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Retų struktūrų analizė vertinant trumpalaikes BVP komponenčių
prognozes

Santrauka

Šiame darbe vertinamos trumpalaikės JAV BVP komponenčių išlaidų metodu prognozės, sie-
kiant rodiklius įvertinti anksčiau, negu juos paskelbia oficialios statistikos institucijos. Tuo tikslu
formuojamos išankstinės bei 1 ir 2 ketvirčių prognozės, naudojant mėnesinius indikatorius, skel-
biamus su mažu uždelsimu. Sprendžiant didelės naudojamų duomenų dimensijos problemą darbe
vadovaujamasi retos struktūros prielaida, tariant, jog tik keletas indikatorių yra svarbūs prognozuo-
jant BVP komponentes. Kintamųjų atrankai ir prognozių vertinimui taikomas LASSO metodas,
kartu su keliomis populiariomis jo modifikacijomis. Papildomai, darbe pasiūloma LASSO mo-
difikacija, apjungianti LASSO bei pagrindinių komponenčių metodus, siekiant suteikti papildomo
prognozavimo tikslumo. Modelių prognozavimo tikslumas įvertinamas atliekant pseudo-realiuosius
eksperimentus nuo 2005 iki 2015, prognozuojant keturias BVP komponentes, rezultatai lyginami
su ARMA prognozėmis. Gauti rezultatai byloja, jog LASSO metodai geba reikšmingai pagerinti
BVP komponenčių prognozes bei atpažinti svarbiausius aiškinančiuosius kintamuosius. Pasiūlyta
LASSO modifikacija kai kuriais atvejais suteikia papildomo prognozių tikslumo.

Raktiniai žodžiai : LASSO, išankstinis prognozavimas, pagrindinės komponentės, kin-
tamųjų atranka, BVP komponentės

Sparse Structure Analysis with Applications to Short-Term Forecasting
of the GDP Components

Abstract

The aim of this thesis is to estimate short-term forecasts of the US GDP components by expen-
diture approach sooner than they are officially released by the national institutions of statistics.
For this reason, nowcasts along with 1- and 2-quarter forecasts are estimated by using available
monthly information, officially released with a considerably smaller delay. The high-dimensionality
problem of the monthly dataset used is solved by assuming sparse structures for the choice of lead-
ing indicators, capable of adequately explaining the dynamics of the GDP components. Variable
selection and the estimation of the forecasts is performed by using the LASSO method, together
with some of its popular modifications. Additionally, a modification of the LASSO is proposed,
combining the methods of LASSO and principal components, in order to further improve the fore-
casting performance. Forecast accuracy of the models is evaluated by conducting pseudo-real-time
forecasting exercises for four components of the GDP over the sample of 2005-2015, and compared
with the benchmark ARMA models. The main results suggest that LASSO is able to outper-
form ARMA models when forecasting the GDP components and to identify leading explanatory
variables. The proposed modification of the LASSO in some cases show further improvement in
forecast accuracy.

Key words : LASSO, nowcasting, principal components, variable selection, GDP com-
ponents
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Introduction

Information on the current state of the economy is crucial for various economic agents and
policy makers, since the choice of the appropriate policy stance relies on the knowledge
of the macroeconomic situation in the country. Although there’s a number of indicators,
covering many aspects of the economy available at a higher frequency, quarterly national
accounts still play an important role guiding various economic decisions. Unfortunately,
GDP and its components are officially released with a considerable delay after the reference
period – for example, in the US the first estimates of GDP are released after 1 month
after the reference period, where only the supply side of the economy is covered since
only the GDP by production approach is estimated. However, if a certain economic
institution is interested in the demand side of the economy, the publication of GDP by
expenditure approach is released with an even longer delay, which can greatly complicate
timely decision making.

On the other hand, various short-term indicators, such as business or consumer sur-
veys, the industrial production, retail or external trade indexes are released at a monthly
frequency and can be used to get an early picture of the evolution of the current economic
activity in various sectors of the economy. One way of using the available information is by
conducting a fundamental analysis, however, the information from the national accounts
data still remains desirable for most decision makers. For this reason, a number of econo-
metric tools have been developed in order to extract the main underlying signals from the
available data and to estimate the national accounts data sooner than it is estimated by
the agencies of national statistics.

Many different methods for extracting the most important signals are studied in the
literature, the most popular of which are the Factor models and various its modifications,
which are able to use all of the available information in order to extract a reliable signal.
However, lately, a lot of attention have been focused on the idea that only a small subset
of all of the available information might be enough for adequate timely estimation of the
GDP or its components – that is, the assumption of sparse structures for the choice of
explanatory covariates is made. One such example is the method of Bridge Equations,
based on a single equation or a small scale systems of equations, capable of bridging the
available high-frequency information with quarterly national accounts data. These meth-
ods are extensively used by practitioners and researchers due to its statistical simplicity
and adequate performance under a carefully selected set of explanatory variables.

In this thesis we further follow the sparse structure approach under a large amount of
various monthly economic indicators available, assuming that only a small subset of them
are significant and should be used in forecasting macroeconomic variables. Therefore, the
main problem arising is of the optimal selection of useful variables for the modelling. Bai
and Ng (2008) find that in some cases large amounts of high-frequency information can be
too much, resulting in poor predictive performance, thus raising a question of how much
information is really needed for good predictions? Recent empirical results (for example,
Bulligan et al. (2015) or Stakėnas (2012)) show that assuming a sparse structure of the
underlying data provide promising results, when the total set of available information is
refined by supervised selection before the application.

Recently a rapid growth in popularity among both the practitioners and the academics
is seen of the Least Absolute Shrinkage Selection Operator (LASSO) method, which em-

5



ploys the supervised variable selection for modelling, and shows great potential in the
literature when used for both variable selection and the generation of forecasts of eco-
nomic data. For this reason, in this thesis we study the LASSO method and some of its
attractive modifications in greater detail, namely, the Square-Root LASSO, the Adaptive
LASSO and the Relaxed LASSO. Additionally, we propose a method, combining the Re-
laxed LASSO approach with the method of principal components seeking to extract the
significant underlying information with greater accuracy, and we find evidence of further
improvement of the forecasting performance. The empirical performance of the models is
evaluated by conducting a pseudo-real-time short-run forecasting exercise of real, in chain-
linked volumes sense, US GDP components by expenditure approach, namely the Gross
Fixed Capital Formation, Private Final Consumption Expenditure, Imports and Exports
of goods and services. During the exercise we estimate forecasts of 4 different forecast
horizons: the backcast of a previous quarter, the nowcast of the coinciding quarter and 1-
and 2-quarter forecasts over the sample of 2005-2015.

The motivation for looking at the demand breakdown, but not the GDP itself, is
twofold. First, there is evidence in the literature (Dreschel and Scheufele (2013)), that
forecasting GDP by the bottom-up approach can lead to a more accurate forecasts than
when forecasting it directly. The main reason for it is that by modelling each of the
disaggregate separately, we are able to address the different underlying structures of the
subcomponents. For example, Gross Fixed Capital Formation and external trade vari-
ables are much more volatile than aggregate GDP, while Private Consumption is typically
smoother than total activity (see Artis et al. (2004)). Therefore, it is interesting to study
how do different models compare in forecasting variables, that are behaving so differently
over the business cycle. Second, it can be seen that the business cycle behaviour of the
aggregate GDP is very different from that of its subcomponents. For example, investment
tends to trough before GDP, while consumption only takes momentum when an expan-
sion is well under way, peaking only after the cycle. Therefore, forming models for the
subcomponents of GDP can not only improve the accuracy of the final aggregate GDP,
but also act as a complement to the final forecasts, providing a view on the main drivers
of the economic activity, which by itself may allow for a more accurate read on the cyclical
phase for economic agents. Additionally, forming a different model for each of the sub-
components allows for an inclusion of different sets of predictors used, thus providing a
richer story behind the specified equation.

The thesis is organized as follows: in chapter 1 we briefly review the problematic
of nowcasting and various solutions when forecasting economic data, also we present a
detailed overview of the LASSO and some of its popular modifications found in the lit-
erature. In chapter 2 we briefly describe the design of the information set used in the
pseudo-real-time exercise. In chapter 3 we describe our proposed modification of combin-
ing the LASSO with principal components, where in the chapter 4 we present the results
of pseudo-real-time exercise, during which the backcast, nowcast and 1- and 2-quarter
forecasts are estimated. The forecasting performance of the models is then compared with
the performance of ARMA models.
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Chapter 1

Literature review

1.1 Review of nowcasting
The definition of the term nowcasting, used in this thesis, can be understood as suggested
by Banbura et al. (2013), who define it as the prediction of the present, the very near
future and the very recent past. Nowcasting is relevant in macroeconomics, especially if
we are interested in timely estimates of key macroeconomic indicators, which are available
only with a significant delay. This is particularly true for those collected on a quarterly
basis, such as the GDP and its components. For example, the first official estimate of
the GDP in the US is published approximately one month after the end of the reference
quarter, while in the Euro area the corresponding publication lag is 2-3 weeks longer.

The basic idea of nowcasting is to exploit the information, published comparatively
earlier and possibly at higher frequencies than the target variable of interest in order to
obtain an early estimate before the official figure is released. Such soft information may
come in the form of various surveys and financial variables, which are usually forward
oriented and can therefore indicate expectations of the participants in various markets.
Additionally, plenty of hard information is available at a monthly frequency, such as the
personal consumption, industrial production or indicators for imports and exports. Both
types of indicators may provide an early indication of current signals in economic activity.
When the timeliness of the data is especially important, one can entail the information
from various surveys, which are usually the first monthly release of the quarter, or financial
variables, released at a very high frequency.

