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Mokesčių surinkimo analizė naudojant funkcinius duomenis

Santrauka

Šio tyrimo tikslas yra ištirti mokesčių surinkimo duomenis naudojant funkcinę duomenų analizę.

Šiame darbe nagrinėjami du praktiniai taikymai su mėnesiniais Lietuvos savivaldybių biudžeto pa-

jamų ir dieninių mokestinių įplaukų duomenimis. Pirmosios dalies tikslas yra išanalizuoti prognozių

elgesį naudojant iš viršaus į apačią, iš apačios į viršų ir pristatyto iš vidurio į viršų metodus, siekiant

nustatyti, kokiomis sąlygomis ir kuris iš šių metodų yra pranašesnis už kitą mažesnės prognozav-

imo paklaidos atžvilgiu. Tuo tarpu antrosios dalies tikslas yra išanalizuoti korektiškumą, naudo-

jant funkcinį duomenų modelį mokestinių įplaukų duomenims. Remiantis rezultatais, iš viršaus į

apačią metodas rodos yra pranašesnis mėnesinių savivaldybių biudžeto pajamų prognozių atžvilgiu

ir funkcinis tiesinis modelis yra tinkama priemonė modeliuoti mokestinių įplaukų duomenis.

Raktiniai žodžiai: funkcinė duomenų analizė, duomenų glodinimas, funkcinė pagrin-

dinių komponenčių analizė, funkciniai tiesiniai modeliai

Analysis of a Tax Collection Using Functional Data

Abstract

The purpose of the study is to investigate tax collection data using functional data analysis (FDA)

technique. This work consists of two applications with monthly municipal budget revenue of Lithua-

nia and daily tax receipt data. The objective of the first application is to analyze the behavior

of various forecasts under the Top-Down, Bottom-Up and introduced Middle-Up approaches in

order to identify under which conditions one approach would be preferred instead of the other in

terms of lower forecasting errors. Herewith the objective of the second application is to analyze

the correctness of applying functional regression model for daily tax receipt data. The results show

that Top-Down approach seems to be superior for monthly municipal budget revenue forecasts and

functional linear model is appropriate tool for modeling tax receipt data.

Key words: functional data analysis, data smoothing, functional principal component

analysis, functional linear models



Introduction

The objective of the Law on the Budget Structure (see [15]) is to ensure efficient use of

monetary resources in the process of formation and implementation of the budget with

a view to attaining the long-term, overall economic and social welfare for citizens of the

Republic of Lithuania, sustainable long-term economic growth, employment without posing

threats to the stability of prices. Lithuania has separate budgets for the state (central

government), the municipalities (local government) and the social insurance funds. The state

budget, as approved by parliament, covers the revenue and expenditures of the government

ministries and other budgetary institutions, including state transfers to the municipalities.

The municipal budgets are approved by the municipal councils, and cover municipal revenues

and funds transferred from the state for delegated functions.

In this work, the effect of tax collection will be investigated by applying functional data

analysis (FDA) methods. While classical statistics deals with the analysis of random scalars,

vectors, and matrices, functional data analysis refers to the statistical analysis of random

functions. Key aspects of FDA include the choice of smoothing technique, data reduction,

adjustment for clustering, functional linear modeling and forecasting methods. A monograph

on the functional data analysis by Ramsay and Silverman (2005) summarizes the typical

models considered in the FDA and most of the popular FDA techniques.

The analysis of tax collection consists of two parts: applications of municipal monthly

budget revenue and daily tax receipts data. On a daily basis only total gross tax receipts are

available. Since the amount of budget revenue in each month and the amount of tax receipts

in each day is a count that can only take non-negative values let’s assume that the counts

are assumed to arise from a nonhomogenous Poisson process. The key feature of the model

is to use regression splines to model the distribution of the amount of budget revenues and

tax receipts over time.

The objective of the first application is to analyze the behavior of various forecasts un-

der the Top-Down, Bottom-Up and introduced Middle-Up approaches in order to identify

under which conditions one approach would be preferred instead of the other in terms of

lower forecasting errors. Herewith the objective of the second application is to analyze the

correctness of applying functional regression model for daily tax receipt data.

The rest of the work is organized as follows. In Chapter 1, the nonhomogeneous Poisson

process is introduced. In Chapter 2, the statistical methods are discussed, including data

smoothing, functional ANOVA test, distance based clustering, functional principle compo-
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nent analysis and functional linear models. In Chapter 3, the variations of municipal budget

revenue and tax receipt data are explored using functional methods described in Chapter 2.

Conclusions are given in Chapter 4.

1 The Nonhomogeneous Poisson Process

The Poisson process is a stochastic process that counts the number of randomly occurring

events over time. A nonhomogeneous Poisson process (NHPP) is a modification of a Poisson

process which allows the intensity of the process to be time dependent. Let N [t, t + h) be

the number of events occurring in the time interval [t, t + h), where t > 0 and h > 0 and

let N(t) = N [0, t)]. Then a process {N(t), t > 0} is said to be a nonhomogeneous Poisson

process with intensity λ(t) if

1) N(0) = 0

2) {N(t), t > 0} has independent increments

3) P{N(t, t+ h) = 0} = 1− λ(t)h+ o(h)

4) P{N(t, t+ h) = 1} = λ(t)h+ o(h)

where λ(t) > 0 is called the intensity function of the process and o(h) denotes a remainder

quantity g(h) which approaches zero faster than h, i.e. lim
0

g(h)
h

= 0. The intensity function

λ(t) is continuous and

Λ(t) =
t∫

0

λ(u)du (1)

is called the cumulative intensity function. Conditions 3) and 4) imply that P{N [t, t +

h) > 2} = o(h) and that the occurrence of events prior to time t does not affect those

in [t, t + h). This gives rise to the property that counts in non-overlapping intervals are

independent of one another or more succinctly that the process is memoryless. It can also

be shown (Ross, 1996) that 1)-4) imply that N [t, t+ h) follows a Poisson distribution

P{N [t, t+ h) = n} =

( ∫ t+h
t λ(u)du

)n
exp

{
−
∫ t+h
t λ(u)du

}
n! , n = 0, 1, 2, . . . (2)

Thus N(t) is distributed as a Poisson random variable with mean Λ(t).For this reason

the cumulative intensity Λ(t) is often referred to as the cumulative mean function.
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2 Functional Data Analysis

In this chapter we aim to give a concise conceptual overview of the basic steps involved

in functional data analysis (FDA). The emphasis will be on the relevant techniques and

methods that are applied throughout this work.

In conventional data analysis the data consist of a set of measurements or observations. In

the functional data analysis context, observed data are regarded as depicting an underlying

function at various locations; hence each curve is treated as a single functional entity. The

continuum of a function is often time, but can be any continuous domain.

The assumption in FDA is that the underlying process generating the data is smooth,

which means that a function possesses a certain number of derivatives. Although the data

are still observed at discrete time points and subject to measurement error, i.e. noise. The

underlying process may typically be measured on as few as 20 or up to tens of thousands of

discrete points on the continuum. Additionally the process may also be measured repeatedly,

either multiple samples of a single process (within subjects), or samples from the process

measured in multiple subjects (across subjects). In many data sets a given observation is

dependent on adjacent observations, i.e. correlated. This situation violates the independence

assumption in traditional multivariate analysis. In FDA we do not assume that adjacent

observations are independent.

2.1 Data Smoothing: From Discrete Points to Smoothed Curves

The first step in FDA is to smooth discretely observed data points to obtain a functional

datum or objects. Let t be a one-dimensional argument sometimes referred as time. Func-

tions of t are observed over a discrete grid {t1, . . . , tJ} ∈ T at sampling values tj, which may

or may not be equally spaced. Generally, the observed data are filled with observational

errors (or noise) that are superimposed on the underlying signal. In the real world, a typical

scenario involves N processes beign observed at the same time. Let y be a vector of N

functional data y = [y1,y2, . . . ,yN ]T , where each functional data are written as follows

yij = Xi(tij) + εij (3)

where yij is a noisy observation of the stochastic process Xi(tij) and εij is a random

error with zero mean and variance function σ2 associated with the ith functional datum.

Mathematically, Xi(t) is the conditional expectation of yij, given tij = t. That is,
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Xi(t) = E(yij|tij = t), i = 1, 2, . . . , N, j = 1, 2, . . . , Ji.

There are a number of existing smoothing techniques that can be used to smooth the

regression function Xi(t) in (3). Different smoothing techniques have different strengths in

one aspect or another. For example, smoothing splines may be good for handling sparse

data, while local polynomial smoothers may be computationally advantageous for handling

dense designs.

Often basis expansions are used and smoothness is imposed by either restricting the basis

or by explicitly specifying a roughness penalty. Fourier bases, polynomial spline bases and B-

spline bases are popular. Alternatively, free-knot splines and wavelets provide data-adaptive

basis systems. Wavelets are especially useful for data with sharp peaks. Splines are well

suited to cases where derivatives of functions are required.

2.1.1 Representing functions by basis functions

The sample curves are assumed to be observations of a stochastic process Xi = {Xi(t) : t ∈

T } whose sample functions belong to the Hilbert space L2 of square integrable functions

with the inner product 〈X1, X2〉 =
∫
T X1(t)X2(t)dt,∀X1, X2 ∈ L2(T ) . In order to create a

functional datum, a basis needs to be specified. The chosen basis is a linear combination of

functions defining the functional object. A functional observation xi is defined as follows

Xi(t) =
K∑
k=1

cikφik(t) =
K∑
k=1
ciφ(t),∀t ∈ T , i = 1, 2, . . . , N (4)

where φ(t) = [φ1(t), φ2(t), . . . , φK(t)]T and ci = [ci1, ci2, . . . , ciK ]T .

Equation (4) can be written in matrix notation as

Xi(ti) = Φ(ti)ci,∀t ∈ T (5)

where Φ(ti) =


φ1(ti1) . . . φK(ti1)

... . . . ...

φ1(tiJi) . . . φK(tiJi)

 is a J ×K matrix of basis functions evaluated at

each time point tij and J = max
i=1,...,N

(Ji).

Basis functions expansion represent the potentially infinite-dimensional universe of func-

tions within the finite-dimensional framework of vectors like c. A great deal depends on how

the vector of basis functions φ(t) is chosen.
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The Fourier Basis System

The most appropriate basis for periodic functions defined on an interval T is the Fourier

Basis where the φk’s take the following form

φ0(t) = 1√
|T |

, φ2r−1(t) = sin(rwt)√
|T |/2

, φ2r(t) = cos(rwt)√
|T |/2

(6)

for r = 1, . . . , K−1
2 , where K is the number of basis functions; notice that the K must

be an odd number to compute Fourier Basis. The frequency w determines the period and

the length of the interval |T | = 2π/w. The function vector φ(t) has the form φ(t) =

[φ0(t), φ1(t), φ2(t), . . . , φ2r(t)]T evaluated at discrete time points tj, j = 1, . . . , Ji.

If the values of tj are equally spaced on τ and the period is equal to the length of interval

τ , then the basis is orthogonal in the sense that the cross product matrix Φ′Φ is diagonal,

and can be made equal to the identity by dividing the basis functions by suitable constants,
√
n for j = 0 and

√
2/n for all other j.

The Fast Fourier transform (FFT) makes it possible to find all the coefficients extremely

efficiently when n is a power of 2 and the arguments are equally spaced, and in this case we

can find both the coefficients ck and all n smooth values at X(tj) in O(log n) operations.

Derivative estimation in a Fourier basis is simple since

D sin rwt = rw cos rwt

D cos rwt = −rw sin rwt

This implies that the Fourier expansion of DX has coefficients

(0, c1,−wc2, 2wc3,−2wc4, . . .) (7)

and of D2X has coefficients

(0,−w2c1,−w2c2,−4w2c3,−4w2c4, . . .) (8)

Similarly, we can find the Fourier expansions of higher derivatives by multiplying indi-

vidual coefficients by suitable powers of rw, with sign changes and interchange of sine and

cosine coefficients as appropriate.
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The B-Spline Basis System

It is well-known that polynomials are not flexible in their ability to model data over a

large range of the design time points. However, this is not the case when the range is small

enough or when the big range is divided into some small subintervals or local neighborhoods.

In regression spline smoothing, however, the local neighborhoods are specified by a group of

locations, say,

τ0, τ1, . . . , τL, τL+1, (9)

in the range of interest, say, an interval [a, b] where a = τ0 < τ1 < . . . < τL < τL+1 = b.

These locations are known as knots, and τl, l = 1, 2, . . . , L are called interior knots

or simply knots. These knots divide the interval of interest, [a, b], into L subintervals:

[τl, τl+1), l = 0, 1, . . . , L, so that within any two neighboring knots, a Taylor expansion up to

some degree is valid. Mathematically, a regression spline is defined as a piecewise polyno-

mial that is a polynomial of some degree within any two neighboring knots τl and τl+1 for

l = 0, 1, . . . , L and is joined together at knots properly but allows discontinuous derivatives

at the knots.

Let Bk,m(t) denote the kth B-Splines Basis function of order m defined for any value of t,

for the non-decreasing sequence of knots {τl}Ll=0.

In this case, φk(t) is defined as follows:

φk(t) = Bk,m(t), ∀t ∈ T , k = 1, . . . ,m+ L− 2 (10)

Let ξ0 < ξ1 and ξK < ξK+1 be two boundary knots defining the domain over which the

spline is evaluated. The augmented knot sequence τ is defined as

• τ1 6 τ1 6 . . . 6 τM 6 ξ0;

• τj+M = ξj, j = 1, 2, . . . , K;

• ξK+1 6 τK+M+1 6 τK+M+2 6 . . . 6 τK+2M .

Any additional knots beyond the boundary are abitrary, and the usual scenario is to make

them all the same an equal to ξ0 and ξK+1. The set of basis functions Bk,m(t) of order m for

the knot-sequence τ (where m < M) is derived using a recursion formula as follows
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B1,k(t) =


1, t ∈ [τl, τl+1]

0, otherwise
(11)

for k = 1, . . . , K + 2M − 1. These functions are called Haar basis functions.

Bk,m(t) = t− τl
τk+m−1

Bk,m−1(t) + τk+m − t
τk+m + τk+1

Bk+1,m−1(t),∀t ∈ T ,m > 2 (12)

for k = 1, . . . , K+2M−m. In this case, the function vector φ(t) defined in equation (10)

has K + 2M −m basis functions evaluated at discrete time points ti, where i = 1, . . . , n. In

other words, the number of basis functions is defined by its order and its number of knots.

2.1.2 Smoothing functional data by least squares

This section describes an approach for model estimation when using basis functions, namely

the Least Squares method (with and without penalty).

The regression can be re-expressed as Xi(t) = φ(t)ci, so that the model (3) can be

approximately expressed as

y = Φc+ ε (13)

where y = (y1,y2, . . . ,yN)T , Φ = (φ1(t),φ2(t), . . . ,φK(t))T , and ε = (ε1, ε2, . . . , εN)T .

As φ(t) is a basis vector, Φ is of full rank, and hence ΦTΦ is invertible whenever N > K.

A natural estimator of ci, which solves the approximation linear model (13) by the ordinary

least squares method, is

ĉi = (ΦTΦ)−1ΦTyi. (14)

It follows that the regression fit of the function x(t) in (3) is

X̂i(t) = φ(t)T (ΦTΦ)−1ΦTy, (15)

which is often called a regression spline smoother of x(t) and obviously a(t) = Φ(ΦTΦ)−1φ(t).

In particular, the values of X̂i(t) evaluated at the design time points tij, i = 1, 2, . . . , N, j =

1, 2, . . . , Ji are collected in the following fitted response vector

ŷi = Φ(ΦTΦ)−1ΦTyi = Ayi, (16)
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where ŷi = (ŷi1, . . . , ŷiJi)T with ŷij = x̂(tij), i = 1, 2, . . . , N, j = 1, 2, . . . , Ji, and A =

Φ(ΦTΦ)−1ΦT is called the regression smoother matrix.

Remark: The regression spline smoother matrix A is an idempotent matrix, satisfying

AT = A,A2 = A and tr(A) = K. The trace of the smoother matrix A is often called

the degrees of freedom of the regression smoother. It measures the complexity of the fitted

regression model.

For the regression smoother, when the knot locating method is specified, the remaining

task is to choose the number of knots, K. In general, K is smaller than the number of the

measurements. As K must be an integer, choices for K are limited. Alternatively, we can

use all the distinct design time points as knots. This may result in undersmoothing when

there are too many distinct design time points. The resulting fit is usually quite rough. To

overcome this problem, we then introduce a penalty to control the roughness of the fitted

curve.

To be specific, without loss of generality, let us again assume that the range of interest

of x(t) in (3) is a finite interval, say, [a, b] for some finite numbers a and b. The roughness

of x(t) is usually defined as the integral of its squared d-times derivative

∫
T

{
X

(d)
i (u)

}2
du (17)

for some d > 1. This quantity is large when the function Xi(·) is rough. The smoothing

spline smoother of the function Xi(t) in (3) is defined as the minimizer X̂iλ(t) of the following

penalized least squares (PLS) criterion:

N∑
i=1

Ji∑
j=1

[
yij −Xi(tij)

]2
+ λ

∫
T

{
X

(d)
i (t)

}2
dt (18)

over the following dth order Sobolev space W k
2 [T ]:

{
X : X(s), . . . , X(d)(s) abs. continu.,

∫
T

{
X(d)(t)

}2
dt <∞

}
(19)

where λ > 0 is a smoothing parameter controlling the size of the roughness penalty, and

it is usually used to trade off the goodness of fit, represented by the first term in (18), and

the roughness of the resulting curve. The X̂iλ(t) is known as a natural smoothing of degree

(2d− 1).

