2.1) we get∫
G

n∑
k=1

∂uk(x)

∂xk
dx =

∫
∂G

n∑
k=1

uk(x)nk(x) dS,

i.e. there holds Stokes formula∫
G

divu(x) dx =

∫
∂G

u(x) · n(x) dS.

Hence, if u(x) is a solution of the problem (2.13), we necessarily have∫
G

g(x) dx =

∫
G

divu(x) dx =

∫
∂G

u(x) · n(x) dS = 0.

Thus, the condition ∫
G

g(x) dx = 0 (2.14)

is the necessary for the solvability of the problem (2.13). There holds the
following theorem (see [19] for the proof).

Theorem 2.3. Let g ∈ L2(G) and there holds the necessary solvability
condition (2.14). Then the problem (2.13) has at least one solution u ∈
W̊ 1,2(G) satisfying the following estimate

‖∇u‖L2(G) ≤ c‖g‖L2(G). (2.15)
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The steady Stokes problem with the homogeneous divergence
equation

Consider in G the steady Stokes problem with the homogeneous divergence
equation: 

−ν∆u +∇p = f , x ∈ G,
divu = 0, x ∈ G,

u = 0, x ∈ ∂G.
(2.16)

Definition 2.3. The weak solution of the problem (2.16) is a solenoidal
vector field u ∈ W̊ 1,2(G) satisfying the integral identity∫

G

∇u(x) · ∇η(x) dx =

∫
G

f(x) · η(x) dx,

for every solenoidal η ∈ W̊ 1,2(G).

Solvability of (2.16) follows from well known results (the unique solva-
bility of the Stokes problem is proved for arbitrary domains G, see, e.g.,
[18]).

Theorem 2.4. Let f ∈ L2(G). Then the problem (2.16) admits a unique
weak solution u ∈ W̊ 1,2(G) and there holds the estimate

‖u‖2W 1,2(G) ≤ c‖f‖
2
L2(G). (2.17)

Moreover, there exists a corresponding pressure function p ∈ L2(G) such
that

∫
G

p(x) dx = 0 and the following estimate holds

‖p‖2L2(G) ≤ c‖f‖
2
L2(G).

If ∂G is C∞, f ∈ C∞(G), then solution u, p ∈ C∞(G).

The steady Stokes problem with the nonhomogeneous divergence
equation

Consider in G the steady Stokes problem with the nonhomogeneous diver-
gence equation: 

−ν∆u +∇p = f , x ∈ G,
divu = g, x ∈ G,

u = 0, x ∈ ∂G.
(2.18)
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Definition 2.4. We look for a weak solution of the problem (2.18) in the
form u = V+v, where a function V is the solution of the divergence problem
(2.18)2,3 and v ∈ W̊ 1,2(G) is a solenoidal vector field satisfying the integral
identity

ν

∫
G

∇v · ∇η dx =

∫
G

f · ηdx− ν
∫
G

∇V · ∇η dx

for every solenoidal η ∈ W̊ 1,2(G).

From Theorems 2.3 and 2.4 follows

Theorem 2.5. Let f ∈ L2(G) and g ∈ L2(G) satisfies the necessary sol-
vability condition (2.14). Then the problem (2.18) admits a unique weak
solution u = V + v and there holds the estimate

‖u‖2W 1,2(G) ≤ c
(
‖f‖2L2(G) + ‖g‖2L2(G)

)
. (2.19)

Moreover, there exists a corresponding pressure function p ∈ L2(G) such
that

∫
G

p(x) dx = 0 and the following estimate holds

‖p‖2L2(G) ≤ c
(
‖f‖2L2(G) + ‖g‖2L2(G)

)
.

If ∂G is C∞, f , g ∈ C∞(G), then solution u, p ∈ C∞(G).

The time-periodic Stokes problem

Consider in G the time-periodic Stokes equations:
ut − ν∆u +∇p = f , x ∈ G,

divu = 0, x ∈ G,
u = 0, x ∈ ∂G,

u(x, 0) = u(x, 2π), x ∈ G,

(2.20)

Definition 2.5. The weak solution of the problem (2.20) is a time-periodic
solenoidal vector field u ∈ L2(0, 2π; W̊ 1,2(G)) with ut ∈ L2(0, 2π;L2(G))
satisfying the integral identity

2π∫
0

∫
G

ut(x, t) · η(x, t) dxdt+ ν
2π∫
0

∫
G

∇u(x, t) · ∇η(x, t) dxdt

=
2π∫
0

∫
G

f(x, t) · η(x, t) dxdt,

for every time-periodic solenoidal function η ∈ L2(0, 2π; W̊ 1,2(G)).
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Theorem 2.6. Let f ∈ L2(0, 2π;L2(G)) be a time-periodic function. Then
the problem (2.20) admits a unique time-periodic weak solution u ∈ L2(0, 2π;
W̊ 1,2(G)) with ut ∈ L2(0, 2π;L2(G)) and there holds the estimate

sup
t∈[0,2π]

‖u(·, t)‖2W 1,2(G) + ‖u‖2L2(0,2π;W 1,2(G)) + ‖ut‖2L2(0,2π;L2(G))

≤ c‖f‖2L2(0,2π;L2(G)).
(2.21)

Proof. This theorem is proved by standard methods, for example, fol-
lowing the ideas from [10] (see also [11], [48], [24]). However, for the reader
convenience, we present the sketch of the proof. The solution u can be found

as the limit of Galerkin approximations uN (x, t) =
N∑
J=1

γkN (t)ek(x), where

ek ∈ W̊ 1,2(G)
⋂
W 2,2
loc (G) are the eigenfunctions of the Stokes problem (the

existence of the eigenfunctions ek is known for arbitrary bounded domains,
e.g., [18]) and γkN (t) are found as periodic solutions of the following system
of ordinary differential equations:∫

G

uNt(x, t) · el(x) dx+ ν
∫
G

∇uN (x, t) · ∇el(x) dx

=
∫
G

f(x, t) · el(x) dx, l = 1, 2, . . . , N, t ∈ [0, 2π].
(2.22)

Multiplying (2.22) by γlN (t) and summing over l we obtain

1

2

d

dt
‖uN‖2L2(G) + ν‖∇uN‖2L2(G) =

∫
G

f · uN dx. (2.23)

Using the Poincaré and Cauchy–Schwarz inequalities from (2.23) follows

1

2

d

dt
‖uN‖L2(G) + c0‖uN‖L2(G) ≤ ‖f‖L2(G). (2.24)

Multiplying (2.24) by ec0t and integrating by t gives after simple calculations

‖uN (·, 2π)‖L2(G) ≤ e−2c0π‖uN (·, 0)‖L2(G) +
1√
2c0
‖f‖L2(0,2π;L2(G)).

Hence, the map M : uN (·, 0) 7→ uN (·, 2π) is continuous and maps the ball
of L2(Ω) of radius

√
2‖f‖L2(0,2π;L2(G))/

√
c0 into itself, and, therefore, there

exists a smooth 2π-periodic solution to the Galerkin approximations (2.22)
(e.g., [11]).

Integrating (2.23) by t over [0, 2π] and using the periodicity property of
uN we also derive the estimate

‖∇uN‖2L2(0,2π;L2(G)) ≤ c‖f‖
2
L2(0,2π;L2(G)). (2.25)
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Analogously, multiplying (2.22) by γ′lN (t) and summing over l yield

‖uNt‖2L2(G) +
ν

2

d

dt
‖∇uN‖2L2(G) =

∫
G

f · uNt dx, (2.26)

and, therefore,

‖uNt‖2L2(0,2π;L2(G)) ≤ c‖f‖
2
L2(0,2π;L2(G)). (2.27)

Let us now multiply (2.22) by t γlN (t):

1

2

d

dt

(
t‖uN‖2L2(G)

)
− ‖uN‖2L2(G) + ν t‖∇uN‖2L2(G) = t

∫
G

f · ÛN dx.

Integrating by t and applying the Poincaré and Cauchy–Schwarz inequalities
and (2.25) we derive

‖uN (·, 2π)‖2L2(G) ≤ ‖f‖
2
L2(0,2π;L2(G)) +

π + 1

π
‖uN‖2L2(0,2π;L2(G))

≤ ‖f‖2L2(0,2π;L2(G)) + c‖∇uN‖2L2(0,2π;L2(G)) ≤ c‖f‖
2
L2(0,2π;L2(G)).

By the periodicity property of uN , we also get

‖uN (·, 0)‖2L2(G) ≤ c‖f‖
2
L2(0,2π;L2(G)). (2.28)

Multiplying (2.22) by t γ′lN (t), using (2.25), (2.27) and arguing in the same
way yield

‖∇uN (·, 0)‖2L2(G) = ‖∇uN (·, 2π)‖2L2(G) ≤
1

2π

(
‖∇uN‖2L2(0,2π;L2(G))

+‖uNt‖2L2(0,2π;L2(G)) + ‖f‖2L2(0,2π;L2(G))

)
≤ c‖f‖2L2(0,2π;L2(G)).

(2.29)

Consequently, integrating (2.23) and (2.26) by t from 0 to τ ∈ (0, 2π] and
using (2.28), (2.29), we show

sup
τ∈[0,2π]

‖uN (·, τ)‖2W 1,2(G) + ‖uN‖2L2(0,2π;W 1,2(G)) + ‖uNt‖2L2(0,2π;L2(G))

≤ c‖f‖2L2(0,2π;L2(G)).
(2.30)

Since the linear span of the eigenfunction {ek} of the Stokes problem is
dense in the space H(G) = {v ∈ W̊ 1,2(G) : divv = 0} and in view of (2.30),
we can pass to the limit as N → ∞ and to prove by standard arguments
that the limit function u is a weak solution to problem (5.77). For u holds
the estimate (2.33). The uniqueness of the solution is obvious. �
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The inverse problem for the heat equation

Now consider in G the following (inverse) problem for the heat equation
ut(x, t)− ν∆u(x, t) = q(t), (x, t) ∈ G× (0, T ),

u(x, t)|∂G = 0, u(x, 0) = u0(x),∫
G

u(x, t) dx = F (t).

(2.31)

Here T ∈ (0,+∞], u0 and F are given functions, while u, q have to be
found, i.e., we have to solve the heat equation with an unknown right-hand
side q which has to be found so that u satisfies the additional flux condition
(2.31)3.

Definition 2.6. By a weak solution of the problem (2.31) we understand a
pair (u, q) ∈ L2(0, T ; W̊ 1,2(G))× L2(0, T ) with ∂tu ∈ L2(0, T ;L2(G)) satis-
fying the integral identity

t∫
0

∫
G

∂τu(x, τ)η(x, τ) dxdτ + ν
t∫

0

∫
G

∇u(x, τ) · ∇η(x, τ) dxdτ

=
t∫

0

q(τ)
∫
G

η(x, τ) dxdτ, for every η ∈ L2(0, T ; W̊ 1,2(G)), ∀t ∈ (0, T ],

the initial condition u(x, 0) = u0(x) and the flux condition∫
G

u(x, t) dx = F (t).

The theorem below is proved in [42] (see also [43]).

Theorem 2.7. Let u0 ∈ W̊ 1,2(G), F ∈ W 1,2(0,∞) and let the following
compatibility condition

F (0) =

∫
G

u0(x) dx (2.32)

holds. Then there exists a unique weak solution (u, q) of the problem (2.31)
such that

sup
t∈[0,∞)

‖u(·, t)‖W 1,2(G) + ‖u‖L2(0,∞;W 1,2(G)) + ‖∂tu‖L2(0,∞;L2(G))

+‖q‖L2(0,∞) ≤ c
(
‖F‖W 1,2(0,∞) + ‖u0‖W 1,2(G)

)
.

(2.33)

Let W 1,2
µ (0,∞) be the space of functions with the finite norm

‖F‖
W 1,2
µ (0,∞)

=

 ∞∫
0

exp(2µt)
(
|F (t)|2 + |F ′(t)|2

)
dt

1/2

.
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If µ > 0, the elements of W 1,2
µ (0,∞) vanish exponentially as t→ +∞.

The behavior of the solution of the problem (2.31) as t→∞ is described
by the following theorem (see [41], [43]).

Theorem 2.8. Let u0 ∈ W̊ 1,2(G), F ∈ W 1,2
µ (0,∞) with µ > 0 and there

holds the compatibility condition (2.32). Then the solution (u, q) of the
problem (2.31) satisfies the estimate

max
t∈[0,∞)

[
exp(ν∗t)

(∫
G

|u(x, t)|2 dx+ ν
∫
G

|∇u(x, t)|2 dx
)]

+
∞∫
0

exp(ν∗t)
∫
G

|∂tu(x, t)|2 dx dt+
∞∫
0

exp(ν∗t)|q(t)|2 dt

≤ c
(
‖F‖2

W 1,2
µ (0,∞)

+ ‖u0‖2W 1,2(G)

)
,

(2.34)

where ν∗ = min{λ1, 1, 2µ}. Here λ1 is the first eigenvalue of the Dirichlet
problem for the Laplace equation{

−ν∆u(x) = λu(x), x ∈ G,
u(x)|∂G = 0.

The non-steady Stokes problem with homogeneous divergence
equation and boundary condition

Let us now consider the non-steady Stokes problem
ut − ν∆u +∇p = f +

n∑
i=1

∂fi
∂xi
, (x, t) ∈ G× (0, T ),

divu = 0,

u|∂G = 0, u(x, 0) = u0(x).

(2.35)

Definition 2.7. The weak solution of the problem (2.35) is a solenoidal
vector field u ∈ L2(0, T ; W̊ 1,2(G)) with ut ∈ L2(0, T ;L2(G)) satisfying the
initial condition u(x, 0) = u0(x) and the integral identity

t∫
0

∫
G

uτ (x, τ) · η(x, τ) dxdτ + ν
t∫

0

∫
G

∇u(x, τ) · ∇η(x, τ) dxdτ

=
t∫

0

∫
G

f(x, τ) · η(x, τ) dxdτ +
n∑
i=1

t∫
0

∫
G

fi(x, τ) · ∂η∂xi (x, τ) dxdτ,

for every η ∈ L2(0, T ; W̊ 1,2(G)), ∀t ∈ (0, T ].

There holds the following theorem (e.g., [18]).
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Theorem 2.9. Let f ∈ L2(0,∞;L2(G)), fi, fi,t ∈ L2(0,∞;L2(G)), i =
1, . . . , n, u0 ∈ W̊ 1,2(G), divu0 = 0. Then the problem (2.35) admits a
unique weak solution u such that

max
t∈[0,∞)

‖u(·, t)‖2W 1,2(G) + ‖u‖2L2(0,∞;W 1,2(G)) + ‖ut‖2L2(0,∞;L2(G))

≤ c
(
‖u0‖2W 1,2(G) + ‖f‖2L2(0,∞;L2(G))

+
n∑
i=1

(
‖fi‖2L2(0,∞;L2(G)) + ‖fi,t‖2L2(0,∞;L2(G))

))
.

(2.36)

Moreover, there exists a number ν0 > 0 such that if f ∈ L2
µ(0,∞;L2(G))

with µ ∈ (0, ν0), then

max
t∈[0,∞)

[
exp(µt)

(∫
G

|u(x, t)|2 dx+ ν
∫
G

|∇u(x, t)|2 dx
)]

+
∞∫
0

exp(µt)
∫
G

|ut(x, t)|2 dx dt ≤
(
‖u0‖2W 1,2(G)

+‖f‖2L2
µ(0,∞;L2(G)) +

n∑
i=1

(
‖fi‖2L2

µ(0,∞;L2(G)) + ‖fi,t‖2L2
µ(0,∞;L2(G))

))
.

(2.37)

The non-steady Stokes problem with the nonhomogeneous diver-
gence equation and boundary condition

Finally, consider the non-steady Stokes problem with nonhomogeneous di-
vergence equation and boundary condition

ut − ν∆u +∇p = f , (x, t) ∈ G× (0, T ),

divu = d,

u|∂G = a, u(x, 0) = u0(x)

(2.38)

and assume that the compatibility conditions

divu0(x) = d(x, 0), u0(x)|∂G = a(x, 0), (2.39)

∫
G

d(x, t) dx =

∫
∂G

a(x, t) · n(x) ds ∀t ∈ (0, T ) (2.40)

hold.
We look for the solution of the problem (2.38) in the form u = V + v,

where a function V the solution to the following problem{
divV = d,

V|∂G = a,
(2.41)
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while v is the solution to the following problem
vt − ν∆v +∇p = f −Vt + ν∆V, (x, t) ∈ G× (0, T ),

divv = 0,

v|∂G = 0, v(x, 0) = u0(x)−V(x, 0).

(2.42)

Then, from the conditions (2.39) we have that

div (u0(x)−V(x, 0)) = 0, (u0(x)−V(x, 0))|∂G = 0.

Consider problem (2.41). First we consider the linear extension operator
E : W 1/2,2(∂G)→W 1,2(G) given by the formula Ea = w, where w|∂G = a.
The operator E is bounded:

‖Ea‖2W 1,2(G) = ‖w‖2W 1,2(G) ≤ C‖a‖
2
W 1/2,2(∂G)

, (2.43)

see, e.g. [1].
If a = a(x, t) depends on t and at ∈ W 1/2,2(∂G), then due to the fact

that the operator E is linear, we have Eat = wt and

‖Eat‖2W 1,2(G) ≤ C‖at‖
2
W 1/2,2(∂G)

. (2.44)

If a ∈ L2(0, T ;W 1/2,2(∂G)) and at ∈ L2(0, T ;W 1/2,2(∂G)), then integrating
(2.43), (2.44) by t we get

‖w‖2L2(0,T ;W 1,2(G)) ≤ C‖a‖
2
L2(0,T ;W 1/2,2(∂G))

, (2.45)

‖wt‖2L2(0,T ;W 1,2(G)) ≤ C‖at‖
2
L2(0,T ;W 1/2,2(∂G))

. (2.46)

We look for the solution V to the problem (2.41) in the form V = w+z,
where the vector function z is the solution of the problem{

div z = d− divw := h,

z|∂G = 0.
(2.47)

Note, that the variable t in the equations (2.47) plays the role of a parameter.
Thus, we can differentiate with respect to time variable t. Then, from (2.40)
it follows that

∫
G h dx = 0 and

∫
G ht dx = 0 for all t. Therefore, the problem

(2.47) has a solution z satisfying the estimates

‖∇z‖L2(0,T ;W 1,2(G)) ≤ C‖h‖L2(0,T ;L2(G))

≤ C
(
‖d‖L2(0,T ;L2(G)) + ‖a‖L2(0,T ;W 1/2,2(∂G))

)
,

(2.48)

‖∇zt‖L2(0,T ;W 1,2(G)) ≤ C‖ht‖L2(0,T ;W 1/2,2(∂G))

≤ C
(
‖dt‖L2(0,T ;L2(G)) + ‖at‖L2(0,T ;W 1/2,2(∂G))

)
,

(2.49)
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(see [19] or the corresponding subsection about divergence problem in the
present chapter).

Note, that if d and a exponentially vanish as t→∞, then also the vector
function V = w + z exponentially vanishes.

Now consider problem (2.42). Function v is a solenoidal vector field v ∈
L2(0, T ; W̊ 1,2(G)) with vt ∈ L2(0, T ;L2(G)) satisfying the initial condition
v(x, 0) = u0(x)−V(x, 0) and the integral identity

t∫
0

∫
G

vt(x, τ) · η(x, τ) dxdτ + ν
t∫

0

∫
G

∇v(x, τ) · ∇η(x, τ) dxdτ

=
t∫

0

∫
G

(f(x, τ)−Vτ (x, τ)) · η(x, τ) dxdτ − ν
t∫

0

∫
G

∇V(x, τ) · ∇η(x, τ) dxdτ,

for every η ∈ L2(0, T ; W̊ 1,2(G)), ∀t ∈ (0, T ].
From Theorem 2.9 and estimates (2.45), (2.46), (2.48), (2.49) follows

Theorem 2.10. Let f ∈ L2(0,∞;L2(G)), d, dt ∈ L2(0, T ;L2(G)), a, at ∈
L2(0, T ;W 1/2,2(∂G)), u0 ∈ W 1,2(G). Moreover, suppose that divu0 =
d(x, 0), a(x, 0) = u0(x)|∂G and the compatibility condition (2.40) holds.
Then the problem (2.38) admits a unique weak solution u = V+v such that

max
t∈[0,∞)

‖u(·, t)‖2W 1,2(G) + ‖u‖2L2(0,∞;W 1,2(G)) + ‖ut‖2L2(0,∞;L2(G))

≤ c
(
‖f‖2L2(0,∞;L2(G)) + ‖d‖2L2(0,∞;L2(G)) + ‖dt‖2L2(0,∞;L2(G))

+ ‖a‖2
L2(0,T ;W 1/2,2(∂G))

+ ‖at‖2L2(0,T ;W 1/2,2(∂G))
+ ‖u0‖2W 1,2(G)

)
.

(2.50)

Moreover, there exists a number ν0 > 0 such that if f ∈ L2
µ(0,∞;L2(G)), µ ∈

(0, ν0), then

max
t∈[0,∞)

[
exp(µt)

(∫
G

|u(x, t)|2 dx+ ν
∫
G

|∇u(x, t)|2 dx
)]

+
∞∫
0

exp(µt)
∫
G

|ut(x, t)|2 dx dt

≤ c
(
‖f‖2L2

µ(0,∞;L2(G)) + ‖d‖2L2
µ(0,∞;L2(G)) + ‖dt‖2L2

µ(0,∞;L2(G))

+ ‖a‖2
L2
µ(0,T ;W 1/2,2(∂G))

+ ‖at‖2L2
µ(0,T ;W 1/2,2(∂G))

+ ‖u0‖2W 1,2(G)

)
.