Additionally, nowcasting may be of great interest when recognizing the fact, that in
many cases the first releases of the GDP (i.e. its flash estimates) are themselves only pre-
liminary estimates, since at the time of release the full information is usually not available
to the agencies of national statistics, so incomplete and uncertain data is used. Therefore
those figures are subject for potential revisions, making first estimates not entirely reliable
and accurate1. Additionally, the revisions, while not that substantial, may continue for
quite some time after the first release: usually the first estimate of the GDP is measured
on an output basis only (measuring the supply side by production approach), while the
final data is adjusted according to its output-based and expenditure-based (measuring the
demand side) estimates, in addition to benchmarking and reconciliation with annual data
(Bloem et al. (2001)). Having this in mind, economic agents are facing a filtering problem
in forming their own optimal estimate, therefore it is of great value having the tools for an
alternative timely nowcast estimation by using all of the available information at a certain
time. However, Castle and Hendry (2013) points out that not all of the information avail-
able at a timely matter can project a good early nowcast2, especially during a structural

1For example, Faust et al. (2005) report that revisions to GDP announcements are quite large in all G7
countries, mainly because of reversion to the mean, which they interpret as due to removing measurement
noise.

2The authors cite a case during the financial crisis, where the models of the UK Office for National
Statistics had "broken down", resulting in even less reliable estimates than normal.
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break in the economy. Therefore it is important to develop a robust methodology, able to
both detect and adapt to such breaks.

Nowcasting essentially involves obtaining statistically efficient projections of a modelled
variable of interest on the available information set Ωv, where v denotes the time of a
particular data release (a vintage). It is worth noting that v is not related to the time index
t, when describing the models, since due to frequent and asynchronous update and release
time schedules of various indicators may result in the index v being of very high frequency
and of different intervals (for example, more than one update of the data can occur during
one single day). The information set Ωv can be composed of data at a wide range of
frequencies, from daily to annual. Also, as most variables are released asynchronously and
with different publication lags, the time of the last available observation differs from series
to series. Since in nowcasting it is useful to exploit all of the available information, this
results in a "ragged-edge" problem of the information set Ωv.

Formally, Banbura et al. (2013) define the information set as

Ωv := {ykjt,j : t = kj , 2kj , . . . , Tj(v), j = 1, 2, . . . , J},

where ykjt,j is the j-th time series from the total of J at the time moment t, observed at
the frequency of kj . Here without the loss of generality we can assume that our modelled
variables of interest ykit,i, for some values of i, are also included in the information set. Also,
the value of k here depends on the context: if both modelled and explanatory variables
are of a monthly frequency, k = 1; if the explanatory variable is of a quarterly frequency –
k = 3; daily – k = 1/22 and so on. Tj(v) is a multiple of kj , depending on the time period of
the last available observation at a certain vintage v. Due to the asynchronous nature of the
vintages and different frequencies of the data, in general Tm(v) 6= Tn(v) for some m 6= n,
which is the formal definition of the "ragged-edge" problem of the dataset.

1.2 Modelling economic data
In the literature there is no one best way to accurately model the economic indicators,
therefore it is common to distinguish them into three main modelling groups: (Castle et al.
(2013))

• derived from various economic theories;

• based on information extracted from other economic indicators or their factors;

• based on information contained in the variable of interest (also known as the mech-
anistic approach).

From the first group of methods, currently the most widely used are the Dynamic
Stochastic General Equilibrium (DSGE) models, especially favoured by various Central
Banks (see, i.e., Smets and Wouters (2002)). The equations of the model are determined
and the restrictions are set in such a way, that the behaviour of both the consumers and
the producers would fit a certain macroeconomic theory (i.e., the Real Business Cycle
(RBC) theory, based on the neoclassical Solow-Swan economic growth model; or various
modifications of the RBC, such as the modification by the New Keynesians Rotemberg
and Woodford, and others). More recently, a continuing growth in popularity can be
seen of the Global-VAR models (Dees et al. (2005), Pesaran et al. (2009)), with the help
of which it is possible to define a structural model of some economic environment (i.e.
the Euro area) and estimate the endogenous relationships not only inside one country,
but also between various different countries of the whole economic environment. Such
supplementary information can allow for a more accurate estimation of various indicators
of interest, leading to a more accurate forecasting.
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The second approach is based not so much on the dominant macroeconomic theories,
but rather on the available and attainable information. The main underlying idea is that
the growth of a certain economic indicator is likely to be a result of some particular signal
or an impulse, felt in a part of the economy (i.e. in one or more particular markets),
which, perhaps, in some markets can even be sensed at an earlier time – therefore the
goal is to estimate the signal as accurately as possible (as a latent variable) and use it in
forecasting. Recently the most popular methods of this approach are the Factor Models
(also known as the Diffusion Index models, giving the extracted factors the interpretation
of the diffusion indices from the Real Business Cycle theory), which are able to estimate
the latent signal by using the method of principal components (Stock and Watson (2002),
Stock and Watson (2009)).

Another popular method – the Bridge Equations (BE) method, in which a single
regression is formed for every modelled variable of a lower frequency (often of a quarterly
measure) against additional explanatory variables of a higher frequency (typically of a
monthly measure), aggregated to the frequency of the modelled variable (see Hahn and
Skudelny (2008), Dreschel and Scheufele (2013)). While being relatively simple, these
methods are still often used by various institutions due to their convenient features: first,
such methods maintain a good balance between the complexity of the model and the
accuracy of the resulting forecasts, since in most cases a small, appropriately chosen set
of explanatory variables can ensure a good forecast accuracy. Second, since the regression
models are usually formed using only one single equation, the resulting forecasts can be
easily decomposed according to the explanatory variables used, thus allowing for an easy
way of explaining a story behind the particular form of the resulting forecasts, which can be
of great use when communicating the results to the decision makers. Third, the convenient
linear form of the regression model allows forming a straightforward relation between the
forecast errors and the underlying indicators, thus providing a way to distinguish which
variables are under-performing and may need refinement when forecasting them in their
original frequency, or which variable may potentially be included in the regression only
due to a spurious relation. (Bulligan et al. (2015))

On the other hand, BE models present two important drawbacks: first, since the
models are usually formed by using a parsimonious set of explanatory variables, in order
to achieve accurate forecasts, the data generating process should be, in principle, sparse.
However, in reality such a fact is rarely ever known for sure, therefore it is likely that
BE models can potentially leave out parts of useful information. In addition to this, the
problem can become even more serious when the modelled variable is of a low frequency
(i.e., quarterly) and the size of the historical data is not large enough – in such case, even
if we have an appropriate set of indicators required for accurate modelling, some of the
variables just could not be included to the regression due to the large resulting modelling
errors, caused by increased inefficiency of estimating the model’s parameters under a low
number of degrees of freedom. That is, over time, with the size of the historical time
series growing, due to the estimation of the coefficients getting more and more efficient,
the structure of the model can change drastically, which may as a consequence decrease
the forecasting performance. Second, the estimation of the BE models (and the choice of a
particular set of explanatory variables used) often depends from the subjective judgement
and experience of the econometrician. (Bulligan et al. (2015))

However, the factor models are perfectly able to address both drawbacks of the BE
method: principal components can be extracted from a significantly larger set of indicators,
moreover, some blocks of information can be accurately approximated by a small number of
(orthogonal) factors, which by itself increases the efficiency of estimating the coefficients of
the model. Additionally, both the methods of extracting the common factors from the data
and the ways of performing rotations of the extracted components are largely automated
and based on specific algorithms (Giannone et al. (2008), Angelini et al. (2008)), thus
the only place where the subjectivity of the econometrician can have an active role is the
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choice of a number of principal components and the type of rotation to be used (or the
decision not to use the rotations at all). When the performance of these two methods is
compared on real data, Angelini et al. (2008) find that on average the factor models are
able to generate overall more accurate forecasts than the BE models when forecasting the
GDP of the Euro area.

On the other hand, the aforementioned shortcomings can be solved without leaving
the BE methodology. Indeed, Bulligan et al. (2015) claim that a large amount of informa-
tion can be used by applying soft-thresholding methods, i.e., the least absolute shrinkage
selection operator (LASSO), which is able to solve the high-dimensionality problem by
shrinking the coefficients of the significant explanatory variables, with conveniently set-
ting the coefficients of the insignificant variables to zero. The authors claim that recently,
with the amount of available information getting larger every day, the factor models can
miss the underlying important signal, since the factors are usually extracted "blindly".
That is, if for some modelled variable the significant latent factor is dominant only in a
small set of variables, it can easily become overshadowed by other, much stronger and
more expressed signals from larger sets of indicators (the problem is also known as the
"too much information" problem). For this reason, it is suggested in the literature to
preselect only a subset of the whole information by using the LASSO procedure (Bai and
Ng (2008)). Since LASSO takes into account the information of the modelled variable,
the explanatory variables selected by LASSO as significant are more likely to include the
true leading signals. On the other hand, De Mol et al. (2006) show in their research that
in cases when the data is characterised by strong multicollinearity (which is common for
macroeconomic data), when the dimension of the data is growing over time, the forecasts
of the factor models are seen to be increasingly more correlated with the forecasts of the
LASSO model. This conclusion suggests that in such cases the performance of the BE
models might be on par with the performance of factor models, as was seen in the cited
paper. Moreover, under a high-dimensional dataset, since the factors, formed by the fac-
tor models, are basically linear combinations of all of the variables from the dataset, it is
likely that some parts of the extracted signal will be consisting of noise, while the LASSO
method tends to shrink-down or even restrict to zero the coefficients of the noise variables
(asymptotically, under specific conditions, see appendix C), which can possibly lead to a
more clearly extracted signal.

