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Žaliavų kainų ilgos atminties modeliavimas ir statistinė
analizė

Santrauka

Žaliavų rinka dėl jos įtakos ekonomikai ir jos augimui yra svarbus tyrimų objek-
tas. Šio darbo tikslas yra išanalizuoti pasirinktų žaliavų kainų kintamumą ir ilgos
atminties savybes. Pirmiausia yra aprašyti 4 ilgos atminties modeliai: FIGARCH,
HYGARCH, FIAPARCH, HYAPARCH, aprašytos literatūroje žinomos jų savy-
bės, bei pateiktos pataisytos ir aprašytos paprastesnės sąlygos HYAPARCH mod-
elio stacionarumui. Šie modeliai yra vėliau pritaikyti 12 žaliavų kainų duomenims
ir yra išanalizuotos jų įverčių savybės.

Raktiniai žodžiai : Ilga atmintis, FIGARCH, HYGARCH, FIAPARCH, HYA-
PARCH, žaliavų kainos.

Long memory modeling and statistical inference of
commodity prices

Abstract

Commodity market, because of it’s impact on economy and growth, is important
area of research. The main goal of this thesis is to analyse commodity price
volatilities and their long memory properties. First, we are going to describe 4
long memory models: FIGARCH, HYGARCH, FIAPARCH, HYAPARCH and
discuss their established properties from the literature. A corrected and simplified
version of stationarity conditions for the HYAPARCH model is also provided.
These models are applied to empirical data of 12 commodity futures returns and
the estimated properties are discussed and compared.

Key words : Long memory, FIGARCH, HYGARCH, FIAPARCH, HYAPARCH,
commodity prices
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1 Introduction

Commodity market and it’s influence on other financial markets is im-
portant area of research in economics. Most of the literature studies the
co-movements of commodity prices with other financial indicators. Because
of events, such as financial crisis of 2008-2009, which caused a lot of mar-
ket volatility, possible fall in commodity demand due to slowing economy of
China and recent fall in oil prices due to overproduction, it is important to
look also into the volatility of commodities to better understand their dy-
namics. Commodity market and its volatility is also important for countries
which heavily rely on commodity production, Cavalcanti et al. (2015) showed
that commodity volatility has a negative effect on economic growth which in-
dicates importance of volatility estimation, but due to irregular properties of
commodity prices the research in this sector only recently picked up the pace.

Two of the models often used in literature to model volatility are Autore-
gressive Conditional Heteroskedasticity (ARCH) model introduced in Engle
(1982) and it’s generalized version GARCH introduced in Bollerslev (1986).
Later, to account for long-range volatility dependence, a more flexible Frac-
tionally Integrated GARCH model was introduced in Baillie et al. (1996).
Unfortunately, FIGARCH process is not covariance stationary. Because
of this issue, a generalized version of FIGARCH model called Hyperbolic
GARCH (HYGARCH) was introduced in Davidson (2004), which is weakly
stationary. Another group of long memory models ,FIAPARCH and HYA-
PARCH, which were introduced in Tse (1998) and Schoffer (2003), allow to
analyse asymmetric behaviour of volatilities.

The goal of this thesis is to to analyse volatility and long memory proper-
ties of 12 commodities by estimating and comparing 4 discussed long memory
models and to select the best models. In Section 2, FIGARCH, HYGARCH,
FIAPARCH and HYAPARCH models, their properties and results in the lit-
erature are presented. In Section 2.5 slightly corrected and simplified version
of conditions for weak stationarity of HYAPARCH model are presented. In
Section 3, general statistics of the data are provided and empirical applica-
tion of models from Section 2 is presented. All of the series showed significant
long memory properties and most of them had significant estimates of asym-
metry parameter. In Section 3.3, analysis of possible structural breaks is
performed on data split into 2 periods, the resulting changes in parameter
estimates are then discussed. Finally, conclusions of the results are presented
in Section 4.
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2 Methodology

2.1 GARCH model
In order to analyse often observed non-constant variance in stock returns,
inflation and other financial instruments, Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH(p, q)) model was introduced in Bollerslev
(1986). This model has the following form:

rt = σtεt,

where εt are independent and identically distributed random variables with
mean 0 and variance 1 (εt ∼ iid(0, 1)) and

(1−
q∑
i=1

βiL
i)σ2

t = ω +

p∑
i=1

αiL
ir2t .

Here L is the lag operator. Further on we will use this notation: β(L) =∑q
i=1 βiL

i, α(L) =
∑p

i=1 αiL
i. Provided that zeroes of B(L) = 1−β(L) poly-

nomial lie outside the unit circle, this model can be rewritten into ARCH(∞)
as provided in Conrad (2010) :

σ2
t = ω(1− β(1))−1 + ΨGA(L)r2t = ω(1− β(1))−1 +

∞∑
i=1

ψGAi r2t−i.

Here ΨGA(L) = (1 − β(L))−1α(L). In case of GARCH(1, 1) the ψGAi coeffi-
cients are defined in this form: ψGA1 = α1, ψGAi = β1ψ

GA
i−1, i ≥ 2. To assure

that GARCH process is weakly stationary we require that ΨGA(1)<1 which
is equivalent to ΦGA(1)>0 where ΦGA(L) = 1−β(L)−α(L). In Figure 1, sim-
ulated GARCH(1, 1) process is plotted with residuals εt generated according
to standard normal distribution.
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Figure 1: Simulated returns and conditional variance according to GARCH(1, 1)
with α = 0.3, β = 0.5, ω = 0.02 process

2.2 FIGARCH model
A more general version of GARCH models is the Fractionally integrated
GARCH (FIGARCH) models, which allows the long range dependence by
allowing coefficients to decay hyperbolically instead of geometrically as in
GARCH model. FIGARCH(p, d, q) models were first introduced in Baillie
et al. (1996). They have the following form:

rt = σtεt,

σ2
t = ω + (1− (1− β(L))−1(1− φ(L))(1− L)d)r2t ,

where σt > 0, εt ∼ iid(0, 1). β(L) and φ(L) = α(L)+β(L) are polynomials of
order p and q and d is a fractional degree. This model includes both GARCH
(when d = 0) and IGARCH (when d = 1). It is well known that
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(1− L)d = 1−
∞∑
j=1

gjL
j,

where coefficients gj have the following representation:

gj =
dΓ(j − d)

Γ(1− d)Γ(j + 1)
, j ≥ 1.