The roughness (17) of Xi(t) can be expressed in matrix term as

12



∫
T

{
X

(d)
i (u)

}2
du =

∫
T

{
cTi φ

d(u)(φd(u))Tci
}
du = cTi

∫
T

{
φd(u)(φd(u))Tdu

}
ci = cTi Rci, (20)

where the matrix R : K × K is known as a roughness matrix. It follows that the PLS

criterion (18) can be written as

||yi −Φci||2 + λcTi Rci, (21)

where || · || denotes the usual L2-norm. Therefore, the estimate ĉiλ that minimizes (21) is

ĉiλ = (ΦTΦ + λR)−1ΦTyi (22)

The estimated smooth function is then

X̂i(t) = φ(t)T ĉi. (23)

2.2 Descriptive analysis of Functional Data

One of the most important parts in data analysis is the exploratory part: estimating means

and standard deviations. Because the functional nature of the data, the associated descrip-

tive statistics are therefore functional.

2.2.1 Mean and variance functions

The mean function is defined as µ(t) = E(X(t)),∀t ∈ T . And the sample functional mean is

X̄(t) = N−1
N∑
i=1

Xi(t),∀t ∈ T (24)

where N is the number of curves or replications and Xi(t) is the ith function evaluated at

time t.

Likewise, the estimation of the functional variance is defined as σ2 = E[X(t)−µ(t)]2,∀t ∈

T . And the sample functional variance is

V ar(X(t)) = (N − 1)−1
N∑
i=1

(Xi(t)− X̄(t))2 (25)

and the standard deviation function is the square root of the variance function.
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2.2.2 Covariance and Correlation functions

The covariance function summarizes the dependence of records across different argument

values. We define v to be the covariance function

v(t1, t2) = E[(X(t1)− µ(t1))(X(t2)− µ(t2))],∀t1, t2 ∈ T , (26)

and v̂ to be the sample covariance function

v̂(t1, t2) = 1
N

N∑
i=1

[(Xi(t1)− X̄(t1))(Xi(t2)− X̄(t2))],∀t1, t2 ∈ T . (27)

The associated correlation function is

corr(t1, t2) = v̂(t1, t2)√
V ar(t1)V ar(t2)

(28)

2.2.3 Functional Depth

Although, most often are other measures used to summarize a set of functional data such

as depth measures. The depth is a concept emerged in the literature of robustness which

measures how deep (or central) is a datum respect to a population. In univariate data, the

median would be the deepest point of clouds of points.

• Fraiman-Muniz Depth (Fraiman and Muniz (2001)): The depth measure is based on

the median. For every t ∈ [0, 1], let Fn,y be the empirical distribution of the sample

X1(t), ..., XN(t) and let Zi(t) denote the univariate depth of the data Xi(t) in this

sample, given by Di(t) = 1− |1/2− Fn,t(Xi(t))|. Then, define for i = 1, . . . , n,

Ii =
1∫

0

Di(t)dt (29)

and rank the observations Xi(t) according to the values of Ii.

• Modal Depth (Cuevas et al. (2007)): The depth measure is based on how surrounded

the curves are respect to a metric or a semi-metric distance, selecting the trajectory

most densely surrounded by other trajectories of the process. The population h-depth

of a datum z is given by the function

fh(z) = E(Kh(||z −X||)) (30)
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where X is the random element describing the population, || · || is a suitable norm

and Kh(t) is a re-scaled kernel and tuning parameter h. An given a random sample

X1, ..., XN of X, the empirical h-depth is defined as

f̂h(z) = N−1
N∑
i=1

(Kh(||z −X||)) (31)

• Random Projection Depth (Cuevas et al. (2007)): The depth measure is calcu-

lated through random projections (RP) based on the Tukey depth. Given a sample

X1, ..., XN let us take a random direction a (independent from the Xi) and project

the data along this direction. Then, the sample depth of a datum Xi is defined as

the univariate depth of the corresponding one-dimensional projection (expressed in

terms of order statistics so that the median is the deepest point). When the sam-

ple is made of functional data, we will assume throughout that the Xi belong to the

Hilbert space L2[0, 1] so that the projection of a datum X is given by the standard

inner product 〈a,X〉 =
b∫
a
a(t)X(t)dt. In the finite-dimensional case the projection of

X = (ξ1, . . . , ξd) along the direction a is evaluated through the usual Euclidean inner

product a1ξ1 + . . .+ adξd, denoted also by 〈a,X〉.

• Random Projection Depth with derivatives (Cuevas et al. (2007)): The depth measure

is calculated through random projections of the curves and theirs derivatives.

Let X1, ..., XN be a sample of differentiable functions defined on [0, 1]. The basic

idea is to use the method of random projections simultaneously (for the functions

and their derivatives) thus incorporating the information on the function smooth-

ness provided. The sample of functions is reduced to a sample in R2 defined by

〈a,X1〉, 〈a,X
′
1〉, . . . , 〈a,XN〉, 〈a,X

′
N〉, where a is a randomly chosen direction.Then the

depth of the bidimensional sample data is evaluate in a second step using the depth

function defined above: Fraiman-Muniz Depth, Modal Depth or Random Projection

Depth.

2.3 Functional ANOVA test

Let Xi1(t), Xi2(y), . . . , Xini(t), i = 1, . . . , k, denote k groups of random functions defined over

a given finite interval T = [a, b]. Let SP (µ, γ) denote a stochastic process with mean function

m(t), t ∈ T and covariance function γ(s, t), s, t ∈ T . Assuming thatXi1(t), Xi2(y), . . . , Xini(t)
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are i.i.d. SP (µi, γ), i = 1, . . . , k it is often interesting to test the equality of the k mean func-

tions

H0 : m1(t) = . . . = mk(t). (32)

against the alternative that its negation holds. This problem is known as the k-sample

testing problem or the one-way ANOVA problem for functional data.

Cuevas et al. (2004) proposed to use the following test statistic for testing (32)

Vn =
∑

16i6j6k
ni

∫
T

(X̄i(t)− X̄j(t))2dt (33)

Under the null hypothesis (32) and the assumptions that ni, n → ∞ in such a way that

ni/n → pi > 0 for i = 1, . . . , k, they proved that the approximate distribution of Vn is that

of the statistic

V =
∑

16i6j6k
ni

∫
T

(Zi(t)−
√
pi/pjZj(t))2dt (34)

where Z1(t), . . . , Zk(t) ) are independent Gaussian processes with mean 0 and covariance

function γ(s, t). . Cuevas et al. (2004) computed the p-value of Vn, or its empirical critical

value, by resampling Zi(t), i = 1, . . . , k, , from Gaussian processes GP (0, γ̂), where γ̂(s, t) =
1

n−k

k∑
i=1

ni∑
j=1

(Xij(s)− X̄i(s))(Xij(t)− X̄i(t)), a large number of times.

Provided that the ni are large enough, hypothesis H0 is rejected, at a level α, whenever

Vn > Vα where PH0{V > Vα} = α.

2.4 Distance based clustering

The goal of cluster analysis is to group a collection of subjects into clusters, such that those

falling into the same cluster are more similar to each other than those in different clusters.

Therefore, a measure of similarity or dissimilarity between subjects is a necessary ingredient

for clustering. A metric defined on the subject space is one way to obtain dissimilarities,

simply using the distance between two subjects as a measure of dissimilarity.

This section collects several metric and semi-metric functions which allow to extract as

much information possible from the functional variable.

The most simple spaces for functional data are the complete metric spaces where only

the notion of distance between elements of the space is given. If the metric can be expressed

as d(X(t), Y (t)) = ||X(t) − Y (t)|| with a norm || · || verifying the triangle inequality, we
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have a normed space (or a Banach space). In these spaces, there is also the notion of size

of the elements of the space. If the norm verifies the paralelogram law (||x + y||2 + ||x −

y||2 = 2(||x||2 + ||y||2)), an inner product can be defined in the space in the following way:

〈x, y〉 = 1
4(||x+ y||2 + ||x− y||2). A complete space with an inner product is called a Hilbert

space which is a special kind of Banach spaces where ||X(t)|| =
√
〈X(t), Y (t)〉.

A collection of semi-metrics is described below:

• If we focused on Lp spaces (the set of functions whose absolute value raised to the

p-th power has finite integral), Simpson’s rule is used to compute distances between

elements. Let f(t) = X1(t)−X2(t).

||f ||p =
( 1∫
T
w(t)dt

∫
T

|f(t)|pw(t)dt
) 1
p

(35)

where w are the weight. The observed points on each curve t are equally spaced or

not.

• Computes semi-metric distances of functional data based on Ferraty and Vieu (2006).

The semi-metric given two curves X1 and X2 is:

d(X1, X2) =
√√√√∫
T

(X(q)
1 (t)−X(q)

2 (t))2dt (36)

where X(q)
1 (t) denote the q-th derivative of X.

Using the equation (4) the derivatives of the approximated curves by B-spline are

X̂
(q)
i =

K∑
k=1

ĉikB
(q)
m,k(t) and the semi-metric can written now as

d(X1, X2) =
√√√√∫
T

(X̂(q)
1 (t)− X̂(q)

2 (t))2dt (37)

where the integral is computing by “Gauss method” following next approximation

b∫
a

f(t)dt ≈ b− a
2

K∑
k=1

wkf(b− a2 + b− a
2 δk) (38)

where wk are the weights and δk are the gauss points (see Ferraty and Vieu (2006),

pages 32-33).
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• This metric computes proximities between curves based on the functional principal

components analysis (FPCA) method. The FPCA reduces the functional data in a

reduced dimensional space (q functional principal components).

dFPCAq =

√√√√ q∑
k=1

( ∫
[Xi(t)− fi(t)]ξk(t)dt

)2
(39)

where fi is the score of the principal component
∫
Xiξ.

The FPCA semi-metric for two curves X1 and X2 is calculated as

dFPCAq (X1, X2) =

√√√√√ q∑
k=1

( J∑
j=1

wj(f1(tj)− f2(tj))[ξk]j
)2

(40)

where ξi is the ith orthonormal eigenvector of the covariance matrixW = diag(w1, . . . , wJ)

with quadrature weights, in this case we use wj = tj − tj−1.

• This metric computes proximities between curves a PLS semi-metric based on the

functional partial least-squared (FPLS) method. The FPLS uses a scalar response

observed additionally to reduce the functional data in a q functional PLS components.

We consider n scalar responses, the PLS semi-metric with q factors is defined as

dPLSq (X1, X2) =

√√√√√ p∑
k=1

( J∑
j=2

wj(f1(tj)− f2(tj))[ξqk]j
)2

(41)

with quadrature weights wj = tj − tj−1.

PCA and PLS semi-metrics can be used only if the curves are observed at the same

discretized points and in a grid sufficiently fine.

2.5 Registration

The functional data often comes with lateral displacements in curves. There are two sources

of variability present in smoothed curves that form the functional data. Amplitude variation

is displayed in the different size of features between curves. Phase variation can be seen

in the difference in the timing, or location on the continuum, of specific features between

curves. Phase variation is often referred to as misalignment of curves. The aim of regis-

tration in functional data is to separate amplitude and phase variation by aligning curves.

Functional registration is also called warping, time warping or alignment. The most well

18



known registration methods in FDA are landmark registration and continuous registration.

Landmark registration removes phase variation by monotonically transforming the domain

for each curve so that points specifying the locations of shape features are aligned across

curves. Continuous registration uses a measure of closeness to quantify the similarity between

curves. The method aligns curves by warping their time (or horizontal axis) parameters by

selecting the optimal warping function from a class of warping functions in order to maximise

the similarity between curves. Note that the functional registration is always performed on

curves and not on data points. It is essential to perform registration of the smooth functions

before further analyses, since misalignment can have a serious effect on results. For example,

inflates data variance, blurs underlying data structures, and distorts principal components.

The landmark registration will be used in this thesis and can be expressed formally as

follows. The data that we consider are a sample of N smooth random functions X1, . . . , XN

defined over a closed interval on the real line. Time warping or curve registration aims at

eliminating the phase variation in a functional sample. It achieves this goal by applying

transformations, the warping functions hi, to the function arguments. The deformation

functions hi(x), i = 1, . . . ,m, called warping functions, must check the following properties:

• Initial conditions: hi(0) = 0, hi(X) = X.

• Landmarks alignment: hi(t0,j) = ti,j .

• Strict monotonicity: hi(t1) > hi(t2) for t1 > t2. That is, the function hi is invertible so

that for the same event the time points on two different timescales correspond to each

other uniquely.

The registration problem is defined as the search for a set of smooth strictly monotonic

functions hi, called its warping function, such that the functions of the form

y(t) = Xi{hi(t)}+ εi(t) (42)

or

y = Xi ◦ hi + εi, (43)

where ε is small relative to Xi and roughly centred on 0. If, alternatively, the template y

is defined by discrete values yj, j = 1, . . . , n, then the model becomes

yj = Xi{hi(tj)}+ εij. (44)
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The method of landmarks alignment which consists to determine, for each curve, a defor-

mation function so that specific points called landmarks of the registered curves are aligned.

Specific points defined as landmarks are generally the positions of maxima, minima, inflec-

tion points, or zero crossings. Then, the landmarks registration of m signals X1, . . . , Xm

defined on the same interval [0, T ] can be divided into the five following steps:

1. Definition of characteristic points to be used as landmarks (e.g., minimum, maximum,

zero crossing, etc.).

2. Extraction of landmarks ti,1, . . . , ti,K from an observed sequence of each signal Xi, i =

1, . . . ,m. Note that since observed signals are noisy, the landmarks ti,1, . . . , ti,K are

usually extracted from a estimator X̂i of the signal Xi.

3. Identify landmarks reference t0,1, ..., t0,K , i.e. the points at which the curves must

match.

4. Determine deformation functions h1, . . . , hm so that corresponding landmarks are matched,

i.e. for all i = 1, . . . ,m, hi(t0,j) = ti,j, j = 1, . . . , K.

5. Deformation of the signals using transformations obtained in the previous step. The

registered functions X̂i(t) = Xi[h−1
i (t)], i = 1, . . . ,m, are the aligned at each points

t0,1, . . . , t0,K .

Comparing before and after registration

Kneip and Ramsay (2008) developed a useful way of quantifying the amount of these two

types of variation by comparing results for a sample of N functional observations before and

after registration. The notation Xi stands for the unregistered version of the ith observation,

yi for its registered counterpart and hi for associated warping function. The sample means

of the unregistered and registered samples are x̄ and ȳ, respectively.

The total mean square error is defined as

MSEtotal = N−1
i=1∑
N

∫
[xi(t)− x̄(t)]2. (45)

We define the constant CR as

CR = 1 + N−1∑N
i

∫
[Dhi(t)−N−1∑N

i Dhi(t)][y2
i (t)−N−1∑N

i y
2
i (t)]dt

N−1∑N
i

∫
y2
i (t)dt

(46)

The structure of CR indicates that CR − 1 is related to the covariation between the

deformation functions Dhi and the squared registered functions y2
i . When these two sets
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of functions are independent, the number of the ratio is 0 and CR = 1: The measures of

amplitude and phase mean square error are, respectively,

MSEamp = CRN
−1

N∑
i

∫
[yi(t)− ȳ(t)]2dt

MSEphase = CR

∫
ȳ2(t)dt−

∫
x̄2(t)dt (47)

It can be shown that, defined in this way, MSEtotal = MSEamp +MSEphase.

If we have registered our functions well, then the registered functions yi will have higher

and sharper peaks and valleys, since the main effect of mixing phase variation with amplitude

variation is to smear variation over a wider range of t values. Consequently, the first term

in MSEphase will exceed the second and is a measure of how much phase variation has

been removed from the yi’s by registration. On the other hand, MSEamp is now a measure

of pure amplitude variation to the extent that the registration has been successful. The

decomposition does depend on the success of the registration step, however, since it is possible

in principle for MSEphase to be negative. From this decomposition we can get a useful

squared multiple correlation index of the proportion of the total variation due to phase

R2 = MSEamp
MSEphase

.

2.6 Functional Principal Component Analysis

Functional principal component analysis (FPCA) is being used to study the variations in

the data. Before doing FPCA, the mean curve is usually subtracted. Let ȳ(t) = 1
n

N∑
i=1

yi(t)

and ri(t) = yi(t)− ȳ(t). FPCA will be conduced on ri(t).