The third approach of modelling macroeconomic data is by only using the underlying
information of the modelled variable. Some of the most widely used methods of this type
are the exponential moving weighted average, the Holt-Winters method, ARIMA time
series methods and many others (Makridakis and Hibon (2000)), which, while appear not
to use a lot of the available information, can in some cases generate the most accurate
forecasts. For example, Stock and Watson (2010), when forecasting inflation, find that
the use of ordinary time series methods (such as the random walk model) may result in
more accurate forecasts than the forecasts, generated by models with additional exogenous
information included. Similar results are achieved by Castle et al. (2013), where the
performance of factor models and time series models is compared by their accuracy in
forecasting the US GDP – in some cases the performance of time series methods is just
as good as of the factor models, therefore they are a suitable benchmark to be considered
when evaluating the forecast accuracy of various models.

Overall, the factor models have been the main workhorse for the economists for a long
time when forecasting macroeconomic indicators, however, it is clear that this method
is not perfect and there is room for refinement. In a way, we can argue that since this
method is based on the extraction of principal components, which by itself is "blind" and
unsupervised, by giving it some additional control and setting it to the right direction we
could gain some additional accuracy. It seems that the LASSO method, recently growing
in popularity among both the practitioners and the academics, can provide the desired
additional accuracy, especially when dealing with high-dimensional problems.
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1.3 Review of the LASSO methods
Assume that n is the number of observations of the modelled variable Yi, here i = 1, . . . , n,
p is the total number of explanatory variablesXj used, j = 1, . . . , p, andX = (X1, . . . , Xp).
Additionally, we use the following notation for an `q norm, q ≥ 1, throughout the thesis:
assume that v ∈ Rd for some d ∈ N+, then ||v||q := (

∑d
j=1 |vj |q)1/q denotes the `q norm.

The LASSO method (Tibshirani (1996)) is one of the possible solutions when dealing
with p > n problem, where the usual ordinary least squares (OLS) methods are infea-
sible due to the large amount of parameters needed to be estimated. Together with it
(as alternatives to the Forward Stepwise, the Backward Stepwise or even the Best Sub-
set Selection methods) there are several other similar methods proposed in the literature,
capable of dealing with high-dimensionality problem: the Nonnegative Garotte (Breiman
(1995), Yuan and Lin (2007)), SCAD (Fan and Li (2001)), Elastic Net (Zou and Hastie
(2005)), Dantzig Selector (Candes and Tao (2007)), all of which, by choosing appropri-
ate hyperparameters, are able to restrict the insignificant parameters of the model to 0.
However, out of all of these methods the LASSO has attracted a lot of attention in the
literature due to its convenient and widely studied by the academics strictly convex op-
timization problem, the solution path of which can be effectively estimated by using the
LARS algorithm (Efron et al. (2004)).

LASSO is a penalized least squares algorithm with the penalty of an `1 norm, which
solves the (1.1) problem:

β̂LASSO = arg min
β

n∑
i=1

(Yi −Xiβ)2 + λ||β||1, (1.1)

where the hyperparameter λ ∈ (0,∞) is fixed. With the value of λ growing, the estimated
coefficients are shrunken towards zero, where with a sufficiently large value some of them
are estimated as 0 due to the properties of the `1 norm. This feature, allowing to restrict
the insignificant parameters of the model to zero, is very convenient, since together with the
estimation of the coefficients a selection of the significant features is performed. The whole
solution path of the model can be solved by using the LARS algorithm. In a sense, we can
see the LASSO as a stepwise regression, since with a large enough value of λ, imposing a
sufficiently strong penalty, no variable is included in the model as significant, however, by
decreasing it by certain amounts we start to include the significant variables one by one
to the modelled regression. That is, in relation to the hyperparameter λ, in a way this
procedure can be interpreted as a stepwise regression, with an additional shrinkage of the
estimated values of the model’s parameters. Also, due to the aforementioned shrinkage
of the estimated coefficients performed it is often possible to increase the accuracy of the
forecasts, since the shrunken coefficients are able to reduce the variance of the forecasts,
while increasing the bias (bias-variance trade-off).

A lot of attention in the literature is given particularly to the variable selection aspect
of the LASSO. Zhao and Yu (2006) and Zou (2006) proposed an almost necessary and suf-
ficient condition – the Irrepresentable Condition – which ensures asymptotically consistent
variable selection of the LASSO (see theorem C.2). The authors have shown that under
cases when a part of the insignificant variables are strongly correlated with the significant
ones, the LASSO might not be able to consistently distinguish them apart, regardless of
neither the chosen value of the hyperparameter λ nor the sample size n. Additionally, they
prove that the consistency of the variable selection by the LASSO requires that the value
of λ should grow at a faster rate than of

√
n. However, Knight and Fu (2000) proved that

the LASSO estimator β̂n is
√
n-consistent only under given λ = λn = O(

√
n) and under

some additional conditions, formed in the cited paper. Therefore, we cannot fully expect
both consistent variable selection and parameter estimation at the same time.

Let A = {j : βj 6= 0} and assume that |A| = p0 < p, that is, the true data generating
process is using a certain subset of our dataset, and assume that β̂(δ) is a parameter
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estimator of a certain procedure δ. Then, by the definition, formed by Fan and Li (2001),
the procedure δ is said to have Oracle Properties if for the estimator β̂(δ) the following
holds (asymptotically):

• {j : β̂j(δ) 6= 0} = A, that is, the true subset of variables is selected as significant;

•
√
n
(
β̂(δ)A − βA

) D→ N (0,Σ), where Σ is a covariance matrix of the true subset of
significant variables, used by the data generating process.

The authors claim that every adequate procedure, along with various other optimality
conditions, should also have the Oracle Properties. In this case we can note that the
LASSO does not have the Oracle Properties.

Additionally, Leng et al. (2006) have shown that in cases where the hyperparameter λ
is chosen by minimizing the forecast errors of the resulting model, such variable selection
performed is not consistent. That is, the final selected variables by the procedure are
not necessarily from the true subset of variables, used by the data generating process.
In other words, the probability to select the true underlying model is strictly restricted
by a constant C < 1 even in cases when the used data matrix X is orthonormal under
any sample size n. The intuition behind this result is simple – since the hyperparameter
λ is directly related to the amount of shrinkage applied to the estimated coefficients, in
order to minimize the resulting forecast errors the value of λ will be chosen such, that
the amount of shrinkage applied on the mostly significant variables will be as small as the
out-of-sample forecast errors allow. Therefore, the need to apply the smaller shrinkage
than the one that would otherwise be chosen (note that λ = 0 would result in a simple
OLS solution without any penalties) suggests choosing a smaller than optimal value of λ,
thus resulting in a possible inclusion of noise variables in the final set of variables selected
by the procedure.

Secondly, Tibshirani (2012) notes that despite the fact that LASSO is highly favoured
among the practitioners in the cases of p > n, actually the optimization problem of the
LASSO in such cases is not strictly convex, which results in the fact that there is no
one unique solution to the problem except for the cases when the explanatory variables
used in the modelling are generated from a continuous distribution function (in that case
there exists a unique solution with probability equal to 1). Therefore, in this thesis, since
we are working with continuous macroeconomic data, we can expect unique solutions
even under the p > n case. Additionally, due to the uniqueness of the solution of the
optimization problem we should also expect adequate performance when selecting the
significant explanatory variables due to the uniqueness of the set supp(β̂).

In the literature there are many variations and modifications of the LASSO, all of which
are trying to overcome various shortcomings of the method. One of the most popular is
the Adaptive LASSO, allowing to define weights for each individual explanatory variable
used in the model:

β̂adaLASSO = arg min
β

n∑
i=1

(Yi −Xiβ)2 + λ
p∑
j=1

wj |βj |, (1.2)

where w = (w1, . . . , wp) is a vector of fixed weights. In the paper of Zou (2006) it is proven
that when the weight vector w is data-driven and appropriately chosen, the Adaptive
LASSO is able to achieve the Oracle Properties. In the literature the weights are suggested
to be chosen as ŵ := 1/|β̂∗|γ , γ > 0, where β̂∗ is

√
n-consistent estimator of β3. It is usually

suggested to choose β̂ := β̂OLS , when p < n, however, when p > n and the OLS estimate
is infeasible or the data is strongly multicollinear, it is suggested to replace the β̂OLS
with β̂ridge, that is, with the estimated coefficients by the Ridge regression, defined by

3Though the authors note that this restriction can be weakened: let {bn} : bn → ∞ and bn(β̂ − β) =
Op(1). Then the oracle properties still hold if λn = o(

√
n) and bγnλn/

√
n→∞.
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the (1.1) problem just with additionally replacing the `1 norm of the imposed penalty
with the norm of `2. Additionally, the β̂uni estimates are suggested, which is a vector of
coefficients, obtained by forming univariate OLS regressions by modelling Yi against each
of the explanatory variable Xi,j , j = 1, . . . , p, separately.

The authors emphasise that in order to ensure that the Oracle Properties hold the
formed weight vector ŵ should be data-driven. With the sample size increasing, the weights
for the insignificant variables should become inflated (to infinity), while the weights of
the significant variables should converge to some finite non-zero constant. Therefore, this
method allows for an (asymptotically) unbiased simultaneous estimation of large coefficient
and small threshold estimates.

This model solves a convex optimization problem, therefore it does not have more than
one local minimum point, and the global minimizer can be efficiently found by applying
the usual efficient algorithms, used for solving the LASSO problem.

Zou (2006) proves that the Adaptive LASSO has the Oracle Properties under a fixed
p, however, originally this method has been defined and proved under the case of p < n
by using the OLS method for estimating the weights wj . Even though the use of Ridge
regression is also allowed, it should be noted that the estimated coefficients of the Ridge
regression are also dependent on the choice of its penalty parameter, which should also be
appropriately chosen. Therefore an additional uncertainty is imposed, bringing in some
possible instabilities by requiring two different hyperparameters to be estimated in order
to solve the Adaptive LASSO optimization problem. Moreover, Huang et al. (2008) shows
that the Oracle Properties can also hold when pn →∞, n→∞ and stresses the importance
of appropriate choice of the weight vector. The authors claim that β̂uni allows to retain
the Oracle Properties only in cases when the insignificant variables are weakly correlated
with other insignificant variables, which is a rather strong assumption about the dataset,
especially in cases when the lagged values of both the modelled and the explanatory
variables are included. For this reason it is meaningful to research other possible choices
for the optimal weights, in order to highlight the advantages of the Adaptive LASSO under
the case of p > n.