(2.51)
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Chapter 3

The steady Stokes problem

Let us consider the boundary value problem for the steady Stokes system
in the domain Ω (see Fig. 1.1 or Fig. 2.1)

−ν∆u +∇p = f , x ∈ Ω,

divu = 0, x ∈ Ω,

u = a, x ∈ ∂Ω.

(3.1)

Here u stands for the velocity field, p stands for the pressure, ν > 0 is the
constant kinematic viscosity. We assume that f ∈ L2(Ω), suppa ⊂ ∂Ω∩∂Ω0,
a ∈W 1/2,2(∂Ω) and that ∫

∂Ω

a · n dS = −F 6= 0.

Thus we have to look for a solution (u, p) of problem (3.1) having a sink or
a source of the constant intensity F in the cusp point. Such solution will
satisfy the following flux condition∫

σ(h)

u · n dS = F. (3.2)

Here n is the unit normal to σ(h).
The results of this chapter are presented in [6].

3.1 Formal asymptotic decomposition
In this section we discuss the construction near a cusp point of the asymp-
totics of solutions to the stationary Stokes problem.
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3.1.1 The leading-order term of the asymptotic decomposi-
tion

Consider first the homogeneous problem (3.1) with zero boundary condition
in the domain ΩH . Remind that u|∂ΩH∩∂Ω = 0. We change the variables as
follows

(x′, xn) −→
(
x′

xλn
, xn

)
:= (y′, yn)

and rewrite the problem (3.1) in the following form

−ν(y−2λ
n ∆′ + D2)u′ + y−λn ∇′p = 0, y ∈ Π,

−ν(y−2λ
n ∆′ + D2)un + Dp = 0, y ∈ Π,

y−λn div′u′ + Dun = 0, y ∈ Π,

u = 0, y ∈ ∂Π,

(3.3)

where Π = {y ∈ Rn : |y′| < γ0, yn ∈ (0, H)} and by ∂Π we understand the
side of the cylinder Π ommiting the top and bottom bases,

u′ = (u1, ..., un−1), ∇′ = (∂1, ..., ∂n−1), ∂k =
∂

∂yk
, k = 1, ..., n,

div′ u′ = ∇′ · u′, ∆′ = ∇′ · ∇′, D = ∂n − λy−1
n y′ · ∇′.

We look for the approximate solution of (3.3) in the form

U0(y′, yn) = (U′0(y′, yn), Un,0(y′, yn)) ,

P0(y′, yn) = q0(yn) +Q0(y′, yn)
(3.4)

with
Un,0(y′, yn) = y2λ

n ∂nq0(yn)ϕ(y′). (3.5)

Substituting the approximate solution (3.4) into the equations (3.3) and
collecting the "most singular" terms as yn → 0 we get

−νy−2λ
n ∆′U′0 + y−λn ∇′Q0 = 0, y′ ∈ ω,

div′U′0 = G0(y′, yn), y′ ∈ ω,
U′0 = 0, y′ ∈ ∂ω,

(3.6)

and {
−ν∆′ϕ = 1, y′ ∈ ω,

ϕ = 0, y′ ∈ ∂ω,
(3.7)

where
ω =

{
y′ ∈ Rn−1 : |y′| < γ0

}
,
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G0(y′, yn) = −yλnD(y2λ
n ∂nq0(yn)ϕ(y′)).

Poisson problem (3.7) has an exact solution which is described in Chapter
2 (see Subsection Poisson problem, Eq. (2.5)).

A solution (U′0, y
λ
nQ0) exists if and only if the compatibility condition∫

ω

G0 dy
′ = 0

is satisfied (see [18] or Chapter 2). Using relations (2.7) and (2.8) we can
rewrite the compatibility condition in the following form

−yλn∂n
[
y2λ
n ∂nq0(yn)

]
+ λ(n− 1)y3λ−1

n ∂nq0(yn) = 0.

Thus function q0 satisfies the second order ODE which is equivalent to

∂n

[
yλ(n+1)
n ∂nq0(yn)

]
= 0.

Thus,
q0(yn) = C1y

1−λ(n+1)
n + C2. (3.8)

Since the pressure is defined up to an additive constant and in the expression
of Un,0 only the derivative ∂nq0(yn) appears (see (3.4), (3.5)), we can set
C2 = 0.

From (3.5), taking into account (3.8), we get

Un,0(y′, yn) = C1[1− λ(n+ 1)]y−λ(n−1)
n ϕ(y′) (3.9)

and the function G0 takes the form

G0(y′, yn) = λC1(1− λ(n+ 1))y−λ(n−2)−1
n A(y′,∇′)ϕ(y′), (3.10)

where the operator A is given by

A(y′,∇′) = n− 1 + y′ · ∇′. (3.11)

Comparing the power exponents of yn in (3.6), (3.10) we conclude that
functions U′0(y′, yn), Q0(y′, yn) can be taken in the form

U′0(y′, yn) = y
−λ(n−2)−1
n U′0(y′),

Q0(y′, yn) = y
−λ(n−1)−1
n Q0(y′),

(3.12)

and we can rewrite (3.6) as the following Stokes problem
−ν∆′U′0 +∇′Q0 = 0, y′ ∈ ω,

div′U′0 = G0(y′), y′ ∈ ω,
U′0 = 0, y′ ∈ ∂ω,

(3.13)

28



with
G0(y′) = λC1(1− λ(n+ 1))A(y′,∇′)ϕ(y′).

Moreover, after simple computations we get∫
ω

Un,0(y′, yn) dy′ = κ0C1(1− λ(n+ 1))y−λ(n−1)
n

or, coming back to variables x,∫
σ(t)

u0 · n dx′ = κ0C1(1− λ(n+ 1)),

where κ0 is constant described by (2.7). Thus, taking

C1 = F [κ0(1− λ(n+ 1))]−1 , (3.14)

we satisfy the flux condition (3.2).
Note, that the necessary solvability condition for the problem (3.13)∫

ω

G0(y′) dy′ = 0

is satisfied due to the construction. Using Theorem 2.5 we can formulate
the following lemma concerning the solvability of the problem (3.13).

Lemma 3.1. The problem (3.13) admits a unique weak solution U′0 ∈ W̊ 1,2

(ω) and there holds the estimate

‖U′0‖2W 1,2(ω) ≤ c‖G0‖2L2(ω). (3.15)

Moreover, there exists a corresponding pressure function P0 ∈ L2(ω) such
that

∫
ω
P0(y′) dy′ = 0 and the following estimate holds

‖P0‖2L2(ω) ≤ c‖G0‖2L2(ω).

Since G0 ∈ C∞(ω), the solution U′0, P0 ∈ C∞(ω), i.e. is infinitely differen-
tiable up to the boundary.

Finally, the main approximation term is represented as follows

U′0(y′, yn) = y
−λ(n−2)−1
n U′0(y′),

Un,0(y′, yn) =
F

κ0
y−λ(n−1)
n ϕ(y′),

P0(y′, yn) =
F

κ0(1− λ(n+ 1))
y−λ(n+1)+1
n + y−λ(n−1)−1

n Q0(y′).

(3.16)
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Discrepancies

The discrepancies H′0(y′, yn), Hn,0(y′, yn) left by functions U0, P0 in the
equations (3.3)1, (3.3)2 can be written in the form

H′0(y′, yn) = νD2U′0(y′, yn) = νD2
(
y
−λ(n−1)−1
n U′0(y′)

)
= y

−λ(n−2)−3
n F′0(y′),

Hn,0(y′, yn) = νD2Un,0(y′, yn)−DQ0(y′, yn)

= νD2
(
y
−λ(n−1)
n Un,0(y′)

)
−D

(
y
−λ(n−1)−1
n Q0(y′)

)
= y

−λ(n−1)−2
n Fn,0(y′).

(3.17)

Estimates of the leading-order term

Note, that in a bounded domain ω with the smooth boundary ∂ω and
smooth data solutions of the Stokes problem (3.13) are infinitely differen-
tiable up to the boundary and obey the estimates

|∂jiU
′
0(y′)|+ |∂jiQ0(y′)| ≤ Cj |F |, i = 1, ..., n− 1, j = 0, 1, ... (3.18)

(see (3.13) and (3.14)). Therefore, for U0, Q0 we obtain

|∂ji ∂
l
nU
′
0(y′, yn)| ≤ C|F |y−(n−2)λ−1−l

n , j, l = 0, 1, ..., (3.19)

|∂ji ∂
l
nUn,0(y′, yn)| ≤ C|F |y−(n−1)λ−l

n , j, l = 0, 1, ..., (3.20)

|∂ji ∂
l
nQ0(y′, yn)| ≤ C|F |y−(n+1)λ+1−l

n , j, l = 0, 1, ... (3.21)

Let us come back to the variables x and define

u0(x) = U0(x′/xλn, xn), p0(x) = P0(x′/xλn, xn),

where

P0(x′/xλn, xn) =
F

κ0(1− λ(n+ 1))
x−(n+1)λ+1
n + x−(n−1)λ−1

n Q0(x′/xλn).

By construction

div u0(x) = 0 in ΩH , u0(x) = 0 on ∂ΩH ∩ ∂Ω,

and ∫
σ(h)

u0 · n dx′ = F.
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Functions u0, p0 satisfy the Stokes equations
−ν∆u0 +∇p0 = H0, x ∈ ΩH ,

divu0 = 0, x ∈ ΩH ,

u0 = 0, x ∈ ∂ΩH ∩ ∂Ω.

(3.22)

where the right-hand side H0(x) = H0(x′/xλn, xn) is defined by formula
(3.17). Moreover, the following estimates hold

|Dα
xH

0′(x)| ≤ C|F |x−(n−2)λ−1−2−(α1+...+αn−1)λ−αn
n

= C|F |x−(n−2+|α|)λ−3+αn(λ−1)
n ,

(3.23)

|Dα
xH

0
n(x)| ≤ C|F |x−(n−1)λ−2−(α1+...+αn−1)λ−αn

n

= C|F |x−(n−1+|α|)λ−2+αn(λ−1)
n ,

(3.24)

where α = (α1, ..., αn), |α| = α1 + ...+ αn.
Finally, by construction there hold the following estimates for the func-

tions u0, p0:

|Dα
xu

0′(x)| ≤ C|F |x−(n−2)λ−1−(α1+...+αn−1)λ−αn
n , |α| ≥ 0, (3.25)

|Dα
xu

0
n(x)| ≤ C|F |x−(n−1)λ−(α1+...+αn−1)λ−αn

n , |α| ≥ 0, (3.26)

|Dα
xp

0(x)| ≤ C|F |x−(n+1)λ+1−(α1+...+αn−1)λ−αn
n , |α| ≥ 0, (3.27)

3.1.2 Higher-order terms of the asymptotic decomposition

In this section we will describe the formal procedure of constructing the
complete asymptotic series. In order to do this, first of all, we compensate
discrepancy terms in (3.17) and show that each new discrepancy appearing
after compensation has the similar form and is "smaller" than that com-
pensated. In fact our final goal is to construct the sufficient number of
asymptotical terms which guarantees that the discrepancy is in the L2(Ω)
space.

System (3.3) with the right-hand sides having special form

Lets consider equations (3.3) with the right-hand sides having the special
form

−ν(y−2λ
n ∆′ + D2)u′ + y−λn ∇′p = y

−λ(n−2)−3
n F′0(y′), y ∈ Π,

−ν(y−2λ
n ∆′ + D2)un + Dp = y

−λ(n−1)−2
n Fn,0(y′), y ∈ Π,

y−λn div′u′ + Dun = 0, y ∈ Π,

u = 0, y ∈ ∂Π,

(3.28)
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where functions F′0, Fn,0 are described in (3.17). We look for the solution
(U1, P1) of (3.28) in the form

U′1(y′, yn) = y
−λ(n−4)−3
n U′1(y′),

Un,1(y′, yn) = y
−λ(n−3)−2
n Un,1(y′),

P1(y′, yn) = C2y
−λ(n−1)−1
n + y

−λ(n−3)−3
n Q1(y′),

(3.29)

with
Un,1(y′) = C2(−λ(n− 1)− 1)ϕ(y′) + U∗n,1(y′), (3.30)

where ϕ is the solution to (3.7), the function U∗n,1 satisfies the equations{
−ν∆′U∗n,1 = Fn,0, y′ ∈ ω,

U∗n,1 = 0, y′ ∈ ∂ω,
(3.31)

and (U′1,Q1) is the solution to
−ν∆′U′1 +∇′Q1 = F′0, y′ ∈ ω,

div′U′1 = [λA(y′,∇′)− 2(λ− 1)]Un,1, y′ ∈ ω,
U′1 = 0, y′ ∈ ∂ω.

(3.32)

The constant C2 has to be determined from the solvability condition for the
problem (3.32) ∫

ω

[
λA(y′,∇′)− 2(λ− 1)

]
Un,1(y′) dy′ = 0.

Indeed, we can rewrite the solvability condition as follows (see (3.30))

κ0C22[λ(n− 2)− 1][−λ(n− 1)− 1] = −
∫
ω

[λA(y′,∇′)− 2(λ− 1)]U∗n,1(y′) dy′.

Since neither λ(n− 2)− 1 6= 0, nor −λ(n− 1)− 1 6= 0 (remind that λ > 1),
we can uniquely find constant C2 from the previous equation.

Compensation of the discrepancies

The discrepancies H′1(y′, yn), Hn,1(y′, yn) left by functions U1, P1 in the
equations (3.28)1, (3.28)2 can be written in the form

H′1(y′, yn)= νD2U′1(y′, yn) = νD2
(
y
−λ(n−4)−3
n U′1(y′)

)
= y

−λ(n−4)−5
n F′1(y′),

Hn,1(y′, yn)= νD2Un,1(y′, yn)−DQ1(y′, yn)

= νD2
(
y
−λ(n−3)−2
n Un,1(y′)

)
−D

(
y
−λ(n−3)−3
n Q1(y′)

)
= y

−λ(n−3)−4
n Fn,1(y′).

(3.33)
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Next we want to compensate the discrepancies H′1, Hn,1. It is easy to see
that the discrepancies H1 has the similar form as H0 except for the decay
exponent µ, which has changed by the following rule

µ
H0→H1−−−−−→ µ+ 2(λ− 1), (3.34)

i.e. (
yµ+λ−1
n F′0, y

µ
nFn,0

)
H0→H1−−−−−→

(
yµ+3(λ−1)
n F′1, y

µ+2(λ−1)
n Fn,1

)
.

Since λ > 1, the rule (3.34) provides that after constructing a finite number
of terms Uk, Pk, k = 0, 1, ..., J∗ − 1, we will reach our goal, i.e.

(H′J∗−1, Hn,J∗−1) ∈ L2(Ω), (3.35)

where number J∗ is described in Section 3.2.
Therefore, repeating the above described procedure we obtain the ap-

proximate solution (U[J ], P [J ]) of the problem (3.3) in the form of series in
powers of yn:

U′[J ](y′, yn) =
J∑
k=0

y
−(n−2k−2)λ−(1+2k)
n U′k(y

′),

U
[J ]
n (y′, yn) =

J∑
k=0

y
−(n−2k−1)λ−2k
n Un,k(y

′),

P [J ](y′, yn)=
J∑
k=0

(
Ck+1y

−(n+1−2k)λ+1−2k
n +y

−(n−2k−1)λ−(1+2k)
n Qk(y

′)
)
,

(3.36)

where
−ν∆′U′k +∇′Qk = F′k−1, y′ ∈ ω,

div′U′k = −[λA(y′,∇′)− 2k(λ− 1)]Un,k, y′ ∈ ω,
U′k = 0, y′ ∈ ∂ω,

(3.37)

Un,k(y
′) = Ck+1 [−(n+ 1− 2k)λ+ 1− 2k]ϕ(y′) + U∗n,k(y

′),

the function ϕ is the solution to (3.7), the functions U∗n,k, k = 1, 2, ..., satisfy
the equations  −ν∆′U∗n,k = Fn,k−1, y′ ∈ ω,

U∗n,k = 0, y′ ∈ ∂ω, (3.38)

with

F ′k(y
′, yn) = νD2U′k(y

′, yn) = y−(n−2(k+1))λ−1−2(k+1)
n F′k(y

′),

Fn,k(y
′, yn) = νD2Un,k(y

′, yn)− Qk(y
′, yn) = y−(n−1−2k)λ−2(k+1)

n Fn,k(y
′);
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∂q0(yn) = C1(1− λ(n+ 1))y−λ(n+1)
n , C1 = F/ [κ0(1− λ(n+ 1))] .

The constants Ck+1, k = 1, 2, ..., are determined from the solvability condi-
tion for the problem (3.37):∫

ω

[λA(y′,∇′)− 2k(λ− 1)]Un,k(y
′) dy′ = 0, (3.39)

i.e.
Ck+1 = − 1

κ0[1− 2k − (n+ 1− 2k)λ]

∫
ω

U∗n,k(y
′)dy′. (3.40)

If 1− 2k − (n+ 1− 2k)λ 6= 0, the constants Ck+1, k = 1, 2, ..., are uniquely
determined from (3.40). However, if 1− 2k − (n+ 1− 2k)λ = 0, i.e.,

k =
λ(n+ 1)− 1

2(λ− 1)
,

then Ck+1 cannot be found from (3.40). Let us denote this particular k := k̄
(if such k̄ ∈ N exists; for example, this is not the case when λ = 2). In this
case we look for (Uk̄, Pk̄) in the form

Uk̄(y
′, yn) = Uk(y

′, yn),

Pk̄(y
′, yn) = Ck̄+1ln yn + y

−(n−(2k̄+1))λ−(1+2k̄)
n Qk̄(y

′).
(3.41)

For Un,k̄(y
′) = Ck̄+1ϕ(y′) + U∗

n,k̄
(y′) and (U′k̄(y

′),Qk̄(y
′)) we get the same

equations (3.37), (3.38); the solvability condition for the problem (3.37) is
changed into

Ck̄+12k̄(λ− 1)κ0 =

∫
ω

[λA(y′,∇′)− 2k̄(λ− 1)]U∗n,k̄(y
′)dy′.

Using Theorem 2.1 we can formulate the following lemma concerning
the solvability of the problem (3.38).

Lemma 3.2. The problem (3.38) admits a unique weak solution U∗n,k ∈
W̊ 1,2(ω) and there holds the estimate

‖U∗n,k‖W 1,2(ω) ≤ c‖Fn,k−1‖L2(ω). (3.42)

Moreover, since by construction Fn,k−1 is infinitely smooth, the solution
U∗n,k is infinitely smooth up to the boundary.

Note, that the necessary solvability condition (3.39) of the problem
(3.37) holds due to the construction. Using Theorem 2.5 we can formu-
late the following lemma concerning solvability of the problem (3.37).
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Lemma 3.3. The problem (3.37) admits a unique weak solution U′k ∈ W̊ 1,2

(ω) and there holds the estimate

‖U′k‖2W 1,2(ω) ≤ c
(
‖F′k−1‖2L2(ω) + ‖U∗n,k‖2L2(ω)

)
. (3.43)

Moreover, there exists a corresponding pressure function Pk ∈ L2(ω) such
that

∫
ω
Pk(y

′) dy′ = 0 and the following estimate holds

‖Pk‖2L2(ω) ≤ c
(
‖F′k−1‖2L2(ω) + ‖U∗n,k‖2L2(ω)

)
.

Since F′k−1, U∗n,k ∈ C∞(ω), then solution U′k, Pk ∈ C∞(ω), i.e. is infinitely
differentiable up to the boundary.

Finally, we get

U′[J ](y′, yn) =
J∑
k=0

y
−(n−2k−2)λ−(1+2k)
n U′k(y

′),

U
[J ]
n (y′, yn) =

J∑
k=0

y
−(n−2k−1)λ−2k
n Un,k(y

′),

P [J ](y′, yn) =
J∑
k=0

[
Ck+1y

−(n+1−2k)λ+1−2k
n [1+

+δk̄k(y
(n+1−2k)λ−1+2k
n ln yn − 1)] + y

−(n−2k−1)λ−(1+2k)
n Qk(y

′)
]
,

(3.44)

where J ∈ N.

Discrepancies

The discrepancies H′J(y′, yn), Hn,J(y′, yn) left after J + 1 steps are

H′J(y′, yn) = y
−(n−2(J+1))λ−1−2(J+1)
n F′J(y′),

Hn,J(y′, yn) = y
−(n−1−2J)λ−2(J+1)
n Fn,J(y′).

(3.45)

Estimates of the higher-order terms

Let us come back to the variables x and define

u[J ](x) = U[J ](x′/xλn, xn),

p[J ](x) = P [J ](x′/xλn, xn).

By the construction

div u[J ](x) = 0 in ΩH , u[J ](x) = 0 on ∂ΩH ∩ ∂Ω,
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and ∫
σ(h)

u[J ] · n dx′ = F.

Functions u[J ], p[J ] satisfy the Stokes equations
−ν∆u[J ] +∇p[J ] = HJ−1, x ∈ ΩH ,

divu[J ] = 0, x ∈ ΩH ,

u[J ] = 0, x ∈ ∂ΩH ∩ ∂Ω.