Let ξ1(t) be the first functional principal component (FPC). It is estimated by maximizing

N∑
i=1

f 2
i1, (48)

subject to ||ξ1||2 =
∫
ξ2

1ds = 1, where fi1 =
∫
ξ1(s)ri(s)ds is the first PC score of the ith

curve ri(t). Similarly, the second FPC ξ2(t) is estimated by maximizing
N∑
i=1

f 2
i2, subject to

||ξ2||2 =
∫
ξ2

2ds = 1 and
∫
ξ1(s)ξ2(s) = 0, where fi2 =

∫
ξ2(s)ri(s)ds is the second FPC score

of the ith curve ri(t). The subsequent FPCs, ξ3(t), . . . , ξM(t), can be estimated similarly

with additional constraints
∫
ξu(s)ξv(s) = 0 for all u, v where 1 6 u 6 v 6M . Let

v(s, t) =
N∑
i=1

ri(s)ri(t) (49)
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be the variance-covariance function for ri(t). All FPCs can be calculated as the eigen-

functions of the following functional eigenequations

∫
v(s, t)ξm(s)ds = ρmξm(t), (50)

where ρm is the corresponding eigenvalue, q = 1, . . . ,M and ρ1 > . . . > ρM . Each

eigenfunction xim(t) takes account ρm
M∑
m=1

ρm

of the total variations among N curves.

2.7 Functional regression models

The aim of this section is to introduce functional models with a scalar or functional response

from one or more functional covariates. Since functional linear regression modeling has its

roots from multivariate multiple regression modelling, the final result of all derivations have

the form

y = Zβ + ε. (51)

This chapter will review some key concepts related to the functional linear regression

model. Like in multivariate analysis, functional linear regression model has appeared to be

extremely useful in a broad range of applications including Time Series. A typical functional

linear regression model intends to explore the variability of a scalar continuous (functional)

response while considering how much of its variation is explainable by other variables. Linear

regression models can be functional in one or both of two ways:

• The dependent or response variable is functional;

• One or more of the independent variables or covariates are functional.

Clearly, the functional-response case is an extension of the multivariate-response case

with vectors converted into functions. The main change is that the regression coefficients

now become regression functions with values βj(t) or βj(t, s) depending on the nature of the

problem. Although the main focus of this chapter is on scalar response predicted by one or

more functional covariates. It should be noted that all inferential tools for functional linear

regression models have been developed under the assumption that the covariate/response

pairs are independent.
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2.7.1 Scalar response and functional independent variables

Let {yi, i = 1, . . . , N} be an N-vector of scalar responses and Xim(t),m = 1, . . . ,M are M

functional predictors. Using the definitions from Chapter 2, the functions Xim(t) can be ob-

tained using the smoothing techniques. The regression model that evaluates the relationship

between the vector of scalar responses and the functional covariates is given by

yi = β0 +
M∑
m=1

∫
Tm

Xim(t)βm(t)dt+ εi,∀i,m (52)

where β0 is the usual intercept term that adjusts for the origin, βm(t) are the coefficient

functions and εi are the error terms which are independently and normally distributed with

mean 0 and variance σ2. Using the expansion in (3) to reduce the degrees of freedom in the

model further using basis functions, the functional predictors Xim(t) are expressed as

Xim(t) =
Kx
m∑

k=1
cimkφmk(t) = cTimφm(t),∀t ∈ Tm. (53)

In certain cases, φm(t) may differ depending on how different the functional predictors

are among m = 1, . . . ,M . Furthermore, the coefficient functions are represented by linear

combinations of Kβ
m basis functions

{
ψm1(t), . . . , ψmKβ

m
(t)
}

, with the following form

βm(t) =
Kβ
m∑

k=1
bmlψml(t), ∀t ∈ Tm (54)

Replacing equations (53) and (54) in equation (52) yields

yi = β0 +
M∑
m=1

∫
Tm

cTimφm(t)ψT
m(t)bmdt+ εi (55)

= β0 +
M∑
m=1

∫
Tm

cTimJ
(m)
φψ bm + εi (56)

wehre J (m)
φψ =

∫
Tm
φm(t)ψT

m(t)dt is the Kx
m ×Kβ

m cross-product matrix. Taking equation

(56) one step further, it can be rewritten as

y = Zβ + ε (57)

where

Z =


zT1
...

zTN

 =


1 cT11J

(1)
φψ . . . cT1MJ

(M)
φψ

... ... . . . ...

1 cTN1J
(1)
φψ . . . cTNMJ

(M)
φψ

 , (58)
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B =



β0

b1
...

bM


, (59)

y is the N -vector of scalar responses, Z is the N × (
M∑
m=1

Kx
m + 1) matrix of functional

covariatees, B is the (
M∑
m=1

Kβ
m + 1)×1 vector of functional coefficients, and ε is the N -vector

error terms.

Functional linear model with basis representation

This section assumes that the relationship between the scalar response Y and the func-

tional covariate X(t) has a linear structure. Thus, the functional linear model under the

parametric approach is given by the expression:

yi = 〈X, β〉+ εi =
∫
τ
Xi(t)β(t)dt+ εi (60)

where 〈·, ·〉 denotes the inner product on L2 and εi are random errors with mean zero and

finite variance σ2.

Ramsay and Silverman (2005) model the relationship between the scalar response and

the functional covariate by basis representation of the observed functional data X(t) and

the unknown functional parameter β(t). The functional linear model in Equation (60) is

estimated by the expression

ŷi =
∫
τ
Xi(t)β(t)dt ≈ CT

i ψ(t)φT (t)b̂ = X̃b̂ (61)

where X̃ i(t) is the scores such X̃ i(t) = CT
i ψ(t)φT (t), and b̂ = (X̃T

X̃)−1X̃y and so,

ŷ = X̃b̂ = X̃(X̃T
X̃)−1X̃y = Hy where H is the hat matrix with degrees of freedom

df = trace(H).

Functional linear model with functional PCA basis

Similarly, Cardotet al.(1999) used a basis of functional principal components to repre-

sent the functional data X(t) and the functional parameter β(t) in the so-called functional

principal components regression (FPCR).

Now, the estimation of β can be made by a few principal components (PC) of the func-

tional data and the integral can be approximated by:
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ŷi =
∫
τ
Xi(t)β(t)dt ≈

kn∑
k=1

γikn β̂kn (62)

where β̂(1:kn) =
(
γT·1y

nλ1
, . . . ,

γT·kny

nλkn

)
and γ(1:kn) is the n× kn matrix with kn principal compo-

nents estimation of β scores and λi the eigenvalues of the PC.

The model of Equation (62) is expressed as ŷ = Hy where H =
(
γ·1γT·1y

nλ1
, . . . ,

γ·knγ
T
·kny

nλkn

)
with degrees of freedom df = trace(H) = kn.

FLR with functional and non functional covariate

This section is presented as an extension of the previous linear regression models. Now,

the scalar response Y is estimated by more than one functional covariate Xj(t) and also

more than one nonfunctional covariate Zj. The regression model is given by

yi = α + β1Z
1
i + . . .+ βpZ

p
i +

∫
τ
X1
i (t)β1(t)dt+ . . .+

∫
τ
Xq
i (t)βq(t)dt+ εi (63)

where Z = [Z1, . . . , Zp] are the non functional covariates and X(t) = [X1(t1), . . . , Xq(tq)]

are the functional covariates.

The functional linear model (63) is estimated by the expression

ŷ = X̃b̂ = X̃(X̃T
X̃)−1X̃y = Hy (64)

where the first columns of X̃ are the p non-functional covariates Z and the following

columns are the q scores. This scores can be done by

1. basis expansion analogous to equation (61)

X̃ = [Z1, . . . , Zp, (C1)Tψ(t1)φT (t1), . . . , (Cq)Tψ(tq)φT (tq)] (65)

2. functional principal components basis as in equation (62)

X̃ =
[
Z1, . . . , Zp, {f 1

i1, . . . , fik1
1
}, . . . , {f qi1, . . . , fikq1}

]
(66)

2.7.2 Functional response and functional independent variables

In the previous section, the scenario involved scalar responses and functional covariates. In

this section, the linear model is a fully functional linear regression model in which both the

response and covariates are functions. This is given below

yi(t) = β0(t) +
∫
Tm

Xim(s)βm(s, t)ds+ εi(t),∀s ∈ Tm, ∀t ∈ T . (67)
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The function β0(t) is a parameter function acting as the constant term in the standard

regression setup, and allows for different functional origins for the functional response. The

function βm(s, t) are bivariate coefficient functions which impose varying weights on Xim(s)

at arbitrary time t ∈ Tm and εi(t) are the error functions. Using the expansion in (3), the

functional predictors Xim(t) are expressed as

Xim(s) =
Kx
m∑

j=1
c̃imjφmj(s) = c̃Timφm(s),∀s ∈ Tm, (68)

the functional responses yi(t) are given by

yi(t) =
Ky
m∑

k=1
d̃ikψk(t) = d̃

T

i ψ(t),∀t ∈ Tm. (69)

The expression of β as a double expansion seems to be appropriate due to its double

effect on both the predictors and response variables. The coefficient functions βm(s, t) are

expressed as follows

βm(s, t) =
∑
j,k

bmjkφmj(s)ψk(t) = φTm(s)Bmψ(t), (70)

where Bm is a Kx
m×Ky coefficient matrices. By centering the functional linear regression

model (67) in the following way

X∗im(s) = Xim(s)− X̄im(s)

= c̃Timφ(s)− c̄Timφ(s) (71)

= cTimφ(s),

y∗i (t) = yi(t)− ȳi(t)

= d̃
T

i ψ(t)− d̄Ti ψ(t) (72)

= dTi ψ(t),

equation (67) now become

y∗i (t) =
K∑
m=1

∫
Tm

X∗im(s)βm(s, t)ds+ ε∗i . (73)

From equations (70), (71) and (72), equation (73) have the following form
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dTi ψ(t) =
K∑
m=1

∫
Tm

cTimφ(s)φTm(s)Bmψ(t)ds+ ε∗(t)

=
K∑
m=1

cTimJφmBmψ(t) + ε∗(t) (74)

= zTi Bψ(t) + ε∗(t)

where zi = (ci1Jφ1, . . . , ciMJφM)T is a vector of length [
M∑
m=1

Kx
m], Jφm =

∫
Tm
φ(s)φ(s)tds

which is Kx
m ×Kx

m matrix, and B = (B1, . . . ,BM)T is a [
M∑
m=1

Kx
m ×Ky] matrix. Combining

all the information above, the Functional Linear Regression model for all the observations is

Dψ(t) = ZBψ(t) + ε(t) (75)

where D is a N ×Ky matrix and Z is a matrix with dimensions N × (
M∑
m=1

Kx
m).

Model estimation by Least Squares

Ramsay and Silverman (2005) estimated B in the model (75) by minimizing the integrated

residual sum of squares, the result is now

N∑
i=1

∫
τ

[
Y ∗t (t)−

M∑
m=1

∫
τm
X∗im(s)βm(s, t)ds

]2
dt

=
∫
τ
tr
{

(Dψ(t)−ZBψ(t))(Dψ(t)−ZBψ(t))T
}
dt

=
∫
τ
tr
{

(D −ZB)ψ(t)ψT (t)(D −ZB)T
}
dt (76)

= tr
{

(D −ZB)Jψ(D −ZB)T
}
dt

= tr
{
DJψD

T −DJψBTZT −ZBJψDT +ZBJψBTZT
}

= tr(DJψDT )− 2tr(DJψBTZT ) + tr(ZBJψBTZT )

where Jψ =
∫
τ ψ(t)ψT (t)dt is a Ky × Ky y matrix of basis functions. Computing the

derivative of (76) with respect to B and set the result to zero gives
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− 2(ZBJψ) + 2(ZBJψBT ) = 0

⇒ ZBJψ = ZBJψBT

⇒ vec(ZBJψBT ) = vec(ZBJψ) (77)

⇒ (Jψ ⊗ZTZ)vec(B) = vec(ZBJψ)

⇒ vec(B) = (Jψ ⊗ZTZ)−1vec(ZBJψ)

where vec(B) is a column vector of length (
K∑
m=1

Kx
m)×Ky of B.

Note: when the basis functions are orthonormal (e.g. Fourier, B-Splines), Jψ = IKx
m
.

3 Application

The data are going to be analyzed include two parts: monthly amount of Municipal budget

revenue of Lithuania and daily amount of Lithuanian tax receipts. These data are the

property of State Tax Inspectorate (STI), which are not publicly available. In this thesis,

the aim is to investigate the effect of tax collection by applying functional data analysis

(FDA) methods since FDA has never been used to investigate the tax collection (at least

there is no publicly available information).

Since the amount of budget revenue in each month or tax receipts in each day is a count

and let’s assume that can only take non-negative integer values, another possible choice to

smooth the data is using Poisson process model. Assume the amount of budget revenue

that occur in year i follows an inhomogeneous Poisson process Ni(t), which denotes the total

amount of budget revenue occurring during time t in year i. A Poisson process is a stochastic

process that counts the number of events (the amount of budget revenue or tax receipts)

and the time points at which these events occur in a given time interval. The time to which

the next event occurs is independent of the other events and the numbers of events occurred

in disjoint intervals are independent of each other. The Poisson process is inhomogeneous

in the sense that events occur at a variable rate as time t varies. Let the rate parameter

λ(t) be a function of t. The key feature of the model is the use of regression splines to

model the distribution of the amount of budget revenues and tax receipts over time. The

model assumes that the counts for each subject are generated by nonhomogeneous Poisson

processes with smooth intensity functions modeled with penalized splines.

In the next subsections the applications of discussed data are presented.
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3.1 Application of budget revenue data

Before proceeding on application of functional data analysis, a short introduction of the

structure of the municipal budget will be presented. There are various sources of income that

can be used by municipalities to finance their expenditure. Common sources of municipal

revenue include taxes – personal income tax, property taxes (land tax, inheritance tax), real

estate taxes (natural personal tax, legal entities tax) and fees (member fees, local charges).

Furthermore there are several other revenue sources including property income (interest

on loans, dividends, member corporation tax, tax on state natural resources, hydrocarbon

resources tax, rental fee for state land and inland waters fund), revenue for goods and services

(income from rental, revenue for occasional service), income from fines and confiscations

(revenue from fines for administrative violations, income from penalties for late payments,

other revenue from fines and confiscations) and transactions for tangible and intangible assets

and the assumption of financial liabilities

A local revenue structure is influenced by a municipality’s size, geography, land use

and coverage of government services. Other local determinants include numerous legal,

political and economic influences, including historical precedent, national economic trends,

state laws, intergovernmental relations, regional precedent, citizens’ preferences and the city

administration’s preferences.

60 municipalities within Lithuania have records of the amount of revenue collected during

2001 January to 2016 November, but the observations up to 2016 are kept for analysis. The

data for the year 2016 will be used for out-of-sample forecasting.

Figure 1 shows the location of municipalities where Municipal budget revenue data of

2015 are collected on the map of Lithuania. The biggest amount of taxes is collected by

Vilnius municipality with the amount of 453 million euros. Notwithstanding in Kaunas

municipality taxes are collected as well intensively with the amount of 179 million euros

and with Klaipėda, Šiauliai and Panevėžys all these five municipalities collect 60% of total

Municipal budget over the year 2015.
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Figure 1: Municipal Budget of 2015 in Lithuania (million e)

3.1.1 Data smoothing

Let yi(tij) represents the amount of budget revenue in a month, where i = 1, 2, ..., 60 corre-

sponds to municipality and j = 2001, . . . , 2015. The 10800 (60 municipalities and 15 years)

discrete data points are smoothed by removing measurement errors and represent them as

a continuous function of time t. yij can be modeled as (3), where Xi(tij) is the function and

εi is the independent and identically distributed (i.i.d.) random error (0, σ2).

Xi(t) is then approximated as a (4) linear combination of K basis functions, where

φ(t) = [φ1(t), φ2(t), . . . , φK(t)]T is a vector containing K basis functions and and ci =

[ci1, ci2, . . . , ciK ]T contains corresponding coefficients of basis functions. The choice of the

parameter number of basis K has no universal rule that would enable an optimal choice.

Generally speaking, the more basis functions is being chosen, the closer the fitted curve will

be compared to the discrete data points. However, if too many basis functions are chosen,

the fitted curves may be too rough, thus the data will be overfitted. Overfitting makes it
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difficult to interpret results derived from rough curves. In addition, since a lot of random

errors are included in the curves, the results become questionable. The objective of the

smoothing is to catch the trend of data without overfitting it. In order to achieve that,

instead of controlling K, a roughness penalty term is added.

Among different selection criteria to select the parameter ν = (K,λ), the following two

is selected: Cross Validation (CV) and Generalized Cross Validation (GCV). Both criteria

are defined as follows

CV (ν) = 1
n

N∑
i=1

(yi − r̂ν(Xi))2

1− Sii
w(Xi), (78)

where r̂ν(Xi) is the prediction at point ti obtained by omitting the i pair (Xi, yi), Sii
is the i diagonal element of the smoothing matrix S (with ν = trace(S)) and w(Xi) is the

weight of data X at point ti, and

GCV (ν) = 1
n

N∑
i=1

(yi − r̂ν(Xi))2

1− Sii
w(Xi)(1−

1
n
trace(S))−2. (79)

Table 1 shows the optimal values of K̂ and λ̂ that were found by computing each model

criterion on the all 60 municipalities.