Additionally, Zou (2006) demonstrates that the forecasting accuracy of the Adaptive
LASSO can be much worse than the accuracy of the ordinary LASSO in the case when
the weights are estimated by the OLS inefficiently. Especially strongly felt is the effect of
the multicollinearity, since in that case the estimates of the OLS are highly unstable.

Concerning the optimal weights, Medeiros and Mendes (2015) claim that in the case
of p > n it is sufficient that the weights are chosen by a zero-consistent estimator. That
is, it is required that such estimator would generate sufficiently small coefficients for the
insignificant variables, n→∞, and that they would converge to a non-zero finite constants
for the significant variables. Assume that w = (w1, . . . , wp) is a weight vector and n→∞,
then in general the requirements for choosing the optimal weights are:

• there exists ξ : 0 < ξ < 1 and a sufficiently large, positive constant cw, for which

min
j=s+1,...,p

n−ξ/2wj > cw

√
s

ψ
,

with probability, converging to 1 as n → ∞; where s is the number of significant,
non-zero parameters, and ψ is the according eigenvalue of the covariance matrix. In
other words, it is required that weights of the insignificant variables should diverge
at a certain rate;

• there exists wmax < nξ/2, such that
∑s
j=1w

2
j < swmax with probability, converging

to 1. In other words, the weights of the significant variables are restricted from above
with a non-decreasing sequence {wmax}.

And these requirements, according to the authors, under certain additional conditions,
should be satisfied by the ordinary LASSO or the Elastic Net estimators, therefore they
can also be used for the selection of optimal weights.
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Indeed, by using the aforementioned results, Liu (2014) proposed using weights
in the form of ŵj = |β̂j,OLS |−γ1 · A−γ2

j , where Aj =
∑h
k=j |ρ̂kk|γ0 , here ρ̂kk =

Cor(yi, yi+k | yi+1, . . . , yi+k−1), and γ0, γ1, γ2 > 0, accordingly, are hyperparameters, cho-
sen by cross-validation. The main idea proposed here is that under the assumption that
part of the macroeconomic variables can be well approximated by AR(h) processes, h > 0,
the estimated autocorrelation of such variables should also have an effect to their estimated
weights, where h is the order of the autocorrelation, estimated by the usual methods em-
ployed in the time series analysis (i.e., by minimizing the estimated value of the Akaike,
Schwarz or similar information criterions).

Additionally, Konzen and Ziegelmann (2016) propose modifying the weights according
to the number of time periods the particular variable is lagged: the authors claim that
any variable used in the modelling should be of a higher significance (hence with a smaller
estimated weight) if it is observed without lag or with only a small number of lags, since
then the information brought to the regression would be more recent and more useful for
forecasting. The authors suggest modifying the weights to ŵj = 1/(|β̂j |α(1−α)l)γ , where
α ∈ [0, 1], γ > 0 – hyperparameters, chosen by cross-validation, and l corresponds to the
number of lags used of the j-th variable.

Moreover, Medeiros and Mendes (2015) showed that the Adaptive LASSO can be
widely applied when dealing with time series data. The authors allow for both the resid-
uals and the regressors to be non-Gaussian and conditionally heteroscedastic, which is a
property, often found when dealing with financial and macroeconomic data. They also al-
low the number of variables (both the candidates to the final model and the final selected
ones by the procedure) to grow together with the size of the sample at a polynomial rate.
Under these conditions it is shown that the variable selection by the Adaptive LASSO is
consistent and that the Oracle Properties hold. The geometric growth rate of the number
of variables is permitted under certain restrictions imposed on the residuals of the model,
however, in reality, when working with economic variables, such a fast growth rate of the
number of variables available is almost never observed. Even if we have a fixed set of
variables, by additionally including lags of all of these variables into our design matrix X,
the resulting growth rate of the dimension of the full dataset is only linear with respect
to the size of the sample, but not polynomial. This suggests a possibility of additionally
including non-linearities through interactions between the variables of a certain order or
their power transformations. Also, promising results were generated in the simulation
studies by the cited authors when studying the forecasting performance of models with
heavy-tailed residuals with GARCH structure, by using strongly correlated regressors as
the explanatory variables.

Additionally, Liu (2014) observes that the procedure of the Adaptive LASSO can be
effectively performed by employing the LARS algorithm: let W = diag(ŵ1, . . . , ŵp), then
the optimization problem of the Adaptive LASSO (1.2) can be rewritten as:

β̂adaLASSO = arg min
β

(Y −XW−1Wβ)′(Y −XW−1Wβ) + λ||Wβ||1

= arg min
β̃

(Y − X̃β̃)′(Y − X̃β̃) + λ||β̃||1, (1.3)

where X̃ = XW−1, and β̃ = Wβ (that is, β̃j = ŵjβj ,∀j), therefore all of these parameters
can be effectively estimated by using the LARS algorithm just as the ordinary LASSO
method, see Algorithm 1.

Another popular modification of the LASSO, dealing with some of its shortcomings,
is the Relaxed LASSO (Meinshausen (2007)), the main idea of which is to separate the
selection of the significant variables and the estimation of the model’s coefficients by
introducing an additional hyperparameter φ. Let Mλ := {1 ≤ k ≤ p : β̂λk 6= 0} denote
the set of variables, preselected by the LASSO method under a certain fixed value of λ.
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Algorithm 1: LARS algorithm for the Adaptive LASSO
1. Define X̃ = XW−1, that is, X̃j = Xj/ŵj , j = 1, . . . , p.
2. Use LARS algorithm to estimate the β̃(λ) = βLASSO(λ, Y, X̃)
3. Obtain the final coefficient vector β̂adaLASSO = W−1β̃(λ).

Then the Relaxed LASSO is estimated as:

β̂reLASSO = arg min
β

n−1
n∑
i=1

(
Yi −Xi{β · 1Mλ

}
)2 + φλ||β||1, (1.4)

where λ ∈ [0,∞) and φ ∈ (0, 1], with 1Mλ
being the indicator function, returning the

value of 1 for those variables, that were selected by the LASSO as significant under a
fixed λ. That is, for a fixed λ, the following holds for the set of significant variables
Mλ ⊂ {1, . . . , p}:

{β · 1Mλ
}k =

{
0 k /∈Mλ,
βk k ∈Mλ,

(1.5)

for every k ∈ {1, . . . , p}. In this way the selection of significant variables is performed by
using the ordinary LASSO and estimating only the hyperparameter λ, while the appropri-
ate estimation of the model’s parameters and the amount of shrinkage applied is refined
by using a second hyperparameter φ. When φ = 1, the estimator coincides with the case
of the ordinary LASSO, that is, no correction of the estimated coefficients is performed.

Such proposed methodology is especially useful when in the information set used in
the modelling, among all of the available variables, there exist a few, which are extremely
important and capable of bringing a lot of valuable explanatory information for the mod-
elled variable. If the hyperparameter λ is chosen in order to minimize the out-of-sample
forecast errors of the model, it will usually be chosen such, that the shrinkage applied to
those strongly significant variables would be as small as the out-of-sample performance
allows. Since a small amount of shrinkage applied requires a relatively small value of
penalty, hence a small value of λ, this allows for an inclusion of additional, insignificant,
noise variables to the model. However, this problem is solved by the Relaxed LASSO
through the use of the hyperparameter φ: first, the value of λ is chosen such that there
would be no insignificant noise variables included together with the significant ones in the
model. However, in this case, due to the large resulting value of λ chosen, the amount of
shrinkage applied will possibly be too large. Second, by the use of the hyperparameter
φ ∈ (0, 1] the amount of shrinkage applied to the preselected variables is corrected. In the
limiting case of φ→ 0, the coefficients of the modelMλ are estimated using the OLS.

The authors prove that due to such separation of the variable selection, the consistent
estimates of the model’s coefficients are estimated with the usual

√
n rate of convergence,

independently from the growth rate of the available information set.
Another recent modification of the LASSO is the Square-Root LASSO (Belloni et al.

(2011)). The authors propose modifying the original formulation of the LASSO problem
(1.1) by taking the square-root of the residual sum of squares term, as defined by the
equation (1.6):

β̂sqrtLASSO = arg min
β

√√√√ 1
n

n∑
i=1

(Yi −Xiβ)2 + λ||β||1. (1.6)

The main motivation for such modification is the observation by Bickel et al. (2009), who
show that under certain conditions the optimal value of λ for the LASSO problem has the
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form of λ = σ ·2
√

2 log(p)/n, where σ is the unknown standard deviation of the error term
of the true model. Here the true model is assumed as Yi = Xiβ0 + σεi, where β0 ∈ Rp is
the true parameter value, σ > 0, regressors Xi are p−dimensional, allowing for the case
of p > n, with i.i.d noise εi, i = 1, . . . , n from a certain distribution (mainly the case of
N (0, 1) is analysed, however, the authors argue that asymptotically their proofs will be
valid without imposing normality due to the moderate deviation theory). Additionally, β0
here is assumed to be sparse, that is, supp(β0) has s < n elements.

In order to estimate the optimal value of λ without knowing the true value of σ, two
ways are suggested in the literature: first, to estimate σ by iterating from a conservative
starting value (usually the standard deviation around the sample mean), however, it is
found that the accurate estimation of σ when p > n may be as difficult as the original
problem of variable selection. Second, by employing the cross-validation, which is often
used in practice and produces good results. On the other hand, the authors show that for
the Square-Root LASSO the optimal penalty level is independent of σ, that is, it reduces
to λ =

√
2 log(p)/n, which makes it having no user-specified parameters and therefore

tuning free. As in the case for the ordinary LASSO, the minimization problem (1.6) is
globally convex, allowing for an easy polynomial-time computation.