(3.46)

where the right-hand side HJ−1(x) = H′J(x′/xλn, xn) is described by formula
(3.45) and the following estimates hold

|Dα
xH

J−1′(x)| ≤ C|F |x−(n−2J)λ−1−2J−(α1+...+αn−1)λ−αn
n

= C|F |x−(n−2J+|α|)λ−1−2J+αn(λ−1)
n ,

(3.47)

|Dα
xH

J−1
n (x)| ≤ C|F |x−(n+1−2J)λ−2J−(α1+...+αn−1)λ−αn

n

= C|F |x−(n+1−2J+|α|)λ−2J+αn(λ−1)
n ,

(3.48)

where α = (α1, ..., αn), |α| = α1 + ...+ αn.
Finally, there hold the following estimates for the functions u[J ], p[J ]:

|Dα
xu
′[J ](x)| ≤ C|F |x−(n−2)λ−1−(α1+...+αn−1)λ−αn

n , (3.49)

|Dα
xu

[J ]
n (x)| ≤ C|F |x−(n−1)λ−(α1+...+αn−1)λ−αn

n , (3.50)

|Dα
xp

[J ](x)| ≤ C|F |x−(n+1)λ+1−(α1+...+αn−1)λ−αn
n , (3.51)

where |α| ≥ 0.

3.2 Existence of the solution
Let ξ ∈ C∞[0,∞) be a nonnegative cut-off function described by (2.3). We
look for the solution (u, p) of the problem (3.1), (3.2) in the form

u(x′, xn) = ξ(xn)U[J∗−1](x′/xλn, xn) + V(x′, xn) + Û(x′, xn), (3.52)

p(x′, xn) = ξ(xn)P [J∗−1](x′/xλn, xn) + P̂ (x′, xn), (3.53)
where (U[J∗−1], P [J∗−1]) is given by the formula (3.44). We put V = 0
for xn ≤ H/2 and for xn ≥ H, while for xn ∈ (H/2, H) the function
V ∈W 1,2(ΩH/2,H) is the solution to the problem{

divV = −ξ′U [J∗−1]
n , x ∈ ΩH/2,H ,

V = a, x ∈ ∂ΩH/2,H ,
(3.54)
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and we extend boundary value a by zero on xn = H/2 (and denote by the
same letter a).

Finally, (Û, P̂ ) is the weak solution of the problem
−ν∆Û +∇P̂ = f∗, x ∈ Ω,

div Û = 0, x ∈ Ω,

Û = 0, x ∈ ∂Ω,

(3.55)

where

f∗ = f + ξHJ∗−1 + ν∆V + ν(2∇ξ · ∇U[J∗−1] + ∆ξU[J∗−1])−∇ξ · P [J∗−1],

the discrepancy HJ∗−1(x′/xλn, xn) is described by the formula (3.45). More-
over, from (3.45) we compute that the inclusion HJ∗−1 ∈ L2(Ω) holds (see
(3.35)) if

J∗ ≥ min

{
J ∈ N : J >

1

4

[
n+ 2

λ− 1
+ n+ 3

]}
.

Consider the divergence problem (3.54). Since

−
∫

ΩH/2,H

ξ′U [J∗−1]
n dx = −

∫
σ(H/2)

U [J∗−1]
n dS = −F,

the necessary compatibility condition

−
∫

ΩH/2,H

ξ′U [J∗−1]
n dx =

∫
∂ΩH/2,H

a · n dS (3.56)

is satisfied and the problem (3.54) is solvable. Indeed, there holds the
following lemma:

Lemma 3.4. Let a ∈ W 1/2,2(∂ΩH/2,H), U [J∗−1] ∈ L2(ΩH/2,H) be given
functions, ξ ∈ C∞[0,∞) be a nonnegative cut-off function described by (2.3).
Then there exists at least one solution V ∈ W 1,2(ΩH/2,H) of the problem
(3.54) and the following estimate holds

‖V‖W 1,2(ΩH/2,H) ≤ C‖a‖W 1/2,2(∂ΩH/2,H). (3.57)

Proof. Since a ∈ W 1/2,2(∂ΩH/2,H) and (3.56) holds, there exists an
extension w ∈W 1,2(ΩH/2,H) such that

w|∂ΩH/2,H = a, (3.58)

and
‖w‖W 1,2(ΩH/2,H) ≤ C‖a‖W 1/2,2(∂ΩH/2,H), (3.59)
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see, e.g., [1]. We look for the solution V of the problem (3.54) in the form
V = w + v, where the function v is a solution to{

divv = −ξ′U [J∗−1]
n − divw := h, x ∈ ΩH/2,H ,

v = 0, x ∈ ∂ΩH/2,H .
(3.60)

From (3.56) and (3.58) it follows that∫
ΩH/2,H

h dx = −
∫

ΩH/2,H

ξ′U [J∗−1] dx−
∫

ΩH/2,H

divw dx

= −
∫

ΩH/2,H

ξ′U [J∗−1] dx−
∫

∂ΩH/2,H

a · n dS = 0.

Therefore, the problem (3.60) has a solution v satisfying the estimate

‖∇v‖L2(ΩH/2,H) ≤ C‖h‖L2(ΩH/2,H), (3.61)

(for details see the corresponding subsection in Chapter 2 or [19]). Finally,
collecting estimates (3.50), (3.59), (3.61) we get (3.57) (note that the flux
F is the integral of the normal component of the boundary value a(x) and,
therefore, can be estimated by the L2 norm of the function a).�

Remark 3.1. Note that suppa ⊂ ∂ΩH ∩ ∂Ω and a = 0 on xn = H/2 while
supph = −ξ′U [J∗−1]

n − divw ⊂ ΩH ∩ Ω. Therefore, the function V can be
extended by zero into ΩH/2.

From (3.57), (3.47)-(3.51) and the fact that the flux F can be estimated
by the L2 norm of the function a we conclude that the following estimate
for the right-hand side f∗ of the problem (3.55)

‖f∗‖2L2(Ω) ≤ C
(
‖f‖2L2(Ω) + ‖a‖2

W 1/2,2(∂ΩH/2,H)

)
(3.62)

holds.

Definition 3.1. A weak solution of the problem (3.55) is a solenoidal vector
field Û ∈ W̊ 1,2(Ω) satisfying the integral identity

ν

∫
Ω

∇Û · ∇η dx =

∫
Ω

[
f+ξHJ∗−1+ν∆V+ν(2∇ξ · ∇U[J∗−1]+∆ξU[J∗−1])−∇ξ · P [J∗−1]

]
· ηdx

for every solenoidal η ∈ W̊ 1,2(Ω).
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Since the right-hand side of the problem (3.55) belongs to L2(Ω), sol-
vability of it follows from well known results (the unique solvability of the
Stokes problem is proved for arbitrary domains Ω, see, e.g., [18] or the cor-
responding subsection in Chapter 2). Therefore, the following lemma holds

Lemma 3.5. Let f∗ ∈ L2(Ω). Then the problem (3.55) admits a unique
weak solution Û ∈ W̊ 1,2(Ω) and there holds the estimate

‖Û‖2W 1,2(Ω) ≤ C‖f
∗‖2L2(Ω) ≤ C

(
‖f‖2L2(Ω) + ‖a‖2

W 1/2,2(∂ΩH/2,H)

)
. (3.63)

3.2.1 Existence theorem

Let f ∈ L2(Ω), a ∈W 1/2,2(∂Ω ∩ ∂Ω0).

Definition 3.2. By a weak solution of problem (3.1) we understand a
solenoidal vector field u ∈W 1,2

loc (Ω) satisfying the boundary condition u|∂Ω =
a and the integral identity

ν

∫
Ω

∇u · ∇η dx =

∫
Ω

f · η dx, for every η ∈ C∞0 (Ω), divη = 0.

Theorem 3.1. Let f ∈ L2(Ω), a ∈ W 1/2,2(∂ΩH/2,H) be given functions,
suppa ⊂ ∂Ω0∩∂Ω ⊂ ∂ΩH/2,H ∩∂Ω. Then the problem (3.1) admits at least
one weak solution u ∈W 1,2

loc (Ω)∩W 1,2(ΩH/2,H), which can be represented as
a sum (3.52), where U[J∗−1] is the constructed in Section 3.1 asymptotic ex-
pansion (see formulas (3.36), (3.44)), V is a solution to the problem (3.54),
and Û is a weak solution to the problem (3.55). Moreover, the following
estimate

‖u− ξU[J∗−1]‖W 1,2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖a‖W 1/2,2(∂ΩH/2,H)

)
(3.64)

holds.

Proof. The difference u− (ξU[J∗−1] + V) = Û is a weak solution of the
problem (3.55). Therefore estimate (3.64) follows from (3.63), (3.57). �
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Chapter 4

The time-periodic Stokes
problem

In this chapter we consider the time-periodic Stokes problems in domains
Ω (see Fig. 1.1 or Fig. 2.1) having a power cusp (peak) type singular point
on the boundary

ut − ν∆u +∇p = f , x ∈ Ω,

divu = 0, x ∈ Ω,

u = a, x ∈ ∂Ω,

u(x, 0) = u(x, 2π), x ∈ Ω.

(4.1)

As before u stands for the velocity field, p stands for the pressure, ν > 0 is
the constant kinematic viscosity.

We assume that the external force f(x, t) and the boundary value a(x, t)
are time-periodic functions with the period 2π, i.e. f(x, 0) = f(x, 2π),
a(x, 0) = a(x, 2π), and that suppa ⊂ ∂Ω0 ∩ ∂Ω. We consider the case
where the flux −F (t) of a(x, t) is nonzero:∫

∂Ω

a · n dS = −F (t). (4.2)

Because of (4.2) the solution u of (4.1) has to satisfy the condition∫
σ(h)

u · n dS = F (t), (4.3)

so that the necessary compatibility condition∫
σ(h)

u · n dS +

∫
∂Ω

a · n dS = 0
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holds.
The results of this chapter are presented in [6].

Remark 4.1. Time period 2π is not essential and other period may be
chosen.

4.1 Formal asymptotic decomposition
In this section we construct the formal asymptotic decomposition of the
solution near the singular point.

4.1.1 The leading-order term of the asymptotic decomposi-
tion

Let us consider the solution u of the problem (4.1) in a neighborhood of
the cuspidal point, i.e. in the domain ΩH . Remind that u|∂ΩH∩∂Ω = 0.
Changing the variables

(x′, xn, t) −→
(
x′

xλn
, xn, t

)
:= (y′, yn, t)

we rewrite the problem (4.1) in the following form:

u′t − ν(y−2λ
n ∆′ + D2)u′ + y−λn ∇′p = 0, y ∈ Π,

un,t − ν(y−2λ
n ∆′ + D2)un + Dp = 0, y ∈ Π,

y−λn div′u′ + Dun = 0, y ∈ Π,

u = 0, y ∈ ∂Π,

u(y′, yn, 0) = u(y′, yn, 2π), y ∈ Π,

(4.4)

where Π = {y ∈ Rn : |y′| < γ0, yn ∈ (0, H)}. For the reader convenience we
remind that

u′ = (u1, ..., un−1), ∇′ = (∂1, ..., ∂n−1), ∂k =
∂

∂yk
, k = 1, ..., n,

div′ u′ = ∇′ · u′, ∆′ = ∇′ · ∇′, D = ∂n − λy−1
n y′ · ∇′.

We look for an approximate solution (U0, P0) of (4.4) in the form

U0(y′, yn, t) = (U′0(y′, yn, t), Un,0(y′, yn, t))

P0(y′, yn, t) = q0(yn)g0(t) +Q0(y′, yn, t),
(4.5)

with
Un,0(y′, yn, t) = y2λ

n ∂nq0(yn)Φ(y′, t). (4.6)
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Substituting (U0, P0) into the equations (4.4) and collecting the terms
with highest singularity at the cusp point O, we get the following systems
of equations:

−νy−2λ
n ∆′U′0 + y−λn ∇′Q0 = 0, y′ ∈ ω,

y−λn div′U′0 = −DUn,0, y′ ∈ ω,
U′0 = 0, y′ ∈ ∂ω,

and  −ν∂nq0(yn)∆′Φ(y′, t) + g0(t)∂nq0(yn) = 0, y′ ∈ ω,
Φ(y′, t) = 0, y′ ∈ ∂ω,

where ω =
{
y′ ∈ Rn−1 : |y′| < γ0

}
. After the obvious simplifications these

problems can be rewritten as
−ν∆′U′0 +∇′yλnQ0 = 0, y′ ∈ ω,

div′U′0 = G0(y′, yn, t), y′ ∈ ω,
U′0 = 0, y′ ∈ ∂ω,

(4.7)

{
ν∆′Φ(y′, t) = g0(t), y′ ∈ ω,

Φ(y′, t) = 0, y′ ∈ ∂ω,
(4.8)

where
G0(y′, yn, t) = −yλnD

(
y2λ
n ∂nq0(yn)Φ(y′, t)

)
.

The solution Φ(y′, t) to (4.8) has the form

Φ(y′, t) = g0(t)ϕ(y′), (4.9)

where ϕ is the solution to the Poisson equation ν∆′ϕ(y′) = 1, y′ ∈ ω,
ϕ(y′) = 0, y′ ∈ ∂ω, (4.10)

and is described in Chapter 2 (see Subsection Poisson problem).
The solution (U′0, y

λ
nQ0) of the problem (4.7) exists if and only if the

following compatibility condition∫
ω

G0(y′, yn, t) dy
′ = 0
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holds. Using relations (2.7) and (2.8) we can rewrite the compatibility
condition as follows

−yλn∂n
[
y2λ
n ∂nq0(yn)

]
g0(t)− λ(n− 1)y3λ−1

n ∂nq0(yn)g0(t) = 0.

Thus, the function q0 is a solution to the second order ODE:

∂n

[
yλ(n+1)
n ∂nq0(yn)

]
= 0,

i.e.,
q0(yn) = C1y

1−λ(n+1)
n + C2. (4.11)

Since the pressure is defined up to an additive function depending only on t
and in the expression of Un,0 only the derivative ∂nq0(yn) appears (see (4.5),
(4.6)), we can set C2 = 0. Moreover, with no loss of generality, we can take
C1 = 1 (C1 can be included into the definition of g0(t) (see (4.17)). From
(4.6), taking into account (4.9) and (4.11), we derive

Un,0(y′, yn, t) = [1− λ(n+ 1)]y−λ(n−1)
n g0(t)ϕ(y′). (4.12)

Now the function G0 can be expressed as

G0(y′, yn, t) = λ(1− λ(n+ 1))y−λ(n−2)−1
n g0(t)A(y′,∇′)ϕ(y′), (4.13)

where the operator A is given by

A(y′,∇′) = n− 1 + y′ · ∇′. (4.14)

Comparing the power exponents of yn in (4.7) and (4.13) we conclude
that functions U′0(y′, yn, t), Q0(y′, yn, t) have to be taken in the forms

U′0(y′, yn, t) = y
−λ(n−2)−1
n U′0(y′, t),

Q0(y′, yn, t) = y
−λ(n−1)−1
n Q0(y′, t),

(4.15)

and we rewrite (4.7) as follows
−ν∆′U′0 +∇′Q0 = 0, y′ ∈ ω,

div′U′0 = G0(y′, t), y′ ∈ ω,
U′0 = 0, y′ ∈ ∂ω,

(4.16)

with
G0(y′, t) = λ(1− λ(n+ 1))g0(t)A(y′,∇′)ϕ(y′).
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Moreover, after simple computations we see that∫
ω

Un,0(y′, yn, t) dy
′ = κ0(1− λ(n+ 1))g0(t)y−λ(n−1)

n

or, coming back to the variables (x, t),∫
σ(h)

u0(x, t) · n(x) dx′ = κ0(1− λ(n+ 1))g0(t).

Thus, taking
g0(t) = F (t) [κ0(1− λ(n+ 1))]−1 , (4.17)

we will satisfy the flux condition (4.3).
Note, that the necessary solvability condition of the problem (4.16)∫

ω

G0(y′, t) dy′ = 0

is satisfied due to the construction. The time variable t is only a parameter
in the problem (4.16). Thus, using Theorem 2.5 we can formulate the
following lemma concerning the solvability of the problem.

Lemma 4.1. The problem (4.16) admits a unique weak solution U′0 ∈ W̊ 1,2

(ω) and there holds the estimate

‖U′0‖2W 1,2(ω) ≤ c‖G0‖2L2(ω). (4.18)

Moreover, there exists a corresponding pressure function P0 ∈ L2(ω) such
that

∫
ω
P0(y′) dy′ = 0 and the following estimate holds

‖P0‖2L2(ω) ≤ c‖G0‖2L2(ω).

Since by construction the data is smooth, solution U′0, P0 is also smooth,
i.e. is infinitely differentiable up to the boundary.

Remark 4.2. Since t is a parameter in the problem (4.16) we can differ-
entiate the equation with respect to time variable t and get the analogous
results for the time derivatives of the solution.

Discrepancies

Functions (U0, Q0) leave in the equations (4.4)1, (4.4)2 the discrepancies
H′0(y′, yn, t), Hn,0(y′, yn, t):
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H′0(y′, yn, t) = νD2U′0(y′, yn, t)−U′0,t(y
′, yn, t)

= y
−λ(n−2)−3
n F̂

′
0(y′, t) + y

−λ(n−2)−1
n F̃

′
0(y′, t),

Hn,0(y′, yn, t) = νD2Un,0(y′, yn, t)− Un,0,t(y′, yn, t)−

D
(
y
−λ(n−1)−1
n Q0(y′, t)

)
= y

−λ(n−1)−2
n F̂n,0(y′, t) + y

−λ(n−1)
n F̃n,0(y′, t).

(4.19)

The discrepancies in (4.19) split into two parts: terms with F̃ and terms
with F̂, where F̃ denotes the discrepancies appearing due to U0,t, and F̂

- the rest of the discrepancies. To go further, we have to compensate the
most singular terms in the expressions of the discrepancies, that is

(y−λ(n−2)−3
n F̂

′
0(y′, t), y−λ(n−1)−2

n F̂n,0(y′, t)) = (F̂′0(y′, yn, t), F̂n,0(y′, yn, t)).

Estimates of the leading-order term

Since time variable t is only a parameter in the problem (4.16) we can write
down similar estimates to its solutions as in the stationary Stokes case (see
Section 3.1.1)

|∂jiU
′
0(y′, t)|+ |∂jiQ0(y′, t)| ≤ Cj |F (t)|, i = 1, ..., n− 1, j = 0, 1, ... (4.20)

(see (4.16) and (4.17)). We also get

|∂ji ∂
l
nU
′
0(y′, yn, t)| ≤ C|F (t)|y−(n−2)λ−1−l

n , j, l = 0, 1, ..., (4.21)

|∂ji ∂
l
nUn,0(y′, yn, t)| ≤ C|F (t)|y−(n−1)λ−l

n , j, l = 0, 1, ..., (4.22)

|∂ji ∂
l
nQ0(y′, yn, t)| ≤ C|F (t)|y−(n+1)λ+1−l

n , j, l = 0, 1, ... (4.23)

Let us come back to the variables x, t and define

u0(x, t) = U0(x′/xλn, xn, t), p0(x, t) = P0(x′/xλn, xn, t).

By construction

div u0(x, t) = 0 in ΩH , u0(x, t) = 0 on ∂ΩH ∩ ∂Ω,

u0(x, 0) = u0(x, 2π) in ΩH ,

∫
σ(h)

u0 · n dx′ = F (t).

Functions u0, p0 satisfy the Stokes equations
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−ν∆u0 +∇p0 = H0, x ∈ ΩH ,

divu0 = 0, x ∈ ΩH ,

u0 = 0, x ∈ ∂ΩH ∩ ∂Ω,

(4.24)

where the right-hand side H0(x, t) = H0(x′/xλn, xn, t) is defined by formula
(4.19). Moreover, there hold the following estimates

|Dα
xD

β
t H

0′(x, t)| ≤ C
(
|F βt (t)|+ |F β+1

t (t)|
)

·x−(n−2+|α|)λ−3+αn(λ−1)
n ,

(4.25)

|Dα
xD

β
t H

0
n(x, t)| ≤ C

(
|F βt (t)|+ |F β+1

t (t)|
)

·x−(n−1+|α|)λ−2+αn(λ−1)
n ,

(4.26)

where α = (α1, ..., αn), |α| = α1 + ...+ αn, β ∈ N.
By construction there hold the following estimates for the functions u0,

p0

|Dα
xD

β
t u

0′(x, t)| ≤ C|F βt (t)|x−(n−2+|α|)λ−1+αn(λ−1)
n , (4.27)

|Dα
xD

β
t u

0
n(x, t)| ≤ C|F βt (t)|x−(n−1+|α|)λ+αn(λ−1)

n , (4.28)

|Dα
xD

β
t p

0(x, t)| ≤ C|F βt (t)|x−(n+1+|α|)λ+1+αn(λ−1)
n , (4.29)

with |α| ≥ 0, β ∈ N.

4.1.2 Higher-order terms of the asymptotic decomposition

Our next step is to find functions (U1, P1) which satisfy equations (4.4)1-
(4.4)4 with the right-hand sides F̂′0, F̂n,0. Functions (U1, P1) leave some
new discrepancies H′1, Hn,1 in the equations (4.4), etc. We shall keep con-
structing the functions (Uk, Pk), k ∈ N, until the discrepancies belong to
the space L2(0, 2π;L2(Ω)).