Type of Functional Basis Model Criteria K̂ λ̂

Fourier
GCV 5 0.001953125

CV 5 0.001953125

B-Spline
GCV 5 0.0001220703

CV 10 0.001953125
Source: created by the author

Table 1: Optimal choice of functional basis and penalty by cross-validation

B-spline basis system is chosen for the budget revenue data. The discrete budget revenue

data are smoothed using 5 B-spline basis functions. The smoothing parameter is chosen to

be λ = 0.000122070. Figure 2 shows the pooled results of smoothed budget revenue data

for 60 municipalities over 15 years. Each curve corresponds to municipality i, i = 1, . . . , 60

and year j, j = 2001, . . . , 2015, and the month variable was normalized to interval [0,1],

where 0 corresponds to January and 1 to December. Additionally, the mean curve for every

municipality is added.
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Figure 2: Accumulated budget revenue (left) and intensities of budget revenue (right) with

mean curves for every municipality

Appendix 1 shows the results of smoothed budget revenue data for each municipality

over 15 years. Additionally, the depth measures described in section 2.2.3 and confidence

intervals using 2σ rule1 were added.

3.1.2 Data clustering

According to the Figure 2, it would be reasonable to test whether the differences among

municipality means are statistically significant. One-way ANOVA test for functional data

(FANOVA) will be used to test the null hypothesis (32) at a significance level α = 0.05,

where k=60.

F Statsitic p-value

2835016520 0

Table 2: Functional ANOVA test for Municipal budget revenue data

Table 2 represents the results of the one-way ANOVA test for functional data. According

to the results, the p-values of the FANOVA test are less than the significance level 0.05,

hence it can be concluded that location has an effect on the mean budget revenue curves of

municipalities.

In order to get a more precise view of tax collection in municipalities, pairwise functional

ANOVA tests have been performed. The results are shown in Appendix 2, where a gray area

1Approximately 95% of the data falls within two standard deviations of the mean (µ± 2σ)
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conform a strong evidence (p-value is less than 0.05) in favor of the hypothesis that both

curves are actually different.

Now since functional ARIMA test have detected differences in tax collection among mu-

nicipalities, hierarchical cluster analysis will be performed in order to group similar mu-

nicipalities. Before accomplishing cluster analysis, the observations are centered, that is

y∗i (t) = yi(t)− µi, ∀i, i = 1, . . . , 60.

Hierarchical clustering algorithms are either top-down or bottom-up. Bottom-up algo-

rithms treat each document as a singleton cluster at the outset and then successively merge

(or agglomerate) pairs of clusters until all clusters have been merged into a single cluster

that contains all objects. Bottom-up hierarchical clustering is therefore called hierarchical

agglomerative clustering or HAC. Top-down clustering requires a method for splitting a clus-

ter. It proceeds by splitting clusters recursively until individual objects are reached. The

methods differ in respect to how they define proximity between any two clusters at every

step. Complete linkage will be used for further analysis, but there are several alternatives to

complete linkage as a clustering criterion, such as single linkage, average linkage and others.

In the complete linkage, also called farthest neighbor, distance between groups is defined

as the distance between the most distant pair of objects, one from each group. In the

complete linkage method, D(r,s) is computed as

D(r, s) = max{d(i, j)|i ∈ r, j ∈ s} (80)

The distance between every possible object pair (i, j) is computed, where object i is in

cluster r and object j is in cluster s and the maximum value of these distances is said to

be the distance between clusters r and s. The distance between two clusters is given by the

value of the longest link between the clusters. At each stage of hierarchical clustering, the

clusters r and s, for which D(r, s) is minimum, are merged.

The Simpson’s rule is used to compute distances between elements on L2 space, where

the form is

d(y∗i , y∗j ) = E
( 1∫

0

(y∗i (t)− y∗j (t))2dt
) 1

2
= 1

15

15∑
k=1

( 1∫
0

(y∗ik(t)− y∗jk(t))2dt
) 1

2
, (81)

for all i, i = 1, . . . , 60 and j, j, p = 1, . . . , 60, and k, k = 2001, . . . , 2015. Figure 3

represents the result of hierarchical cluster analysis, where four clusters appear. More pre-

cisely, Vilnius, Kaunas, Klaipėda and, let’s define, the rest clusters. Figure 4 shows centered

smoothed tax receipt curves for every cluster.
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Figure 3: Results of hierarchical clustering
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Figure 4: Centered revenue data of four clusters
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3.1.3 Functional modeling and forecasting methods

The rest of the first part will be focused on the contrast between Top-Down model with a

Bottom-Up macroeconomic model. In order to understand the nature of different macroeco-

nomic models it is useful to make a distinction between Top-Down and Bottom-Up systems.

A Top-Down approach may project a trend in a large aggregate such as GDP, then use

historic relationships to derive the components of that total, such as personal consumption

expenditures. A Bottom-Up method would go in the opposite direction, working from finer

levels of detail (such as trends in population growth and business inventories) to generate a

GDP projection.

In this context the finest level is assumed to be municipalities and a large aggregate is the

total amount of Municipal budget revenue of Lithuania. In previous analysis municipalities

were clustered and dimension of analyzed models decreased from sixty to four. Consequently

clustered municipalities are not in the finest level and let’s denote this modeling approach

as Middle-Up. Accordingly the analysis is supplemented by this method. And now some

pertinent issues are raised. More precisely, which of approaches, Top-Down or Bottom-Up,

is superior? Or they are supplements? Or even middle-up approach is more preeminent

than bottom-up, that is the sum of forecasts of clustered municipalities approximates total

revenue forecast no worse than sum of distinct forecasts of municipalities?

In order to answer these questions, consider four functional regression models:

{1} Functional linear model with scalar response and basis representation

In this case the response variable is scalar and there is one functional covariate. More

precisely,

y∗i =
1∫

0

y∗i−1(t)β1(t)dt+ εi, (82)

where y∗i are centered annual amount of budget revenue, y∗i−1(t) are functional covariate

of centered budget revenue in previous period and εi are random errors with mean zero

and finite variance σ2.

{2} Functional linear model with scalar response and functional PCA basis

The estimation of β can be made by a few principal components of the funtional data

and the integral can be approximated by

ŷ∗i =
1∫

0

y∗i−1(t)β1(t)dt ≈
kn∑
k=1

γikn β̂kn , (83)
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where β̂(1:kn) =
(
γT·1y

nλ1
, . . . ,

γT·kny

nλkn

)
and γ(1:kn) is the n × kn matrix with kn principal

components estimation of β scores and λi the eigenvalues of the PC. In this case three

principal components will be used.

{3} Functional linear model with scalar response and functional and non func-

tional covariate

Now, the scalar response y∗i is estimated by functional covariate y∗i−1(t) and more than

one non functional covariate Zj. More precisely,

y∗i = β1Z
1
i + β2Z

2
i +

1∫
0

y∗i−1(t)β11(t)dt+ εi (84)

where Z1
i are the non functional covariate of annual GDP in counties, Z2

i are the non

functional covariate of annual number of registered unemployed in Sodra in municipal-

ities and y∗i−1(t) are the functional covariates of budget revenue of previous period as

before.

{4} Functional linear model with functional response and functional indepen-

dent variables

yi(t) =
∫
β1(s, t)yi−1(s)dt+ εi(t) (85)

where β1(s, t) is non-random coefficient functions, the functional slopes. Model (85) is

generally referred to as functional linear model (FLM), at any given time s, the value

of y(s) depends on the entire trajectory of X. It is a direct extension of traditional

linear models with multivariate response and vector covariates by changing the inner

product from the Euclidean vector space to L2 and the coefficient function varies with

s, leading to a bivariate coefficient surface.

Now the results of three different approaches will be presented.

3.1.4 Middle-Up results

In this approach clusters obtained by distance based clustering (see Figure 4) are being

modeled. First, functional linear model with scalar response and basis representation is

estimated, where β is represented by 5 b-spline basis functions and the amount of annual
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budget revenue is selected as the scalar response. Table 15 in Appendix 3 shows the evaluated

b-spline coefficients and standard error in brackets. According to the table, 89%, 87%, 88%

and 88% of variation is explained by a functional linear model with basis representation for

Vilnius, Kaunas, Klaipėda and rest budget revenue, respectively. Figure 15 in Appendix

3 represents the diagnostics for estimated model. Given a sample set, one can compute

the standardized residuals and compare these to the expected frequency: points that fall

more than 3 standard deviations from the norm are likely outliers and if there are many

points more than 3 standard deviations from the norm, one likely has reason to question the

assumed normality of the distribution. In this case, the square root standardized residuals

were estimated and all standardized residuals are less than 1.5. Furthermore, Ljung-Box

test is conducted to test whether there is autocorrelation in residuals. Since there is only

14 modeled observations, the first 13 autocorrelations were tested. And another test is

performed - an univariate test for white noise under general weak dependent assumptions,

which have been proposed by Lobato and Velasco (2004). A von Mises-type statistic is

computed against a N (0, 4) distribution. Figure 3 represents test statistics and p-values

of these two tests. Results of the test shows that there is no serial autocorrelation in the

modeled residuals and all models are white noise with at least 95% confidence level.

Ljung-Box

Statistic

Ljung-Box

p-value
von Mises

Statistic

von Mises

p-value

Vilnius 0.001 0.969 0.36 0.397

Kaunas 0.003 0.956 0.726 0.717

Klaipėda 0.609 0.435 0.596 0.593

Rest 0.007 0.932 0.735 0.725

Table 3: Tests for analysis of residuals of {2} model

Figure 5 represents fitted values (red) and true values (black) of the {1} model. According

to the graphs, model doesn’t take into account the period of global financial crisis, where

sudden increase in GDP in 2007 was accompanied by higher amount of revenue collected was

not perceived by a model and in all cases the annual amount of budget revenue is reduced.

And by contrary, in the period from 2009 to 2013 the amount of budget revenue is modeled

higher than actually collected. From the government point of view, such forecast would

worsen even more the circumstances of the process of fund allocation as government should

have borrowed funds thereby deepening deficit of Lithuania.
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Figure 5: Fitted values (red) of {1} model vs true smoothed values (black)

Second, the functional linear model with scalar response and PCA basis is evaluated.

The amount of annual budget revenue is selected as the scalar response and the 1st, 2nd and

3rd principal components were selected to estimate coefficients of β. Figure 31 in Appendix

3 shows the evaluated PCA coefficients and standard error in brackets. According to the

table, 85%, 77%, 83% and 87% of variation is explained by a functional linear model with

PCA representation for Vilnius, Kaunas, Klaipėda and rest budget revenue, respectively.

Futhermore, the 1st principal component accounts for 92.22%, 92.47%, 88.14% and 93% of

the overall variability for Vilnius, Kaunas, Klaipėda and rest budget revenue, respectively.

Other principal components explains a small part of the variation. Figure 31 in Appendix

3 shows the diagnostics for estimated model. The square root standardized residuals were

estimated and all standardized residuals are less than 1.5. Figure 4 represents test statistics

and p-values of Ljung-Box and white noise tests. Results of the test shows that there is no

serial autocorrelation in the modeled residuals and all models are white noise with at least

95% confidence level.
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Ljung-Box

Statistic

Ljung-Box

p-value
von Mises

Statistic

von Mises

p-value

Vilnius 0.128 0.721 0.488 0.498

Kaunas 0.018 0.893 0.796 0.787

Klaipėda 2.242 0.134 1.203 0.788

Rest 0.036 0.850 0.831 0.823

Source: created by the author

Table 4: Tests for analysis of residuals of {2} model

Figure 6 represents fitted values (red) and true values (black) of the {2} model. According

to the graphs, resembling estimates of the previous model is performed by {2} model and

similar interpretation is applied and with this model, that enlarged forecast for the crisis

period would made to accept the wrong political decisions.
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Figure 6: Fitted values (red) of {2} model vs true smoothed values (black)

Third, functional linear model with scalar response and both functional and non func-

tional covariates is estimated. GDP in county and the number of unemployed in municipality

were selected as non functional covariates and the amount of previous period budget rev-

enue was selected as functional covariate, which is represented with 5 b-spline basis functions.

And the amount of annual budget revenue is selected as the scalar response. Figure 31 in

Appendix 3 shows the evaluated b-spline and non functional coefficients and standard error

in brackets. According to the table, 93%, 87%, 96% and 96% of variation is explained by

a functional linear model with non functional covariates for Vilnius, Kaunas, Klaipėda and

rest budget revenue, respectively. Non functional covariate GDP is statistically significant
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for Kaunas and Klaipėda budget revenue models and non functional covariate Unemployed

is statistically significant for Kaunas and rest bidget revenue models. Figure 5 represents

test statistics and p-values of Ljung-Box and white noise tests. Results of the test shows

that there is no serial autocorrelation in the modeled residuals and all models are white noise

with at least 95% confidence level.

Ljung-Box

Statistic

Ljung-Box

p-value
von Mises

Statistic

von Mises

p-value

Vilnius 0.996 0.318 0.399 0.426

Kaunas 2.583 0.108 2.272 0.092

Klaipėda 0.193 0.660 1.635 0.401

Rest 2.310 0.129 1.57 0.451

Source: created by the author

Table 5: Tests for analysis of residuals of {3} model

Figure 7 represents fitted values (red) and true values (black) of the {3} model. According

to the graphs, fitted values are far more closer to actual values. Non functional covariates

of GDP and Unemployed help to explain annual budget revenue and to engross the crises

effect.
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Figure 7: Fitted values (red) of {3} model vs true smoothed values (black)

And fourth, functional linear model with functional response and functional independent

variables is evaluated. The amount of previous period budget revenue was selected as func-

tional covariate and the amount of current period budget revenue was selected as functional

response. Figure 8 represents smoothed centered budget revenue data vs fitted values of {4}

40



model. The difference in this respect is that response variable is a function which represents

months in horizontal axis. Visually budget revenue data is estimated rather precisely, but

to ascertain that model is adequate analysis of residuals is performed.
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Figure 8: Centered revenue data vs fitted values of {4} model

Table 6 represents test statistics and p-values of Ljung-Box and white noise tests for

municipal budget revenue of Vilnius. Since residuals are functional, pointwise tests were

performed. Results of the test shows that there is serial autocorrelation in 2004, 2006, 2007,

2008, 2009 and 2012 at least at 95% confidence level. It might be due to accession to the

European Union and global financial crisis and probably some specific events occurred in

Vilnius in 2012. According to the Table 20 in Appendix 4, proportion of the collected budget

revenue in January, February and March of 2012 is abnormally high compared with other

years. In those months 17.14%, 17.37% and 14.76% proportions consisted of annual budget

revenue while 10.99%, 9.36% and 10.07% are the highest proportion collected in others years

discarding 2009, respectively. Moreover, 0.91% is collected in December throughout the year

2012, while over other years in average 9.9% is collected in December discarding 2009. On

contrary, white noise test accepts the null hypothesis for 2004, but reject for those mentioned

years at least 95% confidence level.
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Ljung-Box

Statistic

Ljung-Box

p-value
von Mises

Statistic

von Mises

p-value

Year 2002 0.845 0.358 0.161 0.304

Year 2003 2.246 0.134 0.412 0.472

Year 2004 8.714 0.003 1.05 0.951

Year 2005 1.682 0.195 0.898 0.901

Year 2006 10.411 0.001 −0.848 0.024

Year 2007 8.093 0.004 −0.909 0.019

Year 2008 4.080 0.043 −0.957 0.017

Year 2009 4.056 0.044 −0.942 0.017

Year 2010 3.263 0.071 −0.785 0.029

Year 2011 2.904 0.088 2.149 0.159

Year 2012 5.953 0.015 −0.891 0.021

Year 2013 3.223 0.073 0.115 0.279

Year 2014 0.882 0.348 1.5 0.54

Year 2015 1.029 0.310 1.303 0.711

Source: created by the author

Table 6: Tests for analysis of residuals for Vilnius

Table 7 represents the same test statistics and p-values for municipal budget revenue of

Kaunas. Results of the test shows that there is serial autocorrelation in 2004, 2006, 2007,

2012 and 2013 at least at 95% confidence level. It might be due to the same conditions as for

Vilnius. Table 21 in Appendix 4 affirms aberrant behavior collected proportions of centered

budget revenue in Kaunas, except for year 2004. Though white noise test accepts the null

hypothesis for the year 2004 and rejects the null hypothesis for 2002, 2007, 2008, 2009, 2011

and 2015, but still the crisis effect is detected.
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Ljung-Box

Statistic

Ljung-Box

p-value
von Mises

Statistic

von Mises

p-value

Year 2002 2.825 0.093 −0.673 0.040

Year 2003 1.156 0.282 −0.025 0.210

Year 2004 5.694 0.017 0.196 0.325

Year 2005 3.385 0.066 −0.581 0.053

Year 2006 6.003 0.014 −0.179 0.149

Year 2007 4.686 0.030 −0.965 0.016

Year 2008 2.682 0.101 −0.857 0.023

Year 2009 2.362 0.124 −0.791 0.028

Year 2010 1.961 0.161 0.93 0.932

Year 2011 1.989 0.158 −0.743 0.033

Year 2012 4.582 0.032 1.03 0.971

Year 2013 3.998 0.046 1.755 0.355

Year 2014 1.972 0.160 0.58 0.607

Year 2015 4.542 0.033 −0.912 0.019

Source: created by the author

Table 7: Test for analysis of residuals for Kaunas

Table 8 represents test statistics and p-values of residual analysis for municipal budget

revenue of Kaunas. Results of the test shows that there is serial autocorrelation in 2003,