Additionally, another modification of the LASSO is the Random LASSO (Wang et al.
(2011)). The authors highlight the following serious shortcoming of the LASSO method:
if among all of the possible explanatory variables there are some strongly intercorrelated,
the LASSO will only choose one or a few as the most significant, while the other will be
shrunken down to zero, even though that might not be the most efficient solution, since
potentially useful explanatory information may get omitted (though, the authors note that
such a fact is mostly important when working with biological data). Additionally, in the
case of p > n, the final solution of the LASSO will not include more than n estimated
non-zero parameters, while in reality we are never sure that the (n + 1)’st variable was
actually insignificant. That is, asymptotically, when n→∞, the method will find the true
subset of significant variables, while in reality, when working with samples of finite (and
often not very large) sizes, in many cases the final resulting forecasts may be relatively
worse only because of the small number of selected variables. Even though when working
with macroeconomic data such a fact is not necessarily a big problem, the significance of
this problem might increase a lot when, for example, working with economic data from
countries, where long set of historical data is unavailable.

In order to solve the aforementioned problems the authors propose a Random LASSO
algorithm, highlighting the parallel with the method of Random Forests: by using the
bootstrap method, for every iteration b1 ∈ {1, . . . , B} randomly select q1 ≤ p variables
from the full dataset and estimate them by using the (Adaptive) LASSO. The coefficients
of insignificant variables (and of all those, that were not selected by the random draw) are
set as zero. Then the importance of all of the coefficients are measured as Ij : ∀j, Ij =
|B−1∑B

b1=1 β̂
(b1)
j |. The idea here is that the truly insignificant variables, even if at some

iterations selected by the LASSO as significant, will have a coefficient equal to or very close
to zero, during some iterations the sign of the coefficient might differ, when compared with
other iterations. Therefore, the mean value of all the coefficients for such variables should
be very close to zero. On the other hand, for truly significant variables the estimated
coefficients should on average be relatively large and consistent.

Additionally, a second bootstrap is performed, where with each new iteration b2 ∈
{1, . . . , B} a random draw is made to select q2 ≤ p variables, where the probability of
drawing the j-th variable is defined by the value of Ij , and the LASSO coefficients are
re-estimated a second time. The final result is β̂j = B−1∑B

b2=1 β̂
(b2)
j .

It can be noted that this method is quite calculation-intensive, since the recommended
number of iterations performed is B ≈ 1000 or larger. Additionally, in order to obtain
optimal results one should use cross-validation to estimate the hyperparameters q1, q2 and
λ. During the simulation studies the authors found that the selection of highly correlated
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variables is performed much more effectively, also, the coefficients of such variables are
estimated more efficiently than when using the Elastic Net method.

In this thesis we decided to use the LASSO, Square-Root LASSO, Relaxed LASSO and
Adaptive LASSO methods due to their attractive properties, together with our proposed
combination of LASSO and principal components, which is described in more detail in
section 3.1. In all of the cases, except for the Square-Root LASSO, which has an optimal
theoretical value of λ, the hyperparameters have been selected by cross-validation. For
the Adaptive LASSO the weights used were formed using the estimates β̂ridge with γ = 1,
chosen as classic in the literature. Even though, as we discussed, the weights formed by
using the coefficients from LASSO or Elastic Net are also a decent choice, we did not use
them due to two main reasons: first, in the case of p > n the LASSO will choose non-zero
coefficients at most for n variables, thus the estimation of the Adaptive LASSO would
somewhat reduce to the Relaxed LASSO, which would also select the same variables in
the first step of the estimation. Second, if we are not certain that the LASSO is able to
(asymptotically) consistently select the true significant variables, restricting the coefficients
of possibly good explanatory variables to zero before using them in Adaptive LASSO seems
too restrictive. As we know, with proper weights the Adaptive LASSO has the Oracle
Property, therefore we don’t want the weights to be too restrictive. The Elastic Net seems
as a better choice for this, since it allows for the restriction of far less coefficients to
zero, however the main shortcoming is that it requires the cross-validation of two separate
hyperparameters, which might lead to relatively volatile results during the pseudo-real-
time experiments conducted: if, for example, the cross-validated hyperparameters for one
round of the experiment are selected such, that the solution coincides with the one of
LASSO, choosing at most n weights for the Adaptive LASSO, and on the next round
the selection coincides with the one of the Ridge Regression, choosing weights for all p
variables, the final results for the Adaptive LASSO may be significantly different both
in variable selection and in forecast accuracy. On the other hand, the estimates from
Ridge regression seem to be adequate enough: first, only one hyperparameter is required
for the estimation, second, the resulting weights should be reasonably similar throughout
the whole forecasting exercise. Though for future work it would be interesting to focus
on exploring all of the mentioned weights (and to look for other possible choices) for the
Adaptive LASSO in greater detail.
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Chapter 2

Preliminaries

2.1 Data preparation
In this thesis the four main components of the US GDP by the expenditure approach
are modelled: Gross Fixed Capital Formation, Private Final Consumption Expenditure,
Imports and Exports of goods and services, all of which are seasonally adjusted and
measured in chain linked volumes on the quarterly basis.

The monthly data used as explanatory variables are various indicators from the
databases of FRED (St. Louis Bank of Federal Reserves) and IMF (International Mone-
tary Fund) from 1980 to 2015, with up to 2000 various macroeconomic time series used
in total. Each time series used in the modelling were either seasonally adjusted by the
source or by using the X13-ARIMA-SEATS procedure for seasonal adjustment.

Additionally, in order to avoid the problem of spurious regression, every time series
were stationarized: first, by performing the Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
test the stationarity of the time series was estimated (with 5% significance); second, the
test for the unit roots was performed by using the Augmented Dickey-Fuller (ADF) test,
first by estimating and removing the deterministic part of the series (where the signifi-
cance of it was estimated using the t-statistics, obtained from conducting OLS regression,
with 5% significance level), if such was observed; additionally, since the test statistic of
the ADF test is based on the estimated value of the t−statistics from an arbitrary regres-
sion model formed, its resulting residuals were also inspected for the possible presence of
heteroscedasticity. The main idea here is that if the resulting residuals are significantly
heteroscedastic (where the significance was tested by using the Breusch-Pagan (BP) test
with 5% significance level), the estimated value of the t-statistics might be biased, there-
fore in such cases additionally a nonparametric Philips-Perron (PP) unit-root test was
performed, which is able to correct the possibly incorrect results of the ADF test by boot-
strapping the critical values of the test statistic. In every case the number of lags used
in the arbitrary regressions were chosen by minimizing the Akaike information criterion.
The time series was found as statistically significantly non-stationary if either KPSS or
unit-root tests suggested non-stationarity with 5% significance. In such case the series
were transformed by differencing, after which the aforementioned procedure was repeated
until the final series was found as significantly stationary4.

Additionally, since most of the variables used were mainly economic indicators, which
are usually described by multiplicative processes, it is useful to apply logarithmic trans-
formation for some of them. For such series often a large deviation is observed in the top
levels of the amplitude, which often results in severe non-normality of the data. However,
by applying the logarithmic transformation the underlying multiplicative processes are
transformed into additive, thus removing most of the explosive effects and to some level
restricting its variance. Whether such a transformation is actually useful was decided by
using the Box Cox transformation:

4Though it can be noted that no series required more than 2 differences taken.
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x(λ) = xλ − 1
λ

,

where x is the time series tested, λ ∈ R, and x(λ) = log(x), if λ = 0, since such case is un-
defined in the previous definition. Here the optimal value of λ is estimated by maximizing
the profile log-likelihood function f(x, λ):

f(x, λ) = −n2 log
[
n∑
i=1

(xi(λ)− x̄(λ))2

n

]
+ (λ− 1)

n∑
i=1

log(xi),

where x̄(λ) is the mean value of the transformed series. (Box and Cox (1964))
When studying whether a logarithmic transformation is necessary for a particular

series, it is useful optimizing the likelihood function when possible values of λ are under
the domain of λ ∈ [0, 1], thus narrowing the possible solution set. If the optimal estimated
value of λ̂ is reasonably close5 to 1 – the transformation is not necessary, however, if it
is close to 0 – the series are transformed by taking logarithms (transformations of xq,
q ∈ (0, 1) were not used in this thesis since the main goal is not to normalize the data, but
to extract and distinguish the multiplicative effects if such were present, instead of just
shrinking them a bit, which would be performed in the case of transforming the data by
the power of q < 1; additionally, log-transformation is useful since it does not heavily alter
the interpretation of the data, because in certain cases the differences of logarithmized
data are very close to the percentage growth of the original data).

Also, some of the available data has relatively large spikes at certain time periods, with
a comparably small volatility during the other remaining time periods, therefore such a
variable may be included to the final model not as an explanatory variable, but rather as
a dummy variable, helping the model fitting some of the sudden shocks in the data, but
providing no additional information to the forecasts6. Therefore, an additional heuristic
rule have been applied to filter such variables from the final dataset: the variable was not
included in the final dataset if the ratio of maximum to average value, when adjusted by
standard deviation, was larger than 10. It was found that the inclusion of such variables to
the final dataset resulted in much worse forecasting accuracy, especially during the crisis
periods, when they were included in the models as dummy variables to explain the sudden
shock.