To assure that the conditional variance produced by this model is non-
negative, certain conditions on coefficients needs to be imposed which were
derived in Conrad and Haag (2006). Because models estimated in Section 3
did not show significance for higher orders, only the non-negativity constrains
of FIGARCH(1, d, 1) model will be provided here. Higher order constrains
can be found in Conrad and Haag (2006). Firstly, we need to introduce
ARCH(∞) representation of FIGARCH(1, d, 1):

σ2
t = ω +

∞∑
i=1

ψir
2
t−i. (1)

In FIGARCH(1, d, 1) coefficients ψi have the following expression:

ψ1 = d+ φ1 − β1,

ψi = β1ψi−1 + (fi − φ1)(−gi−1) for i ≥ 2.

For convenience, another form of coefficients gj is introduced:

gj = fjgj−1 =

j∏
i=1

fi, fj =
j − 1− d

j
, g0 = 1.

The inequality constrains to assure that FIGARCH(1, d, 1) model pro-
duces non-negative conditional variance are provided in Conrad and Haag
(2006) Corollary 1:

Corollary 1 The conditional variance of the FIGARCH(1, d, 1) process is
non-negative a.s. iff
Case 1: 0 < β < 1
either ψ1 ≥ 0 and φ1 ≤ f2 or for k > 2 with fk−1 < φ1 ≤ fk, it holds that
ψk−1 ≥ 0
Case 2: −1 < β < 0
either ψ1 ≥ 0, ψ2 ≥ 0 and φ1 ≤ f2(β1 + f3)/(β1 + f2) or for k > 3 with
fk−2(β1 + fk−1)/(β1 + fk−2 < φ1 ≤ fk−1(β1 + fk)/(β1 + fk−1) it holds that
ψk−1 ≥ 0 and ψk−2 ≥ 0.
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Baillie et al. (1996) applied this model to Deutchmark-US dollar exchange
rates and showed that it was superior to alternatives. Unfortunately, as ex-
plained in Davidson (2004), the process does not have defined set of parame-
ters for which finite second moments exist, which is required for proof of co-
variance stationarity of the process. In figure 1, simulated FIGARCH(1, d, 1)
process is plotted with the same residuals as in previous section.
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Figure 2: Simulated returns and conditional variance according to
FIGARCH(1, d, 1) process with α = −0.5, β = 0.8, ω = 0.02, d = 0.7

2.3 HYGARCH model
In order to account for the problem of infinite second moments and lack
of weak stationarity a new model called Hyperbolic GARCH (HYGARCH)
was introduced in Davidson (2004). The fractionally integrated part of the
model (1 − L)d was replaced with (1 − τ) − τ(1 − L)d. This form restricts
the coefficients so that hyperbolic decay would still be present but it would
also allow for defined parameter set for finite second moments and weak
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stationarity. The equation for HYGARCH(1, d, 1) is the following:

σ2
t = ω(1−β(L))−1+(1−(1−β(L))−1(1−φ(L))((1−τ)−τ(1−L)d))r2t . (2)

The process (2) nests both GARCH (when τ = 0 or d = 0) and IGARCH
(when τ = 1 and d = 1). To assure that conditional variance is positive and
weakly stationary, the non-negativity and weak stationarity conditions of the
model were introduced in Conrad (2010). For simplification of constrains,
Conrad (2010) introduced the following form of HYGARCH model which
shows that HYGARCH if linear combination of FIGARCH and GARCH
with weights:

σ2
t =

ω

B(1)
+ ΨHY (L)r2t , (3)

ΨHY (L) = τΨFI(L) + (1− τ)ΨGA(L),

here ΨGA(L) = (B(L)−Φ(L))B(L)−1 is GARCH component and ΨFI(L) =
1 − ((1 − L)dΦ(L))B(L)−1 is FIGARCH component. Covariance stationar-
ity in this process, according to Conrad (2010), is shown trough behaviour
of ΨHY (1). Condition for weak stationarity when τ = 0 is the same as
in case of GARCH process. When 0 < τ ≤ 1, the necessary condition is
ΨHY (1) = τ + (1 − τ)ΨGA(1) < 1 which means that, if GARCH conditions
are fulfilled, the process is weakly stationary when 0 ≤ τ < 1. The conditions
for weak stationarity for special cases when τ > 1 are also provided in Conrad
(2010) and require relaxed assumption on residuals. The constrains to assure
that the conditional variance is positive are provided for HYGARCH(1, d, 1)
process. The constrains in higher order models can also be found in Con-
rad (2010). In HYGARCH(1, d, 1) case, the coefficients ψi in (1) have the
following form:

ψHY1 = τd+ φ1 − β1,

ψHYi = β1ψ
HY
i−1 + τ(fi − φ1)(−gi−1), for i > 1.

The conditions for non-negative conditional variance is provided in Theorem
1 of Conrad (2010):

Theorem 1 The conditional variance of HYGARCH(1, d, 1) is non-negative
a.s iff
Case 1: 0 < β1 < 1 either ψHY1 ≥ 0 and φ1 ≤ f2 or for k > 2 with fk−1 <
φ1 ≤ fk it holds that ψHYk−1 ≥ 0.
Case 2: −1 < β1 < 0 either ψHY1 ≥ 0, ψHY2 ≥ 0 and φ1 ≤ f2(β1 + f3)/(β1 +
f2) or for k > 3 with fk−2(β1 + fk−1)/(β1 + fk−2 < φ1 ≤ fk−1(β1 + fk)/(β1 +
fk−1) it holds that ψHYk−1 ≥ 0 and ψHYk−2 ≥ 0.
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Proof of this theorem is provided in the same paper. Restrictions for
other orders of the model are also provided in Conrad (2010). In Figure 3,
simulated HYGARCH(1, d, 1) process is plotted with the same residuals as
in previous sections.
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Figure 3: Simulated returns and conditional variance according to
HYGARCH(1, d, 1) process with α = −0.3, β = 0.7, ω = 0.02, d = 0.7, τ = 0.7

2.4 FIAPARCH model
In order to account for often observed asymmetry in financial data, Frac-
tionally Integrated Asymmetric Power ARCH model was introduced in Tse
(1998). It has the following form:

σδt = ω(1− β(1))−1 + (1− (1− β(L))−1(1− φ(L))(1− L)d)(|rt| − γrt)δ.

Where δ > 0, |γ| < 1 and the rest of parameters are the same as in previ-
ous sections. Conditions for non-negativity are the same as in FIGARCH
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model. Unfortunately, as is the case with FIGARCH model, this model has
no finite second moment and is not weakly stationary. In Figure, 4 simulated
FIAPARCH(1, d, 1) process is plotted with the same residuals as in previous
sections.
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Figure 4: Simulated returns and conditional variance according to
FIAPARCH(1, d, 1) process with α = −0.3, β = 0.7, ω = 0.02, d = 0.7, γ = 0.33,
δ = 2.3

2.5 HYAPARCH model
In order to solve the problem of infinite second moments in FIAPARCH, a
new model was introduced in Schoffer (2003) in form of Hyperbolic Asym-
metric Power ARCH (HYAPARCH) model:

σδt = ω(1−β(1))−1+(1−(1−β(L))−1(1−φ(L))((1−τ)−τ(1−L)d))(|rt|−γrt)δ.