Problem (4.4) with the right-hand sides having the special form

Let us consider the problem (4.4) with the right-hand sides having the
special form

u′t − ν(y−2λ
n ∆′ + D2)u′ + y−λn ∇′p = y

−λ(n−2)−3
n F̂

′
0(y′, t), y′∈Π,

un,t − ν(y−2λ
n ∆′ + D2)un + Dp = y

−λ(n−1)−2
n F̂n,0(y′, t), y′∈Π,

y−λn div′u′ + Dun = 0, y′∈Π,

u = 0, y′∈∂Π,

u(y′, yn, 0) = u(y′, yn, 2π), y′∈Π,

(4.30)
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where F̂
′
0, F̂n,0 are described in (4.19). We look for the approximate solution

of (4.30) in the form

P1(y′, yn, t) = g1(t)y
−1−λ(n−1)
n + y

−3−λ(n−3)
n Q1(y′, t),

U′1(y′, yn, t) = y
−3−λ(n−4)
n U′1(y′, t),

Un,1(y′, yn, t) = y
−2−λ(n−3)
n Un,1(y′, t),

(4.31)

with
Un,1(y′, t) = g1(t)(−1− λ(n− 1))ϕ(y′) + U∗n,1(y′, t), (4.32)

where the function ϕ is the solution of the problem (4.10), U∗n,1 is the solu-
tion of the boundary value problem{

−ν∆′U∗n,1 = F̂n,0, y′ ∈ ω,
U∗n,1 = 0, y′ ∈ ∂ω,

(4.33)

and (U′1,Q1) is the solution to
−ν∆′U′1 +∇′Q1 = F̂

′
0, y′ ∈ ω,

div′U′1 = [λA(y′,∇′)− 2(λ− 1)]Un,1, y′ ∈ ω,
U′1 = 0, y′ ∈ ∂ω.

(4.34)

The function g1 is uniquely determined by the solvability condition for the
problem (4.34):∫

ω

[
λA(y′,∇′)− 2(λ− 1)

]
Un,1(y′, t) dy′ = 0,

i.e.,
g1(t) =

1

κ0 [1 + λ(n− 1)]

∫
ω

U∗n,1(y′, t) dy′.

Note, that all functions in the problems (4.33), (4.34) depend on time
variable t as a parameter. Thus, using Theorems 2.1 and 2.5 we can formu-
late the following lemmas concerning the solvability of these problems.

Lemma 4.2. The problem (4.33) admits a unique weak solution U∗n,1 ∈
W̊ 1,2(ω) and there holds the estimate

‖U∗n,1‖W 1,2(ω) ≤ c‖F̂n,0‖L2(ω). (4.35)

Moreover, since by construction F̂n,0 is infinitely smooth, the solution U∗n,1
is infinitely smooth up to the boundary.
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Lemma 4.3. The problem (4.34) admits a unique weak solution U′1 ∈ W̊ 1,2

(ω) and there holds the estimate

‖U′1‖2W 1,2(ω) ≤ c
(
‖F̂
′
0‖2L2(ω) + ‖U∗n,0‖2L2(ω)

)
. (4.36)

Moreover, there exists a corresponding pressure function P1 ∈ L2(ω) such
that

∫
ω
P1(y′) dy′ = 0 and

‖P1‖2L2(ω) ≤ c
(
‖F̂
′
0‖2L2(ω) + ‖U∗n,0‖2L2(ω)

)
.

Since by construction all the data is smooth, the solution U′1, P1 is also
smooth, i.e. is infinitely differentiable up to the boundary..

Remark 4.3. Since t is a parameter in the problems (4.33), (4.34) we
can differentiate the equations with respect to time variable t and get the
analogous results for the time derivatives of the solution.

Compensation of the discrepancies

The discrepancies H′1, Hn,1 can be written in the form

H′1(y′, yn, t) = νD2U′1(y′, yn, t)−U′1,t(y
′, yn, t)

+y
−λ(n−2)−1
n F̃

′
0(y′, t) = y

−λ(n−4)−5
n F̂

′
1(y′, t)

+y
−λ(n−2)−1
n F̃

′
0(y′, t) + y

−λ(n−4)−3
n F̃

′
1(y′, t),

Hn,1(y′, yn, t) = νD2Un,0(y′, yn, t)− Un,0,t(y′, yn, t)

−D
(
y
−λ(n−3)−3
n Q1(y′, t)

)
+ y
−λ(n−1)
n F̃n,0(y′, t)

= y
−λ(n−3)−4
n F̂n,1(y′, t) + y

−λ(n−1)
n F̃n,0(y′, t)

+y
−λ(n−3)−2
n F̃n,1(y′, t).

(4.37)

Since λ > 1, Hn,1 does not belong to the space L2(0, 2π;L2(Ω)) and
we have to construct more terms (Uk, Pk). First we have to compensate
the most singular term in Hn,1. We distinguish three cases: for λ ∈ (1, 2)

the most singular term is y−λ(n−3)−4
n F̂n,1(y′, t), for λ > 2 the most singular

term is y−λ(n−1)
n F̃n,0(y′, t), while for λ = 2 these terms have the same power

exponents of yn.
To explain heuristically the algorithm of the asymptotics construction,

consider the equation (4.4)2. In order to compensate the term yµnFn,k−1, we
construct a function yµ+2λ

n Un,k which produces a new term in the discre-
pancy µ+2(λ−1)

n Fn,k in the right-hand side, i.e. after every step the power
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exponents of yn (describing the singularity) are changing by the following
rule:

µ −→ µ+ 2(λ− 1). (4.38)

While constructing U1, P1 we have compensated the term (F̂′0, F̂n,0).
Now we have to distinguish the above three cases. If λ > 2, we compensate
(F̃′0, F̃n,0), and if it’s still not enough, we continue with (F̂′1, F̂n,1) and so
on, i.e., terms F̂ and F̃ alternate as it is shown below

F̂0 ⇒ F̃0 ⇒ F̂1 ⇒ F̃1 ⇒ ...⇒ F̂k ⇒ F̃k+1 ⇒ ...

If λ = 2, we compensate the sum F̃0 + F̂1 (the terms F̃0 and F̂1 have
the same power exponents of yn) and continue doing so till we reach the
satisfactory discrepancy from L2(0, 2π;L2(Ω)), i.e.,

F̃0 + F̂1 ⇒ F̃1 + F̂2 ⇒ ...⇒ F̃k + F̂k+1 ⇒ ...

If λ < 2, then up to the number Î the terms with (F̂
′
k, F̂n,k), k = 0, 2, ..., Î,

are "more singular" than (F̃
′
k, F̃n,k). When we reach this number there are

two possibilities: either we compensate the sum F̃ + F̂ (these terms have
the same power exponents of yn if 1

λ− 1
∈ N, i.e. λ =

N + 1

N
, N = 1, 2, ...)

or terms F̂ and F̃ are alternating (if λ 6= N + 1

N
), i.e.,

F̂0 ⇒ ...⇒ F̂Î ⇒

{
F̂Î+1 + F̃0 ⇒ ...⇒ F̂Î+1+k + F̃k ⇒ ...,

F̃0 ⇒ F̂Î+1 ⇒ ...⇒ F̃k ⇒ F̂Î+1+k ⇒ ...

The number Î is given by

Î = min
{
I ∈ N : I ≥ 1

λ− 1
− 1

}
=


1

λ−1 − 1, λ = N+1
N ,⌊

1
λ−1

⌋
, λ 6= N+1

N .
(4.39)

Case λ = N+1
N

The right-hand sides which we have to compensate on the step k + 1 have
the form

F′k(y
′, yn, t) = y−λ(n−1)−2+(2k+1)(λ−1)

n F′k(y
′, t),

Fn,k(y
′, yn, t) = y−λ(n−1)−2+2k(λ−1)

n Fn,k(y
′, t),

where

F′k(y
′, t) =

 F̂
′
k(y
′, t), k ≤ Î ,

F̂
′
k(y
′, t) + F̃

′
k−Î−1(y′, t), k > Î,
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and

Fn,k =

{
F̂n,k(y

′, t), k ≤ Î ,

F̂n,k(y
′, t) + F̃

n,k−Î−1
(y′, t), k > Î,

k = 0, 1, 2, .... Therefore, we can look for the approximate solution (U[J ], P [J ])
to the nonhomogeneous problem (4.30)1-(4.30)4 in the form of series in pow-
ers of yn:

U′[J ](y, t) = y
−λ(n−2)−1
n U′0(y′, t) +

J∑
k=1

y
−λ(n−2−2k)−2k−1
n U′k(y

′, t),

U
[J ]
n (y, t) = κ−1

0 y
−λ(n−1)
n F (t)ϕ(y′) +

J∑
k=1

y
−λ(n−1−2k)−2k
n Un,k(y

′, t),

P [J ](y, t) = [κ0(1− λ(n+ 1))]−1F (t)y
1−λ(n+1)
n + y

−λ(n−1)−1
n Q0(y′, t)

+
J∑
k=1

[
y
−λ(n+1−2k)+1−2k
n gk(t) + y

−λ(n−1−2k)−1−2k
n Qk(y

′, t)
]
,

(4.40)

where J ∈ N, (U′k,Qk), k = 1, 2, ..., are the solutions of the problems
−ν∆′U′k +∇′Qk = F′k−1, y′ ∈ ω,

div′U′k = [λA(y′,∇′)− 2k(λ− 1)]Un,k, y′ ∈ ω,
U′k = 0, y′ ∈ ∂ω,

(4.41)

Un,k(y
′, t) = gk(t)(−λ(n+ 1− 2k) + 1− 2k)ϕ(y′) + U∗n,k(y

′, t),

the function ϕ is the solution to the problem (4.10), U∗n,k satisfy the equa-
tions  −ν∆′U∗n,k = Fn,k−1, y′ ∈ ω,

U∗n,k = 0, y′ ∈ ω, (4.42)

and the functions gk, k = 1, 2, ..., are determined from the solvability con-
dition for the problem (4.41):∫

ω

[
λA(y′,∇′)− 2k(λ− 1)

]
Un,k(y

′, t) dy′ = 0, (4.43)

i.e.,

2kgk(t)κ0(λ− 1)[−λ(n+ 1− 2k) + 1− 2k]

=

∫
ω

[
λA(y′,∇′)− 2k(λ− 1)

]
U∗n,k(y

′, t) dy′. (4.44)

Notice that the functions gk can be uniquely determined from the equality
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(4.44) if there holds the relation

−λ(n+ 1− 2k) + 1− 2k 6= 0. (4.45)

If (4.45) is not valid, we have

k =
λ(n+ 1)− 1

2(λ− 1)
. (4.46)

Since k ∈ N, it is easy to verify that (4.46) is true only forN = 2j, j = 1, 2, ...
and n = 3 (then k = 2+ 3N

2 ). Let us denote this particular k by k̄ = 2+ 3N
2 .

In this case we look for (Uk̄, Pk̄) in the form

Uk̄(y
′, yn, t) = Uk(y

′, yn, t),

Pk̄(y
′, yn, t) = gk̄(t)ln yn + y

λ(2k̄−n+1)−1−2k̄
n Qk̄(y

′, t).
(4.47)

For Un,k̄(y′, t) = gk̄(t)ϕ(y′) +U∗
n,k̄

(y′, t) and (U′k̄,Qk̄) we get the same equa-
tions (4.10), (4.41), (4.42); the solvability condition for the problem (4.41)
is changed into

−gk̄(t)[λ(n+ 1)− 1]κ0 =

∫
ω

[
λA(y′,∇′)− 2k̄(λ− 1)

]
U∗n,k̄(y

′, t) dy′, (4.48)

and we derive
gk̄(t) = − 1

κ0

∫
ω

U∗n,k̄(y
′, t) dy′.

Note that all functions in the problems (4.41), (4.42) depend on time
variable t as a parameter. Thus, using Theorems 2.1 and 2.5 we can formu-
late the following lemmas concerning the solvability of these problems.

Lemma 4.4. The problem (4.41) admits a unique weak solution U′k ∈ W̊ 1,2

(ω) and there holds the estimate

‖U′k‖2W 1,2(ω) ≤ c
(
‖F′k−1‖2L2(ω) + ‖U∗n,k‖2L2(ω)

)
. (4.49)

Moreover, there exists a corresponding pressure function Pk ∈ L2(ω) such
that

∫
ω
Pk(y

′) dy′ = 0 and

‖Pk‖2L2(ω) ≤ c
(
‖F′k−1‖2L2(ω) + ‖U∗n,k‖2L2(ω)

)
.

Since by construction all the data is smooth, the solution U′k, Pk is also
smooth.
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Note that solvability condition (4.43) or (4.48) to the problem (4.41) is
satisfied automatically due to the construction.

Lemma 4.5. The problem (4.42) admits a unique weak solution U∗n,k ∈
W̊ 1,2(ω) and there holds the estimate

‖U∗n,k‖W 1,2(ω) ≤ c‖Fn,k−1‖L2(ω). (4.50)

Moreover, since by construction Fn,k−1 is infinitely smooth, the solution
U∗n,k is infinitely smooth up to the boundary.

Remark 4.4. Since t is a parameter in the problems (4.41), (4.42) we
can differentiate the equations with respect to time variable t and get the
analogous results for the time derivatives of the solution.

Finally, we get

U′[J ](y′, yn, t) = y
−λ(n−2)−1
n U′0(y′, t) +

J∑
k=1

y
−λ(n−2−2k)−2k−1
n U′k(y

′, t),

U
[J ]
n (y′, yn, t) =

F (t)

κ0
y
−λ(n−1)
n ϕ(y′) +

J∑
k=1

y
−λ(n−1−2k)−2k
n Un,k(y

′, t),

P [J ](y′, yn, t) =
F (t)

κ0(1− λ(n+ 1))
y

1−λ(n+1)
n + y

−λ(n−1)−1
n Q0(y′, t)

+
J∑
k=1

[
gk(t)y

−λ(n+1−2k)+1−2k
n

(
1 + δk,k̄ × (y

λ(n+1−2k)−1+2k
n ln yn − 1)

)
+y
−λ(n−1−2k)−1−2k
n Qk(y

′, t)
]
,

(4.51)

where J ∈ N, δk,k̄ is Kronecker’s delta.

Discrepancies. Case λ = N+1
N

The discrepancies H′J(y′, yn, t), Hn,J(y′, yn, t) that are left after J + 1 steps
can be written in the form

H′J(y′, yn, t) = y
−λ(n−1)−2+(2J+1)(λ−1)
n F̂

′
J(y′, t)

+
J∑

k=max{0,J−Î}
y
−λ(n−1)+(2k+1)(λ−1)
n F̃

′
k(y
′, t),

Hn,J(y′, yn, t) = y
−λ(n−1)−2+2J(λ−1)
n F̂n,J(y′, t)

+
J∑

k=max{0,J−Î}
y
−λ(n−1)+2k(λ−1)
n F̃n,k(y

′, t).

(4.52)

Since λ > 1, after final number of steps J∗ > 0 we arrive at

(H′J∗−1, Hn,J∗−1) ∈ L2(0, 2π;L2(Ω)). (4.53)

52



From (4.52) one can see that (4.53) holds if and only if J∗ > Î, since
otherwise there is the term y

−λ(n−1)
n F̃n,1(y′, t) which is obviously not in

L2(0, 2π;L2(Ω)). Remind that in the present case Î =
1

λ− 1
− 1. Thus

comparing the power exponents −λ(n−1)−2+2(J∗−1)(λ−1) and −λ(n−
1) + 2(J∗ − 1− Î)(λ− 1) of the most singular terms in (4.52)2 we conclude
that (4.53) is valid if the following relation

J∗ = min

{
J ∈ N : J >

1

4

[
(n+ 2)Î + 2n+ 5

]}
(4.54)

holds. It is easy to see that the number J∗ is greater or equal to 3. In
particular, J∗ = 3, when Î = 0 (see (4.39)). This means that it is enough
to construct three terms (Uk, Pk) in this case (i.e., to construct the approx-
imate solution (U[2], P [2])).

Case λ 6= N+1
N

Now the right-hand sides have the form

F′k(y
′, yn, t) =


y
−λ(n−1)−2+(2k+1)(λ−1)
n F̂

′
k(y
′, t), k ≤ Î ,

y
−λ(n−1)+(2j+1)(λ−1)
n F̃

′
j(y
′, t), k = Î + 2j + 1,

y
−λ(n−1)−2+(2(Î+j+1)−1)(λ−1)
n F̂

′
Î+j+1(y′, t), k = Î + 2j + 2,

Fn,k(y
′, yn, t) =


y
−λ(n−1)−2+2k(λ−1)
n F̂n,k(y

′, t), k ≤ Î ,

y
−λ(n−1)+2j(λ−1)
n F̃n,j(y

′, t), k = Î + 2j + 1,

y
−λ(n−1)−2+2(Î+j+1)(λ−1)
n F̂

n,Î+j+1
(y′, t), k = Î + 2j + 2,

k = 0, 1, 2, ..., j = 0, 1, 2, .... We look for the approximate solution (U[J ], P [J ])
to the problem (4.30)1-(4.30)4 in the form

U′[J ](y′, yn, t) = y
−λ(n−2)−1
n U′0(y′, t)

+
min{J, bJ+Î

2
c}∑

k=1

y
−λ(n−1)+(2k+1)(λ−1)
n U′k(y

′, t)

+
bJ−Î+1

2
c∑

k=1

y
−λ(n−1)+2+(2k+1)(λ−1)
n Ũ

′
k(y
′, t),

U
[J ]
n (y′, yn, t) =

F (t)

κ0
y
−λ(n−1)
n ϕ(y′)+
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+
min{J,bJ+Î

2
c}∑

k=1

y
−λ(n−1)+2k(λ−1)
n Un,k(y

′, t)

+
bJ−Î+1

2
c∑

k=1

y
−λ(n−1)+2+2k(λ−1)
n Ũn,k(y

′, t),

P [J ](y′, yn, t) =
F (t)

κ0(1− λ(n+ 1))
y

1−λ(n+1)+y
−λ(n−1)−1
n Q0(y′,t)

n

+
min{J, bJ+Î

2
c}∑

k=1

gk(t)y
−λ(n−1)−1+2(k−1)(λ−1)
n

+
min{J, bJ+Î

2
c}∑

k=1

y
−λ(n−1)−1+2k(λ−1)
n Qk(y

′, t)

+
bJ−Î+1

2
c∑

k=1

g̃k(t)y
−λ(n−1)+1+2(k−1)(λ−1)
n

+
bJ−Î+1

2
c∑

k=1

y
−λ(n−1)+1+2k(λ−1)
n Q̃k(y

′, t),

(4.55)

where J ∈ N, functions (Ũ
′
k, Q̃k), k = 1, 2, ..., are solutions to the problems

−ν∆′Ũ
′
k +∇′Q̃k = F̃

′
k−1, y′ ∈ ω,

div′Ũ
′
k = [λA(y′,∇′) + 2− 2k(λ− 1)] Ũn,k, y

′ ∈ ω,

Ũ
′
k = 0, y′ ∈ ∂ω,

(4.56)

Ũn,k(y
′, t) = g̃k(t)(−λ(n− 1) + 1 + 2k(λ− 1))ϕ(y′) + Ũ∗n,k(y

′, t),

ϕ solves (4.10), Ũ∗n,k, k = 1, 2, ..., satisfy the equations (4.42) with the
right-hand sides F̃n,k−1, functions g̃k, k = 1, 2, ..., are determined from
the solvability condition for the problem (4.56) which is equivalent to the
equation

2g̃k(t)κ0[−λ(n− 1) + 1 + 2k(λ− 1)][−1 + k(λ− 1)]

=

∫
ω

[
λA(y′,∇′) + 2− 2k(λ− 1)

]
Ũ∗n,k(y

′, t) dy′. (4.57)

For all k ∈ N the terms in brackets in the left hand side of (4.57) are
nonzero. It means that functions g̃k, k = 1, 2, ..., are uniquely determined
from (4.57).

The functions U′k,Qk,Un,k, k = 1, 2, ..., are solutions to the problems
(4.41), (4.42) with the right-hand sides F̂

′
k−1, F̂n,k−1. If −λ(n + 1 − 2k) +
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1− 2k 6= 0, the functions gk, k = 1, 2, ..., are uniquely determined from the
solvability condition (4.44). If −λ(n+1−2k)+1−2k = 0 then, analogically
to Section 4.1.2, we look for (Uk̄, Pk̄) in the special form (see (4.47)).

Note that all functions in the problem (4.56) depend on time variable t
as a parameter. Thus, using Theorem 2.5 we can formulate the following
lemma concerning the solvability of this problem.

Lemma 4.6. The problem (4.56) admits a unique weak solution Ũ
′
k ∈ W̊ 1,2

(ω) and there holds the estimate

‖Ũ
′
k‖2W 1,2(ω) ≤ c

(
‖F̃
′
k−1‖2L2(ω) + ‖Ũ∗n,k‖2L2(ω)

)
. (4.58)

Moreover, there exists a corresponding pressure function P̃k ∈ L2(ω) such
that

∫
ω
P̃k(y

′) dy′ = 0 and

‖P̃k‖2L2(ω) ≤ c
(
‖F̃
′
k−1‖2L2(ω) + ‖Ũ∗n,k‖2L2(ω)

)
.

Since by construction all the data is smooth, the solution Ũ
′
k, P̃k is also

smooth.

Note that solvability condition (4.57) to the problem (4.56) is satisfied
automatically due to the construction.

Remark 4.5. Since t is a parameter in the problem (4.56) we can differ-
entiate the equations with respect to time variable t and get the analogous
results for the time derivatives of the solution.