Additionally, as we want to compare the forecasting performances of different mod-
els in a realistic setting, during the pseudo-real-time experiments, the results of which
are presented in the chapter 4, we reconstructed the pseudo-real-time dataset for every
iteration of the exercise by adjusting the amount of available data by the appropriate
release lag for each monthly indicator. During a full quarter at least three updates on
the dataset are possible for every different month of the quarter, however, in this thesis
the results presented are of the last month of the full quarter, since in that case for some
indicators with small enough publication lags there were some of the monthly information
available for the coinciding quarter, resulting in the estimation of more accurate nowcasts.
It is of interest to inspect the nowcasting performance of the models with some coinciding
monthly information available, since in the other case we would just be comparing the
predictive performance of the ARIMA models, used for the individual predictions of the
selected monthly indicators, which is already inspected using 1- and 2-quarter forecasts.
Also, since for every monthly indicator the day of a new release within a particular month
differs, the release lags were calculated as of at the end of the month.

The monthly variables used in the main dataset were aggregated to quarterly by av-
eraging, with additionally up to four quarterly lags included, and the ragged edges of the
dataset have been filled by using the ARIMA time series methods.

5The transformation in this thesis was applied if the estimated value of λ was smaller than 0.8.
6It’s even worse if the sudden shock is relatively recent, since it may strongly affect the individual

forecasts of such a series.
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2.2 Comparison of the forecast accuracy
In order to compare the forecasting performance of the models, we calculate the Root
Mean Squared Error (RMSE) of their forecasts. Additionally, in order to study whether
the additional uncertainty, brought with an increased amount of information included in
the projection, has a positive effect, we compare the performance of LASSO models with
the best ARMA model, chosen by minimizing the Akaike information criterion. The latter
is able to minimize the mentioned uncertainty, since it employs the information within the
modelled variable only. Therefore, for every model m we calculate the Relative RMSE in
relation to the RMSE, obtained by the ARMA model (for convenience denoted as AR):

Relative RMSE(m) =

√√√√ T2∑
t=T1

(
yj,t − ŷm

j,t

)2

√√√√ T2∑
t=T1

(
yj,t − ŷAR

j,t

)2
=

√√√√ T2∑
t=T1

(
ε̂m
j,t

)2

√√√√ T2∑
t=T1

(
ε̂AR
j,t

)2
, (2.1)

where ŷm
j,t is the forecast by model m for j-th modelled variable at a time moment t,

where the forecast error, accordingly, is ε̂m
j,t = yj,t − ŷm

j,t. Alternatively, m = AR, when
the model of interest is ARMA. T1 denotes the first time moment of the forecasts during
the pseudo-real-time forecasting exercise, while T2 denotes the last one. In every case,
when the forecasts of a certain model m are more accurate than the ones by ARMA
model, the resulting Relative RMSE(m) is smaller than one.

Additionally, in order to estimate the significance of the possible differences in forecast
accuracy a formal procedure is employed in this thesis. One commonly used method for
such purposes is the Diebold-Mariano (DM) test, estimating whether the forecast accuracy
of two models is statistically significantly equal. The null hypothesis of the test is:

H0 : E
[
L(yj,t − ŷm1

j,t )− L(yj,t − ŷm2
j,t )

]
= 0, (2.2)

where L is a chosen loss function (i.e., squared loss function: L(x) := x2, ∀x) and m1
and m2 are some methods in comparison. In other words, it is tested whether during
a certain time period, the forecasts, generated by two methods in comparison, are on
average statistically significantly equal. If the null hypothesis is rejected, the test suggests
that the model with smaller forecast error is significantly more accurate during that time
period. It is convenient, that for this test a large class of various loss functions L(·) is
suitable, also that the autocorrelations of the errors are tolerable (Diebold (2015)). In
this thesis we used this test under a squared-loss function, thus giving larger penalties
for bigger deviations. It is claimed in the cited literature, that instead of assumptions,
made for the models of interest, this test forms assumptions on only the forecast errors,
generated by the models. This means that we are allowed to compare possibly overfitted
models without a great loss in the power of the test.

Assume that the difference between the forecast errors of some two models at a time
period t under a certain loss function L(·) is denoted by d1,2,t = L(ε̂m1

t )− L(ε̂m2
t ). Then

the assumptions7 of the DM test are:
E(d1,2,t) = µ, ∀t,
Cov(d1,2,t, d1,2,t−τ ) = γ(τ), ∀t,
0 < Var(d1,2,t) = σ2 <∞, ∀t,

with the test statistic DM12 defined as:
7These assumptions are sufficient, but may not be strictly necessary, as Diebold (2015) claims that

less-restrictive types of mixing conditions may presumably be invoked.
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DM12 =
(T1 − T2)−1∑T2

t=T1
d1,2,t

σ̂d

D→ N (0, 1),

where σ̂d is the consistent estimate of the standard error (i.e. a HAC estimate) for the
sum

∑T2
t=T1

d1,2,t. (Diebold (2015))
Additionally, often used in the literature is the Giacomini-White (GW) (Giacomini and

White (2006)) test. The authors of the test claim that when testing the unconditional null
hypothesis of equal forecasting accuracy (2.2), basically the comparison of the specification
of the models is made. That is, often a more correctly specified model will be suggested
as the better one. They claim that by testing such hypothesis it is evaluated, whether the
models of interest are better in describing the data generating process, but not necessarily
whether they will continue to forecast with similar accuracy in the future. For this reason
they introduce the conditional null hypothesis for equal forecasting accuracy, where the
upcoming forecast is dependent on the currently available set of information Ft. Therefore,
the conditional null hypothesis is defined as:

H0 : E
[
L(yj,t+τ − ŷm1

j,t+τ )− L(yj,t+τ − ŷm2
j,t+τ ) | Ft

]
= 0 a. s. ∀t, (2.3)

where τ > 0 is the forecast horizon.
The main difference between the latter and the unconditional null hypothesis is that the

properties of the generated forecasts are evaluated according to the information, available
at the time of the forecast, but not to the asymptotic properties of the models. The authors
claim that the null hypothesis can be interpreted as a test, whether the two models in
comparison will continue to forecast with the same forecasting accuracy, according to all
of the currently available information. The main shortcoming of this method is that the
test statistics of the proposed test converges to the defined limiting distributions only
when a rolling window forecasting frame is used. For this reason, in this thesis we use this
test only when evaluating the forecasts for the rolling window pseudo-real-time forecasting
exercise.

In the general case the test statistic of the GW test is defined by the equation (2.4).

Tn,m,τ (h) = n

(
n−1

T−τ∑
t=m

htd1,2,t+τ

)′
Ω̂−1
n

(
n−1

T−τ∑
t=m

htd1,2,t+τ

)
D∼ χ2

q , (2.4)

where ht – Ft-measurable test function, Ω̂n – the estimate of the covariance matrix for the
forecast errors (i.e. using a Newey-West estimator), m – the estimation window length, n
– the number of forecasts compared. A more detailed definition of the test is provided in
Giacomini and White (2006).
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Chapter 3

Estimation of the model

3.1 Principal Components and LASSO
In this thesis we propose a combination of the aforementioned LASSO modifications to-
gether with principal components in order to preserve specific strengths and to minimize
the possible shortcomings for each of the methods combined. First, we follow the argu-
ments of Bai and Ng (2008), who show that the use of targeted predictors help achieving
significantly better forecasts of macroeconomic data using factor models. Instead of the
usual approach to factor model forecasting, where the principal components are extracted
from the full data set, the authors suggest using only a subset of it, selected by a chosen
hard/soft thresholding algorithm. In this way, an unsupervised algorithm becomes su-
pervised one, because the choice of the targeted predictors now depends on the predicted
variable. Therefore, following these arguments we propose using LASSO for subset selec-
tion (in this thesis both the LASSO and the Adaptive LASSO are used, since the latter is
known to have the best asymptotic properties for a correct subset selection under p > n
with many highly correlated variables). From here on, let’s assume that X ∈ Rn×q is a
preselected matrix of significant variables, where 0 < q ≤ n.

Second, since we are interested in modelling macroeconomic data, it is likely, that it will
exhibit a significant correlation, some of the variables might be nested (i.e. should total
unemployment in the country and unemployment of a particular age segment be included).
Therefore, instead of a direct re-estimation, as would be done using Relaxed LASSO, we
suggest rotating the data using the principal components methodology, thus extracting
the main latent factors F = XL, where L ∈ Rq×q is a rotation matrix and F ∈ Rn×q
is a principal component matrix. The main idea here is to extract the main underlying
information from the data as (orthogonal) latent factors and to model them instead. Since
the data is likely to be correlated, and because of the (supervised) preselection done –
the selected variables should be able to describe the macroeconomic process that we are
interested in modelling – it is likely that such data captures some common signals, driving
the particular market or the economic sector in question. If we assume those signals being
the main reason for macroeconomic growth, it is a good idea to model them instead of the
data directly, which is basically the idea of usual factor analysis in the literature.

However, from the literature reviewed it follows that LASSO can effectively and con-
sistently estimate orthogonal variables. More so, the extension of the Adaptive LASSO
or Relaxed LASSO is unnecessary for orthogonal data, since it does not violate any of
the necessary conditions for the LASSO. Therefore, we expand on the idea of (1.3) and
estimate:

β̂fLASSO = arg min
β

(Y −XLL′β)′(Y −XLL′β) + λ||L′β||1

= arg min
β̃

(Y − F β̃)′(Y − Fβ̃) + λ||β̃||1, (3.1)
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since LL′ = I holds by the definition of principal components8, and F = XL, β̃ = L′β; all
of which can be efficiently estimated using the LARS algorithm. It can be noted that LL′ =
I holds for any q̃ ≤ q, so it is feasible to remove the redundant components (which explain
very little of the total variance of the data and have very small loading coefficients) if
there are any. Also, since the transformation introduced by principal components does not
remove any of the information from the data, it is possible, that after estimating coefficients
β̃ using LARS, the rotation back to β = Lβ̃ can provide more accurate estimates than the
straightforward LASSO without using the principal components.

Such approach differs from the one suggested by Bai and Ng (2008), firstly, because
the number of significant factors are selected not by the usual selection, based on various
information criterias (such as Akaike, Schwarz, t-statistics from OLS and similar), but by
using the soft-thresholding LASSO approach. That is, both the selection of significant
factors and the shrinkage of estimated parameters is done simultaneously in order to
optimize the forecasting accuracy.