The parameters are the same as in previous sections. Non-negativity condi-
tions are the same as in HYGARCH model. Unfortunately, the conditions
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for weak stationarity in Schoffer (2003) are derived from misspecified form
of filter Ψ. This can be corrected by following Conrad (2010), Davidson
(2004) and by following the proofs and conditions of weak stationarity in
Seasonal HYAPARCH model, which were derived from Giraitis et al. (2000)
in Diongue and Guegan (2007). Because the proofs for conditions do not
depend on the form of the filter Ψ in S-HYAPARCH, we can derive that the
necessary condition for existence of second moments and weak stationarity
are: √

E((|εt| − γεt)2δ)ΨHY (1) < 1.

Following the simplification of HYGARCH case we can rewrite this condition
in: √

E((|εt| − γεt)2δ)(τ + (1− τ)ΨGA(1)) < 1.

The form of E(|εt|−γεt)δ in the case of standard Student’s t distribution
with v degrees of freedom can be found in Lambert and Laurent (2001) and
has following form :

E((|εt| − γεt)δ) = ((1 + γ)δ + (1− γ)δ)
Γ( δ+1

2
Γ(v−δ

2
)

2
√

(v − 2)πΓ(v
2
)
(v − 2)

δ+1
2 .

In some literature APARCH model form has (|rt| − γrt)
δ replaced with

(1+γst)|rt|δ, where st = 1 if rt < 0 and 0 otherwise. In this case the condition
for weak stationarity would be

√
E((1 + γst)|rt|δ)2(τ + (1− τ)ΨGA(1)) < 1.

In Figure 5 simulated HYAPARCH(1, d, 1) process is plotted with the same
residuals as in previous sections.
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Figure 5: Simulated returns and conditional variance according to
HYAPARCH(1, d, 1) process with α = −0.3, β = 0.7, ω = 0.02, d = 0.7, τ = 0.7,
γ = 0.33, δ = 2.3

3 Empirical application on commodity prices
data

3.1 Descriptive statistics
In this section, previously discussed models will be applied to estimate con-
ditional variances of commodity price returns. Daily data sample on 12 com-
modities from 1995-01-03 to 2016-04-22, which was collected from www.quandl.com,
will be used. The motivation behind particular series was to select a diverse
set of commodities, which would allow us to analyse long memory properties
in different industries. Description on what type of price indexes were used
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and how they will be refereed to in the following sections are presented in
Table 1.

corn CBOT Chicago Corn Futures 1
wheat CBOT Wheat Futures 1 (W1)
gas NYMEX Natural Gas Futures 1 (NG1)
oil ICE Brent Crude Oil Futures 1 (B1)
sugar ICE Sugar No. 11 Futures 1 (SB1)
coffee ICE Coffee C Futures 1 (KC1)
cotton ICE Cotton Futures 1 (CT1)
cattle CME Live Cattle Futures 1 (LC1)
gold NYMEX Gold Futures 1 (GC1)
silver NYMEX Silver Futures 1 (SI1)
platinum NYMEX Platinum Futures 1 (PL1)
copper Copper Futures, Continuous Contract 1 (HG1)

Table 1: Commodity futures names

Before estimation returns will be calculated by taking first differences of
logarithm of the prices. The plots of original data and returns can be found in
Appendix Figures 14–25. The descriptive statistics of all series are provided
in Tables 2–4.

corn wheat sugar coffee
Min -0.0792939 -0.100167 -0.123658 -0.150309
Max 0.0900753 0.0871062 0.104567 0.211999
Mean 9.25257e-005 3.15929e-005 -1.61272e-006 -5.93774e-005
Median 0 0 0 0
Standard Deviation 0.0169579 0.0189659 0.0205752 0.0236808
Skewness -0.0114753 0.0447287 -0.194653 0.0998761
Kurtosis 5.18909 4.82083 5.1881 7.52818

Table 2: Descriptive statistics of corn, wheat, sugar, coffee returns
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cotton cattle gas oil
Min -0.0892457 -0.0939989 -0.266429 -0.144372
Max 0.116158 0.0505654 0.264486 0.128982
Mean -6.40499e-005 8.50425e-005 4.79139e-005 0.00019599
Median 0 0 0.000138962 0.000525799
Standard Deviation 0.0177185 0.00959017 0.0333915 0.0216567
Skewness -0.0628615 -0.243925 0.0520468 -0.122908
Kurtosis 5.21305 5.84294 6.5496 6.17395

Table 3: Descriptive statistics of cotton, cattle, gas, oil returns

gold silver platinum copper
Min -0.0981048 -0.194976 -0.0960331 -0.116933
Max 0.0899886 0.124695 0.107617 0.11301
Mean 0.000222858 0.000240807 0.000168952 9.78707e-005
Median 2.83278e-005 0.00066608 0.000563653 0
Standard Deviation 0.010917 0.00066608 0.000563653 0.0177779
Skewness -0.0892878 -0.768472 -0.332582 -0.261038
Kurtosis 9.84936 10.3555 7.2677 6.91435

Table 4: Descriptive statistics of gold, silver, platinum, copper returns

It can be observed from Tables 2–4 that all samples have mean close to
0 . We can also observe that the kurtosis for all samples is greater than 3,
which indicates that distribution of the series have heavier tails than those
of a normal distribution.

3.2 Model estimates
For each data sample, ARMA model with residuals modelled accord-
ing to FIGARCH(1, d, 1), HYGARCH(1, d, 1), FIAPARCH(1, d, 1) and
HYAPARCH(1, d, 1) will be estimated. Best ARMA order will be chosen by
Akaike information criterion. The estimates are computed with conditional
Maximum Likelihood Estimator (MLE) using Time Series Modelling 4.49
by James Davidson. The provided intercepts are in form of

√
ω(1− β1)−1.

Estimates of square root of Student’s t degrees of freedom are also provided.