2004, 2005, 2006, 2008, 2009, 2012, 2013 and 2015 at least at 95% confidence level. It might

be due to the same conditions as for Vilnius and additionally some other effects. According

to the Table 22 in Appendix 4, proportions of the centered budget revenue collected during

the year in Klaipėda suspect aberrant behavior only for 2012 and 2013. Though white noise

test rejects the null hypothesis only for 2004.
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Ljung-Box

Statistic

Ljung-Box

p-value
von Mises

Statistic

von Mises

p-value

Year 2002 1.038 0.308 0.094 0.267

Year 2003 9.481 0.002 −0.24 0.129

Year 2004 4.610 0.032 −0.921 0.019

Year 2005 7.398 0.007 −0.179 0.149

Year 2006 9.663 0.002 0.241 0.353

Year 2007 1.231 0.267 −0.252 0.125

Year 2008 6.757 0.009 −0.121 0.170

Year 2009 7.918 0.005 −0.42 0.082

Year 2010 0.872 0.350 0.897 0.899

Year 2011 0.730 0.393 1.652 0.424

Year 2012 7.683 0.006 0.029 0.234

Year 2013 5.476 0.019 1.029 0.972

Year 2014 0.886 0.346 0.348 0.424

Year 2015 7.235 0.007 −0.012 0.215

Source: created by the author

Table 8: Test for analysis of residuals for Klaipėda

Table 9 represents test statistics and p-values of residual analysis for municipal budget

revenue of other municipalities in Lithuania. Results of the test shows that there is serial

autocorrelation in 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 and 2014 at least

at 95% confidence level. Consequently smaller municipalities have suffered from the crisis

more severe than bigger municipalities, such as Vilnius, Kaunas and Klaipėda. According

to the Table 23 in Appendix 4, proportions of the centered budget revenue collected during

the year in the rest municipalities suspect aberrant behavior only for 2007, 2008, 2009, 2010

and 2011. Though white noise test rejects the null hypothesis for 2004, 2007, 2008, 2009,

2011 and 2014. Clearly the accession to the European Union and the global financial crisis

had an effect on tax collection.
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Ljung-Box

Statistic

Ljung-Box

p-value
von Mises

Statistic

von Mises

p-value

Year 2002 2.712 0.100 −0.655 0.043

Year 2003 10.286 0.001 −0.523 0.062

Year 2004 0.302 0.582 2.911 0.019

Year 2005 6.160 0.013 1.562 0.491

Year 2006 4.761 0.029 −0.12 0.170

Year 2007 4.989 0.026 −0.96 0.016

Year 2008 6.264 0.012 −0.996 0.014

Year 2009 6.719 0.010 −0.998 0.014

Year 2010 4.511 0.034 0.088 0.264

Year 2011 3.956 0.047 −0.864 0.022

Year 2012 5.583 0.018 −0.112 0.173

Year 2013 3.602 0.058 0.806 0.812

Year 2014 7.356 0.007 4.064 0.0002

Year 2015 1.631 0.202 −0.242 0.128

Source: created by the author

Table 9: Tests for analysis of residuals for rest

Forecasting results of annual budget revenue data is represented in Table 10. Unfor-

tunately at this time of the moment, the amount of actually collected revenues for 2016

December isn’t available due to the deadline of submitting the thesis, which is earlier than

the information is published. Thus actual amount of budget revenue is introduced only for

January and November months of 2016. According to the results, the amount of budget

revenue of Vilnius forecasted by {1} and {3} models is inaccurate, because the amount col-

lected in 11 months is greater than models forecasted for the year 2016. The same effect

is observed for Klaipėda. Other forecasts for Kaunas and rest municipalities appear to be

tenable.

True value

2016.01-2016.11
{1}model {2}model {3}model

Vilnius 451, 430, 000 400, 569, 307 460, 298, 614 428, 569, 406

Kaunas 178, 444, 700 186, 838, 140 186, 575, 974 202, 496, 577

Klaipėda 94, 406, 600 94, 406, 600 97, 957, 956 93, 243, 436

Rest 10, 921, 933 12, 265, 094 12, 343, 845 12, 339, 128

Source: created by the author

Table 10: Forecasting results of annual amount of budget revenue for 2016

In order to compare the performance of the models, the assumptions are being made

about the proportions of the centered budget revenue collected in December in Vilnius,

Kaunas , Klaipėda and rest municipalities. Table 25, Table 26, Table 27 and Table 28 in
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Appendix 4 are being employed for calculating the proportions, respectively. The mean

of the proportion collected in December over the fifteen years is calculated and added to

the true value of revenue collected during the eleven months. In average 11.34%, 11.66%,

11.2% and 11.88% is collected in December during the year in Vilnius, Kaunas, Klaipėda

and rest municipalities, respectively. Therefore, tentatively 502,605,233e; 199,256,741e;

104,984,746e and 12,218,947e should be collected in 2016 in Vilnius, Kaunas, Klaipėda and

rest municipalities, respectively. For Vilnius and Klaipėda three forecasts of {1}, {2} and

{3} models underestimates preliminary amount for 2016. For Kaunas {3} model appears to

be the closest to the preliminary amount for 2016. And for the rest municipalities forecast of

{1} model seems to be the closest to the preliminary amount for 2016. Consequently, models

for Vilnius and Klaipėda should be improved in order to forecast more accurate amount of

municipal budget revenue.

Figure 9 represents forecasts of the {4} model. The same implications are applied to this

case that models, which is designed for Vilnius and Klaipėda should be refined.
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Figure 9: Monthly forecast (red) of {4} model vs true smoothed values (black) for 2016

However, the monthly information characterizing municipalities is not publicly available.

The most reference is about some yearly performance of the municipalities, but still very

few. Merely because of the advantages of the functional data analysis allowed to construct

models, which could elucidate municipal budget revenue data.
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3.1.5 Bottom-Up results

In order to not to stack with redundant information, only the forecasts of the {1}, {2} and

{3} models will be presented. Table 18 in Appendix 3 shows the annual forecast for every

municipality of 2016. Some forecasts of Birstonas, Vilnius district, Elektrėnai district, Jon-

ava district, Kazlų Rūda, Prienai district, Rietavas, Telšiai district, Utena district, Šakiai

district, Širvintai district municipalities underestimate actual 11 months amount of the bud-

get revenue, therefore reasonable model should be selected. Though models for Vilnius,

Klaipėda, Neringa, Palanga municipalities should be improved because all of three models

underestimate the amount of budget revenue for 2016.

Preliminary results comparison will not be conducted.

3.1.6 Top-Down results

Analogous analysis is done for the total municipal budget revenue data as in section 3.1.4.

Figure 11 represents Ljung-Box and white noise tests results. Figure 19 in Appendix 3

shows the evaluated coefficients of {1}, {2}, {3} models and standard error in brackets.

According to the table, 86%, 85% and 93% of variation is explained by {1}, {2} and {3}

models, respectively. Moreover, the 1st principal component accounts for 92.77% of the

overall variability of total budget revenue data of {2} model.

Table 11 represents the results of residual analysis. Both tests accepts the null hypothesis

that there is no serial correlation in residuals and they follow a white noise with assumptions

of general weak dependent.

Ljung-Box

Statistic

Ljung-Box

p-value
von Mises

Statistic

von Mises

p-value

{1} model 0.006 0.937 0.626 0.621

{2} model 0.010 0.921 0.748 0.739

{3} model 3.225 0.073 1.759 0.315

Source: created by the author

Table 11: Tests for analysis of residuals for total municipal budget revenue

The results of residual analysis is presented in Table 12 for {4} model. Results of the

Ljung-Box test shows that there is serial autocorrelation in 2006, 2007, 2009 and 2015 at

least at 95% confidence level. Though the white noise test rejects the null hypothesis for

2006, 2007, 2008, 2009, that is for the pre-crisis and crisis period. This is confirmed by Table
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24 in Appendix 4, which shows aberrant behavior of centered budget revenue data for the

years of 2006, 2007 and 2009.

Ljung-Box

Statistic

Ljung-Box

p-value
von Mises

Statistic

von Mises

p-value

Year 2002 0.006 0.940 0.3 0.391

Year 2003 0.169 0.681 1.503 0.538

Year 2004 0.042 0.838 0.567 0.596

Year 2005 0.071 0.791 0.321 0.406

Year 2006 8.181 0.004 −0.653 0.043

Year 2007 3.846 0.050 −0.979 0.015

Year 2008 1.202 0.273 −0.886 0.021

Year 2009 5.993 0.014 −0.919 0.019

Year 2010 0.282 0.596 −0.064 0.193

Year 2011 1.751 0.186 0.0444 0.242

Year 2012 0.527 0.468 0.838 0.842

Year 2013 0.036 0.850 0.622 0.644

Year 2014 0.780 0.377 1.233 0.775

Year 2015 4.893 0.027 0.296 0.387

Source: created by the author

Table 12: Tests for analysis of residuals for total municipal budget revenue of {4} model

Figure 10 represents fitted values (red) and true values (black) of four models. According

to the graphs, again fitted values are far more closer to actual values for the {3} model, which

incorporates explanatory variables, where non functional covariates of GDP and Unemployed

help to explain annual budget revenue and to engross the crises effect.
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Figure 10: Fitted values (red) vs true smoothed values (black) of total municipal budget

revenue models
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3.1.7 A comparison of approaches

Now the comparison of bottom-up, middle-up and top-down approaches will be conducted.

Forecasting results of total annual budget revenue data is represented in Table 13. Unfortu-

nately, as was mentioned before the amount of actually collected revenues for 2016 December

isn’t available. Thus actual amount of total budget revenue is introduced only for January

and November months of 2016. According to the results,

True value

2016.01-2016.11
Bottom-up Middle-up Top-down

{1} model 1,346,831,000 1,380,925,807 1,380,924,405 1,407,915,195

{2} model 1,346,831,000 1,432,841,198 1,448,431,709 1,527,078,704

{3} model 1,346,831,000 1,417,102,432 1,427,612,715 1,643,354,521

Source: created by the author

Table 13: Comparison of approaches with forecast for 2016

In order to compare the performance of the models, the assumptions are being made

about the proportions of the centered budget revenue collected in December in Lithuania.

Table 29 in Appendix 4 is being employed for calculating the proportions. The mean of

the proportion collected in December over the fifteen years is calculated and added to the

true value of revenue collected during the eleven months. In average 11.59% is collected

in December during the fifteen years in Lithuania. Therefore, tentatively 1,502,884,267e

should be collected in 2016 in Lithuania. According to he table, only Top-down approach

with {2} and {3} models has forecasted the closest amount to the preliminary. So it can be

stated that Top-down approach seems to be superior to Bottom-Up or Middle-Up approaches

with functional linear models with PCA representation and with non functional covariates.

3.1.8 Further analysis

Despite this optimistic suggestion of the role of functional data analysis in application of

municipal budget revenue data of Lithuania, further analysis is necessary to confirm its

efficacy. The data set used in this study consisted of 2001-2015 years of municipal budget

revenue data and 2016 was left for out-of-sample forecasting. Further research should analyze

a wider range of explanatory variables, especially for models, which design Vilnius, Klaipėda,

Neringa and Palanga municipalities. But inclusion of such variables is limited, because the

characteristics of municipalities are not publicly available. Furthermore, other smoothing

methods could be analyzed for transforming discrete data to smooth curves. For example,

nonparametric kernel methods, such as Nadaraya-Watson method or local linear regression
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method, where after the selection of the type of kernels, bandwidth is being estimated as

smoothing parameter. Also, an investigation could be pursued to find if functional principal

components can differentiate among the months and municipalities of Lithuania. This type

of analysis was not accomplished with the given data set and it is left for further research.

3.2 Application of tax receipt data

Daily economic time series often have properties that make them harder to model and to

forecast than monthly or quarterly data for which numerous standard solutions exist. In

addition to the well known features typical of monthly data - trend, season, trading day

and calendar effects - there are two major problems with daily data. First, the number

of observations varies per month and per year which leads to a time series with irregular

spacing. Second, we need to take account of daily heteroskedasticity since the variance may

depend on the day-of-the month. Many aggregate economic transactions have patterns with

a clear peak once a month, e.g. salary payments, money circulation, and tax revenues. It is

often not easy to stabilise the variance by taking logs: the (persistently changing) seasonal

pattern is not simply multiplicative and the irregular component is not either. Moreover,

very small (or even negative in cases of net series) values can be part of a daily time series.

The illustration of daily time series features is presented using a series for Lithuanian

aggregate tax receipts from 2009-01-01 to 2016-10-31. Since the data are not publicly avail-

able, they are transformed. Lithuanian total national daily tax receipts consist of several

major components like value-added tax, personal income tax, corporate income tax, excise

and a number of smaller categories, like property tax or real estate tax2. Many taxes are

due on the 15th and 25th workdays of the month. The majority of revenues is collected on

the 15th and 25th workdays.

3.2.1 Data smoothing

Although one of the functional data analysis features allows evaluation of record at any time

point (especially if observation times are not the same across records), practically if the

number of observation points per curve and per variable vary, curves and variables must be

smoothed individually. Table 14 represents the optimal values of K̂ and λ̂ that were found

by computing each model criterion on the all months with different calendar days.

2Full tax contribution list can be found at https://www.vmi.lt/cms/imoku-kodai
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Month Type of Functional Basis Model Criteria K̂ λ̂

January Fourier
GCV 8 6.103516 · 10−5

CV 8 6.103516 · 10−5

January B-Spline
GCV 19 3.051758 · 10−5

CV 19 6.10351 · 10−5

February (non-leap years) Fourier
GCV 10 3.051758 · 10−5

CV 10 3.051758 · 10−5

February (non-leap years) B-Spline
GCV 23 9.536743 · 10−5

CV 14 3.051758 · 10−5

February (leap years) Fourier
GCV 8 3.051758 · 10−5

CV 8 6.103516 · 10−5

February (leap years) B-Spline
GCV 19 3.051758 · 10−5

CV 19 0.0001220703

March Fourier
GCV 8 6.103516 · 10−5

CV 8 6.103516 · 10−5

March B-Spline
GCV 19 3.051758 · 10−5

CV 19 6.10351 · 10−5

April Fourier
GCV 9 6.103516 · 10−5

CV 9 6.103516 · 10−5

April B-Spline
GCV 17 3.051758 · 10−5

CV 15 3.051758 · 10−5

May Fourier
GCV 9 6.103516 · 10−5

CV 9 6.103516 · 10−5

May B-Spline
GCV 29 7.629395·−6

CV 29 1.525879 · 10−5

June Fourier
GCV 10 6.103516 · 10−5

CV 10 6.103516 · 10−5

June B-Spline
GCV 17 7.629395 · 10−5

CV 17 0.0001220703

July Fourier
GCV 9 6.103516 · 10−5

CV 9 6.103516 · 10−5

July B-Spline
GCV 29 7.629395 · 10−6

CV 15 6.103516 · 10−5

August Fourier
GCV 9 6.103516 · 10−5

CV 9 6.103516 · 10−5

August B-Spline
GCV 23 7.629395 · 10−6

CV 19 3.051758 · 10−5

September Fourier
GCV 9 6.103516 · 10−5

CV 9 6.103516 · 10−5

September B-Spline
GCV 26 7.629395 · 10−6

CV 15 3.051758 · 10−5

October Fourier
GCV 9 6.103516 · 10−5

CV 9 6.103516 · 10−5

October B-Spline
GCV 29 7.629395 · 10−6

CV 15 6.103516 · 10−5

November Fourier
GCV 9 6.103516 · 10−5

CV 9 6.103516 · 10−5

November B-Spline
GCV 26 7.629395 · 10−6

CV 27 1.525879 · 10−5

December Fourier
GCV 10 3.051758 · 10−5

CV 10 3.051758 · 10−5

December B-Spline
GCV 26 0.0002441406

CV 26 7.629395 · 10−6

Source: created by the author

Table 14: Optimal values of functional basis and penalty by cross-validation

The discrete tax receipt data are smoothed using B-spline basis with parameters displayed

in Table 14 by GCV criteria. Since after smoothing the functional object is obtained, we

can evaluate functional data object at specified argument values and join individual curves.

30 days were selected for estimation of functional data object. Figure 11 shows the pooled
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results of smoothed accumulated tax receipt data over 7 years. Each curve corresponds to a

year i, i = 2009, . . . , 2016 and a month j, j = 1, . . . , 12, and the day variable was normalized

to interval [0,1], where 0 corresponds to first day of the month and 1 to the last day of the

month.
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Figure 11: Smoothed accumulated tax receipts

Figure 12a represents the first derivative of accumulated tax receipt curves and it shows

quite scattered curves around the day 25th. But since month may have 28, 29, 30 or 31

day and in a smoothing process curves were transformed to have 30 model days, the curves

are misaligned. In order to remove phase variation in the smoothed tax receipt data the

registration process should be performed.