The obvious strength of such approach is when dealt with a large amount of data
(i.e. from a particular market), driven by one or a few leading factors, accompanied with
a significant amount of noise, which in the latent space can be interpreted as various
trends, behavioural patterns and signals from neighbouring markets, all of which can
be insignificant to the main modelled variable. In such case the principal component
transformation would allow us to extract some of those latent factors and estimate only
the significant ones using the LASSO. The final coefficient vector β̂∗ = L ˆ̃β would be
comprised of the same non-zero variables just as it would be in the ordinary (Relaxed or
Adaptive) LASSO case, however, the estimated coefficient values would be set according
to the significance in the latent space, rather than the direct one. So in a way, such
transformation may act as a filter, distinguishing only the important underlying signals
from the data, thus possibly allowing for a more accurate forecasting performance.

Secondly, in contrast to Bai and Ng (2008) and other factor forecasting related lit-
erature, we propose to base the final forecasts on the predictions of individual vari-
ables X rather than on the predicted significant factors F . That is, if we assume that
X = Xt = (X1t, . . . , Xqt), for every h > 0, the forecasts F̂ ∗t+h can be calculated as

F̂ ∗t+h = LX̂t+h = L(X̂1,t+h, . . . , X̂q,t+h),

where L is known and X̂j,t+h, for every j = 1, . . . , q, are predicted using time series
methodology (i.e. ARIMA models with appropriately selected parameters).

Typically in the literature the idea behind extracting factors is to reduce the com-
plexity of the high-dimensionality problem by moving to the latent space, where only the
significant signals, approximating the true factors, are of interest. Among many differ-
ent approaches, one popular way is to forecast the approximated factor directly using
Kalman-Filter or other time series methodologies (i.e. ARIMA also). That is, usually

F̂t+h = α̂(h)Ft (3.2)

are constructed.
However, if we take into account the formulation of our problem in (3.1), the complex-

ity of such indirect factor forecasting does not differ from the complexity of forecasting
using just (Relaxed) LASSO, since the same number of variables are to be predicted in-
dividually9. In such case, it is possible that more information is used in generating the
forecasts X̂t+h directly than it is in generating F̂t+h using the (3.2) approach.

8Here the data matrix X is scaled and centered.
9NB: in this and the following discussion ARIMA methods are regarded as the method for variable

predictions, however it is worth noting that the forecast accuracy of individual variables Xjt, j = 1, . . . , q,
might be greatly improved by forming structural (i.e. VAR or similar) models for some of the variables
(Jokubaitis (2015)).
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Granger (1980) has shown that the aggregation of a low-order AR/ARMA processes
may produce a process with complicated dynamics. I.e., they show that aggregation of
k >> 1 independent AR(1) processes can generate an ARMA(k, k − 1) process, unless
cancellation of roots occurs. Therefore, under the assumption that each of the modelled
variable Xjt can be well approximated by a low-order ARMA process, it is clear that a fac-
tor, combined from such variables, might have a complex, even long memory structure10.
Additionally, it is likely that because the aggregation of the predictor variables are made
using factor loadings as weights, the parameters of aggregated long memory process will
converge to zero at a fast rate11, therefore a direct estimation of such parameters might
be very hard or infeasible, considering the short historical time periods of many macroe-
conomic variables. However, each of the variables Xjt can be easily approximated by an
appropriate (likely, also of a low order) ARMA process, therefore the complex structure of
the forecasts from the true aggregated process can be retained indirectly, by aggregating
the forecasts of each of the Xjt using the known factor loadings as weights.

As an illustration, let’s assume that we can extract a strong factor from the data,
which can explain our modelled macroeconomic variable with high accuracy (for example,
R2 ≈ 0.9), and assume that such factor has an ARMA(k, k − 1) structure with k >> 1
as was discussed. Should the dataset be insufficient to correctly estimate most of the
true model parameters (i.e., due to a small number of available data), it is likely that
under various information criteria the best ARMA approximation would be of a low order.
Additionally, because of the high in-sample accuracy the direct forecasts of such a factor
would be very similar to a direct forecast of the modelled macroeconomic variable using
only (benchmark) ARMA models. The point is, in such a case the forecasts would not
differ much from the ones, where no additional (exogenous) information is used, except
for the information of the main modelled variable, and that difference would shrink with
increasing R2. However, if we forecast such a factor indirectly, through forecasting each
of the Xt, we would use all of the underlying information from the data, which could help
attaining more accurate forecasts.

In the preceding discussion we assumed a simple case of AR(1) process for the ex-
planatory variables. However, it is worth noting, that since in this thesis we are modelling
macroeconomic variables, each of the predictor Xjt used can also be a process of a complex
ARMA structure, since it can easily be a microeconomic variable, generated from several
micro-variables (as discussed by Granger (1980), i.e., consumption, income, employment,
production in various sectors and markets). Therefore, aggregation of such variables can
lead to an even more complexly structured process than has been discussed.

Also, the aforementioned theory holds under the assumption of independence between
the processes, however, Granger (1980) claims, that similar conclusions should also hold
for correlated processes. In order to study the behaviour of the discussed processes under
non-zero correlation in more detail, a Monte Carlo experiment has been conducted, the
results of which are presented in section 3.3.

In addition to this, if the extracted factors are formed with weights of a similar size
(that is, not only a few particular variables are dominant), such forecast aggregation in a
way forms a parallel to other similar forecast aggregation methods in the literature, such
as bagging (bootstrap aggregating, (Breiman (1996))), which are shown to improve the
prediction accuracy in certain cases.

Also, the proposed aggregation might induce a smaller loss in cases where we fail to
accurately define a suitable model for the process of interest: first, if we are unsuccessful
in consistently selecting decent models for some of the predictors Xt, the aggregation

10Here long memory is understood in the sense of finitely nonsummable auto-covariance function. It is
shown by Granger (1980) that such results may occur when the AR(1) models are generated with random
coefficients and the aggregation scale is very large (k →∞).

11For example, if we assume that some of the variables have relatively small loading weights for a certain
factor, their effect on the parameters of the aggregated ARMA process will be smaller than when applying
aggregation with equal weights, i.e., by averaging.
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of their resulting forecasts can stabilize the results to some extent (similarly to bagging);
second, if we are able to identify appropriate models for the predictor variables, forecasting
the main factor through aggregation of its variables might lead to an increase in forecast
accuracy, as is demonstrated in section 3.3; third, it is possible, that the data generating
process of Xt might be from some family of complex, long memory processes, therefore
the aggregation of their forecasts introduces some degree of freedom to make inaccurate
estimations of their true models while still generating more accurate final predictions.

Additionally, it is worth noting that in the case when the data set X is orthogonal,
since the method of principal components is able to retain all of the information from
the data, it would extract the same orthogonal data, just (possibly) resorted by the total
variance explained (eigenvalues of the covariance matrix), therefore, the proposed method
would boil down to the ordinary LASSO method.

3.2 Sparseness of the PCA loading matrix
Even though the data matrix X is preselected by the LASSO as a matrix, containing
mainly significant variables, it is not clear that, first, by rotating the variables to the
latent space, all of them will be significant there. In other words, if there are two strongly
multicollinear variables, preselected by LASSO as significant12, both having roughly the
same estimated weights (possibly with different signs) in the loading matrix, it is possible
that losing one of the two dimensions might not change the resulting factor estimate.

Second, some of the variables (for convenience in the following text denoted as Zt, t =
1, . . . , n, where Z ⊂ X ∈ Rn×q) used might be orthogonal to all other preselected variables,
meaning that the principal component solution does not extract the correct factor of it
from the latent space. That is, in the latent space, ideally, they would form a direction,
where the coordinate vector would have zeros for all other variables. However, in usual
principal components that is mostly not the case, since every extracted factor is a linear
combination of all of the variables used, even if the weights are close to zero, it’s unlikely
for them to be exactly zero. In the case when Zt are very significant explanatory variables,
the LASSO will try to extract as much information as possible from those variables. Since
every principal component fj,t has the following structure:

fj,t =
q∑
`=1

λj,`X`,t = ΛjZt + ΦjX̄t, j = 1, . . . , q,

where X̄t are such that X̄t ∪ Zt = Xt, any such component is composed of Zt together
with the remaining variables. Therefore LASSO, while trying to reconstruct the most
useful part of the Zt, will include too many factors fj,t to the final solution. Some of those
factors would not be included if the weights of Zt would have been zero. Let’s assume
that G ⊂ {1, . . . , q} is a set of indices denoting factors fj,t, which have been selected as
significant by the LASSO in the final solution only because of a significant loading weight
for Zt. Then, it is clear, that with every additional fr,t, r ∈ G, included we will add some
noise in the scale of ΦrX̄t to the data. And the more such factors are selected, the closer
the PCA-LASSO solution is to the usual Relaxed LASSO solution.

From this discussion we can see the benefit of adding an additional step to the PCA-
LASSO procedure. One way is to modify the loading matrix L to introduce some sparse-
ness to it (for example, by using Sparse PCA (SPCA), Zou et al. (2006)). Another way, to
prevent situations as described in the preceding paragraph, could be to include the prese-
lected data matrix Xt together with the extracted factors Ft and model them together as
F̄t = (Ft, Xt) using the LASSO. While it may seem that in this way no new information is

12NB: even though the LASSO in theory should pick mainly uncorrelated variables due to the definition
of the LARS algorithm, used in LASSO, in practice the author of this thesis found many cases, where
the LASSO chooses several strongly multicollinear variables as the final ones, even when the shrinkage
parameter λ is chosen by cross-validation as the most optimal one.
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added, it can help LASSO distinguishing only the truly significant factors, while ignoring
the factors fr,t, r ∈ G, since instead it would select the variables Zt directly. Thus, the
possible noise would be lowered in the scale of

∑
j∈G ΦjX̄t. Also, such approach would add

some robustness, preventing unnecessary transformations in cases, where the predictors
Xt are orthogonal and the extraction of factors does not add any interesting projections,
since they would not be more useful in explaining the modelled variable than the original
data, hence would probably not be selected by the LASSO. However, it is also likely, that
F̄t would not be an orthogonal matrix anymore.