3.2.1 Estimates of ARMA-FIGARCH models

ARMA-FIGARCH model estimates for commodity returns can be found in
Tables 5–7
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corn wheat sugar coffee
AR1 – – -0.72033 (0.18399) -0.47227(0.11996)
AR2 – – – -0.03824( 0.01388)
MA1 -0.0626(0.01425) – -0.7365(0.17149) -0.43825( 0.11941)
Student’s t d.f. 2.6325 (0.1121) 3.30147 (0.2203) 2.56487(0.1043) 2.2641(0.0869)
GARCH Intercept 0.00272 (0.0005) 0.00379 (0.0008) 0.00087(0.0002) 0.00554(0.001)
FIGARCH d 0.50027 (0.0774) 0.39368 (0.0814) 1.01061(0.0432) 0.32006 (0.0761 )
α -0.40238 (0.07703) -0.35884 (0.08001) -0.94548(0.04657) -0.21262(0.07316)
β 0.6749 (0.07683) 0.62529 (0.08612) 0.96708(0.01186) 0.64626(0.07246)

Table 5: ARMA-FIGARCH estimates (standard deviation in brackets)

cotton cattle gas oil
AR1 – 0.52761(0.08507) -0.02836 (0.01297) –
AR2 – – – –
MA1 -0.04131(0.01507) 0.46451(0.08757) – 0.04091(0.01429)
Student’s t d.f. 2.74468(0.1314) 3.31422(0.3013) 2.8227 (0.1611) 2.69037( 0.1263)
GARCH Intercept 0.00248(0.0004) 0.00158(0.0003) 0.00414 (0.0005) 0.00268(0.0005)
FIGARCH d 0.49858( 0.0613) 0.48609(0.1114) 0.83823(0.0881) 0.55231(0.08)
α -0.38915( 0.06024) -0.42835(0.10968) -0.80548(0.09098) -0.47515(0.07555)
β 0.71746(0.05579) 0.7166(0.0814) 0.83934(0.03732) 0.74535(0.06591)

Table 6: ARMA-FIGARCH estimates (standard deviation in brackets)

gold silver platinum copper
AR1 – – 0.56204 (0.13018) –
AR2 – – -0.04669 (0.01498) –
MA1 0.02897(0.01327) 0.05774(0.01301) 0.53806 (0.13001) 0.06451(0.01311)
Student’s t d.f. 2.24449 (0.0656) 2.04701(0.0541) 2.74444 (0.1233) 2.34455(0.0871)
GARCH Intercept 0.00121(0.0002) 0.00249(0.0004) 0.00184 (0.0004) 0.00272 (0.0004)
FIGARCH d 0.43611(0.043) 0.50226(0.0777) 0.42379 (0.0529) 0.49811 (0.0796)
α -0.3968(0.04364) -0.4141(0.0742) -0.29904 (0.05216) -0.44918(0.07984)
β 0.6851(0.04227) 0.78285(0.04645) 0.69052 (0.06337) 0.71927(0.0598)

Table 7: ARMA-FIGARCH estimates (standard deviation in brackets)

For estimation of conditional mean of corn, cotton, oil, gold, silver and
copper returns, MA(1) was selected. For returns of gas, AR(1) was selected.
For sugar returns ARMA(1,1) was selected. For returns of coffee and plat-
inum, ARMA(2,1) was selected and for wheat, all of ARMA coefficients were
insignificant. For all of the commodities FIGARCH(1, d, 1) estimates match
the conditions for conditional variance to be positive. Estimate for mem-
ory parameter of sugar exceeds 1 which suggest that it is integrated process.
Largest memory parameter was observed for returns of gas which indicates
weakest persistence of memory. All of the presented coefficients are statis-
tically significant. In Figures 26–28 we present 1st–75th estimates of ψi to
represent the differences of information decay in each of the series.

15



3.2.2 Estimates of ARMA-HYGARCH models

In this section, estimates of ARMA-HYGARCH models are presented, coef-
ficient estimates can be found in Tables 8–10.

corn wheat sugar coffee
AR1 – – -0.76665(0.26731) -0.41379(0.12488)
AR2 – – – -0.03658(0.01482)
MA1 -0.06255(0.01431) – -0.78131(0.249) -0.38(0.12402)
Student’s t d.f. 2.65016(0.1192) 3.36088(0.2215) 2.52418(0.1086) 2.32763(0.0885)
GARCH Intercept 0.00283(0.0005) 0.00447(0.0007) 0.00225(0.0007) 0.00732(0.001)
HYGARCH d 0.51378(0.0845) 0.47856(0.0793) 0.57413(0.2785) 0.50761(0.0767)
HYGARCH τ 0.98997(0.0199) 0.94328(0.0253) 1.00562(0.0235) 0.86303(0.0425)
α -0.41207(0.08174) -0.41717(0.0763) -0.50413(0.26437)* -0.33451(0.07258)
β 0.68128(0.07734) 0.66127(0.07269) 0.79799(0.13841) 0.68446(0.05378)

Table 8: ARMA-HYGARCH estimates (standard deviation in brackets), *coeffi-
cient is not statistically significantly different from zero with 5% confidence

cotton cattle gas oil
AR1 – 0.5243 (0.08654) -0.02852(0.01333) –
AR2 – – – –
MA1 -0.04158(0.01516) 0.46152 (0.0891) – 0.04095(0.01427)
Student’s t d.f. 2.77678(0.1348) 3.41157(0.3076) 2.94627(0.175) 2.68216 (0.1328)
GARCH Intercept 0.00285(0.0006) 0.00135(0.0003) 0.0053(0.0006) 0.0026(0.0007)
HYGARCH d 0.52442(0.0653) 0.94363 (0.078) 0.93008(0.0535) 0.54945(0.0789)
HYGARCH τ 0.98009(0.021) 0.98001 (0.0113) 0.9766 (0.0072) 1.00304( 0.016)
α -0.40705(0.0623) -0.88175 (0.08826) -0.87821 (0.05699) -0.47339(0.0744)
β 0.7219(0.05409) 0.91379(0.03504) 0.8644(0.02207) 0.7453(0.06589)

Table 9: ARMA-HYGARCH estimates (standard deviation in brackets)

gold silver platinum copper
AR1 – – 0.56079(0.12899) –
AR2 – – -0.04688(0.0149) –
MA1 0.02967(0.013) 0.05825(0.01293) 0.53688(0.12881) 0.06422(0.01322)
Student’s t d.f. 2.13865(0.0735) 2.00393(0.0607) 2.71428(0.1252) 2.38504(0.093)
GARCH Intercept 0.0009(0.0003) 0.00206(0.0006) 0.0016(0.0005) 0.00319(0.0006)
HYGARCH d 0.37434(0.0603) 0.47458(0.0812) 0.40397(0.0588) 0.53934(0.0962)
HYGARCH τ 1.07201(0.0355) 1.03032(0.0243) 1.02171(0.0262) 0.97238(0.0204)
α -0.35759(0.05663) -0.39652(0.07455) -0.28484(0.05585) -0.4778(0.0954)
β 0.65828(0.05721) 0.78441(0.04833) 0.68662(0.06818) 0.72821(0.06517)

Table 10: ARMA-HYGARCH estimates (standard deviation in brackets)

All the presented HYGARCH models have sufficient estimates for non-
negativity of conditional variance. As it was in FIGARCH case, all of the α1

are negative and β1 estimates are positive. All coefficient estimates except
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the α1 of sugar series are statistically significant. ARMA model order was
chosen the same as previously. For sugar, oil, gold, silver, platinum and
copper, we have τ exceeding 1 which result in non-stationarity. For the
rest of the models, estimates match the stationarity conditions presented in
Section 2. In Figures 29–31 we present 1st–75th estimates of ψi to represent
the differences of information decay in each of the series.