Finally, we find the approximate solution (U[J ], P [J ]):

U′[J ](y′, yn, t) = y
−λ(n−2)−1
n U′0(y′, t) +

min{J,bJ+Î
2
c}∑

k=1

y
−λ(n−1)+(2k+1)(λ−1)
n U′k(y

′, t)

+
bJ−Î+1

2
c∑

k=1

y
−λ(n−1)+2+(2k+1)(λ−1)
n Ũ

′
k(y
′, t),

U
[J ]
n (y′, yn, t) =

F (t)

κ0
y
−λ(n−1)
n ϕ(y′) +

min{J,bJ+Î
2
c}∑

k=1

y
−λ(n−1)+2k(λ−1)
n Un,k(y

′, t)

+

bJ−Î+1
2
c∑

k=1

y−λ(n−1)+2+2k(λ−1)
n Ũn,k(y

′, t), (4.59)
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P [J ](y′, yn, t) =
F (t)

κ0(1− λ(n+ 1))
y

1−λ(n+1)+y
−λ(n−1)−1
n Q0(y′,t)

n

+
min{J,bJ+Î

2
c}∑

k=1

[
gk(t)y

−λ(n−1)−1+2(k−1)(λ−1)
n

(
1+

+δk̄k(y
λ(n−1)+1−2(k−1)(λ−1)
n ln yn − 1)

)
+ y
−λ(n−1)−1+2k(λ−1)
n Qk(y

′, t)
]

+
bJ−Î−1

2
c∑

k=1

[
g̃k(t)y

−λ(n−1)+1+2k(λ−1)
n + y

−λ(n−1)+1+2(k+1)(λ−1)
n Q̃k(y

′, t)
]
,

where J ∈ N.

Discrepancies. Case λ 6= N+1
N

The discrepancies H′J(y′, yn, t), Hn,J(y′, yn, t) that are left after J + 1 steps
can be written in the form

H′J(y′, yn, t) =
J∑

k=min{J,bJ+Î
2
c}

y
−λ(n−1)−2+(2k+1)(λ−1)
n F̂

′
k(y
′, t)

+
J∑

k=max{0,bJ−Î+1
2
c}

y
−λ(n−1)+(2k+1)(λ−1)
n F̃

′
k(y
′, t),

Hn,J(y′, yn, t) =
J∑

k=min{J,bJ+Î
2
c}

y
−λ(n−1)−2+2k(λ−1)
n F̂n,k(y

′, t)

+
J∑

k=max{0,bJ−Î+1
2
c}

y
−λ(n−1)+2k(λ−1)
n F̃n,k(y

′, t).

(4.60)

By the same argument as in Subsection 4.1.2 one can prove that

J∗ = J̃ + Ĵ , (4.61)

where
J̃ = min

{
J ∈ N : J >

1

4

[
n− 2

λ− 1
+ n+ 3

]}
,

Ĵ = min

{
J ∈ N : J >

1

4

[
n+ 2

λ− 1
+ n+ 3

]}
.

It is easy to see that the number J∗ is greater or equal to 4.

Estimates of the higher-order terms

The estimates of this section are valid for both cases λ = N+1
N and λ 6= N+1

N ,
i.e. for all λ > 1.
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Let us come back to the variables x, t and define

u[J ](x, t) = U[J ](x′/xλn, xn, t),

p[J ](x, t) = P [J ](x′/xλn, xn, t),

where U[J ], P [J ] are defined by (4.51) or by (4.59) depending on the value
of λ. By the construction

div u[J ](x, t) = 0 in ΩH , u[J ](x, t) = 0 on ∂ΩH ∩ ∂Ω,

u[J ](x, 0) = u[J ](x, 2π) in ΩH ,

∫
σ(h)

u[J ] · n dx′ = F (t).

Functions u[J ], p[J ] satisfy the Stokes equations
−ν∆u[J ] +∇p[J ] = HJ−1, x ∈ ΩH ,

divu[J ] = 0, x ∈ ΩH ,

u[J ] = 0, x ∈ ∂ΩH ∩ ∂Ω,

(4.62)

where the right-hand side HJ−1(x, t) = HJ(x′/xλn, xn, t) is described by
formulas (4.52) or (4.60) depending on the value of λ. Then by construction
we deduce

|Dα
xD

β
t H

J−1′(x, t)| ≤ C
J∑
k=0

∣∣∣∣∂k+βF (t)

∂tk+β

∣∣∣∣
·x−λ(n−1+|α|)−2+(2J−1)(λ−1)−αn(λ−1)
n ,

(4.63)

|Dα
xD

β
t H

J−1
n (x, t)| ≤ C

J∑
k=0

∣∣∣∣∂k+βF (t)

∂tk+β

∣∣∣∣
·x−λ(n−1+|α|)−2+2(J−1)(λ−1)−αn(λ−1)
n ,

(4.64)

if λ = N+1
N . On the other hand, if λ 6= N+1

N , we have

|Dα
xD

β
t H

J−1′(x, t)| ≤ C
J∑
k=0

∣∣∣∣∂k+βF (t)

∂tk+β

∣∣∣∣ (x−λ(n−1)−2+(2i+1)(λ−1)
n

+ x
−λ(n−1)+(2j+1)(λ−1)
n

)
x
−|α|λ+αn(λ−1)
n ,

(4.65)

|Dα
xD

β
t H

J−1
n (x, t)| ≤ C

J∑
k=0

∣∣∣∣∂k+βF (t)

∂tk+β

∣∣∣∣ (x−λ(n−1)−2+2i(λ−1)
n

+ x
−λ(n−1)+2j(λ−1)
n

)
x
−|α|λ+αn(λ−1)
n ,

(4.66)

where α = (α1, ..., αn), |α| = α1 + ... + αn, β ∈ N, i = min{J, bJ+Î
2 c} and

j = max{0, bJ−Î+1
2 c}.
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Finally, for all λ > 1, there hold the following estimates for the functions
u[J ], p[J ]

|Dα
xD

β
t u
′[J ](x, t)| ≤ C

J∑
k=0

∣∣∣∣∂kF (t)

∂tk

∣∣∣∣x−(n−2+|α|)λ−1+αn(λ−1)
n , (4.67)

|Dα
xD

β
t u

[J ]
n (x, t)| ≤ C

J∑
k=0

∣∣∣∣∂k+βF (t)

∂tk+β

∣∣∣∣x−(n−1+|α|)λ+αn(λ−1)
n , (4.68)

|Dα
xD

β
t p

[J ](x, t)| ≤ C
J∑
k=0

∣∣∣∣∂k+βF (t)

∂tk+β

∣∣∣∣x−(n+1+|α|)λ+1+αn(λ−1)
n , (4.69)

where |α| ≥ 0, β ∈ N.

4.1.3 Regularity conditions

Constructing the asymptotic expansion of the solution we have supposed
that all needed derivatives exist. Now consider the asymptotic expansion
(U[J ], P [J ]) of order J ∈ N (see (4.40), (4.55), (4.59)) and the corresponding
discrepancies HJ(y′, yn, t) (see (4.52), (4.60)). In order to get the asymp-
totic representations we had to solve the problems (4.33), (4.42) and (4.16),
(4.41), if λ = N+1

N (plus the problem (4.56) if λ 6= N+1
N ). Analyzing the

right-hand sides of these equations we see that the regularity of asymptotic
expansions depends on the regularity of the flux F (t) in a recursive way,
i.e., one time derivative is "lost" on each step of the construction. Thus, if
we want to construct the asymptotic expansion up to the order J , we have
to assume that the flux F (t) satisfies the following regularity condition

F ∈W J+1,2(0, 2π).

Since the flux F (t) is the integral of the normal component of the boundary
value a(x, t) over ∂Ω, we have to assume the following regularity conditions:

∂la

∂tl
∈ L2(0, 2π;W 1/2,2(∂Ω)), l = 0, 1, 2, ..., J + 1. (4.70)

4.2 Existence of the solution
Let ξ ∈ C∞[0,∞) be a nonnegative cut-off function, described in Chapter
2, Eq. (2.3). We look for the solution (u, p) of the problem (4.1) in the form

u(x′, xn, t) = ξ(xn)U[J∗−1]

(
x′

xλn
, xn, t

)
+ V(x′, xn, t) + Û(x′, xn, t), (4.71)

p(x′, xn, t) = ξ(xn)P [J∗−1]

(
x′

xλn
, xn, t

)
+ P̂ (x′, xn, t), (4.72)
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where (U[J∗−1], P [J∗−1]) is the approximate solution, given by the asymp-
totic formula (4.51) with J∗ defined by (4.54) if λ = N+1

N (in the case
λ 6= N+1

N , (U[J∗−1], P [J∗−1]) and J∗ are given respectively by (4.59) and
(4.61)), V(x′, xn, t) = 0 for xn ≤ H/2, while for xn ≥ H/2 the function V
is the solution of the following "divergence problem":{

divV = −ξ′U [J∗−1]
n , x ∈ ΩH/2,H ,

V = a, x ∈ ∂ΩH/2,H ,
(4.73)

where ΩH/2,H is a Lipschitz domain described in (2.2) and a is extended on
the plane xn = H/2 by zero (and denote by the same letter a) (recall that
suppa ⊂ ∂Ω0 ∩ ∂Ω (see Figure 2.1)). Finally, (Û, P̂ ) is a solution to the
problem 

Ût − ν∆Û +∇P̂ = f∗, x ∈ Ω,

div Û = 0, x ∈ Ω,

Û = 0, x ∈ ∂Ω,

Û(x, 0) = Û(x, 2π), x ∈ Ω,

(4.74)

where f∗ = f + ξHJ∗−1 − Vt + ν∆V + ν(2∇ξ · ∇U[J∗−1] + ∆ξU[J∗−1]) −
∇ξP [J∗−1], HJ is described by (4.52) (or (4.60), if λ 6= N+1

N ), and J∗ ∈ N
is the number which ensures that HJ∗−1 belongs to L2(0, 2π;L2(Ω)) (see
(4.54), (4.61) ). If the regularity conditions (4.70) with J = J∗ − 1 are
satisfied, all terms in the expression for f∗ − f are well defined.

Consider the divergence problem (4.73). Since

−
∫

ΩH/2,H

ξ′U [J∗−1]
n dx = −

∫
σ(H/2)

U [J∗−1]
n dS = −F (t),

the necessary compatibility condition

−
∫

ΩH/2,H

ξ′U [J∗−1]
n dx =

∫
∂ΩH/2,H

a · n dS (4.75)

is satisfied and the problem (4.73) is solvable (e.g. [18]).

Lemma 4.7. Let a,at ∈ L2(0, 2π;W 1/2,2(∂ΩH/2,H)) and there holds the
compatibility condition (4.75). Then the problem (4.73) has at least one
solution V ∈W 1,2(ΩH/2,H) satisfying the following estimates

‖V‖L2(0,2π;W 1,2(ΩH/2,H)) ≤ C‖a‖L2(0,2π;W 1/2,2(∂ΩH/2,H)), (4.76)

‖Vt‖L2(0,2π;W 1,2(ΩH/2,H)) ≤ C‖at‖L2(0,2π;W 1/2,2(∂ΩH/2,H)). (4.77)
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Proof. Consider the linear extension operator E : W 1/2,2(∂ΩH/2,H) →
W 1,2(ΩH/2,H) given by the formula Ea = w, where w|∂ΩH/2,H = a. The
operator E is bounded:

‖Ea‖2W 1,2(ΩH/2,H) = ‖w‖2W 1,2(ΩH/2,H) ≤ C‖a‖
2
W 1/2,2(∂ΩH/2,H)

, (4.78)

see, e.g. [1].
If a = a(x, t) depends on t and at ∈ W 1/2,2(∂ΩH/2,H), then due to the

fact that the operator E is linear, we have Eat = wt and

‖Eat‖2W 1,2(ΩH/2,H) ≤ C‖at‖
2
W 1/2,2(∂ΩH/2,H)

. (4.79)

If a, at ∈ L2(0, 2π;W 1/2,2(∂ΩH/2,H)), then integrating (4.78), (4.79) by t
we get

‖w‖2L2(0,2π;W 1,2(ΩH/2,H)) ≤ C‖a‖
2
L2(0,2π;W 1/2,2(∂ΩH/2,H))

,

‖wt‖2L2(0,2π;W 1,2(ΩH/2,H)) ≤ C‖at‖
2
L2(0,2π;W 1/2,2(∂ΩH/2,H))

.
(4.80)

see, e.g., [1]. We look for the solution V of the problem (4.73) in the form
V = w + v, where the function v is a solution to divv = −ξ′U [J∗−1]

n − divw := h, x ∈ ΩH/2,H ,

v = 0, x ∈ ∂ΩH/2,H .
(4.81)

Note, that the variable t in the equations (4.81) plays the role of a parameter.
Therefore, functions v and h depend on t as a parameter. Thus, we can
differentiate with respect to time variable t. Then, from (4.75) it follows
that

∫
ΩH/2,H

h dx = 0 and
∫

ΩH/2,H

ht dx = 0 for all t. Therefore the problem

(4.81) has a solution v satisfying the estimates

‖∇v‖L2(0,2π;W 1,2(ΩH/2,H)) ≤ C‖h‖L2(0,2π;L2(ΩH/2,H)),

‖∇vt‖L2(0,2π;W 1,2(ΩH/2,H)) ≤ C‖ht‖L2(0,2π;L2(ΩH/2,H)).

(see [19] or the corresponding subsection about divergence problem in Chap-
ter 2). Collecting the obtained estimates we get

‖V‖L2(0,2π;W 1,2(ΩH/2,H)) ≤ C
(
‖a‖L2(0,2π;W 1/2,2(∂ΩH/2,H))

+‖h‖L2(0,2π;L2(ΩH/2,H))

)
≤ C‖a‖L2(0,2π;W 1/2,2(∂ΩH/2,H)),

(4.82)

‖Vt‖L2(0,2π;W 1,2(ΩH/2,H)) ≤ C
(
‖at‖L2(0,2π;W 1/2,2(∂ΩH/2,H))

+‖ht‖L2(0,2π;L2(ΩH/2,H))

)
≤ C‖at‖L2(0,2π;W 1/2,2(∂ΩH/2,H)). �

(4.83)
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Thus, it follows from the estimates (4.76), (4.63)-(4.69) and the fact that
the flux F can be estimated by the L2 norm of the function a we have proved
the following estimate for the right-hand side f∗ of the problem (4.74)

‖f∗‖2L2(0,2π;L2(Ω))≤C
(
‖f‖2L2(0,2π;L2(Ω))+‖a‖2

L2(0,2π;W 1/2,2(∂ΩH/2,H))

+
J∗∑
k=1

∥∥∂ka
∂tk

∥∥2

L2(0,2π;W 1/2,2(∂ΩH/2,H))

)
.

(4.84)

Then solvability of the problem (4.74) follows from Theorem 2.6, i.e. the
following lemma holds.

Lemma 4.8. Let f∗ ∈ L2(0, 2π;L2(Ω)) be a time-periodic function. Then
the problem (4.74) admits a unique time-periodic weak solution Û ∈ L2(0, 2π;
W̊ 1,2(Ω)) with Ût ∈ L2(0, 2π;L2(Ω)) and there holds the estimate

sup
t∈[0,2π]

‖Û(·, t)‖2W 1,2(Ω) + ‖Û‖2L2(0,2π;W 1,2(Ω)) + ‖Ût‖2L2(0,2π;L2(Ω))

≤ c‖f∗‖2L2(0,2π;L2(Ω)).
(4.85)

4.2.1 Existence theorem

Definition 4.1. By a weak solution of problem (4.1) we understand a
solenoidal time-periodic vector field u ∈ L2(0, 2π;W 1,2

loc (Ω) ∩W 1,2(ΩH/2,H))
with ut ∈ L2(0, 2π;L2

loc(Ω) ∩ L2(ΩH/2,H)) satisfying the boundary condition
u|∂Ω = a and the integral identity

2π∫
0

∫
Ω

uτ (x, τ) · η(x, τ) dxdτ + ν

2π∫
0

∫
Ω

∇u(x, τ) · ∇η(x, τ) dxdτ

=

2π∫
0

∫
Ω

f(x, τ) · η(x, τ) dxdτ,

for every time-periodic solenoidal η ∈ L2 (0, 2π;C∞0 (Ω)).

From what was proved in Sections 4.1–4.2 follows the main result of the
paper concerning the solvability of the problem (4.1).

Theorem 4.1. Let f ∈ L2(0, 2π;L2(Ω)), a, at ∈ L2(0, 2π;W 1/2,2(∂ΩH/2,H))
be given time-periodic functions, suppa ⊂ ∂Ω0 ∩ ∂Ω ⊂ ∂ΩH/2,H ∩ ∂Ω and
there hold the regularity conditions (4.70). Then the problem (4.1) admits at
least one time-periodic weak solution u ∈ L2(0, 2π;W 1,2

loc (Ω)∩W 1,2(ΩH/2,H)),
ut ∈ L2(0, 2π;L2

loc(Ω) ∩ L2(ΩH/2,H)) which can be represented as the sum
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(4.71), where U[J∗−1] is the constructed in Section 4.1.2 asymptotic expan-
sion (see formulas (4.40), (4.51), (4.55), (4.59)), V is a solution to the
problem (4.73), and Û is the weak solution of the problem (4.74). More-
over, the following estimate

sup
t∈[0,2π]

‖u(·, t)− ξ(·)U[J∗−1](·, t)‖2W 1,2(Ω)

+‖u− ξU[J∗−1]‖2L2(0,2π;W 1,2(Ω)) + ‖ut − ξU[J∗−1]
t ‖2L2(0,2π;L2(Ω))

≤ C
(
‖f‖2L2(0,2π;L2(Ω)) + ‖a‖2

L2(0,2π;W 1/2,2(∂ΩH/2,H))

+
J∗+1∑
k=1

∥∥∂ka
∂tk

∥∥2

L2(0,2π;W 1/2,2(∂ΩH/2,H))

)
(4.86)

holds.

Proof. The difference u − (ξU[J∗−1] + V) = Û is a weak solution of
the problem (4.74). Therefore estimate (4.86) follows from (2.33), (4.82),
(4.83). �
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Chapter 5

The nonstationary Stokes
problem

In this section we consider the initial boundary value problem for the Stokes
system in domains Ω (see Fig. 1.1 or Fig. 2.1) having a power cusp (peak)
type singular point on the boundary

ut − ν∆u +∇p = f , x ∈ Ω,

divu = 0, x ∈ Ω,

u = a, x ∈ ∂Ω,

u(x, 0) = b(x), x ∈ Ω.

(5.1)

We assume that suppa ⊂ ∂Ω0 ∩ ∂Ω and that the flux of a is nonzero, i.e.,∫
∂Ω

a · n dS = −F (t). (5.2)

Further, we suppose that the initial velocity b is represented as a sum

b(x) = ζ(xn)using(x) + u0(x), (5.3)

where ζ is a smooth cut-off function with ζ(t) = 1 for t ≤ H/2 and ζ(t) = 0
for t ≥ H,

using(x) =
(
x−λ(n−2)−1
n u ′s

(
x′x−λn

)
, x−λ(n−1)

n un,s
(
x′x−λn

))
,

and u ′s, un,s ∈ W̊ 1,2(ω), ω = {y′ ∈ Rn−1 : |y′| < γ0}, u0 ∈ W 1,2(Ω),
y′ = x′x−λn . Moreover, the initial velocity b and the boundary value a have
to satisfy the necessary compatibility conditions

divb(x) = 0, b(x)|∂Ω = u0(x)|∂Ω = a(x, 0). (5.4)
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The singular part using of the initial condition b is assumed to be solenoidal
and it is "responsible" for the flux in the cusp point O at the time moment
t = 0:

divusing = 0,

∫
σ(h)

using · n dS = F (0) ∀h ∈ (0, H/2). (5.5)

From (5.2) it also follows that∫
∂Ω

u0 · n dS = −F (0). (5.6)

In coordinates y the flux condition in (5.5) takes the form∫
ω

un,s(y) dy = F (0). (5.7)

Note that the conditions (5.4) and (5.5) imply divu0 = 0 in ΩH/2, and from
the inclusion u0 ∈ W 1,2(Ω) it follows that

∫
σ(h)

u0 · n dS = 0 ∀h ≤ H/2.

Indeed, obviously,∫
σ(h)

u0 · n dS −
∫

σ(H)

u0 · n dS = 0 ∀h ≤ H/2.

The flux of u0 is constant, say F0, i.e.∫
σ(h)

u0 · n dS = F0 ∀h ≤ H/2.

Then

F 2
0 =

 ∫
σ(h)

u0 · n dS


2

≤
∫
σ(h)

u2
0 dS ≤ cx2λ

n

∫
σ(h)

|∇u0|2 dS ∀h ≤ H/2.

Hence
h∫
ε

F 2
0 x
−2λ
n dxn ≤ c

h∫
ε

∫
σ(h)

|∇u0|2 dS dxn <∞ ∀h ≤ H/2.

The integral on the left-hand side is diverging as ε→ 0. Therefore, F0 = 0.
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We consider the case where the flux −F (t) of a(x, t) is nonzero (see
(5.2)), and we look for a solution u(x, t) of problem (5.1) satisfying the
additional flux condition: ∫

σ(h)

u · n dS = F (t), (5.8)

so that the following necessary condition∫
σ(h)

u · n dS +

∫
∂Ω

a · n dS = 0

holds for any h ∈ (0, H].
The results of this chapter were published in [7].