3.2.2 Registration

We have chosen to define landmarks as the positions of due dates of main taxes adminis-

trated by STI, namely due dates of submitting and paying value-added, personal income

and excise taxes. Thus, the landmarks, corresponding to maximum at collecting the tax re-

ceipts, are extracted from the estimated profiles obtained with the smoothing procedure, and

are matched with the reference landmarks defined by the average position of the increased

intensity at this two days of the month. The results are shown in Figure 12b.
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(b) Registrated curves

Source: created by the author

Figure 12: Tax receipt intensities

In order to quantify the amount of two types (amplitude and phase) of variation by

comparing results for a sample of N functional observations before and after registration,

MSE, which is determined in section 2.5, should be computed. After landmark registration

of the tax receipts curves yields the value R2 = 0.357. That is, nearly 36% of the variation

in intensity over this period is due to phase. Other 64% of the variation is due to amplitude.

3.2.3 Functional principal component analysis

Functional principal component analysis (FPCA) is used to detect the variations in the

amount of tax receipts recorded within State Tax Inspectorate among 7 years.

It is well known in classical multivariate analysis that an appropriate rotation of the

principal components can, on occasion, give components of variability more informative

than the original components themselves. A rotation method constructs new components

based on the first k principal components, for some relatively small k. The idea is that k

is chosen to include all the components that convey meaningful information, but not those

that are just noise. In the present example, we concentrate on the first five components and

set k = 4. The varimax method is often a useful approach. The method chooses components

to maximize the variability of the squared principal component weights.

Figure 13 shows the four varimax-rotated FPCs by displaying the mean curve (solid

line) along other two curves indicating the consequences of adding and subtracting a small

amount of each principal component. Each of them takes account 42.4%, 16.1%, 10.5% and

6.6 % of the total variations, respectively. The first quantifies the variation corresponding
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to the period around the day 25th, which is the due date of paying and submitting the value

added tax return, and therefore captures the intensity of this event. The second and the

third components measures the variability in the beginning and the end of the month, where

several times a year is the deadline for paying and submitting the advance corporate income

and corporate income tax returns. The fourth component indicates a mode of variability

corresponding to the period around the day 15th, which is the due date of paying and

submitting the excise and personal income tax returns, and the period before this due date.

(a) FPC1 (b) FPC2

(c) FPC3 (d) FPC4

Source: created by the author

Figure 13: The rotated principal component functions

The score of each of the 94 months in the sample on these four principal components,

by integrating the weight function against the functional datum in each case, which shows

how curves cluster and otherwise distribute themselves within the K-dimensional subspace

spanned by the eigenfunctions. This gives each month a score on each of the attributes.

Figure 14 displays the scatterplot of PFC2 score versus PFC1 score for each month. First
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two numbers denote years and others correspond to months. For example, "15 2" labels 2015

February. 2009 September, 2012 December, 2014 December and 2016 May have extreme

FPC1 or FPC2 scores, which means they have large difference among other months in sense

of tax collection, and 2016 May has the largest FPC1 score, which indicates large amount of

tax receipts in May. More precise, this increase is due to the increase of advance corporate

income tax, which was collected 35.7 % more compared with the previous year. In addition,

FPC scores moves obliquely from 2009 to 2016, which means that the amount of tax receipts

increases over the years. Furthermore, there is an effect in June, July and September, which

might be due to extra salary payments prior to the holidays and the number of vacations

have increase over the 7 years.

Source: created by the author

Figure 14: The scores for the two rotated principal component functions

3.2.4 Functional linear models

In this part of the section the main objective is to check whether coefficients from pointwise

ARIMA(p,d,q) is constant. This will conclude if functional regression is appropriate type of

method used to model tax receipts data. As was introduced earlier, curves were transformed

55



to have 30 model days. Therefore thirty poitntwise ARIMA models will be conducted for

each of 30 days and estimated coefficients will be presented to confirm or deny the raised

hypothesis. The full model can be written as

yt = c+ δt+ ρ1yt−1 + ρ2yt−2 + . . .+ ρpyt−p + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt, (86)

were p defines order of the autoregressive part, d - degree of first differencing involved,

and q - order of the moving average part. In order to model observations the stationary tests

were performed, the differences were taken if needed and the order of ARIMA(p,d,q) were

selected using the Akaike information criterion (AIC), which is defined as

AIC = −2Log(L) + 2(p+ q + k + 1), (87)

where L is the likelihood of the data, k = 1 if c 6= 0 and k = 0 if c = 0. In this case, it is

assumed that sample follows a Gaussian distribution. Figure 15 and Appendix 5 represents

estimated coefficients from pointwise ARIMA.
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Figure 15: Coefficient estimates of the pointwise ARIMA
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Primarily, it can be assuredly assumed that the coefficients describing the model are not

constant. In the beginning of the months, 13th, 17th, 18th, 20th and 30th days tax receipts is

explained by nothing else like the mean, which is different for every day.

There is an increasing tendency for the 23th, 24th and 25th days, where the time coefficient

is observed. These days correspond to due date of value-added tax return. It signifies the

fact that the amount collected from VAT is increasing two days before due date and at the

due day.

The amount of ax receipt collected in rest of the days are explained by integrated ARMA

process, where order of the ARMA varies among days. Mostly the amount of tax receipts is

explained by MA(1) or combination of autoregressive and moving average processes.

In order to ascertain the hypothesis consider the model

yi(t) = β0(t) +
∫
β1(s, t)yi−1(s)dt+ εi(t) (88)

where β0(t) is non-random function that play the role of functional intercept, and β1(s, t)

is non-random coefficient functions, the functional slopes.

Figure 31 represents the results of FAR(1) process. FAR(1) process modeled approxi-

mately 95% of the information, but more prominent curves have not been elucidated (see

Figure 31). It is seen in the residuals of the FAR(1) process, where quite large degree of

dispersion is observed in the beginning of the month, and increasing effect since the day

15. Consequently, model should be improved by adding more past values of the response

variables or incorporate moving average process, or even include explanatory variables. But

since the aim of this part is to ascertain that the coefficient of the FAR process isn’t constant,

so further analysis will not be conducted.
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Figure 16: FAR(1) model estimates

Accordingly Figure 31 represents the estimate of the first order autoregressive coefficient,

which confirms the assumption that functional regression is adequate approach to model tax

receipt data.

3.2.5 Further analysis

In the context of daily tax receipt data application, further analysis is also necessary to im-

prove the efficiency. The data set used in this study consisted of 2009.01.01-2016.10.31 daily

tax receipt data. Further research could analyze the effect of the other smoothing methods.
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Moreover, the registration effect should be analyzed as only the landmark registration was

performed. It might be that continuous registration would improve the results. As it was

mentioned earlier, explanatory variables should be incorporated to the model and the order

of ARMA process should be analyzed. That is

yi(t) = β0(t) + γ(s)Zi +
p∑

k=1

∫
βk(s, t)yi−k(s)dt+ εi(t). (89)

For example, one of the explaining variable could be the tax calendar. It should explained

at least the some proportions of the peaks. Other variables depend on the structure of the

nature as daily observations mostly probable only are available by Tax authority.

4 Conclusions

The common theme underlying the chapters of this thesis is the use of functional data

analysis as a valuable tool for statistical modeling of tax collection data. While many

theoretical economic models build upon smooth functions, tax collection data are usually

observed discretely with some additional uninformative noise components. It is demonstrated

that functional data analysis can bridge this gap in a most natural way. Consequently this

thesis covers conceptual work, which shows the strength of functional data methods, when

applied to economic contexts.

Regarding the conceptual part, municipal monthly budget revenue and daily tax receipt

data are introduced. The tax collection data has been interpreted as noisy discretization

points of smooth random functions. In contrast to classical time series models, this approach

provides a much more convenient way for the development of statistical models, which are

well-interpretable in the context of tax collection data. Yet separate objectives are promoted

depending of the nature of the data.

The objective of the first application was to analyze the behavior of various forecasts

under the Top-Down, Bottom-Up and introduced Middle-Up approaches in order to iden-

tify under which conditions one approach would be preferred instead of the other in terms

of lower forecasting errors. However, at the moment of the analysis there were no avail-

able information of the amount of municipal budget revenue collected in December 2016.

Thus preliminary analysis was performed. Practically, Top-Down approach appeared to be

superior to Bottom-Up or Middle-Up approaches, since the latter had underestimated the

preliminary amount for 2016 with assumption that 11.59% of the budget revenue will be

collected in December 2016. Additionally, distance based clustering was performed in order
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to group municipalities for Middle-Up approach. Herewith the objective of the second appli-

cation was to analyze the correctness of applying functional regression model for daily tax

receipt data. After performing pointwise ARIMA, it was concluded that ARIMA coefficients

are not constant. Therefore, functional data analysis is an appropriate tool for statistical

modeling of tax receipt data. Additionally, in order to modify irregular time spacing regis-

tration has been performed. Moreover, in order to detect variations in the tax receipt data

functional principal component analysis has been accomplished.
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1 Appendix
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Figure 17: The amount of budget revenue among municipalities and the intensities of rev-

enue, and descriptive statistics
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Source: created by the author

Figure 18: The amount of budget revenue among municipalities and the intensities of rev-

enue, and descriptive statistics
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Source: created by the author

Figure 19: The amount of budget revenue among municipalities and the intensities of rev-

enue, and descriptive statistics
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Source: created by the author

Figure 20: The amount of budget revenue among municipalities and the intensities of rev-

enue, and descriptive statistics
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(p) Pasvalys d.

Source: created by the author

Figure 21: The amount of budget revenue among municipalities and the intensities of rev-

enue, and descriptive statistics
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Figure 22: The amount of budget revenue among municipalities and the intensities of rev-

enue, and descriptive statistics
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Figure 23: The amount of budget revenue among municipalities and the intensities of rev-

enue, and descriptive statistics
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Figure 24: The amount of budget revenue among municipalities and the intensities of rev-

enue, and descriptive statistics
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2 Appendix

Alytus
Birstonas

Vilnius
Druskininkai
Marijampole

Kaunas
Klaipeda
Neringa
Palanga

Panevezys
Siauliai

Visaginas
Akmene d.

Alytus d.
Anyksciai d.

Birzai d.
Varena d.

Vilkaviskis d.
Vilnius d.

Elektrenai d.
Zarasai d.
Jonava d.

Ignalina d.
Joniskis d.
Kalvarijos

Kaisiadorys d.
Kaunas d.

Kedainiai d.
Kelme d.

Klaipeda d.
Kretinga d.
Kupiskis d.

Kazlu Ruda
Lazdijai d.

Mazeikiai d.
Moletai d.
Pabegiai

Pakruojis d.
Panevezys d.

Pasvalys d.
Plunge d.
Prienai d.

Radviliskis d.
Raseiniai d.
Rokiskis d.

Rietavas
Skuodas d.
Taurage d.

Telsiai d.
Trakai d.

Ukmerge d.
Utena d.
Sakiai d.

Salcininkai d.
Svencionys d.

Silale d.
Silute d.

Sirvintai d.
Siauliai d.

Jurbarkas d.
Al

ytu
s

Bi
rs

to
na

s
Vi

lni
us

Dr
us

kin
ink

ai
M

ar
ija

m
po

le
Ka

un
as

Kl
aip

ed
a

Ne
rin

ga
Pa

lan
ga

Pa
ne

ve
zy

s
Si

au
lia

i
Vi

sa
gin

as
Ak

m
en

e 
d.

Al
ytu

s d
.

An
yk

sc
iai

 d
.

Bi
rz

ai 
d.

Va
re

na
 d

.
Vi

lka
vis

kis
 d

.
Vi

lni
us

 d
.

El
ek

tre
na

i d
.

Za
ra

sa
i d

.
Jo

na
va

 d
.

Ig
na

lin
a 

d.
Jo

nis
kis

 d
.

Ka
lva

rijo
s

Ka
isi

ad
or

ys
 d

.
Ka

un
as

 d
.

Ke
da

ini
ai 

d.
Ke

lm
e 

d.
Kl

aip
ed

a 
d.

Kr
et

ing
a 

d.
Ku

pis
kis

 d
.

Ka
zlu

 R
ud

a
La

zd
ija

i d
.

M
az

eik
iai

 d
.

M
ole

ta
i d

.
Pa

be
gia

i
Pa

kr
uo

jis
 d

.
Pa

ne
ve

zy
s d

.
Pa

sv
aly

s d
.

Pl
un

ge
 d

.
Pr

ien
ai 

d.
Ra

dv
ilis

kis
 d

.
Ra

se
ini

ai 
d.

Ro
kis

kis
 d

.
Ri

et
av

as
Sk

uo
da

s d
.

Ta
ur

ag
e 

d.
Te

lsi
ai 

d.
Tra

ka
i d

.
Uk

m
er

ge
 d

.
Ut

en
a 

d.
Sa

kia
i d

.
Sa

lci
nin

ka
i d

.
Sv

en
cio

ny
s d

.
Si

lal
e 

d.
Si

lut
e 

d.
Si

rv
int

ai 
d.

Si
au

lia
i d

.
Ju

rb
ar

ka
s d

.

Hypothesis
H0

H1

Source: created by the author

Figure 25: Pairwise functional ANOVA tests
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3 Appendix
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Figure 26: Residuals of {4} model
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Figure 27: Coefficient estimates of {4} model
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Cluster:

Vilnius Kaunas Klaipėda Rest

const 10321458.8 4044218.92 2183576.70 256378.23

(1054222) (626767) (237816) (29995)

φ1 315.5 −31.00 49.11 54.12

(196.0) (185.42) (93.33) (203.46)

φ2 −508.0 38.81 −70.84 −45.34

(279.0) (210.39) (121.40) (252.35)

φ3 612.1∗ −33.56 181.76 70.17

(314.3) (239.38) (158.31) (355.17)

φ4 −341.5∗ 33.33 −163.60 −107.94

(150.8) (192.04) (116.68) (312.44)

φ5 263.9∗∗ 34.43 124.48 178.30

(105.2) (162.31) (74.82) (208.79)

R2 0.89 0.87 0.88 0.88

Adjusted R2 0.82 0.78 0.82 0.8

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 15: Estimates of {1} model
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Figure 28: Adequacy results of {1} model
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Cluster:

Vilnius Kaunas Klaipėda Rest

const 1.032 · 107 4.044 · 106 2.184 · 106 2.564 · 105

(1.111 · 105) (5.615 · 104) (2.426 · 104) (2.718 · 103)

PC1 17.06∗∗∗ 11.96∗∗∗ 11.36∗∗∗ 14.82∗∗∗

(3.53) (2.181) (2.392) (2.257)

PC2 9.323 13.26 4.644 13.73

(13.35) (22.68) (9.166) (16.57)

PC3 32.52 −5.623 −1.421 25.64

(19.72) (22.78) (11.70) (15.44)

R2 0.85 0.77 0.83 0.87

Adjusted R2 0.8 0.7 0.77 0.84

Variability explained by (%):

PC1 92.22 92.47 88.14 93.00

PC2 1.62 0.96 3.57 1.06

PC3 3.12 0.81 3.45 1.57

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 16: Estimates of {2} model

−1.0e+08 0.0e+00 1.0e+08

−1
.0e

+0
8

−5
.0e

+0
7

0.0
e+

00
5.0

e+
07

1.0
e+

08
1.5

e+
08

R−squared= 0.85

Fitted values

y

−1.0e+08 0.0e+00 1.0e+08

−6
e+

07
−4

e+
07

−2
e+

07
0e

+0
0

2e
+0

7
4e

+0
7

6e
+0

7

Residuals vs fitted.values

Fitted values

Re
sid

ua
ls

−1.0e+08 0.0e+00 1.0e+08

0.0
0.2

0.4
0.6

0.8
1.0

1.2

Scale−Location

Fitted values

Sta
nd

ard
ize

d r
esi

du
als

0.1 0.2 0.3 0.4 0.5

2
4

6
8

10
12

14

Leverage

Leverage

Ind
ex.

cur
ves

−1 0 1

−6
e+

07
−4

e+
07

−2
e+

07
0e

+0
0

2e
+0

7
4e

+0
7

6e
+0

7

Residuals

Theoretical Quantiles

Sa
mp

le Q
ua

ntil
es

−6
e+

07
−4

e+
07

−2
e+

07
0e

+0
0

2e
+0

7
4e

+0
7

6e
+0

7

Residuals

(a) Vilnius

−4e+07 0e+00 4e+07

−4
e+

07
−2

e+
07

0e
+0

0
2e

+0
7

4e
+0

7
6e

+0
7

R−squared= 0.77

Fitted values

y

−4e+07 0e+00 4e+07

−4
e+

07
−3

e+
07

−2
e+

07
−1

e+
07

0e
+0

0
1e

+0
7

2e
+0

7
3e

+0
7

Residuals vs fitted.values

Fitted values

Re
sid

ua
ls

−4e+07 0e+00 4e+07

0.0
0.5

1.0
1.5

Scale−Location

Fitted values

Sta
nd

ard
ize

d r
esi

du
als

0.1 0.2 0.3 0.4 0.5

2
4

6
8

10
12

14

Leverage

Leverage

Ind
ex.