3.2.3 Estimates of ARMA-FIAPARCH models

In this section estimates, of ARMA-FIAPARCH models are presented which
can be found in Tables 11–13.

corn wheat sugar coffee
AR1 – – -0.7213(0.19506) -0.40349(0.11965)
AR2 – – – -0.03484(0.01497)
MA1 -0.06232(0.01425) – -0.73749(0.18198) -0.3698(0.1186)
Student’s t d.f 2.63933(0.1164) 3.46831(0.2389) 2.58735(0.1092) 2.41369(0.095)
GARCH Intercept 0.00561(0.0024) 0.00501(0.0027) 0.00213(0.0017) 0.00833(0.0037)
FIGARCH d 1.02326(0.0584) 0.49385(0.0848) 0.99842(0.0488) 0.61382(0.0865)
APARCH asymmetry γ 0.01603(0.07745)* -0.426(0.12437) 0.16055(0.16305)* -0.80173(0.08086)
APARCH Power δ 1.44856(0.174) 1.99117(0.2676) 1.66002(0.2803) 1.94151(0.2231)
α -0.93256(0.06144) -0.44389(0.08533) -0.93274(0.05179) -0.45778(0.09033)
β 0.93346(0.01656) 0.68214(0.08458) 0.96405(0.01351) 0.74831(0.05)

Table 11: ARMA-FIAPARCH estimates (standard deviation in brackets), *coef-
ficient is not statistically significantly different from zero with 5% confidence

cotton cattle gas oil
AR1 – 0.51858(0.08872) -0.02987(0.01343) –
AR2 – – – –
MA1 -0.04085(0.01518) 0.45553(0.09093) – 0.0403(0.01429)
Student’s t d.f 2.76961(0.1319) 3.33343(0.2931) 2.99601(0.1771) 2.67228(0.1296)
GARCH Intercept 0.00721 (0.0037) 0.00739(0.0023) 0.00997(0.0051) 0.00591(0.0035)
FIGARCH d 0.53646(0.0715) 0.50299(0.1329) 0.94591(0.0616) 0.54923(0.0936)
APARCH asymmetry γ 0.0836(0.10417)* 0.21062(0.11867)* -0.27159(0.12468) 0.25512(0.14145)*
APARCH Power δ 1.60623(0.1935) 1.4224(0.1172) 1.66107(0.258) 1.63822(0.2488)
α -0.43031(0.07089) -0.44794(0.13103) -0.90537(0.06007) -0.4694(0.08973)
β 0.73242(0.05678) 0.71879(0.09428) 0.87372(0.02153) 0.74814(0.07289)

Table 12: ARMA-FIAPARCH estimates (standard deviation in brackets), *coef-
ficient is not statistically significantly different from zero with 5% confidence
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gold silver platinum copper
AR1 – – 0.56492(0.13194) –
AR2 – – -0.04592(0.01506) –
MA1 0.02883(0.01315) 0.06003(0.01329) 0.5415(0.13187) 0.06485(0.01353)
Student’s t d.f 2.20313(0.0736) 2.06999(0.0591) 2.748(0.1249) 2.37073(0.0923)
GARCH Intercept 0.00072(0.0006) 0.00106(0.0008) 0.00079(0.0008) 0.00917(0.0067)
FIGARCH d 0.41418(0.0556) 0.54797(0.1083) 0.43002(0.0585) 0.61159(0.7179)
APARCH asymmetry γ -0.02409(0.17689)* -0.37123(0.16658) -0.26383(0.19663)* 0.21788(0.15621)*
APARCH Power δ 2.14119(0.1991) 2.36901(0.2515) 2.32895(0.2975) 1.44789(0.5902)
α -0.37386(0.05657) -0.45159(0.107) -0.29684(0.06078) -0.56927(0.72577)*
β 0.66773(0.05155) 0.80455(0.05393) 0.69846(0.0657) 0.78334(0.39454)

Table 13: ARMA-FIAPARCH estimates (standard deviation in brackets), *coef-
ficient is not statistically significantly different from zero with 5% confidence

Conclusions about α and β coefficients are similar as in previous sec-
tions except that for copper the α1 parameter was found to be statistically
insignificant. Order of ARMA model was selected the same as in previous
sections. Coefficients α and β are sufficient for conditional variance to be non-
negativee. Memory parameter d for corn was estimated to be larger than 1
which suggest that process might be integrated. Asymmetry parameter was
found significant only for wheat, coffee, gas, and silver returns. In all of these
cases the asymmetry parameter was selected negative, which indicates that
negative returns increases volatility more than positive returns.

3.2.4 Estimates of ARMA-HYAPARCH models

In this section, the results of ARMA-HYAPARCH models are presented,
estimates can be found in Tables 14–16.

corn wheat sugar coffee
AR1 – – -0.72131(0.19516) -0.41113(0.1129)
AR2 – – – -0.03335(0.01481)
MA1 -0.06162(0.01421) – -0.73749(0.18208) -0.37744(0.11179)
Student’s t d.f 2.61859(0.1151) 3.48922(0.2485) 2.58724(0.1101) 2.38793(0.0956)
GARCH Intercept 0.0075(0.0038) 0.02054(0.0079) 0.00214(0.0017) 0.01479(0.0059)
HYGARCH d 1.01564(0.0679) 0.40307(0.0741) 0.9984(0.0493) 0.51665(0.0692)
HYGARCH τ 1.01001(0.0089) 1.22053(0.0873) 1.00004(0.0041) 1.13049(0.0581)
APARCH asymmetry γ -0.14916(0.14727)* -0.65696(0.09427) 0.15938(0.20774)* -0.83582(0.07294)
APARCH Power δ 1.293(0.2349) 1.27002(0.1733) 1.65902(0.301) 1.59834(0.2052)
α -0.93032(0.06934) -0.41167(0.06338) -0.93272(0.05203) -0.41958(0.06785)
β 0.93272(0.01735) 0.70116(0.0743) 0.96405(0.01354) 0.74907(0.04532)