Remark 5.1. If u(x, 0) = 0 and the functions f and a are equal to zero in
a neighbourhood of the point t = 0 all results of Chapter 4 remain valid.

5.1 Formal asymptotic decomposition
In this section we construct a formal asymptotic decomposition of the so-
lution, which is the sum of the outer asymptotic decomposition and the
boundary-layer-in-time, needed to satisfy the initial condition. The outer
asymptotic decomposition is constructed in the same way as in the case
of time-periodic problem (see Chapter 4). Therefore, we mostly omit the
derivation of these formulas, but we construct in details the boundary-layer-
in-time decomposition. We consider the case of the homogeneous (f = 0)
equations (5.1).

5.1.1 The leading-order term of the asymptotic decomposi-
tion

The leading-order term for outer asymptotic decomposition

Let us remind shortly the construction of the main asymptotic term (for
details see Section 4.1.1). Consider the problem (5.1) with homogeneous
boundary conditions in the domain ΩH (remind that u|∂ΩH∩∂Ω = 0). We
rewrite the problem (5.1) in coordinates y′ = x′x−λn , yn = xn, t = t :

u′t − ν(y−2λ
n ∆′ + D2)u′ + y−λn ∇′p = 0, y ∈ Π,

un,t − ν(y−2λ
n ∆′ + D2)un + Dp = 0, y ∈ Π,

y−λn div′u′ + Dun = 0, y ∈ Π,

u = 0, y ∈ ∂Π,
u(y′, yn, 0) = 0, y ∈ Π,

(5.9)
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where Π = {y ∈ Rn : |y′| < γ0, yn ∈ (0, H)}. For the reader convenience we
remind that

D = ∂n − λy−1
n y′ · ∇′, u′ = (u1, ..., un−1), ∂k =

∂

∂yk
, k = 1, ..., n,

∇′ = (∂1, ..., ∂n−1), div′ u′ = ∇′ · u′, ∆′ = ∇′ · ∇′.

It is shown in Chapter 4 that the leading-order asymptotic term has the
form

Un,0(y′, yn, t) =
F (t)

κ0
y
−λ(n−1)
n ϕ(y′),

U′0(y′, yn, t) = y
−λ(n−2)−1
n U′0(y′, t),

P0(y′, yn, t) =
F (t)

κ0(1− λ(n+ 1))
y

1−λ(n+1)
n + y

−λ(n−1)−1
n Q0(y′, t),

(5.10)

where the function ϕ is the solution to the Poisson problem ν∆′ϕ(y′) = 1, y′ ∈ ω,
ϕ(y′) = 0, y′ ∈ ∂ω, (5.11)

and is described in Chapter 2 (see Subsection Poisson problem), ω is a
bounded domain: ω =

{
y′ ∈ Rn−1 : |y′| < γ0

}
and (U′0,Q0) is the solution

of 
−ν∆′U′0(y′, t) +∇′Q0(y′, t) = 0, y′ ∈ ω,

div′U′0(y′, t) = G0(y′, t), y′ ∈ ω,
U′0(y′, t) = 0, y′ ∈ ∂ω,

(5.12)

with
G0(y′, t) = λκ−1

0 F (t)(n− 1 + y′ · ∇′)ϕ(y′).

Note, that by construction, the following compatibility condition for the
problem (5.12) ∫

ω

G0(y′, t) dy′ = 0

must hold. The solvability of the problem (5.12) follows from classical results
in [18]. Since time variable t is only a parameter in the problem (5.12),
using Theorem 2.5 we can formulate the following lemma concerning the
solvability of the problem.

Lemma 5.1. The problem (5.12) admits a unique weak solution U′0 ∈
W̊ 1,2(ω) and there holds the estimate

‖U′0‖2W 1,2(ω) ≤ c‖G0‖2L2(ω). (5.13)
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Moreover, there exists a corresponding pressure function P0 ∈ L2(ω) such
that

∫
ω
P0(y′) dy′ = 0 and the following estimate holds

‖P0‖2L2(ω) ≤ c‖G0‖2L2(ω).

Since by construction the data is smooth, solution U′0, P0 is also smooth,
i.e. is infinitely differentiable up to the boundary.

Remark 5.2. Since t is a parameter in the problem (5.12) we can differ-
entiate the equation with respect to time variable t and get the analogous
results for the time derivatives of the solution.

The leading-order term for the boundary-layer-in-time

Since in (5.12) the time variable t is included only as a parameter, in general,
the vector function (U′0, Un,0) does not satisfy the initial condition. In order
to compensate the discrepancy u(x, 0) = us(x) −U0(y′, yn, 0), we have to
construct a boundary layer near the point t = 01. Rewriting (5.1) in ΩH in
new coordinates

y′ = x′x−λn , yn = xn, τ = t/x2λ
n ,

we get

y−2λ
n u′τ − ν(y−2λ

n ∆′ + D2
b)u
′ + y−λn ∇′p = 0, y ∈ Π,

y−2λ
n un,τ − ν(y−2λ

n ∆′ + D2
b)un + Dbp = 0, y ∈ Π,

y−λn div′u′ + Dbun = 0, y ∈ Π,

u = 0, y ∈ ∂Π,
u(y, 0) = us(y) − U0(y, 0), y ∈ Π,

(5.14)

where
Db = ∂n − λy−1

n y′ · ∇′ − 2λy−1
n τ∂τ .

Remind, that y = (y′, yn) and us(y) =
(
y
−λ(n−2)−1
n u ′s(y

′), y
−λ(n−1)
n un,s(y

′)
)
.

We look for the solution (Ub
0, P

b
0 ) of (5.14) in the form

Ub
0(y′, yn, τ) =

(
U′b0 (y′, yn, τ), U bn,0(y′, yn, τ)

)
,

P b0 (y′, yn, τ) = y
1−λ(n+1)
n gb0(τ) +Qb0(y′, yn, τ),

(5.15)

where
U′b0 (y′, yn, τ) = y

−λ(n−2)−1
n U′b0 (y′, τ),

Qb0(y′, yn, τ) = y
−λ(n−1)−1
n Qb0(y′, τ),

U bn,0(y′, yn, τ) = y
−λ(n−1)
n Ubn,0(y′, τ),

1Note that on this step we satisfy only the singular part of the initial condition.
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with
Ubn,0(y′, τ) = (1− λ(n+ 1)) Φb

0(y′, τ).

Substituting (Ub
0, P

b
0 ) into equations (5.14) and selecting the leading

terms as yn → 0 terms, we get
y−2λ
n U′b0,τ − νy−2λ

n ∆′U′b0 + y−λn ∇′Qb0 = 0, y′ ∈ ω,
y−λn div′U′b0 = −DbU

b
n,0, y′ ∈ ω,

U′b0 = 0, y′ ∈ ∂ω,
U′b0 (y′, yn, 0) := u′b0 (y′, yn), y′ ∈ ω,

and

y−2λ
n U bn,0,τ − νy−2λ

n ∆′U bn,0 + (1− λ(n+ 1)) y
−λ(n+1)
n gb0

−2λy
−λ(n+1)
n τ

dgb0
dτ

= 0, y′ ∈ ω,
U bn,0 = 0, y′ ∈ ∂ω,

U bn,0(y′, yn, 0) := ubn,0(y′, yn), y′ ∈ ω,

where
u′b0 (y′, yn) = u′s(y

′, yn)−U′0(y′, yn, 0)

and
ubn,0(y′, yn) = un,s(y

′, yn)− Un,0(y′, yn, 0).

Two previous problems can be equivalently rewritten as follows
U′b0,τ − ν∆′U′b0 +∇′Qb0 = 0, y′ ∈ ω,

div′U′b0 = λAb(y
′, τ,∇′, ∂τ )Ubn,0(y′, τ), y′ ∈ ω,

U′b0 = 0, y′ ∈ ∂ω,
U′b0 (y′, 0) = u ′b0 (y′), y′ ∈ ω,

(5.16)

and 

∂τΦb
0(y′, τ)− ν∆′Φb

0(y′, τ) := sb0(τ), y′ ∈ ω,
Φb

0(y′, τ) = 0, y′ ∈ ∂ω,
Φb

0(y′, 0) := ubn,0(y′), y′ ∈ ω,∫
ω

Φb
0(y′, τ)dy′ = 0,

(5.17)

where
Ab(y

′, τ,∇′, ∂τ ) = n− 1 + y′ · ∇′ + 2τ∂τ , (5.18)

sb0(τ) = −gb0(τ)− 2
λ

λ(n+ 1)− 1
τ
dgb0(τ)

dτ
(5.19)

68



and
ubn,0(y′) = un,s(y

′)− Un,0(y′, 0).

Note, that (5.17) is the inverse problem, the function sb0(τ) is not known
and we have to choose it in order to satisfy the flux condition (5.17)4.

By construction the following compatibility condition∫
ω

Φb
0(y′, 0)dy′ =

∫
ω

ubn,0(y′) dy′ = 0 (5.20)

holds (see (5.7) and (5.10)). Therefore, the solvability of the problem (5.17)
follows from Theorem 2.7. Behavior of the solution to (5.17) as τ → ∞ is
described by Theorem 2.8, which states that the solution (Φb

0, s
b
0) is, in fact,

exponentially decaying. In other words there hold following lemmas.

Lemma 5.2. There exists a unique weak solution (Φb
0, s

b
0) of the problem

(5.17) such that

sup
τ∈[0,∞)

‖Φb
0(·, τ)‖W 1,2(ω) + ‖Φb

0‖L2(0,∞;W 1,2(ω))

+‖∂τΦb
0‖L2(0,∞;L2(ω)) + ‖sb0‖L2(0,∞) ≤ c‖ubn,0‖W 1,2(ω).

(5.21)

Lemma 5.3. The solution (Φb
0, s

b
0) of the problem (5.17) satisfies the esti-

mate

max
τ∈[0,∞)

[
exp(ν∗τ)

(∫
ω
|Φb

0(y, τ)|2 dy + ν
∫
ω
|∇Φb

0(y, τ)|2 dy
)]

+
∞∫
0

exp(ν∗τ)
∫
ω

∣∣∂τΦb
0(y, τ)

∣∣2 dy dτ +
∞∫
0

exp(ν∗τ)|sb0(τ)|2 dτ

≤ c‖ubn,0‖2W 1,2(ω),

(5.22)

where ν∗ = min{λ1, 1}. Here λ1 is the first eigenvalue of the Dirichlet
problem for the Laplace equation{

−ν∆u(x) = λu(x), x ∈ ω,
u(x)|∂ω = 0.

Solvability condition for the problem (5.16)∫
ω

Ab(y
′, τ,∇′, ∂τ )Ubn,0(y′, τ) dy′ = 0

is equivalent to

(1− λ(n+ 1))2τ∂τ

∫
ω

Φb
0(y′, τ) dy′ = 0
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and is satisfied automatically (see (5.17)4). Then the solvability of the
problem (5.16) and the exponential decay of its solution as τ → ∞ follows
from Theorem 2.10.

Lemma 5.4. The problem (5.16) admits a unique weak solution U′b0 such
that

max
τ∈[0,∞)

‖U′b0 (·, τ)‖2W 1,2(ω) + ‖U′b0 ‖2L2(0,∞;W 1,2(ω)) + ‖U′b0,τ‖2L2(0,∞;L2(ω))

≤ c
(
‖Φb

0‖L2(0,∞;W 1,2(ω)) + ‖∂τΦb
0‖L2(0,∞;L2(ω)) + ‖u ′b0 ‖2W 1,2(ω)

) (5.23)

There exists a corresponding pressure function Pb0 ∈ L2(0,∞;L2(ω)) such
that

∫
ω
Pb0(y′) dy′ = 0 and the following estimate holds

‖Pb0‖2L2(0,∞;L2(ω)) ≤ c
(
‖Φb

0‖L2(0,∞;W 1,2(ω)) + ‖∂τΦb
0‖L2(0,∞;L2(ω))

+‖u ′b0 ‖2W 1,2(ω)

)
.

Note that solvability condition for problem (5.16)∫
ω

λAb(y
′, τ,∇′, ∂τ )Ubn,0(y′, τ) dy′ = 0

holds due to the construction.
The function gb0 is the solution to the ODE (5.19) and has the form

gb0(τ) =

−M0

τ∫
0

sb0(t)tM0−1 dt+ C

 τ−M0 , M0 =
n+ 1

2
− 1

2λ
> 1.

We set the constant C = 0 in order to have finite boundary layer pressure
P b0 at point τ = 0. Moreover, there hold the following properties

lim
τ→0

gb0(τ) = −sb0(0), lim
τ→∞

gb0(τ) = 0. (5.24)

The equalities (5.24) follow from Theorem 2.8 using L’Hospital’s rule.

Discrepancies

Functions U0, Q0,U
b
0, Q

b
0 leave in the equations (5.9)1, (5.9)2, (5.14)1, (5.14)2

the discrepancies H′0(y′, yn, t, τ), Hn,0(y′, yn, t, τ):

H′0(y′, yn, t, τ) = νD2U′0(y, t)−U′0,t(y, t) + νD2
bU
′b
0 (y, τ)

= y
−λ(n−2)−3
n F̂

′
0(y′, t) + y

−λ(n−2)−1
n F̃

′
0(y′, t)

+y
−λ(n−2)−3
n F′b0 (y′, τ)

(5.25)
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= F′o0 (y′, yn, t) + F′b0 (y′, yn, τ),

Hn,0(y′, yn, t, τ) = νD2Un,0(y, t)− Un,0,t(y, t)

−D
(
y
−λ(n−2)−1
n Q0(y′, t)

)
+νD2

bU
b
n,0(y′, yn, τ)−DbQ

b
0(y′, yn, τ)

= y
−λ(n−1)−2
n F̂n,0(y′, t) + y

−λ(n−1)
n F̃n,0(y′, t)

+y
−λ(n−1)−2
n Fbn,0(y′, τ)

= F on,0(y′, yn, t) + F bn,0(y′, yn, τ).

The discrepancy H0(y′, yn, t, τ) is represented as a sum Fo0(y, t) + Fb0(y, τ),
where Fo0(y′, yn, t) is a collection of the discrepancies arising from the con-
struction of the leading-order term of the outer asymptotic expansion, while
Fb0(y′, yn, τ) is the discrepancy arising from the boundary layer construction.
Moreover, Fo0(y′, yn, t) consists of two parts: terms F̃ denotes the discrep-
ancies appearing due to U0,t, and F̂ - the rest of the discrepancies.

Our goal is to construct the asymptotic decomposition of the solution
so that the discrepancy belongs to the space L2(0, T ;L2(Ω)). However,
since λ > 1, neither Fo0 nor Fb0 belongs to L2(0, T ;L2(Ω)) and we need to
construct higher-order terms of the asymptotic decomposition.

Estimates of the leading-order term

Let us come back to the variables x, t and define

u0(x, t) = U0(x′/xλn, xn, t) + Ub
0(x′/xλn, xn, t/x

2λ
n ),

p0(x, t) = P0(x′/xλn, xn, t) + P b0 (x′/xλn, xn, t/x
2λ
n ).

By construction

div u0(x, t) = 0 in ΩH , u0(x, t) = 0 on ∂ΩH ∩ ∂Ω,

u0(x, 0) = using(x) in ΩH ,

∫
σ(h)

u0 · n dx′ = F (t).

Functions u0, p0 satisfy the Stokes equations
u0
t − ν∆u0 +∇p0 = H0 + U0,t, x ∈ ΩH ,

divu0 = 0, x ∈ ΩH ,

u0 = 0, x ∈ ∂ΩH ∩ ∂Ω,

u0(x, 0) = using(x), x ∈ ΩH ,

(5.26)
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where function H0(x, t) = H0(x′/xλn, xn, t, t/x
2λ
n ) is defined by formula (5.25).

Note that the function U0,t is included in the expression of the discrep-
ancy H0 (see formula (5.25)) and therefore the right-hand side expression
H0 + U0,t does not contain time derivatives.

By construction we get

‖H0‖2L2(ω) ≤ cy
−2λ(n−1)−4
n

(
‖F̂0‖2L2(ω) + ‖F̃0‖2L2(ω) + ‖F0‖2L2(ω)

)
.

5.1.2 Higher-order terms of the asymptotic decomposition

In order to obtain the discrepancy in L2(0, T ;L2(Ω)), we have, first, to
compensate the most singular term in Fo0, that is

(y−λ(n−2)−3
n F̂

′
0(y′, t), y−λ(n−1)−2

n F̂n,0(y′, t)) = (F̂′0(y′, yn, t), F̂n,0(y′, yn, t)).

So, we have to find functions (U1, P1) which solve the nonhomogeneous
equations (5.9)1–(5.9)4 with the right-hand sides F̂′0, F̂n,0, i.e. we compen-
sate the most singular terms F̂′0, F̂n,0. Functions (U1, P1) leave some new
discrepancies Fo1 in (5.9), etc. We shall keep constructing the functions
(Uk, Pk), k ∈ N, which satisfy the nonhomogeneous equations (5.9)1–(5.9)4

with the right-hand sides F′k−1, Fn,k−1, until we get the discrepancies be-
longing to L2(0, T ;L2(Ω)).

To explain this algorithm heuristically, consider the equation (5.9)2. In
order to compensate the term yµnFn,k in the right-hand side, we construct
a function yµ+2λ

n Un,k+1 which produces a new discrepancy yµ+2(λ−1)
n Fn,k+1,

i.e. after every step the power exponents µ of yn (describing the singularity)
are changing by the following rule

µ −→ µ+ 2(λ− 1). (5.27)

At every step of the construction we select the most singular terms in
the discrepancies F′ok , F on,k. The process of selecting right-hand sides can be
illustrated by the scheme

F̂0 ⇒ ...⇒ F̂Î
⇓{

F̂Î+1 + F̃0 ⇒ ...⇒ F̂Î+1+k + F̃k ⇒ ..., λ = N+1
N ,

F̃0 ⇒ F̂Î+1 ⇒ ...⇒ F̃k ⇒ F̂Î+1+k ⇒ ..., λ 6= N+1
N .

(5.28)

The number Î is given by

Î = min
{
I ∈ N : I ≥ 1

λ− 1
− 1

}
=


1

λ−1 − 1, λ = N+1
N ,⌊

1
λ−1

⌋
, λ 6= N+1

N .
(5.29)
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The analogous algorithm is used to construct the boundary layer asymp-
totic decomposition: at every step k we select the most singular term in the
discrepancies Fbk(y

′, yn, τ), k ∈ N, and compensate it. Moreover, at every
step we compensate the corresponding discrepancies in the initial condition
(since obviously Uk(y

′, yn, 0) 6= 0).

Case: λ = N+1
N

Outer asymptotics. Case λ = N+1
N . If λ = N+1

N , then up to the number
Î, given by (5.29), the terms with (F̂

′
k, F̂n,k), k = 0, 1, ..., Î, are "more

singular" than (F̃
′
k, F̃n,k). When we reach the number Î the terms F̂Î+1 and

F̃0 have the same power exponents of yn, and so we compensate the sum
F̃0 + F̂Î+1 and continue doing so till we reach the satisfactory discrepancy
from L2(0, T ;L2(Ω)) (see (5.28)). Therefore, the "most singular" terms in
the discrepancies are:

F′k(y
′, yn, t) = y−λ(n−1)−2+(2k+1)(λ−1)

n F′k(y
′, t),

Fn,k(y
′, yn, t) = y−λ(n−1)−2+2k(λ−1)

n Fn,k(y
′, t),

where

Fk(y
′, t) = (F′k(y

′, t),Fn,k) =

{
F̂k(y

′, t), k ≤ Î ,

F̂k(y
′, t) + F̃

k−Î−1
(y′, t), k > Î,

k = 0, 1, 2, .... Thus, we can look for the approximate solution (UO,[J ], PO,[J ])
in the form of series in powers of yn:

U′O,[J ](y, t) = y
−λ(n−2)−1
n U′0(y′, t) +

J∑
k=1

y
−λ(n−2−2k)−2k−1
n U′k(y

′, t),

U
O,[J ]
n (y, t) =

F (t)

κ0
y
−λ(n−1)
n ϕ(y′) +

J∑
k=1

y
−λ(n−1−2k)−2k
n Un,k(y

′, t),

PO,[J ](y, t) =
F (t)

κ0(1− λ(n+ 1))
y

1−λ(n+1)
n + y

−λ(n−1)−1
n Q0(y′, t)

+
J∑
k=1

[
y
−λ(n+1−2k)+1−2k
n gk(t) + y

−λ(n−1−2k)−1−2k
n Qk(y

′, t)
]
,

(5.30)

where J ∈ N and (U′k,Qk), k = 1, 2, ..., are solutions to the problems
−ν∆′U′k +∇′Qk = F′k−1, y′ ∈ ω,

div′U′k = [λA(y′,∇′)− 2k(λ− 1)]Un,k, y′ ∈ ω,
U′k = 0, y′ ∈ ∂ω,

(5.31)
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Un,k(y
′, t) = gk(t)(−λ(n+ 1− 2k) + 1− 2k)ϕ(y′) + U∗n,k(y

′, t),

A(y′,∇′) = n − 1 + y′ · ∇′, the function ϕ is the solution to the problem
(5.11), U∗n,k satisfy the equations −ν∆′U∗n,k = Fn,k−1, y′ ∈ ω,

U∗n,k = 0, y′ ∈ ∂ω, (5.32)

and the functions gk, k = 1, 2, ..., are uniquely determined from the solva-
bility condition for the problem (5.31) with −λ(n + 1 − 2k) + 1 − 2k 6= 0,
i.e.

gk(t) = − 1

κ0(−λ(n+ 1− 2k) + 1− 2k)

∫
ω

U∗n,k(y
′, t) dy′. (5.33)

If −λ(n+ 1− 2k) + 1− 2k = 0, we have

k =
n+ 1

2
+

n

2(λ− 1)
:= k̄. (5.34)

Note that such k̄ not necessarily exists, since k ∈ N (for example, it is easy
to verify that k̄ does not exists when n = 2; in this case n

2(λ−1) is a natural
number (see (5.29))). However, if it does exist, we have to look for (Uk̄, Pk̄)
in a special form (see Section 4.1.2). We were not able to solve the same
"k̄" problem for the boundary layer. Therefore, hereafter we assume that

−λ(n+ 1− 2k) + 1− 2k 6= 0. (5.35)

Note that all functions in the problems (5.31), (5.32) depend on time
variable t as a parameter. Thus, from Theorems 2.5, 2.1 we get the following
Lemmas concerning the solvability of these problems.