cur
ves

−1 0 1

−4
e+

07
−3

e+
07

−2
e+

07
−1

e+
07

0e
+0

0
1e

+0
7

2e
+0

7
3e

+0
7

Residuals

Theoretical Quantiles

Sa
mp

le Q
ua

ntil
es

−4
e+

07
−3

e+
07

−2
e+

07
−1

e+
07

0e
+0

0
1e

+0
7

2e
+0

7
3e

+0
7

Residuals

(b) Kaunas

−2e+07 0e+00 2e+07

−2
e+

07
−1

e+
07

0e
+0

0
1e

+0
7

2e
+0

7
3e

+0
7

R−squared= 0.83

Fitted values

y

−2e+07 0e+00 2e+07

−1
.0e

+0
7

−5
.0e

+0
6

0.0
e+

00
5.0

e+
06

1.0
e+

07
1.5

e+
07

Residuals vs fitted.values

Fitted values

Re
sid

ua
ls

−2e+07 0e+00 2e+07

0.0
0.5

1.0
1.5

Scale−Location

Fitted values

Sta
nd

ard
ize

d r
esi

du
als

0.2 0.3 0.4 0.5 0.6

2
4

6
8

10
12

14

Leverage

Leverage

Ind
ex.

cur
ves

−1 0 1

−1
.0e

+0
7

−5
.0e

+0
6

0.0
e+

00
5.0

e+
06

1.0
e+

07
1.5

e+
07

Residuals

Theoretical Quantiles

Sa
mp

le Q
ua

ntil
es

−1
.0e

+0
7

−5
.0e

+0
6

0.0
e+

00
5.0

e+
06

1.0
e+

07
1.5

e+
07

Residuals

(c) Klaipėda

−3e+06 −1e+06 1e+06 3e+06

−2
e+

06
0e

+0
0

2e
+0

6
4e

+0
6

R−squared= 0.87

Fitted values

y

−3e+06 −1e+06 1e+06 3e+06

−1
50

00
00

−1
00

00
00

−5
00

00
0

0
50

00
00

10
00

00
0

15
00

00
0

Residuals vs fitted.values

Fitted values

Re
sid

ua
ls

−3e+06 −1e+06 1e+06 3e+06

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

Scale−Location

Fitted values

Sta
nd

ard
ize

d r
esi

du
als

0.1 0.2 0.3 0.4 0.5 0.6

2
4

6
8

10
12

14

Leverage

Leverage

Ind
ex.

cur
ves

−1 0 1

−1
50

00
00

−1
00

00
00

−5
00

00
0

0
50

00
00

10
00

00
0

15
00

00
0

Residuals

Theoretical Quantiles

Sa
mp

le Q
ua

ntil
es

−1
50

00
00

−1
00

00
00

−5
00

00
0

0
50

00
00

10
00

00
0

15
00

00
0

Residuals

(d) Rest

Source: created by the author

Figure 29: Adequacy results of {2} model
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Cluster:

Vilnius Kaunas Klaipėda Rest

const −1.586 · 108 −1.469 · 108∗∗∗ −4.859 · 107 −1.610 · 106

(19.211 · 106) (2.942 · 106) (3.186 · 105) (2.913 · 104)

φ1 122 −88.85 −5.38 21.07

(199.8) (97.83) (68.67) (135.1)

φ2 −277.6 288.3∗∗ −75.13 175.6

(284.4) (105.1) (98.69) (188.1)

φ3 393 −520.3∗∗∗ 180 −348.6

(312.2) (135.4) (145.2) (283.9)

φ4 −232 361.6∗∗ −158.8 241.2

(150.8) (105.8) (104.9) (241.3)

φ5 145.1 −196.3∗ 110.9 −110

(113.3) (82.72) (71.87) (164.6)

GDP 1.883 · 10−2 3.542 · 10−2∗∗∗ 1.736 · 10−2∗∗ 1.538 · 10−3

(9.350 · 10−3) (6.043 · 10−3) (7.955 · 10−3) (8.698 · 10−4)

Unemployed −8.031 · 102 −1.758 · 103∗∗ −2.672 · 102 −1.197 · 103∗∗

(1.024 · 102) (6.053 · 102) (1.121 · 103) (4.517 · 102)

R2 0.93 0.87 0.96 0.96

Adjusted R2 0.88 0.78 0.9 0.91

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 17: Estimates of {3} model
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Municipality
True value of

2016.01-2016.11

Annual forecast

with {3} model

Annual forecast

with {1} model

Annual forecast

with {2} model

1 Alytus 20, 704, 200 22, 441, 235 22, 313, 172 22, 185, 102

2 Birštonas 1, 966, 300 1, 488, 671 1, 510, 925 2, 223, 529

3 Vilnius 451, 430, 000 428, 569, 406 400, 569, 307 460, 298, 614

4 Druskininkai 9, 433, 700 10, 065, 782 9, 722, 715 10, 015, 202

5 Marijampolė 20, 423, 100 22, 098, 742 22, 214, 727 21, 775, 278

6 Kaunas 178, 444, 700 202, 496, 577 186, 838, 140 186, 575, 974

7 Klaipėda 94, 406, 600 93, 243, 436 93, 353, 504 97, 957, 956

8 Neringa 6, 102, 600 3, 099, 976 4, 042, 267 5, 402, 324

9 Palanga 13, 490, 700 12, 420, 424 12, 318, 353 12, 541, 600

10 Panevėžys 38, 484, 400 53, 742, 907 44, 649, 528 42, 621, 120

11 Šiauliai 47, 287, 000 56, 186, 029 51, 083, 770 50, 533, 358

12 Visaginas 8, 127, 500 9, 225, 458 9, 508, 311 8, 788, 972

13 Akmenė d. 6, 786, 500 7, 804, 330 6, 831, 299 7, 212, 885

14 Alytus d. 5, 611, 400 5, 667, 414 6, 123, 543 6, 294, 668

15 Anykščiai d. 6, 215, 500 6, 863, 732 7, 578, 451 6, 670, 273

16 Biržai d. 6, 367, 900 7, 157, 841 7, 225, 651 6, 709, 926

17 Varėna d. 6, 058, 100 6, 645, 173 6, 348, 743 6, 664, 077

18 Vilkaviškis d. 8, 616, 200 10, 087, 021 9, 878, 806 9, 397, 068

19 Vilnius d. 35, 739, 300 34, 831, 933 39, 201, 318 39, 771, 879

20 Elektrėnai d. 10, 452, 000 11, 751, 836 10, 335, 443 10, 289, 090

21 Zarasai d. 3, 335, 400 3, 696, 254 3, 966, 051 3, 994, 185

22 Jonava d. 3, 520, 700 3, 357, 182 3, 066, 119 3, 747, 148

23 Ignalina d. 14, 664, 300 18, 169, 015 18, 507, 828 18, 662, 625

24 Joniškis d. 7, 161, 500 8, 043, 814 9, 647, 684 8, 930, 689

25 Kalvarijos 2, 083, 600 2, 212, 257 2, 243, 456 2, 272, 537

26 Kaišiadorys d. 10, 010, 000 12, 273, 790 12, 683, 963 11, 301, 352

27 Kaunas d. 30, 056, 700 47, 662, 225 44, 983, 609 34, 457, 000

28 Kėdainiai d. 18, 382, 100 21, 079, 934. 20, 423, 539 20, 619, 839

29 Kelmė d. 6, 275, 900 7, 418, 097 7, 689, 263 7, 586, 186

30 Klaipėda d. 21, 062, 400 25, 685, 608 25, 082, 459 25, 139, 512

31 Kretinga d. 13, 099, 800 13, 829, 486 14, 381, 450 14, 592, 528

32 Kupiškis d. 4, 835, 700 5, 033, 779 4, 930, 235 5, 024, 901

33 Kazlų Rūda 3, 140, 700 3, 488, 856 3, 847, 098 4, 043, 392

34 Lazdijai d. 4, 296, 300 4, 647, 354 4, 547, 950 4, 535, 702

35 Mažeikiai d. 22, 399, 100 23, 064, 642 24, 148, 214 23, 810, 689

36 Molėtai d. 3, 963, 500 5, 373, 750 4, 858, 786 4, 932, 051

37 Pagėgiai 2, 073, 900 2, 304, 584 2, 213, 358 2, 404, 348

38 Pakruojis d. 6, 634, 000 7, 298, 121 7, 688, 46 8, 440, 691

39 Panevėžys d. 10, 591, 500 11, 034, 150 11, 036, 999 11, 378, 647

40 Pasvalys d. 7, 203, 100 7, 696, 780 8, 511, 055 8, 618, 833

41 Plungė d. 10, 408, 900 11, 368, 946 10, 981, 868 12, 020, 409

42 Prienai d. 7, 193, 000 8, 405, 719 6, 965, 407 8, 208, 784

43 Radviliškis d. 11, 686, 100 13, 779, 240 13, 350, 617 14, 388, 180

44 Raseiniai d. 8, 772, 300 11, 117, 228 11, 030, 690 11, 507, 606

45 Rokiškis d. 8, 412, 300 9, 680, 137 9, 749, 959 9, 530, 913

46 Rietavas 1, 918, 300 1, 263, 644 1, 312, 391 2, 296, 270

47 Skuodas d. 3, 862, 400 4, 668, 205 4, 370, 355 4, 418, 788

48 Tauragė d. 11, 329, 500 11, 564, 249 11, 658, 893 11, 468, 241

49 Telšiai d. 12, 012, 800 10, 294, 601 15, 093, 149 12, 159, 975

50 Trakai d. 12, 053, 400 15, 931, 972 14, 435, 940 14, 009, 548

51 Ukmergė d. 11, 298, 400 15, 664, 824 14, 097, 061 13, 230, 059

52 Utena d. 13, 472, 300 14, 790, 508 10, 578, 904 12, 823, 772

53 Šakiai d. 8, 583, 500 8, 490, 676 9, 055, 465 8, 238, 022

54 šalčininkai d. 7, 283, 400 8, 427, 532 7, 558, 583 7, 285, 795

55 Švenčionys d. 7, 495, 800 9, 330, 358 9, 124, 353 8, 792, 275

56 Šilalė d. 5, 796, 300 6, 174, 197 6, 431, 797 6, 143, 360

57 Šilutė d. 10, 992, 800 11, 756, 661 12, 612, 898 12, 279, 767

58 Širvintai d. 4, 965, 300 5, 014, 248 4, 810, 321 4, 642, 112

59 Šiauliai d. 11, 943, 300 13, 058, 447 13, 961, 727 13, 904, 830

60 Jurbarkas d. 6, 413, 500 7, 644, 455 7, 639, 882 7, 070, 743

Source: created by the author

Table 18: Forecasting results with Bottom-Up approach for 2016
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Figure 30: Results of {4} model for total centered Municipal budget revenue
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Model:

{1} {2} {3}

const 31214275.1 3.121 · 107 −2.805 · 108

(3760576) (3.448 · 105) (3.781 · 106)

φ1 137.6 −62.55

(224.4) (190.7)

φ2 −196.3 361.6

(320.7) (360.1)

φ3 285.8 −557.4

(405.2) (515.2)

φ4 −252.3 313.5

(283.7) (345.2)

φ5 252.3 −141

(187.4) (221.7)

PC1 17.01∗∗∗

(3.867)

PC2 18.96

(18.44)

PC3 −27.64

(21.27)

GDP 2.433 · 10−2

(1.297 · 10−2)

Unemployed −1.855 · 103

(9.864 · 102)

R2 0.86 0.85 0.93

Adjusted R2 0.77 0.8 0.86

Variability explained by (%):

PC1 92.77

PC2 1.16

PC3 2.40

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 19: Estimates for total centered Municipal budget revenue models
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Figure 31: Adequacy results for total centered Municipal budget revenue models
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4 Appendix

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001,13 5.750 8.186 9.462 9.800 9.425 8.560 7.433 6.409 5.986 6.668 8.959 13.363

2002,13 6.283 8.133 9.372 9.986 9.962 9.287 7.964 6.390 5.352 5.655 8.106 13.510

2003,13 5.295 8.500 10.068 10.373 9.785 8.679 7.427 6.407 6.002 6.594 8.567 12.303

2004,13 7.904 9.297 9.546 9.048 8.200 7.400 7.033 7.197 7.708 8.366 8.972 9.329

2005,13 8.593 9.364 9.766 9.852 9.679 9.300 8.770 8.147 7.489 6.854 6.300 5.886

2006,13 7.570 9.027 9.116 8.404 7.458 6.846 7.109 8.186 9.417 10.114 9.591 7.161

2007,13 2.749 1.752 4.153 5.264 5.892 6.848 8.898 11.890 14.748 16.355 15.595 11.353

2008,13 4.833 7.414 8.690 9.017 8.747 8.236 7.832 7.731 7.979 8.617 9.684 11.220

2009,13 14.389 13.350 12.740 12.246 11.553 10.348 8.339 5.746 3.300 1.754 1.861 4.375

2010,13 1.447 7.072 9.861 10.523 9.768 8.307 6.844 5.938 6.003 7.448 10.680 16.108

2011,13 4.380 7.530 9.988 11.691 12.575 12.576 11.638 9.918 7.778 5.594 3.740 2.590

2012,13 17.141 17.371 14.755 10.664 6.468 3.538 3.177 5.130 7.580 8.645 6.442 0.911

2013,13 10.987 9.170 8.854 9.312 9.814 9.632 8.083 5.551 3.484 3.376 6.722 15.017

2014,13 8.921 8.535 8.836 9.368 9.677 9.307 7.839 5.689 4.104 4.369 7.769 15.588

2015,13 5.488 8.843 10.196 10.112 9.157 7.895 6.882 6.433 6.623 7.517 9.179 11.673

Source: created by the author

Table 20: Proportion (%) of the centered budget revenue collected during the year in Vilnius
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001,19 6.156 7.983 8.895 9.075 8.707 7.976 7.072 6.327 6.218 7.227 9.836 14.528

2002,19 5.993 7.312 8.287 8.884 9.068 8.806 8.076 7.160 6.643 7.122 9.194 13.458

2003,19 4.569 8.467 10.032 9.964 8.960 7.719 6.922 6.848 7.374 8.357 9.656 11.131

2004,19 6.868 8.147 8.779 8.917 8.716 8.329 7.908 7.604 7.560 7.919 8.826 10.425

2005,19 10.230 9.423 8.915 8.620 8.450 8.321 8.148 7.915 7.674 7.478 7.383 7.443

2006,19 16.379 9.195 5.171 3.566 3.642 4.660 5.901 7.079 8.345 9.870 11.822 14.371

2007,19 0.739 3.054 4.680 5.055 5.097 5.722 7.803 11.141 14.474 16.491 15.883 11.338

2008,19 5.335 6.496 7.554 8.404 8.938 9.050 8.646 7.946 7.480 7.793 9.428 12.932

2009,19 14.402 14.979 13.530 10.948 8.126 5.958 5.294 6.021 7.058 7.285 5.579 0.819

2010,19 4.643 11.543 13.432 11.936 8.680 5.290 3.348 3.414 5.028 7.687 10.884 14.116

2011,19 12.013 11.537 10.913 10.054 8.873 7.281 5.216 3.184 2.255 3.526 8.094 17.055

2012,19 10.740 6.147 5.587 7.478 10.239 12.290 12.117 9.730 6.671 4.543 4.953 9.505

2013,19 14.733 7.130 5.250 6.926 9.992 12.281 11.721 8.383 4.485 2.335 4.244 12.520

2014,19 8.107 9.060 9.350 9.132 8.561 7.793 6.986 6.377 6.288 7.039 8.954 12.354

2015,19 5.236 7.727 8.814 8.888 8.339 7.559 6.933 6.742 7.159 8.354 10.496 13.755

Source: created by the author

Table 21: Proportion (%) of the centered budget revenue collected during the year in Kaunas
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001,21 5.892 8.974 10.168 10.019 9.070 7.865 6.938 6.568 6.783 7.598 9.030 11.094

2002,21 6.227 8.415 9.650 10.059 9.767 8.901 7.597 6.246 5.488 5.977 8.366 13.306

2003,21 5.616 9.275 10.930 11.081 10.225 8.862 7.485 6.452 5.985 6.303 7.623 10.162

2004,21 9.887 10.181 9.988 9.465 8.768 8.052 7.472 7.105 6.954 7.020 7.303 7.804

2005,21 13.201 10.628 8.352 6.562 5.448 5.197 5.982 7.544 9.198 10.241 9.969 7.678

2006,21 20.175 15.927 10.605 5.259 0.940 1.302 0.473 3.112 7.829 12.000 13.945 11.984

2007,21 7.424 0.614 6.655 10.779 13.067 13.601 12.485 10.343 8.321 7.587 9.311 14.660

2008,21 6.310 4.278 4.318 5.679 7.610 9.362 10.212 10.106 9.658 9.507 10.296 12.665

2009,21 6.472 9.043 11.285 12.914 13.646 13.198 11.311 8.317 5.137 2.718 2.008 3.953

2010,21 10.467 14.712 14.126 10.613 6.074 2.411 1.453 3.369 6.666 9.778 11.142 9.190

2011,21 8.415 25.440 27.065 19.114 7.412 2.217 4.191 1.497 9.274 13.329 7.847 12.985

2012,21 18.842 18.575 15.104 10.081 5.160 1.993 2.144 5.187 8.698 10.169 7.092 3.044