Table 14: ARMA-HYAPARCH estimates (standard deviation in brack-
ets),*coefficient is not statistically significantly different from zero with 5% confi-
dence
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cotton cattle gas oil
AR1 – 0.52212(0.08549) -0.03028(0.01331) –
AR2 – – – –
MA1 -0.03992(0.01529) 0.4573(0.08795) – 0.0402(0.01435)
Student’s t d.f 2.75181(0.1322) 3.48061(0.328) 2.98617(0.1778) 2.68569(0.1333)
GARCH Intercept 0.00814(0.0037) 0.00935(0.0046) 0.01386(0.0058) 0.00578(0.0038)
HYGARCH d 0.52492(0.0709) 0.53033(0.1522) 0.92253(0.071) 0.54537(0.0877)
HYGARCH τ 1.03603(0.0392) 0.78852(0.135) 1.01879(0.0119) 0.98048(0.0405)
APARCH asymmetry γ -0.01329(0.14697)* 1.38275(0.67651) -0.34243(0.10658) 0.33563(0.23709)*
APARCH Power δ 1.51913(0.1808) 1.47707(0.2092) 1.44485(0.2227) 1.67487(0.2818)
α -0.43282(0.06966) -0.38711(0.18058) -0.89373(0.06673) -0.45798(0.0927)
β 0.74127(0.05809) 0.63917(0.12987) 0.87273(0.02313) 0.73655(0.07972)

Table 15: ARMA-HYAPARCH estimates (standard deviation in brack-
ets),*coefficient is not statistically significantly different from zero with 5% confi-
dence

gold silver platinum copper
AR1 – – 0.56973(0.13142) –
AR2 – – -0.04581(0.01494) –
MA1 0.03492(0.01334) 0.06193(0.01288) 0.54668(0.13126) 0.06292(0.01326)
Student’s t d.f 2.1439(0.0747) 2.01694(0.0596) 2.71179(0.125) 2.38935(0.0939)
GARCH Intercept 0.00592(0.0033) 0.00348(0.0022) 0.0021(0.0014) 0.00324(0.002)
HYGARCH d 0.45061(0.0881) 0.9833(0.0666) 0.42895(0.0697) 0.31065(0.0356)
HYGARCH τ 1.22133(0.0719) 1.02727(0.0096) 1.13771(0.0512) 0.72847(0.1195)
APARCH asymmetry γ -0.43826(0.08721) -0.55091(0.07825) -0.34914(0.11575) 0.49213(0.35025)*
APARCH Power δ 1.31181(0.1788) 1.40393(0.2457) 1.86448(0.2329) 2.29466(0.2888)
α -0.50108(0.08231) -0.92285(0.06705) -0.33877(0.07048) –
β 0.76825(0.06121) 0.96294(0.00949) 0.7396(0.06868) 0.20341(0.04381)

Table 16: ARMA-HYAPARCH estimates (standard deviation in brack-
ets),*coefficient is not statistically significantly different from zero with 5% confi-
dence

Order of ARMA was again selected the same as in previous sections.
Estimates of α1 and β1 have the same signs as before except that for copper
returns the HYAPARCH(1, d, 1) parameter search during model estimation
did not converge and HYAPARCH(0, d, 1) model was chosen. For wheat and
gold models the conditions of non-negative conditional variance were not
met and because of that these models are incorrect. Estimates for asymmetry
were signifficant for coffee, cattle, gas, gold, silver and platinum. Asymmetry
parameter for cattle was estimated to be larger than 1 which is not allowed
by model specification, the rest of the asymmetry parameters are negative
which indicates increase in volatility when returns are negative. For all of the
models with significant asymmetry, the HYAPARCH parameter τ was larger
than 1 which indicates that data generating process is not weakly stationary.
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3.2.5 Model comparison

In Table 17 we provide Akaike information criterion (AIC) values. The values
are reversed so that bigger AIC means that model captured more information.

FIGARCH HYGARCH FIAPARCH HYAPARCH
corn 14505 14504.1 14508.7 14508.7
wheat 13741.6 13743.1 13751.9 13759.4
sugar 13406.4 13397.3 13403.3 13402.3
coffee 12652.3 12656.2 12675.2 12676.8
cotton 14241 14240.4 14238.1 14237.4
cattle 17263.8 17267.9 17266.4 17276.3
gas 10898.1 10903.1 10906.8 10907.2
oil 13311.8 13310.8 13308.9 13308.1
gold 17209.8 17213.1 17206.7 17222
silver 14180.3 14180.2 14178.3 14193.6
platinum 15616.2 15615.5 15613.6 15615.6
copper 14396.4 14396.1 14394.4 14381.5

Table 17: Inverted AIC values

From Table 17 we can see that all AIC values are very similar which sug-
gests that they retrieve similar amount of information. For corn the highest
AIC value is for asymmetric models. From previous sections we can observe
that the asymmetry parameter estimates are statistically insignificant and,
since the FIGARCH model is non-stationary we should pick HYGARCH
model since it has τ estimate smaller than 1 which suggests weak station-
arity. For wheat and gold, we obtain that AIC is best for HYAPARCH
specification, but, since this models exhibit negative conditional variance,
we choose HYGARCH specification because it is weakly stationary. Similar
decisions are made for coffee, cotton, cattle, gas, oil and copper models, and
HYGARCH models are selected. For silver, since it gives best AIC and since
all of the models are non-stationary, we chose HYAPARCH model. Lastly,
for platinum AIC is largest for FIGARCH model, but since Conrad (2010)
showed that when τ value of the data generating process is larger than 1, HY-
GARCH model estimates are better and, since we have significant estimate
of asymmetry parameter, we choose HYAPARCH model as the final. For
these chosen models Box-Pierce test of serial correlation was performed on
residuals and squared residuals, the chosen lag was 16. For all, except cattle
and gold, the null hypothesis of serial correlation in residuals is rejected. For
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squared residuals, null hypothesis is rejected for all models except for gold,
silver and copper. For silver, this problem is solved by choosing HYGARCH
model which rejects hypothesis of serial correlation in squared residuals. Un-
fortunately, for cattle, gold and copper, no specification results in rejection of
serial correlation hypothesis, which suggest that other type of models should
be used. In Figures 32–43, we provide estimates of conditional variance for
chosen final models.