Lemma 5.5. The problem (5.31) admits a unique weak solution U′k ∈
W̊ 1,2(ω) and there holds the estimate

‖U′k‖2W 1,2(ω) ≤ c
(
‖F′k−1‖2L2(ω) + ‖U∗n,k‖2L2(ω)

)
. (5.36)

Moreover, there exists a corresponding pressure function Pk ∈ L2(ω) such
that

∫
ω
Pk(y

′) dy′ = 0 and the following estimate holds

‖Pk‖2L2(ω) ≤ c
(
‖F′k−1‖2L2(ω) + ‖U∗n,k‖2L2(ω)

)
.

Since by construction all the data is smooth, the solution U′k, Pk is also
smooth.
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Note that solvability condition (5.33) to the problem (5.31) is satisfied
automatically due to the construction.

Lemma 5.6. The problem (5.32) admits a unique weak solution U∗n,k ∈
W̊ 1,2(ω) and there holds the estimate

‖U∗n,k‖W 1,2(ω) ≤ c‖Fn,k−1‖L2(ω). (5.37)

Moreover, since by construction Fn,k−1 is infinitely smooth, the solution
U∗n,k is infinitely smooth up to the boundary.

Remark 5.3. Since t is a parameter in the problems (5.31), (5.32) we
can differentiate the equations with respect to time variable t and get the
analogous results for the time derivatives of the solution.

Boundary layer. Case λ = N+1
N . Let λ = N+1

N and consider the problem
(5.14) with the right-hand sides having the special form

y−2λ
n u′τ − ν(y−2λ

n ∆′ + D2
b)u
′ + y−λn ∇′p = y

−λ(n−2)−3
n F′b0 (y′, τ),

y−2λ
n un,τ − ν(y−2λ

n ∆′ + D2
b)un + Dbp = y

−λ(n−1)−2
n Fbn,0(y′, τ),

y−λn div′u′ + Dbun = 0,

u|∂Π = 0,
u(y′, yn, 0) = −U1(y′, yn, 0),

(5.38)

where y ∈ Π, F′b0 , Fbn,0 are described in (5.25). We put

P b1 (y′, yn, τ) = gb1(τ)y
−λ(n−1)−1
n + y

−λ(n−3)−3
n Qb1(y′, τ),

U′b1 (y′, yn, τ) = y
−λ(n−4)−3
n U′b1 (y′, τ),

U bn,1(y′, yn, τ) = y
−λ(n−3)−2
n Ubn,1(y′, τ),

(5.39)

with
Ubn,1(y′, τ) = (−λ(n− 1)− 1)

(
Φb

1(y′, τ) + U�n,1(y′, τ)
)
.

Function U�n,1 satisfies the equations
∂τU

�
n,1 − ν∆′U�n,1 = (−λ(n− 1)− 1)−1Fbn,0, y′ ∈ ω,

U�n,1 = 0, y′ ∈ ∂ω,
U�n,1(y′, 0) = 0, y′ ∈ ω,

(5.40)

and the pair (Φb
1, s

b
1) is the solution to the inverse problem
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∂τΦb
1(y′, τ)− ν∆′Φb

1(y′, τ) := sb1(τ), y′ ∈ ω,

Φb
1(y′, τ) = 0, y′ ∈ ∂ω,

Φb
1(y′, 0) = −Un,1(y′, 0), y′ ∈ ω,∫

ω
Φb

1(y′, τ) dy′ = −
∫
ω
U�n,1(y′, τ) dy′.

(5.41)

The function gb1(τ) is related to sb1(τ) by the following ODE

sb1(τ) = −gb1(τ)− 2
λ

λ(n− 1) + 1
τ
dgb1(τ)

dτ
. (5.42)

Remind that, due to the construction (see Section 5.1),
∫
ω
Un,1(y′, t) dy′ = 0

and, therefore, the solvability condition∫
ω

U�n,1(y′, 0) dy′ =

∫
ω

Un,1(y′, 0) dy′

holds automatically (see also (5.40)).
From (5.42) we find that

gb1(τ) =

−M1

τ∫
0

sb1(t)tM1−1 dt

 τ−M1 , M1 =
n− 1

2
+

1

2λ
> 1/2.

The right-hand side of the problem (5.40) is exponentially decaying. Conse-
quently, functions U�n,1,

∫
ω
U�n,1(y′, τ) dy′ also decay exponentially as τ →∞

and we can use Theorem 2.8. Thus, as in (5.24), using Theorem 2.8 and
L’Hospital’s rule, we derive

lim
τ→0

gb1(τ) = −sb1(0), lim
τ→∞

gb1(τ) = 0. (5.43)

The pair (U′b1 ,Q
b
1) is the solution to

U′b1,τ − ν∆′U′b1 +∇′Qb1 = F′b0 ,

div′U′b1 = [λAb(y
′, τ,∇′, ∂τ )− 2(λ− 1)]Ubn,1,

U′b1 |∂ω = 0,

U′b1 (y′, 0) = −U′1(y′, 0),

(5.44)

where y′ ∈ ω.
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Notice that the solvability condition for the problem (5.44) is satisfied
automatically due to the construction, i.e.∫

ω

[
λAb(y

′, τ,∇′, ∂τ )− 2(λ− 1)
]
Ubn,1(y′, τ) dy′ = 0.

Functions Ub
1, Q

b
1 leave in the equations (5.38)1, (5.38)2 the discrepancies

F′b1 (y′, yn, τ), F bn,1(y′, yn, τ).
Recurrently we can write

F′bk (y′, yn, τ) = νD2
bU
′b
k (y′, yn, τ) = y−λ(n−1)−2+(2k+1)(λ−1)

n F′bk (y′, τ),

F bn,k(y
′, yn, τ) = νD2

bU
b
n,k(y

′, yn, τ)−DbQ
b
k(y
′, yn, τ)

= y−λ(n−1)−2+2k(λ−1)
n Fbn,k(y

′, τ),

k = 0, 1, 2, ..., and we can look for the boundary layer asymptotic expansion
in the form:

U′B,[J ](y′, yn, τ) =
J∑
k=0

y
−λ(n−1)+(2k+1)(λ−1)
n U′bk (y′, τ),

U
B,[J ]
n (y′, yn, τ) =

J∑
k=0

y
−λ(n−1)+2k(λ−1)
n Ubn,k(y

′, τ),

PB,[J ](y′, yn, τ) =
J∑
k=0

(
gbk(τ)y

−λ(n−1)−1+2(k−1)(λ−1)
n

+ y
−λ(n−1)−1+2k(λ−1)
n Qbk(y

′, τ)
)
,

(5.45)

where (U′bk ,Q
b
k), k = 1, 2, ..., are solutions to the problems

U′bk,τ − ν∆′U′bk +∇′Qbk = F′bk−1,

div′U′bk = [λAb(y
′, τ,∇′, ∂τ )− 2k(λ− 1)]Ubn,k,

U′bk |∂ω = 0,

U′bk (y′, 0) = −U′k(y′, 0),

(5.46)

Ubn,k(y
′, τ) = (−λ(n+ 1− 2k) + 1− 2k)

(
Φb
k(y
′, τ) + U�n,k(y

′, τ)
)

; (5.47)

the functions U�n,k satisfy the equations
∂τU

�
n,k − ν∆′U�n,k = (−λ(n+ 1− 2k) + 1− 2k)−1Fbn,k−1,

U�n,k|∂ω = 0,

U�n,k(y
′, 0) = 0,

(5.48)
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where y′ ∈ ω, while the functions (Φb
k, s

b
k), k = 1, 2, ..., are solutions to the

inverse problems

∂τΦb
k(y
′, τ)− ν∆′Φb

k(y
′, τ) := sbk(τ), y′ ∈ ω,

Φb
k(y
′, τ) = 0, y′ ∈ ∂ω,

Φb
k(y
′, 0) = −Un,k(y′, 0), y′ ∈ ω,∫

ω
Φb
k(y
′, τ) dy′ = −

∫
ω
U�n,k(y

′, τ) dy′.

(5.49)

Finally, the functions gbk(τ) are solutions to the following ODE

sbk(τ) = −gbk(τ)− 2ckτ
dgbk(τ)

dτ
, (5.50)

where ck =
λ

λ(n− 1) + 1− 2(k − 1)(λ− 1)
. Note, that

∫
ω
Un,k(y

′, t) dy′ = 0

due to the construction. Therefore, the solvability condition∫
ω

U�n,k(y
′, 0) dy′ =

∫
ω

Un,k(y
′, 0) dy′ (5.51)

holds automatically. Remind, that by assumption, there holds the condition
(5.35). Hence, we find

gbk(τ) =

−Mk

τ∫
0

sbk(t)t
Mk−1 dt

 τ−Mk , if Mk > 0, (5.52)

and

gbk(τ) =

−Mk

∞∫
τ

sbk(t)t
Mk−1 dt

 τ−Mk , if Mk < 0, (5.53)

where
Mk =

n+ 1

2
− k +

2k − 1

2λ
> 3/2− k.

Note, that Mk 6= 0 due to the assumption (5.35).
From Theorems 2.10, 2.2, 2.7 we get the following lemmas concerning

the solvability of the problems (5.46), (5.48), (5.49).

Lemma 5.7. The problem (5.46) admits a unique weak solution U′bk,τ such
that
max
τ∈[0,∞)

‖U′bk (·, τ)‖2W 1,2(ω) + ‖U′bk ‖2L2(0,∞;W 1,2(ω)) + ‖U′bk,τ‖2L2(0,∞;L2(ω))

≤ c
(
‖F′bk−1‖2L2(0,∞;L2(ω)) + ‖Φb

k‖2L2(0,∞;W 1,2(ω)) + ‖Φb
k,τ‖2L2(0,∞;L2(ω))

+ ‖U�n,k‖2L2(0,∞;L2(ω)) + ‖U�n,k,τ‖2L2(0,∞;L2(ω)) + ‖U′k‖2W 1,2(ω)

)
.

(5.54)
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There exists a corresponding pressure function Pbk ∈ L2(0,∞;L2(ω)) such
that

∫
ω
Pbk(y

′) dy′ = 0 and the following estimate holds

‖Pbk‖2L2(0,∞;L2(ω)) ≤ c
(
‖F′bk−1‖2L2(0,∞;L2(ω)) + ‖Φb

k‖2L2(0,∞;W 1,2(ω))

+‖Φb
k,τ‖2L2(0,∞;L2(ω)) + ‖U�n,k‖2L2(0,∞;L2(ω)) + ‖U�n,k,τ‖2L2(0,∞;L2(ω))

+‖U′k(y′, 0)‖2W 1,2(ω)

)
.

Note that solvability condition for problem (5.46)∫
ω

[
λAb(y

′, τ,∇′, ∂τ )− 2k(λ− 1)
]
Ubn,k = 0

holds due to the construction.

Lemma 5.8. The problem (5.48) admits a unique weak solution U�n,k ∈
L2(0,∞; W̊ 1,2(ω)) with ∂τU

�
n,k ∈ L2(0,∞;L2(ω)) and there holds the esti-

mate
max
τ∈[0,∞)

‖U�n,k(·, τ)‖2W 1,2(ω) + ‖U�n,k‖2L2(0,∞;W 1,2(ω))

+‖∂τU�n,k‖2L2(0,∞;L2(ω)) ≤ c‖F
b
n,k−1‖L2(0,∞;L2(ω)).

(5.55)

Lemma 5.9. There exists a unique weak solution (Φb
k, s

b
k) of the problem

(5.49) such that

sup
τ∈[0,∞)

‖Φb
k(·, τ)‖W 1,2(ω) + ‖Φb

k‖L2(0,∞;W 1,2(ω))

+‖∂τΦb
k‖L2(0,∞;L2(ω)) + ‖sbk‖L2(0,∞)

≤ c
(
‖
∫
ω
U�n,k(y

′, τ) dy′‖W 1,2(0,∞) + ‖Un,k(y′, 0)‖W 1,2(ω)

)
.

(5.56)

Discrepancies. Case λ = N+1
N . The discrepancies H′J(y′, yn, t, τ),

Hn,J(y′, yn, t, τ) left by the sum UO,[J ](y′, yn, t) + UB,[J ](y′, yn, τ) can be
written in the form

H′J(y′, yn, t, τ) = y
−λ(n−1)−2+(2J+1)(λ−1)
n F̂

′
J(y′, t)

+
J∑

k=max{0,J−Î}
y
−λ(n−1)+(2k+1)(λ−1)
n F̃

′
k(y
′, t)

+y
−λ(n−1)−2+(2J+1)(λ−1)
n F′bJ (y′, τ)

= F′oJ (y′, yn, t) + F′bJ (y′, yn, τ),

(5.57)

79



Hn,J(y′, yn, t, τ) = y
−λ(n−1)−2+2J(λ−1)
n F̂n,J(y′, t)

+
J∑

k=max{0,J−Î}
y
−λ(n−1)+2k(λ−1)
n F̃n,k(y

′, t)

+y
−λ(n−1)−2+2J(λ−1)
n Fbn,J(y′, τ)

= F on,J(y′, yn, t) + F bn,J(y′, yn, τ).

The discrepancies (5.57) are represented as a sum FoJ(y′, yn, t)+FbJ(y′, yn, τ),
where FoJ(y′, yn, t) is a collection of the discrepancies arising from the main
asymptotic term construction, and Fbn,J(y′, yn, τ) are the discrepancies aris-
ing from the boundary layer construction.

Since λ > 1, after final number of steps J∗ > 0 we arrive at

(H′J∗−1, Hn,J∗−1) ∈ L2(0, T ;L2(Ω)), (5.58)

where number J∗ is given by the following relation

J∗ = min

{
J ∈ N : J >

1

4

[
(n+ 2)Î + 2n+ 5

]}
. (5.59)

Case λ 6= N+1
N

Outer asymptotics. Case λ 6= N+1
N . If λ 6= N+1

N , then up to the
number Î, given by (5.29), the terms with (F̂

′
k, F̂n,k), k = 0, 1, ..., Î, are

"more singular" than (F̃
′
k, F̃n,k). After we reach this number Î the terms F̂

and F̃ are alternating (see (5.28) for more details), that is

F′k(y
′, yn, t) =


y
−λ(n−1)−2+(2k+1)(λ−1)
n F̂

′
k(y
′, t), k ≤ Î ,

y
−λ(n−1)+(2j+1)(λ−1)
n F̃

′
j(y
′, t), k = Î + 2j + 1,

y
−λ(n−1)−2+(2(Î+j+1)+1)(λ−1)
n F̂

′
Î+j+1(y′, t), k = Î + 2j + 2,

Fn,k(y
′, yn, t) =


y
−λ(n−1)−2+2k(λ−1)
n F̂n,k(y

′, t), k ≤ Î ,

y
−λ(n−1)+2j(λ−1)
n F̃n,j(y

′, t), k = Î + 2j + 1,

y
−λ(n−1)−2+2(Î+j+1)(λ−1)
n F̂

n,Î+j+1
(y′, t), k = Î + 2j + 2,

k = 0, 1, ..., j = 0, 1, .... We look for the approximate solution (UO,[J ], PO,[J ])
in the form

U′O,[J ](y′, yn, t) = y
−λ(n−2)−1
n U′0(y′, t)

+
min{J, bJ+Î

2
c}∑

k=1

y
−λ(n−1)+(2k+1)(λ−1)
n U′k(y

′, t)
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+
bJ−Î+1

2
c∑

k=1

y
−λ(n−1)+2+(2k+1)(λ−1)
n Ũ

′
k(y
′, t),

U
O,[J ]
n (y′, yn, t) =

F (t)

κ0
y
−λ(n−1)
n ϕ(y′)+

+
min{J,bJ+Î

2
c}∑

k=1

y
−λ(n−1)+2k(λ−1)
n Un,k(y

′, t)

+
bJ−Î+1

2
c∑

k=1

y
−λ(n−1)+2+2k(λ−1)
n Ũn,k(y

′, t),

(5.60)

PO,[J ](y′, yn, t) =
F (t)

κ0(1− λ(n+ 1))
y

1−λ(n+1)
n + y

−λ(n−1)−1
n Q0(y′, t)

+
min{J, bJ+Î

2
c}∑

k=1

gk(t)y
−λ(n−1)−1+2(k−1)(λ−1)
n

+
min{J, bJ+Î

2
c}∑

k=1

y
−λ(n−1)−1+2k(λ−1)
n Qk(y

′, t)

+
bJ−Î+1

2
c∑

k=1

g̃k(t)y
−λ(n−1)+1+2(k−1)(λ−1)
n

+
bJ−Î+1

2
c∑

k=1

y
−λ(n−1)+1+2k(λ−1)
n Q̃k(y

′, t),

where J ∈ N, functions (Ũ
′
k, Q̃k), k = 1, 2, ..., are solutions to the problems

−ν∆′Ũ
′
k +∇′Q̃k = F̃

′
k−1, y′ ∈ ω,

div′Ũ
′
k = [λA(y′,∇′) + 2− 2k(λ− 1)] Ũn,k, y

′ ∈ ω,

Ũ
′
k|∂ω = 0, y′ ∈ ω,

(5.61)

Ũn,k(y
′, t) = g̃k(t)(−λ(n− 1) + 1 + 2k(λ− 1))ϕ(y′) + Ũ∗n,k(y

′, t),

ϕ solves (5.11), Ũ∗n,k, k = 1, 2, ..., satisfy the nonhomogeneous equations
(5.32) with the right-hand sides F̃n,k−1. Since, by assumption, −λ(n+ 1−
2k) + 1 − 2k 6= 0 (see Subsection 5.1.2), the functions g̃k, k = 1, 2, ..., are
uniquely determined from the solvability condition for the problem (5.61)
which is equivalent to the equation

2g̃k(t)κ0[−λ(n− 1) + 1 + 2k(λ− 1)][−1 + k(λ− 1)]

=

∫
ω

[
λA(y′,∇′) + 2− 2k(λ− 1)

]
Ũ∗n,k(y

′, t) dy′. (5.62)
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Note that all functions in the problem (5.61) depend on time variable
t as a parameter. Thus, from Theorem 2.5 we get the following lemma
concerning the solvability of this problem.

Lemma 5.10. The problem (5.61) admits a unique weak solution Ũ
′
k ∈

W̊ 1,2(ω) and there holds the estimate

‖Ũ
′
k‖2W 1,2(ω) ≤ c

(
‖F̃
′
k−1‖2L2(ω) + ‖Ũ∗n,k‖2L2(ω)

)
. (5.63)

Moreover, there exists a corresponding pressure function P̃k ∈ L2(ω) such
that

∫
ω
P̃k(y

′) dy′ = 0 and

‖P̃k‖2L2(ω) ≤ c
(
‖F̃
′
k−1‖2L2(ω) + ‖Ũ∗n,k‖2L2(ω)

)
.

Since by construction all the data is smooth, the solution Ũ
′
k, P̃k is also

smooth.

Remark 5.4. Since t is a parameter in the problem (5.61) we can differ-
entiate the equation with respect to time variable t and get the analogous
results for the time derivatives of the solution.

Note that solvability condition (5.62) to the problem (5.61) is satisfied
automatically due to the construction.