2013,21 31.641 17.907 10.869 8.434 8.509 9.002 7.893 4.871 1.329 1.266 1.445 2.258

2014,21 10.483 10.677 10.059 8.879 7.384 5.823 4.451 3.676 4.058 6.161 10.552 17.798

2015,21 7.374 9.711 9.897 8.734 7.026 5.574 5.155 5.945 7.518 9.424 11.212 12.430

Source: created by the author

Table 22: Proportion (%) of the centered budget revenue collected during the year in Klaipėda
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001,0 4.850 6.833 7.968 8.439 8.432 8.132 7.729 7.461 7.622 8.506 10.407 13.621

2002,0 4.566 6.822 8.088 8.584 8.529 8.145 7.652 7.321 7.467 8.409 10.465 13.952

2003,0 5.073 7.355 8.387 8.541 8.193 7.715 7.473 7.640 8.197 9.117 10.373 11.936

2004,0 6.245 7.983 8.699 8.717 8.359 7.951 7.804 8.009 8.430 8.923 9.340 9.539

2005,0 8.042 8.193 8.174 8.076 7.991 8.010 8.219 8.574 8.906 9.037 8.790 7.989

2006,0 11.068 9.512 7.970 6.628 5.671 5.285 5.647 6.706 8.185 9.797 11.257 12.276

2007,0 1.541 1.186 0.907 1.384 4.690 8.016 10.404 11.730 12.703 14.070 16.579 20.976

2008,0 3.584 4.502 6.033 7.784 9.362 10.374 10.450 9.723 8.830 8.430 9.182 11.745

2009,0 12.694 8.909 7.749 8.273 9.538 10.603 10.559 9.275 7.390 5.583 4.528 4.901

2010,0 2.851 10.407 12.356 10.642 7.208 3.996 2.887 4.310 7.241 10.594 13.284 14.224

2011,0 4.737 10.639 12.598 11.901 9.838 7.694 6.714 7.092 7.976 8.466 7.666 4.678

2012,0 11.018 7.341 5.603 5.314 5.986 7.130 8.266 9.149 9.770 10.130 10.228 10.065

2013,0 8.208 10.053 10.173 9.190 7.723 6.391 5.797 6.112 7.073 8.403 9.823 11.054

2014,0 7.317 9.088 9.285 8.490 7.282 6.242 5.931 6.501 7.688 9.214 10.799 12.162

2015,0 4.184 7.900 9.510 9.614 8.814 7.710 6.891 6.682 7.141 8.314 10.249 12.992

Source: created by the author

Table 23: Proportion (%) of the centered budget revenue collected during the year in the rest municipalities
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001 4.980 8.573 9.016 8.422 8.144 8.050 7.850 7.506 7.231 7.347 9.021 13.859

2002 4.851 8.594 8.991 8.413 8.323 8.416 8.207 7.621 7.004 6.830 8.565 14.185

2003 4.642 8.871 9.541 8.853 8.291 7.944 7.742 7.642 7.624 7.760 8.880 12.211

2004 6.377 9.995 9.218 7.719 7.655 8.240 8.389 7.938 7.639 8.164 9.116 9.551

2005 7.887 10.770 9.031 7.074 7.371 8.647 9.249 8.767 8.032 7.812 7.878 7.483

2006 11.052 9.674 7.976 6.623 5.988 5.870 6.018 6.524 7.826 10.159 11.886 10.405

2007 2.516 3.591 3.025 1.923 3.873 7.508 10.929 13.138 14.038 13.744 13.883 16.862

2008 3.936 6.579 7.411 7.707 8.263 8.937 9.481 9.651 9.202 8.108 8.248 12.477

2009 11.952 12.735 10.857 9.214 9.329 10.048 9.955 8.558 6.299 3.772 2.554 4.726

2010 0.751 14.644 12.937 7.309 5.140 5.458 6.376 6.969 7.280 7.568 9.609 15.958

2011 1.316 19.079 13.910 5.550 5.578 9.713 12.028 10.586 7.445 4.754 3.947 6.094

2012 12.050 11.644 7.210 4.672 6.709 9.696 9.478 6.325 4.934 9.082 12.854 5.346

2013 11.650 8.198 8.396 9.672 10.151 9.303 6.820 3.911 3.304 7.116 11.579 9.899

2014 7.893 9.470 9.426 8.646 7.785 7.054 6.609 6.492 6.632 7.080 8.960 13.951

2015 5.117 7.968 9.672 9.920 8.836 7.378 6.568 6.703 7.349 8.144 9.611 12.733

Source: created by the author

Table 24: Proportion (%) of the centered budget revenue collected during the year in the Lithuania
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001,13 8.536 7.811 7.667 7.890 8.270 8.593 8.656 8.461 8.215 8.134 8.434 9.331

2002,13 7.800 7.894 7.915 7.903 7.898 7.940 8.067 8.287 8.574 8.902 9.245 9.577

2003,13 8.544 7.604 7.406 7.673 8.127 8.491 8.501 8.195 7.911 8.003 8.823 10.723

2004,13 6.628 7.289 8.077 8.796 9.246 9.229 8.567 7.500 6.689 6.816 8.561 12.603

2005,13 6.552 7.528 8.192 8.545 8.587 8.320 7.753 7.125 6.900 7.552 9.557 13.389

2006,13 6.991 7.812 8.504 8.978 9.141 8.905 8.192 7.240 6.603 6.847 8.539 12.247

2007,13 5.835 7.212 8.037 8.426 8.493 8.356 8.130 7.963 8.031 8.512 9.583 11.423

2008,13 6.430 7.834 8.628 8.924 8.836 8.477 7.964 7.490 7.322 7.732 8.991 11.371

2009,13 8.320 8.911 9.303 9.454 9.326 8.875 8.073 7.113 6.418 6.419 7.549 10.238

2010,13 6.300 7.877 8.777 9.113 8.997 8.538 7.855 7.189 6.907 7.381 8.982 12.083

2011,13 6.847 7.965 8.724 9.132 9.197 8.926 8.336 7.613 7.117 7.214 8.272 10.658

2012,13 7.836 8.706 9.062 9.019 8.692 8.199 7.657 7.222 7.093 7.465 8.539 10.511

2013,13 7.465 8.120 8.627 8.927 8.964 8.679 8.025 7.212 6.705 6.980 8.514 11.783

2014,13 7.591 8.152 8.667 9.019 9.094 8.777 7.969 6.922 6.239 6.542 8.449 12.579

2015,13 6.464 8.332 9.221 9.362 8.983 8.311 7.577 7.019 6.886 7.427 8.891 11.526

Table 25: Proportion (%) of the budget revenue collected during the year in the Vilnius
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001,19 7.352 7.398 7.653 8.021 8.402 8.699 8.818 8.765 8.647 8.575 8.659 9.009

2002,19 7.438 8.027 8.258 8.244 8.096 7.923 7.835 7.900 8.147 8.602 9.291 10.240

2003,19 8.651 7.016 6.747 7.318 8.203 8.876 8.837 8.159 7.493 7.511 8.889 12.301

2004,19 6.688 7.408 7.960 8.318 8.455 8.346 7.973 7.518 7.362 7.894 9.502 12.576

2005,19 5.281 6.953 7.999 8.515 8.598 8.347 7.864 7.396 7.337 8.084 10.036 13.591

2006,19 5.381 7.474 8.715 9.258 9.256 8.865 8.241 7.618 7.308 7.622 8.877 11.385

2007,19 5.802 7.099 7.815 8.102 8.114 8.006 7.930 8.008 8.333 8.997 10.090 11.705

2008,19 6.300 7.306 8.042 8.500 8.677 8.567 8.172 7.678 7.451 7.868 9.304 12.135

2009,19 7.903 8.783 9.061 8.906 8.490 7.982 7.550 7.321 7.380 7.811 8.695 10.117

2010,19 6.451 8.247 9.018 9.036 8.572 7.898 7.283 6.953 7.089 7.872 9.482 12.099

2011,19 7.096 7.938 8.442 8.643 8.575 8.271 7.772 7.269 7.103 7.621 9.171 12.100

2012,19 7.293 7.482 7.910 8.402 8.781 8.872 8.510 7.845 7.334 7.451 8.667 11.454

2013,19 7.452 7.641 8.008 8.405 8.680 8.683 8.277 7.623 7.180 7.418 8.809 11.825

2014,19 7.126 8.065 8.567 8.706 8.556 8.190 7.685 7.229 7.122 7.667 9.165 11.921

2015,19 6.201 7.703 8.470 8.671 8.476 8.054 7.577 7.255 7.335 8.068 9.702 12.488

Table 26: Proportion (%) of the budget revenue collected during the year in Kaunas
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001,21 8.163 6.932 6.919 7.629 8.570 9.247 9.190 8.467 7.684 7.471 8.457 11.273

2002,21 7.693 7.518 7.616 7.875 8.185 8.433 8.516 8.456 8.402 8.513 8.943 9.850

2003,21 8.104 6.951 6.765 7.190 7.872 8.454 8.598 8.343 8.108 8.325 9.431 11.859

2004,21 5.781 6.741 7.636 8.361 8.814 8.888 8.494 7.838 7.426 7.777 9.407 12.837

2005,21 5.141 6.965 8.422 9.427 9.892 9.730 8.870 7.616 6.643 6.644 8.311 12.337

2006,21 5.344 6.767 8.105 9.195 9.870 9.967 9.337 8.210 7.196 6.920 8.007 11.083

2007,21 5.341 6.977 8.191 8.974 9.322 9.226 8.690 7.935 7.400 7.536 8.792 11.616

2008,21 6.919 6.962 7.376 7.956 8.499 8.803 8.677 8.230 7.873 8.027 9.116 11.562

2009,21 6.991 8.107 8.995 9.580 9.791 9.553 8.805 7.745 6.835 6.544 7.345 9.709

2010,21 7.530 8.697 9.099 8.952 8.468 7.862 7.346 7.085 7.198 7.802 9.013 10.948

2011,21 7.191 8.774 9.370 9.259 8.727 8.055 7.521 7.283 7.375 7.829 8.674 9.941

2012,21 8.128 8.784 8.979 8.839 8.487 8.047 7.644 7.392 7.394 7.755 8.580 9.971

2013,21 8.929 8.605 8.587 8.701 8.777 8.643 8.140 7.398 6.834 6.882 7.971 10.533

2014,21 8.030 8.624 8.851 8.764 8.417 7.862 7.160 6.541 6.405 7.160 9.213 12.972

2015,21 7.203 8.450 8.878 8.726 8.237 7.652 7.208 7.075 7.350 8.129 9.508 11.583

Table 27: Proportion (%) of the budget revenue collected during the year in Klaipėda
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001,0 8.153 7.939 7.918 8.011 8.138 8.222 8.187 8.077 8.051 8.273 8.909 10.122

2002,0 8.191 7.875 7.811 7.906 8.069 8.204 8.227 8.164 8.164 8.378 8.957 10.054

2003,0 7.873 7.388 7.491 7.913 8.387 8.647 8.442 7.884 7.456 7.651 8.968 11.901

2004,0 6.605 6.945 7.417 7.891 8.240 8.333 8.054 7.587 7.412 8.023 9.914 13.580

2005,0 5.713 6.986 7.836 8.303 8.429 8.254 7.826 7.379 7.326 8.091 10.095 13.762

2006,0 5.483 6.919 7.938 8.569 8.842 8.786 8.439 7.984 7.756 8.096 9.345 11.843

2007,0 5.895 6.393 6.932 7.448 7.877 8.158 8.232 8.215 8.388 9.042 10.467 12.955

2008,0 5.616 6.531 7.384 8.100 8.603 8.819 8.683 8.335 8.123 8.404 9.533 11.868

2009,0 7.523 7.634 7.910 8.238 8.502 8.591 8.397 8.019 7.755 7.913 8.798 10.720

2010,0 5.988 7.766 8.517 8.544 8.148 7.632 7.293 7.312 7.754 8.679 10.147 12.219

2011,0 6.320 7.632 8.314 8.523 8.412 8.137 7.853 7.707 7.842 8.399 9.518 11.342

2012,0 7.099 7.367 7.614 7.820 7.965 8.029 7.996 7.956 8.104 8.637 9.756 11.658

2013,0 6.733 7.794 8.295 8.382 8.200 7.894 7.612 7.501 7.711 8.394 9.701 11.782

2014,0 6.718 7.893 8.351 8.309 7.983 7.588 7.338 7.378 7.787 8.642 10.019 11.993

2015,0 5.579 7.576 8.549 8.765 8.492 7.996 7.542 7.344 7.564 8.362 9.899 12.333

Table 28: Proportion (%) of the budget revenue collected during the year in the rest municipalities
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001 8.483 6.913 7.484 8.485 8.830 8.647 8.207 7.819 7.832 8.507 9.344 9.449

2002 8.316 7.027 7.628 8.488 8.618 8.278 7.865 7.693 7.983 8.868 9.719 9.516

2003 8.541 6.762 7.120 8.093 8.650 8.701 8.279 7.675 7.436 8.054 9.448 11.240

2004 6.893 6.372 7.674 8.909 8.993 8.406 7.799 7.486 7.454 7.760 9.219 13.034

2005 6.205 6.519 7.950 9.022 8.937 8.217 7.520 7.203 7.316 7.957 9.716 13.438

2006 5.871 7.398 8.321 8.799 8.951 8.810 8.405 7.874 7.468 7.490 8.667 11.945

2007 5.583 7.257 7.633 7.665 7.924 8.242 8.376 8.321 8.312 8.619 9.747 12.323

2008 5.885 7.413 8.015 8.234 8.416 8.517 8.453 8.244 8.017 7.972 8.906 11.928

2009 7.590 8.607 8.707 8.583 8.624 8.633 8.354 7.812 7.316 7.210 8.051 10.512

2010 5.898 8.683 8.892 8.300 8.032 7.956 7.804 7.567 7.492 7.868 9.237 12.271

2011 6.276 8.643 8.706 8.227 8.253 8.449 8.337 7.888 7.519 7.668 8.771 11.262

2012 7.314 8.209 8.144 8.016 8.275 8.499 8.193 7.505 7.226 8.050 9.604 10.965

2013 7.307 7.814 8.282 8.604 8.686 8.461 7.876 7.197 7.004 7.816 9.476 11.477

2014 7.041 8.253 8.600 8.509 8.280 7.971 7.617 7.323 7.268 7.674 9.116 12.349

2015 6.097 7.839 8.799 9.010 8.615 7.977 7.472 7.297 7.458 8.002 9.343 12.091

Table 29: Proportion (%) of the budget revenue collected during the year in Lithuania
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5 Appendix

Day:

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)∗ (12)∗ (13) (14)∗ (15)∗

µ 234602238 241635089 242393405 223725145 196657445 194010496 218603001 250383247 268420806 259781710 452777202

δ

ρ1 0.9192 −1.1732 −0.1517

ρ2 −0.9601 −0.2369

ρ3

ρ4

θ1 0.1312 −0.7998 1.2350 −0.9573 −0.8964 −0.9215 −0.9766

θ2 −0.1776 0.9193 −0.0339

θ3 0.2189

AIC 3184.64 3061.08 2987.96 2943 2902.04 2917.75 2927.51 2884.78 2884.77 2953.7 2965.07 2947.49 2959.93 2996.57 2994.58

AICc 3184.92 3061.56 2988.1 2943.14 2902.52 2917.9 2927.51 2884.92 2884.91 2954.73 2965.21 2947.98 2960.07 2996.72 2995.06

BIC 3192.07 3070.99 2992.91 2947.96 2911.95 2922.71 2932.47 2889.74 2889.72 2968.56 2970 2957.36 2964.88 3001.5 3004.44

Note: ∗Integrated series
Source: created by the author

Table 30: Results of pointwise ARIMA
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Day:

(16)∗ (17) (18) (19) (20) (21)∗ (22)∗ (23)∗ (24)∗ (25)∗ (26)∗ (27)∗ (28) (29) (30)

µ 375936470 276110272 322154171 228798930 471340016 693781595 827845398

δ 228237.40 515664.60 766353.25

ρ1 0.4830 −0.3483 −0.4212 −0.1543 −0.8052 −0.2171 0.3281

ρ2 −0.1995 −0.3219 −0.2256 0.0154

ρ3 0.2198

ρ4 −0.4321

θ1 −0.7986 −0.3817 −0.9082 −0.7659 −0.9157 −0.9408 −0.4030 −0.7117 −0.8783 −0.2977 −0.4829

θ2 −0.3291 −0.4979

θ3

AIC 2960.29 3060.5 3025.24 3002.52 3073.73 3065.63 3038.7 2997.43 3057.03 3105.03 3090.7 3090.12 3140.32 3143.74 3264.52

AICc 2960.43 3060.64 3025.38 3003.25 3073.87 3066.12 3039.18 2997.72 3057.51 3106.08 3090.99 3090.27 3140.61 3145.14 3264.66

BIC 2965.22 3065.45 3030.19 3014.9 3078.68 3075.5 3048.56 3004.83 3066.89 3119.82 3098.1 3095.06 3147.75 3161.08 3269.48

Note: ∗Integrated series
Source: created by the author

Table 31: Results of pointwise ARIMA
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