3.3 Parameter stability after economical crisis of 2008-
2009

In this section we are going to check whether there is a significant change in
parameters after the 2008-2009 crisis. For this purpose, we split data into 2
parts: first is from 1995-01-05 to 2009-06-01 and the second part is from 2009-
06-02 to 2016-04-21. We then estimate the selected models in previous section
and check whether there is a change in parameters. Unfortunately, for wheat,
corn, gas and silver models in the post-crisis period, the parameter search
using ML estimation did not converge, which suggest model misspecification.
The converging specification was not found, so we leave those models out.
In Tables 18–21, we can observe the estimates of the rest for the models.

Sugar I Sugar II Coffee I Coffee II
AR1 -0.76806(0.21436) 0.95421(0.03426) -0.27291(0.12413) 0.42343(0.13783)
AR2 – – -0.04559(0.016) 0.19615(0.1063)
MA1 -0.78988(0.19431) 0.93982(0.03597) -0.24138(0.12288) 0.46506(0.13815)
Student’s t d.f. 2.43417(0.1182) 2.73763(0.2334) 2.19673(0.0918) 2.80818(0.2581)
Garch intercept 0 0 0.00792(0.0011) 0
HYGARCH d 0.52664(0.1922) 0.40787(0.0662) 0.56593(0.0827) 0.19615(0.1063)
HYGARCH τ 1.04037(0.0355) 1.03109(0.0265) 0.86168(0.046) 1.1905(0.2174)
α -0.44536(0.0355) -0.39992(0.06665) -0.37085(0.07927) -0.14965(0.07607)
β 0.81987(0.07829) 0.58182(0.09784) 0.68961(0.05717) 0.74915(0.09427)

Table 18: Sugar and coffee model estimates for periods I and II

In Table 18 we can see that for both sugar and coffee model the estimates
of ARMA part of the model are different between period I and II. This
suggests that a structural break in data generating process should be taken
into account. For sugar model, there seems to be a change in parameter
d, though, for both of the periods, it is still within 2 sigma interval of the
estimates in full model. For coffee model, the memory parameter d was
reduced by half in second period, which suggests that long memory properties
of this series have changed. For both models α and β parameters are also
different between the periods, though the signs of these parameters stay the
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same. Combining all of these results, we conclude that there is significant
evidence that there has been a structural break in the series which needs to
be taken into account. In Figures 6 and 7 we can see first 75 coefficients ψi
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Figure 6: First 75 ψi coeffi-
cients for periods I, II and com-
plete series of sugar
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Figure 7: First 75 coefficients
ψi for periods I, II and complete
series of coffee

From the figures, we can see that in sugar model the initial response to
shock would be higher in second period, but it would decay faster and would
be close to period 1 and full model after 50 steps. In coffee parameters, we
can see that initial response to shocks is weaker but it also decays slower and
is larger for more than 70 steps.

Cotton I Cotton II Cattle I Cattle II
AR1 0.54793(0.11494) 0.51889(0.11191)
AR2
MA1 -0.00856(0.01906)* -0.0971(0.02486) 0.49325(0.11837) 0.44006(0.1148)
Student’s t d.f. 2.61635(0.1407) 3.18621(0.3372) 3.27922(0.3406) 4.02546(0.7551)
Garch intercept 0.00282(0.0008) 0.00227(0.0024) 0.00167(0.0004) 0.00061(0.0003)
HYGARCH d 0.49176(0.0969) 0.41065(0.1372) 0.95551(0.0808) 0.91703(0.0935)
HYGARCH τ 0.99794(0.0296) 0.97156(0.0714) 0.9703(0.0155) 0.99684(0.0058)
α -0.40367(0.08972) -0.27483(0.11117) -0.88038(0.09507) -0.89728(0.10013)
β 0.72008(0.07791) 0.62333(0.10646) 0.90279(0.03895) 0.94135(0.02854)

Table 19: cotton and cattle model estimates for periods I and II

In Table 19 we can see that MA coefficient for cotton model in period
I is insignificant and for period II it becomes significant, which suggests a
structural break in the ARMA model. For cattle the AR and MA coefficients
are within each others 2 sigma intervals, which suggests that structural break
is insignificant. There does seem to be a small change in parameters d and τ
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for both models, but they are within 2 standard deviations of the full model,
which suggests that the long memory properties did not change significantly.
For cotton there is significant change in α and β, this suggests that structural
break might exist. For cattle model, α and β are both within each others
2 sigma intervals, which suggest that significant change did not occur. In
Figures 8 and 9 we can see first 75 coefficients ψi
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Figure 8: First 75 coefficients
ψi for periods I, II and complete
series of cotton
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Figure 9: First 75 coefficients
ψi for periods I, II and complete
series of cattle

From the figures we can see that parameters for cotton are very similar.
For cattle model, the initial shocks for period II are weaker but they also
decay slower and do not reach the coefficients of period I and full model for
70+ steps.

Oil I Oil II Gold I Gold II
AR1
AR2
MA1 0.03899(0.0181) 0.05012(0.02415) 0.01671(0.01666)* 0.05612(0.02084)
Student’s t d.f. 2.84706(0.1907) 2.49792(0.2001) 2.15105(0.0915) 2.12751(0.1297)
Garch intercept 0.00505(0.0008) 0 0.00066(0.0004) 0.00318(0.001)
HYGARCH d 0.34106(0.0751) 0.46686(0.0905) 0.31449(0.0852) 0.43678(0.2305)
HYGARCH τ 1.00549(0.0497) 1.01062(0.0261) 1.15214(0.0925) 0.90181(0.0772)
α -0.30327(0.06446) -0.30936(0.0854) -0.29914(0.07467) -0.38838(0.20211)
β 0.60302(0.07562) 0.72814(0.11991) 0.62614(0.07811) 0.64755(0.17052)

Table 20: Oil and Gold model estimates for periods I and II

In Table 20, we can see that MA coefficient of oil models in both periods
are similar and within one sigma interval of each other. In gold model, the
MA coefficient in first period is insignificant and in II period it becomes
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significant, which suggests that structural break in the conditional mean
model does occur. For both models the parameter d is increased by about 0.1
going from period I to period II, which means that long memory properties
of these series might have changed. Though, in gold case it is still within
2 sigma interval the full series model. Parameters τ for oil are within one
sigma interval of each other in Period 1 and 2, for gold the model in period II
becomes stationary because τ becomes smaller than 1. GARCH parameters
retain same signs in both periods and is within 2 sigma interval of each other,
though we do observe small decrease in α and β in both models going from
period I to period II. In Figures 10 and 11 we can see first 75 coefficients ψi.
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Figure 10: First 75 coefficients
ψi for periods I, II and complete
series of oil
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Figure 11: First 75 coefficients
ψi for periods I, II and complete
series of gold