Boundary layer. Case λ 6= N+1
N . Since, in the case λ 6= N+1

N , the dis-
crepancies F̂ and F̃ arising in outer asymptotics construction procedure are
alternating (see the scheme (5.28)), we construct both functions Uk(y

′, yn, t)
and Ũk(y

′, yn, t) (which are also alternating). Therefore, now we have to
compensate both initial values Uk(y

′, yn, 0) and Ũk(y
′, yn, 0). Thus, the

right-hand sides for the boundary layer problems are alternating in a simi-
lar way as for the outer asymptotics

F′bk (y, τ) =


νD2

bU
′b
k (y, τ), k ≤ Î ,

νD2
bŨ
′b
j (y, τ), k = Î + 2j + 1,

νD2
bU
′b
Î+j+1

(y, τ), k = Î + 2j + 2,

=


y
−λ(n−1)−2+(2k+1)(λ−1)
n F̂

′b
k (y′, τ), k ≤ Î ,

y
−λ(n−1)+(2j+1)(λ−1)
n F̃

′b
j (y′, τ), k = Î + 2j + 1,

y
−λ(n−1)−2+(2(Î+j+1)+1)(λ−1)
n F̂

′b
Î+j+1(y′, τ), k = Î + 2j + 2,
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F bn,k(y, τ) =


νD2

bU
b
n,k(y, τ)−DbQ

b
k(y, τ), k ≤ Î ,

νD2
bŨ

b
n,j(y, τ)−DbQ̃

b
j(y, τ), k = Î + 2j + 1,

νD2
bU

b
n,Î+j+1

(y, τ)−DbQ
b
Î+j+1

(y, τ), k = Î + 2j + 2,

=


y
−λ(n−1)−2+2k(λ−1)
n F̂bn,k(y

′, τ), k ≤ Î ,

y
−λ(n−1)+2j(λ−1)
n F̃bn,j(y

′, τ), k = Î + 2j + 1,

y
−λ(n−1)−2+2(Î+j+1)(λ−1)
n F̂b

n,Î+j+1
(y′, τ), k = Î + 2j + 2,

k = 0, 1, 2, ..., j = 0, 1, 2, ..., and we set F̃
b

0 ≡ 0 for consistency. We look for
the approximate solution (UB,[J ], PB,[J ]) in the form

U′B,[J ](y′, yn, τ) =
min{J, bJ+Î

2
c}∑

k=0

y
−λ(n−1)+(2k+1)(λ−1)
n U′bk (y′, τ)

+
bJ−Î+1

2
c∑

k=1

y
−λ(n−1)+2+(2k+1)(λ−1)
n Ũ

′b
k (y′, τ),

U
B,[J ]
n (y′, yn, τ) =

min{J,bJ+Î
2
c}∑

k=0

y
−λ(n−1)+2k(λ−1)
n Ubn,k(y

′, τ)

+
bJ−Î+1

2
c∑

k=1

y
−λ(n−1)+2+2k(λ−1)
n Ũbn,k(y

′, τ),

(5.64)

PB,[J ](y′, yn, τ) =
min{J, bJ+Î

2
c}∑

k=0

gbk(τ)y
−λ(n−1)−1+2(k−1)(λ−1)
n

+
min{J, bJ+Î

2
c}∑

k=0

y
−λ(n−1)−1+2k(λ−1)
n Qbk(y

′, τ)

+
bJ−Î+1

2
c∑

k=1

g̃bk(τ)y
−λ(n−1)+1+2(k−1)(λ−1)
n

+
bJ−Î+1

2
c∑

k=1

y
−λ(n−1)+1+2k(λ−1)
n Q̃bk(y

′, τ),

where the pair (U′bk ,Q
b
k), k = 1, 2, ..., solves problems (5.46) with the right-

hand sides F̂
′b
k−1, the functions Ubn,k are described by (5.47), where U�n,k are

the solutions to the problems (5.48) with the right-hand sides (−λ(n+ 1−
2k) + 1 − 2k)−1F̂bn,k−1 and Φb

k together with sbk solve the inverse problems
(5.49). Since it is assumed that −λ(n + 1 − 2k) + 1 − 2k 6= 0 (see (5.35)),
the functions gbk, k = 1, 2, ..., are described by (5.52).
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Functions (Ũ
′b
k , Q̃

b
k), k = 1, 2, ..., are solutions to

Ũ
′b
k,τ − ν∆′Ũ

′b
k +∇′Q̃bk = F̃

′b
k−1,

div′Ũ
′b
k = [λAb(y

′, τ,∇′, ∂τ )− 2k(λ− 1)] Ũbn,k,

Ũ
′b
k |∂ω = 0,

Ũ
′b
k (y′, 0) = −Ũ

′
k(y
′, 0),

(5.65)

where y′ ∈ ω and

Ũbn,k(y
′, τ) = (−λ(n+ 1− 2k) + 1− 2k)

(
Φ̃b
k(y
′, τ) + Ũ�n,k(y

′, τ)
)
,

where the functions (Φ̃b
k, s̃

b
k) solve the inverse problem

∂τ Φ̃b
k(y
′, τ)− ν∆′Φ̃b

k(y
′, τ) := s̃bk(τ), y′ ∈ ω,

Φ̃b
k(y
′, τ) = 0, y′ ∈ ∂ω,

Φ̃b
k(y
′, 0) = −Ũn,k(y′, 0), y′ ∈ ω,∫

ω
Φ̃b
k(y
′, τ) dy′ = −

∫
ω
Ũ�n,k(y

′, τ) dy′,

(5.66)

the functions Ũ�n,k, k = 1, 2, ..., satisfy the equations (5.48) with the right-
hand sides (−λ(n + 1 − 2k) + 1 − 2k)−1F̃n,k; the functions g̃k, k = 1, 2, ...,
are solutions to

s̃bk(τ) = −g̃bk(τ)− 2ckτ
dg̃bk(τ)

dτ
, (5.67)

ck =
λ

λ(n− 1) + 1− 2(k − 1)(λ− 1)
, and are described by (5.52) (with s̃bk

instead of sbk).
Note, that

∫
ω
Ũn,k(y

′, t) dy′ = 0 (see (5.61), (5.62)). Therefore, the solva-

bility condition for the problem (5.66) holds automatically:∫
ω

Ũ�n,k(y
′, 0) dy′ =

∫
ω

Ũn,k(y
′, 0) dy′ (5.68)

(see also (5.48)).
From Theorems 2.10, 2.7 we get the following lemmas concerning the

solvability of the problems (5.65), (5.66).
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Lemma 5.11. The problem (5.65) admits a unique weak solution Ũ
′b
k such

that

max
τ∈[0,∞)

‖Ũ
′b
k (·, τ)‖2W 1,2(ω) + ‖Ũ

′b
k ‖2L2(0,∞;W 1,2(ω)) + ‖Ũ

′b
k,τ‖2L2(0,∞;L2(ω))

≤ c
(
‖F̃
′b
k−1‖2L2(0,∞;L2(ω)) + ‖Φ̃b

k‖2L2(0,∞;W 1,2(ω)) + ‖Φ̃b
k,τ‖2L2(0,∞;L2(ω))

+ ‖Ũ�n,k‖2L2(0,∞;W 1,2(ω)) + ‖Ũ�n,k,τ‖2L2(0,∞;L2(ω)) + ‖Ũ
′
k‖2W 1,2(ω)

)
.

(5.69)

There exists a corresponding pressure function P̃bk ∈ L2(0,∞;L2(ω)) such
that

∫
ω
P̃bk(y

′) dy′ = 0 and the following estimate holds

‖P̃bk‖2L2(0,∞;L2(ω)) ≤ c
(
‖F̃
′b
k−1‖2L2(0,∞;L2(ω)) + ‖Φ̃b

k‖2L2(0,∞;W 1,2(ω))

+‖Φ̃b
k,τ‖2L2(0,∞;L2(ω)) + ‖Ũ�n,k‖2L2(0,∞;W 1,2(ω)) + ‖Ũ�n,k,τ‖2L2(0,∞;L2(ω))

+‖Ũ
′
k(y
′, 0)‖2W 1,2(ω)

)
.

Note that compatibility condition for problem (5.65)∫
ω

[
λAb(y

′, τ,∇′, ∂τ )− 2k(λ− 1)
]
Ũbn,k dy

′ = 0

holds automatically due to the construction.

Lemma 5.12. There exists a unique weak solution (Φ̃b
k, s̃

b
k) of the problem

(5.66) such that

sup
τ∈[0,∞)

‖Φ̃b
k(·, τ)‖W 1,2(ω) + ‖Φ̃b

k‖L2(0,∞;W 1,2(ω))

+‖∂τ Φ̃b
k‖L2(0,∞;L2(ω)) + ‖s̃bk‖L2(0,∞)

≤ c
(
‖
∫
ω
Ũ�n,k(y

′, τ) dy′‖W 1,2(0,∞) + ‖Ũn,k(y′, 0)‖W 1,2(ω)

)
.

(5.70)

Discrepancies. Case λ 6= N+1
N . The discrepancies H′J(y′, yn, t, τ), Hn,J

(y′, yn, t, τ) left by the sum UO,[J ](y′, yn, t) +UB,[J ](y′, yn, τ) can be written
in the form

H′J(y′, yn, t, τ) =
J∑

k=min{J,bJ+Î
2
c}

y
−λ(n−1)−2+(2k+1)(λ−1)
n F̂

′
k(y
′, t)

+
J∑

k=max{0,bJ−Î+1
2
c}

y
−λ(n−1)+(2k+1)(λ−1)
n F̃

′
k(y
′, t)
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+y
−λ(n−1)−2+(2ĵ+1)(λ−1)
n F̂

′b
ĵ (y′, τ)

+y
−λ(n−1)+(2j̃+1)(λ−1)
n F̃

′b
j̃ (y′, τ) + F′J(y′, yn, t, τ)

= F′oJ (y′, yn, t) + F′bJ (y′, yn, τ) + F′J(y′, yn, t, τ),

Hn,J(y′, yn, t, τ) =
J∑

k=min{J,bJ+Î
2
c}

y
−λ(n−1)−2+2k(λ−1)
n F̂n,k(y

′, t)

+
J∑

k=max{0,bJ−Î+1
2
c}

y
−λ(n−1)+2k(λ−1)
n F̃n,k(y

′, t)

+y
−λ(n−1)−2+2ĵ(λ−1)
n F̂b

n,̂j
(y′, τ)

+y
−λ(n−1)+2j̃(λ−1)
n F̃b

n,̃j
(y′, τ) + Fn,J(y′, yn, t, τ)

= F on,J(y′, yn, t) + F bn,J(y′, yn, τ) + Fn,J(y′, yn, t, τ),

(5.71)

where ĵ = min{J, bJ+Î
2 c} and j̃ = bJ−Î2 c, j̃ > Î.

Since λ > 1, after final number of steps J∗ > 0 we arrive at (5.58). Here
the number J∗ is given by

J∗ = J̃ + Ĵ , (5.72)

where
J̃ = min

{
J ∈ N : J >

1

4

[
n− 2

λ− 1
+ n+ 3

]}
,

Ĵ = min

{
J ∈ N : J >

1

4

[
n+ 2

λ− 1
+ n+ 3

]}
.

The discrepancies in (5.71) are represented as the sum FoJ(y, t) +FbJ(y, τ) +
FJ(y, t, τ), where FoJ(y, t) is a collection of the discrepancies arising from
construction of the outer asymptotics, Fbn,J(y, τ) are the discrepancies aris-
ing from the boundary layer construction and FJ(y, t, τ) is the collection
of discrepancies which already belong to L2(0, T ;L2(Ω)) (arising from both
the outer and the boundary layer asymptotics construction).

Estimates of the higher-order terms

The estimates of this section are valid for both cases λ = N+1
N and λ 6= N+1

N ,
i.e. for all λ > 1.

Let us come back to the variables x, t and define

u[J ](x, t) = UO,[J ](x′/xλn, xn, t) + UB,[J ](x′/xλn, xn, t/x
2λ
n ),

p[J ](x, t) = PO,[J ](x′/xλn, xn, t) + PB,[J ](x′/xλn, xn, t/x
2λ
n ).
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where UO,[J ], UB,[J ], PO,[J ], PB,[J ] are defined by (5.30), (5.45) or by (5.60),
(5.64) depending on the value of λ. By construction

div u[J ](x, t) = 0 in ΩH , u[J ](x, t) = 0 on ∂ΩH ∩ ∂Ω,

u[J ](x, 0) = using(x) in ΩH ,

∫
σ(h)

u[J ] · n dx′ = F (t).

Functions u[J ], p[J ] satisfy the Stokes equations
u

[J ]
t − ν∆u[J ] +∇p[J ] = HJ−1 + U

O,[J ]
t , x ∈ ΩH ,

divu[J ] = 0, x ∈ ΩH ,

u[J ] = 0, x ∈ ∂ΩH ∩ ∂Ω,

u[J ](x, 0) = using(x), x ∈ ΩH ,

(5.73)

where the right-hand side HJ−1(x, t) = H′J(x′/xλn, xn, t, t/x
2λ
n ) is described

by formula (5.57) or (5.71) depending on the value of λ.
By construction we deduce

‖HJ−1‖2L2(ω) ≤ cy
−2λ(n−1)−4
n

(
‖F̂J−1‖2L2(ω) +

J−1∑
k=max{0,J−1−Î}

‖F̃k‖2L2(ω)

+‖FbJ−1‖2L2(ω)

)
,

if λ = N+1
N , and

‖HJ−1‖2L2(ω) ≤ cy
−2λ(n−1)−4
n

( J−1∑
k=min{J−1,bJ−1+Î

2
c}

‖F̂k‖2L2(ω)

+
J−1∑

k=max{0,bJ−Î
2
c}

‖F̃k‖2L2(ω) + ‖F̂
b

ĵ‖2L2(ω) + ‖F̃
b

j̃‖2L2(ω) + ‖FJ−1‖2L2(ω)

)
,

if λ 6= N+1
N ; where ĵ = min{J − 1, bJ−1+Î

2 c} and j̃ = bJ−1−Î
2 c, j̃ > Î.

5.1.3 Regularity conditions

Consider the asymptotic expansion

U[J ] (x, t) = UO,[J ]
(
x′

xλn
, xn, t

)
+ UB,[J ]

(
x′

xλn
, xn,

t
x2λn

)
,

P [J ] (x, t) = PO,[J ]
(
x′

xλn
, xn, t

)
+ PB,[J ]

(
x′

xλn
, xn,

t
x2λn

)
,

(5.74)

where (UO,[J ], PO,[J ]) is the outer asymptotic expansion given by the for-
mula (5.30) if λ = N+1

N (or by the formula (5.60) if λ 6= N+1
N ); (UB,[J ], PB,[J ])
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is the boundary layer expansion given by (5.45) if λ = N+1
N (or by (5.64)

if λ 6= N+1
N ). (U[J ], P [J ]) is an approximate solution of the problem (5.1)

and the corresponding discrepancies HJ(y′, yn, t, τ) are given by the for-
mulas (5.57), (5.71). Constructing the above asymptotic representations
we were solving the problems (5.12), (5.16), (5.17), (5.31), (5.32), (5.46)–
(5.49), (5.61), (5.65), (5.66). Therefore, it is necessary to have at each step
sufficient regularity of the data which is needed for the solvability of the
corresponding problems. Examining the right-hand sides of these problems
we state the loss of one time derivative on each step of the outer asymp-
totic formula construction. Therefore, in order to ensure the existence of all
terms of asymptotic expansion up to the order J we have to assume that
the flux

F (t) ∈W J+1,2(0, T ).

Since the flux F (t) is the integral of the normal component of the boundary
value a(x, t) over ∂Ω, the last requirement imply, the following regularity
conditions for a:

∂la

∂tl
∈ L2(0, T ;W 1/2,2(∂Ω)), l = 0, 1, 2, ..., J + 1.

The boundary layer construction does not cause any loss of regularity,
and it is enough to suppose that u0 ∈W 1,2(Ω), u′s, un,s ∈ W̊ 1,2(ω).

Note that the above regularity conditions remain the same as in the case
of the time-periodic Stokes problem, i.e., in the case without the boundary
layer expansion (see Chapter 4).

5.2 Existence of the solution
Remind, that ξ ∈ C∞[0,∞) is a nonnegative cut-off function, described in
Chapter 2. We look for the solution (u, p) of the problem (5.1) in the form

u(x′, xn, t) = ξ(xn)U[J∗−1] (x, t) + Û(x′, xn, t), (5.75)

p(x′, xn, t) = ξ(xn)P [J∗−1] (x, t) + P̂ (x′, xn, t), (5.76)

where the pair (U[J∗−1], P [J∗−1]) is the approximate solution, described by
the formula (5.74) with J∗ defined by (5.59) if λ = N+1

N (or J∗ is given by
(5.72) if λ 6= N+1

N ), (Û, P̂ ) is a solution to the problem

Ût(x, t)− ν∆Û(x, t) +∇P̂ (x, t) = f∗(x, t),

div Û(x, t) = −ξ′(xn)U
[J∗−1]
n (x, t),

Û(x, t)|∂Ω = a(x),

Û(x, 0) = u0(x),

(5.77)
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where x ∈ Ω and f∗ = f + ξHJ∗−1 + ν(2∇ξ · ∇UO,[J∗−1] + ∆ξUO,[J∗−1])−
∇ξPO,[J∗−1] +ν(2∇ξ ·∇UB,[J∗−1] +∆ξUB,[J∗−1])−∇ξPB,[J∗−1]. Here HJ is
described by (5.57) (or (5.71)) and J∗ ∈ N is the number which ensures that
HJ∗−1 belongs to L2(0, T ;L2(Ω)) (see (5.59), (5.72)) and u0(x) ∈ W 1,2(Ω)
(see (5.1)). Finally, using the fact that the flux F (t) is the integral of the
normal component of the boundary value a(x, t) over ∂Ω, we get

‖f∗‖2L2(0,T ;L2(Ω)) ≤ C
(
‖f‖2L2(0,T ;L2(Ω)) + ‖a‖2

L2(0,T ;W 1/2,2(∂ΩH/2,H))

+
J∗∑
k=1

∥∥∂ka
∂tk

∥∥2

L2(0,T ;W 1/2,2(∂ΩH/2,H))

) (5.78)

(see paragraph Estimates of the higher-order terms in Subsection 5.1.2).
Since∫

ΩH/2,H

ξ′U [J∗−1]
n dx =

∫
ΩH/2,H

div (ξU [J∗−1]) dx =

∫
σ(H/2)

U [J∗−1]
n dS = F (t),

the necessary compatibility condition∫
ΩH/2,H

ξ′U [J∗−1]
n dx+

∫
∂ΩH/2,H

a · n dS = 0 (5.79)

is satisfied (see (5.2)). The solvability results for the problem (5.77) are
described in Theorem 2.10.

5.2.1 Existence theorem

Consider the problem (5.1).

Definition 5.1. By a weak solution of the problem (5.1) we understand a
solenoidal vector field u ∈ L2(0, T ;W 1,2(Ω \ Ωh)) with ut ∈ L2(0, T ;L2(Ω \
Ωh)), ∀h ∈ (0, H), satisfying the boundary condition u|∂Ω = a, the initial
condition u(x, 0) = u0(x) + ζ(xn)using(x) and the integral identity

T∫
0

∫
Ω

uτ (x, τ) · η(x, τ) dxdτ + ν
T∫
0

∫
Ω

∇u(x, τ) · ∇η(x, τ) dxdτ

=
T∫
0

∫
Ω

f(x, τ) · η(x, τ) dxdτ,

for every solenoidal η ∈ L2 (0, T ;C∞0 (Ω)).

Theorem 5.1. Assume that cusp’s power λ satisfies the condition (5.35).

Let functions f ∈ L2(0, T ;L2(Ω)), u0 ∈W 1,2(Ω),us ∈ W̊ 1,2(ω) and a,
∂ka

∂tk
∈
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L2(0, T ;W 1/2,2(∂ΩH/2,H)), k = 1, . . . , J∗+ 1, be given and satisfy the com-
patibility conditions (5.4), (5.6), (5.5), suppa ⊂ ∂Ω0 ∩∂Ω ⊂ ∂ΩH/2,H ∩∂Ω.
Then the problem (5.1) admits at least one weak solution u ∈ L2(0, T ;W 1,2

(Ω \ Ωh)), ut ∈ L2(0, T ;L2(Ω \ Ωh)) ∀h ∈ (0, H), which can be represented
as the sum (5.75). Moreover, the following estimate

sup
t∈[0,T ]

‖u(·, t)− ξ(·)U[J∗−1](·, t)‖2W 1,2(Ω)

+‖u− ξU[J∗−1]‖2L2(0,T ;W 1,2(Ω)) + ‖ut − ξU[J∗−1]
t ‖2L2(0,T ;L2(Ω))

≤ C
(
‖f‖2L2(0,T ;L2(Ω)) + ‖a‖2

L2(0,T ;W 1/2,2(∂ΩH/2,H))

+
J∗+1∑
k=1

∥∥∂ka
∂tk

∥∥2

L2(0,T ;W 1/2,2(∂ΩH/2,H))
+ ‖u0‖2W 1,2(Ω) + ‖us‖2W 1,2(ω)

)
(5.80)

holds.

Proof. The difference u−ξU[J∗−1] = Û is a weak solution of the problem
(5.77). The existence of Û follows from Theorem 2.10, the inequality (5.80)
is the consequence of the estimates (5.23) and (5.78). �
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Conclusions

The main objective of the dissertation was to prove the existence of solutions
to the Stokes system (stationary, time-periodic and nonstationary) in the
so-called power-cusp domains. Such domains have a singular point on the
boundary. Therefore, there is a sink or a source in the cusp point O, i.e.
the flux of the boundary value is nonzero.

• The solutions to the stationary, time-periodic and nonstationary Stokes
problems in a power cusp domains are necessarily singular and their
singularity depends on a cusp’s power λ.

In order to represent such solutions, we had to construct the formal asymp-
totic expansion of the solution near the singular point of the boundary.

• For the stationary and time-periodic Stokes problems the formal asymp-
totic expansion contains only the outer asymptotics terms;

• For the nonstationary Stokes problem the formal asymptotic expansion
contains the outer and the inner asymptotics terms;

• The fast time in the boundary layer asymptotics terms depends on the
space variable.

The existence of at least one singular solution was proved.

• For all three problems (stationary, time-periodic and nonstationary)
the solution can be constructed as a sum of the asymptotic expansion
and the term with finite dissipation of energy;

• The developed in the thesis methods can be used to solve analogical
nonlinear problems, i.e. for the Navier-Stokes equations.
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