From these figures we can observe that in oil models the initial shock is
the strongest in model for period II and it quickly converges to coefficients
of period I. For steps 5–25, the full series model has stronger memory but it
quickly decays and becomes similar to the periods I and II from step 25. For
gold model the coefficients seem to be smaller in period II than in full series
or period I for up to 75 steps which suggests that memory is weaker in this
period.
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Platinum I Platinum II Copper I Copper II
AR1 0.55827(0.10847) 0.99667(0.03642)
AR2 -0.05853(0.01884) -0.04423(0.0226)*
MA1 0.54569(0.10787) 0.95535(0.02857) 0.07003(0.01638) 0.04956(0.02292)
Student’s t d.f. 2.52543(0.129) 3.40702(0.3754) 2.29818(0.0993) 2.73761(0.2475)
Garch intercept 0 0.01562(0.0268) 0.0041(0.0008) 0
HYGARCH d 0.54569(0.10787) 0.37146(0.2589) 0.39174(0.1001) 0.42286(0.0958)
HYGARCH τ 1.19182(0.0743) 1.03896(0.1438) 0.99354(0.0479) 0.98214(0.022)
APARCH asymmetry γ -0.36112(0.12062) 0.09259(0.55304)*
APARCH power δ 1.97623(0.235) 1.20645(0.8397)
α -0.29628(0.07814) -0.31627(0.19612)* -0.34796(0.08837) -0.36046(0.09911)
β 0.76094(0.08955) 0.65599(0.16186) 0.63031(0.09391) 0.69947(0.07378)

Table 21: platinum and copper model estimates for periods I and II

In Table 21 we can observe, that for Platinum model, in period II, due to
increased standard deviations, the AR2 and α parameters become insignif-
icant. Asymmetry parameter in second period also becomes insignificant.
We can also observe that in period II, due to increased standard deviation,
the memory parameter d becomes close to 0 and τ is close to 1, which sug-
gests that in second period proper data generating process does not show
significant long memory properties.

In Figures 12 and 13 we can see first 75 coefficients ψi
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Figure 12: First 75 coefficients
ψi for periods I, II and complete
series of copper
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Figure 13: First 75 coefficients
ψi for periods I, II and complete
series of platinum

From these figures we can see that for both commodities the series con-
verge to the similar values quickly and initial coefficients for period II in
both cases are smaller than for whole series and period I. For platinum, the
coefficients are very similar but since we previously observed that standard
deviation for period 2 parameters are high so this result might be mislead-
ing. For all of these models Box-Pierce serial correlation test with 16 lags
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was performed and no significant serial correlation in residuals and squared
residuals was found.

4 Conclusion
In this thesis we have discussed 4 long memory models, FIGARCH, HY-
GARCH, FIAPARCH and HYAPARCH, and their properties. By using
properties of HYGARCH model and established proofs of Seasonal HYA-
PARCH model, we have also introduced corrected form of stationarity con-
strains for HYAPARCH model. An empirical analysis of 12 commodity fu-
tures price returns data using these models was performed. We showed that
all of the series presented excess kurtosis, so assumption of errors distributed
by standard Student’s t distribution was concluded. After estimation we
found that the best models, based on AIC, in most cases were HYAPARCH.
Unfortunately, due to negative condition variance for wheat and gold, and
large parameter τ in other models, which suggested that chosen data generat-
ing process was not weakly stationary, we decided that the best model for all
except platinum series was HYGARCH. For platinum model no weakly sta-
tionary model was found. Further suggestion would be to find a modification
for HYAPARCH model which would widen the parameter set, that would al-
low us to take into account the asymmetric properties observed in some of
the series. We also showed that all of the series have coefficient change af-
ter the global economical crisis of 2008-2009, which suggests that structural
break might have happened. The memory properties slightly changed for
most of the series. They all except platinum were still showing presence of
long memory. In both periods no significant change in the signs of GARCH
parameters were observed. Further analysis in order to take the change in
parameters needs to be done. One of the suggestions is to apply a dynamic
version of the models which would allow time varying coefficients.
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6 Appendix
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Figure 14: Prices of corn fu-
tures and their first log differ-
ences
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Figure 15: Prices of wheat fu-
tures and their first log differ-
ences

10

20

30

1995 2000 2005 2010 2015
date

su
ga

r

−0.10

−0.05

0.00

0.05

0.10

1995 2000 2005 2010 2015
date

su
ga

r

Figure 16: Prices of sugar fu-
tures and their first log differ-
ences
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Figure 17: Prices of coffee fu-
tures and their first log differ-
ences
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Figure 18: Prices of cotton fu-
tures and their first log differ-
ences
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Figure 19: Prices of cattle fu-
tures and their first log differ-
ences
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Figure 20: Prices of natural gas
futures and their first log differ-
ences
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Figure 21: Prices of Brent
crude oil futures and their first
log differences
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Figure 22: Prices of gold fu-
tures and their first log differ-
ences
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Figure 23: Prices of silver fu-
tures and their first log differ-
ences
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Figure 24: Prices of platinum
futures and their first log differ-
ences
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Figure 25: Prices of copper fu-
tures and their first log differ-
ences
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Figure 26: 1st-75th estimates
of FIGARCH ψi
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Figure 27: 1st-75th estimates
of FIGARCH ψi
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Figure 28: 1st-75th estimates
of FIGARCH ψi
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Figure 29: 1st-75th estimates
of HYGARCH ψi
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Figure 30: 1st-75th estimates
of HYGARCH ψi
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Figure 31: 1st-75th estimates
of HYGARCH ψi
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Figure 32: Estimated condi-
tional variance of corn returns
and squared returns
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Figure 33: Estimated condi-
tional variance of wheat returns
and squared returns
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Figure 34: Estimated condi-
tional variance of sugar returns
and squared returns
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Figure 35: Estimated condi-
tional variance of coffee returns
and squared returns
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Figure 36: Estimated condi-
tional variance of cotton returns
and squared returns
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Figure 37: Estimated condi-
tional variance of cattle returns
and squared returns
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Figure 38: Estimated condi-
tional variance of gas returns and
squared returns
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Figure 39: Estimated condi-
tional variance of oil returns and
squared returns
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Figure 40: Estimated condi-
tional variance of gold returns
and squared returns
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Figure 41: Estimated condi-
tional variance of silver returns
and squared returns
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Figure 42: Estimated condi-
tional variance of platinum re-
turns and squared returns
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Figure 43: Estimated condi-
tional variance of copper returns
and squared returns
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