3.3 Monte Carlo experiment
In order to study the behaviour of aggregated AR processes’ under more realistic con-
ditions, we assume that X ∈ Rn×q, where n = 100 and q = 20 are generated by an
AR(1) process with random parameters α from a known distribution. As we will work
with stationary time series, the distribution for random coefficients have been restricted
to U [−0.85, 0.85]. The following AR(1) processes were generated:

Xj,t = αjXj,t−1 + εj,t, j = 1, . . . , q, (3.3)

where εt = (ε1,t, . . . , εq,t) ∼ N (0,Σ) and Σ is not an identity matrix. That is, the Σ is
chosen such that the average correlation between the variables would be around 0.5 with
the main diagonal being normalized to one.

Additionally, we construct a factor ft as a first principal component of the data Xt.
Because the covariance matrix Σ is not an identity matrix, the first extracted factor has
significantly non-zero loadings for most of the variables, similarly to what we would have
in real situations with macroeconomic variables.

The goal of this experiment is to study the differences in forecasting accuracy between
direct forecasting of the known factor ft using usual time series methods and aggregating
individually forecasted variables Xt, according to the factor loading matrix L.

The experiment is repeated 500 times, where in each iteration the variables are gener-
ated randomly and a first factor ft is then extracted using principal component method-
ology (Ft = XtL, ft ⊂ Ft). In each iteration the factor is forecasted in two ways: first,
by choosing an appropriate ARMA(p, q) model, where the orders p and q are chosen by
minimizing the Akaike information criterion (which is known to be not too restrictive in
choosing the order of the model); and second, by fitting an AR(1) model for each of the
variable Xj,t, j = 1, . . . , q, and aggregating its forecasts using the weights of the loading
matrix L. The forecast horizon h = 1, . . . ,H is chosen to be H = 8 in order to study the
longer dynamics of the forecasts.

In order to measure the accuracies of the forecasts several measures were used: the
mean absolute error (MAE), root mean squared error (RMSE) and R-squared (R2) :

• MAE = 1
H

∑H
h=1 |ft+h − f̂t+h|

• RMSE =
√

1
H

∑H
h=1(ft+h − f̂t+h)2

• R2 = 1−
∑H

h=1(ft+h−f̄t)2∑H

h=1(ft+h−f̂t+h)2
,

where f̄t = 1
t

∑t
j=1 fj is the sample mean, and it can be conveniently set to 0 here as the

variables are designed to be mean-centered. The idea behind using forecasted R2 is to
check not only the average accuracies of the forecasts, but also to inspect the amount of
variance explained by the forecasts. Since we expect a randomly generated factor to have
a complex structure, ideally the generated forecasts should also retain it. In this sense, a
naive forecast (i.e. a sample mean) would be the least favourable forecast, since it does
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Figure 3.1: Density plot of root mean squared errors (RMSE) and mean absolute errors (MAE) of
the forecasts, generated by both aggregated and direct predictions, q = 20.
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Figure 3.2: Density plot of R-squared (R2) of the forecasts, generated by both aggregated and
direct predictions, q = 20.

not predict any part of the underlying structure. Therefore, the point of R2 here is to
compare the differences between generated and naive forecasts.

The results are presented in figures 3.1 and 3.2 for q = 20 and in figures A.1 and A.2 for
q = 80. It can be seen that while the difference is not big, overall the aggregated forecasts
tend to generate more accurate forecasts: the sample distribution of the RMSE of the
aggregated forecasts are shifted to left, when compared with the direct forecasts, similar
results are seen when inspecting the distribution of the MAE. However, it is interesting
to inspect the distribution of the R2 of the forecasts: we can see from the figure 3.2 that
direct forecasts are strongly concentrated around 0, which suggest that most of the times
the directly modelled ARMA was not able to produce significantly better forecasts than a
naive forecast. One of the reason for such a result is that in a relatively small sample the
model was not able to recognize and estimate the true structure of the generated factor,
therefore a low-order (including a zero-order) ARMA model was selected by the Akaike
information criterion. On the other hand, the distribution of the aggregated forecasts,
while also concentrated around 0, has a significantly smaller kurtosis, which suggest that
it was able to explain a significantly larger amount of the true structure of the generated
factor.

Also, in both of the cases many negative R2 values can be seen, suggesting that in those
cases a naive forecast would have been more accurate in explaining the factor. Similar
effects, just to a greater scale, can be seen in pictures A.1 and A.2, where the number
of indicators involved was increased from q = 20 to q = 80, resulting in a more complex
resulting original factor.

An illustrative example of a few iterations from the experiment is presented in 3.3
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Figure 3.3: Example cases of aggregated and direct forecast realizations, when compared to the
original data: (left) case, when aggregated forecasts succeed in capturing the true dynamics while
the direct forecast fails; (right) case, when both of the forecasts coincide, with the direct forecast
generating an overall more accurate predictions.

picture. In both of the cases the true original factor is plotted together with aggregated
and direct forecasts. In the left picture we can see the example of aggregated forecasts
being able to recover the structure of the factor, while the direct forecasts immediately
flats out, failing to even select an adequate model – likely, that the structure of the factor
is recognized as a white noise, rather than the factor itself. However, in the right picture
we can see an example of a direct forecast being able to perfectly match its forecast with
the one, generated by the aggregation of models, and even generating an overall more
accurate fit.

Overall, the results of this experiment suggest that while the increase in forecast ac-
curacy is not huge, the aggregation of the forecasts helps recovering some of the structure
of the true factor, which is especially useful in moderately sized samples, where the usual
direct time series modelling tend to choose a model of a low order.
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Chapter 4

Pseudo-real-time forecasting
experiments

In this chapter the results of pseudo-real-time forecasting exercise over 2005Q1 – 2014Q4
are presented. We produce 4 forecasted values for each quarter: one backcast, one nowcast
and two forecasts of 1- and 2-quarters ahead, accordingly. We model 4 components of the
GDP by expenditure approach: Gross Fixed Capital Formation (GFCF), Private Final
Consumption Expenditure (PFCE), Imports and Exports of goods and services. Overall
these selected components reflect the main drivers of the economy: the domestic demand
largely consists of private consumption and the investments, while the foreign supply is
indicated by the international trade, which reflects the economic relations with the foreign
sector and the openness of the economy. International competitiveness is also important,
since it drives the search for new innovative and advanced solutions.

Out of these 4 variables the hardest to accurately predict is the GFCF, since it is
composed of investments in many different industries. The investment spending is nec-
essarily forward looking and hopeful, therefore it expands rapidly during an economic
boom, when investors expect that the future will require the great productive capacity,
and falls rapidly when such expectations evaporate. Therefore it is the most volatile of
the four. Additionally, for private consumption, imports and exports there are good lead-
ing monthly indicators available, allowing for an easier nowcast. On the other hand, no
such variables are available for the GFCF, making generation of good nowcasts a more
challenging task. Therefore our main focus in this chapter is forecasting the GFCF. The
results of forecasting the 3 remaining variables are then briefly reviewed.

For each of the modelled GDP component, the main models considered are: the Square-
Root LASSO (in the tables denoted as: Sqrt), Relaxed LASSO (Relaxed), Adaptive LASSO
(Adaptive), ordinary LASSO (LASSO) and a proposed combination of LASSO with the
principal components of the data, preselected by the Adaptive LASSO (AdaPCA) or by
the ordinary LASSO (PCA), as described in section 3.1. Additionally, it is interesting to
inspect the gains brought solely by performing the rotation of the data to its principal
components, therefore for some particular cases we analyse the alternative cases for the
AdaPCA models, where the preselected variables are the same, but the rotation to the
principal components is not performed (so in a way it’s a mix between Relaxed LASSO
and Adaptive LASSO, therefore in the tables denoted as AdaRL). Also, as discussed in the
section 3.2, it is of interest to inspect the effects of added sparseness to the loading matrix
of the principal components for the AdaPCA models. However, in none of the cases any
significant gains were found when using the SPCA method instead of the ordinary PCA,
therefore the results are omitted from the tables. On the other hand, in some cases there
were significant gains in forecasting accuracy when using both the rotated and original
data (so in a way we can understand it as a cross between the AdaPCA and AdaRL
methods, hence the notation AdaPCAX in the tables).

Each of the model is estimated using the cross-validated hyperparameters unless spec-
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ified differently, where each is chosen so as to maximize the out-of-sample accuracy. As
a benchmark for these models we use ARMA(p, q) models (ARMA), where the orders
(p, q) are selected to minimize the Akaike information criterion during each quarter of the
exercise.

Additionally, in some cases we present the results of models, where instead of the cross-
validated out-of-sample hyperparameters we use such, that provide a more parsimonious
result. In those cases the results are presented with an additional number next to their
abbreviation (i.e. LASSO5, indicating that the model is consistently selecting 5 significant
variables during the exercise). It is worth inspecting such results, since the cross-validated
hyperparameter can generate a model of a too dense structure, where an inclusion of a
large number of variables can win only a small amount of accuracy, but bring an additional
uncertainty with each of the additional variable included13. However, sparser versions of
some models can produce a similar level of accuracy, but with a much smaller space of
variables used.

It is important to note that during the forecasting exercise, for each of the model
in question, both the number and type of variables used were reselected during every
quarter when new data vintages has become available. Instead of tailoring the set of
possible variables to match the predicted variable, we allow the models themselves to
select the significant parts, since it is likely, that some indicators, driving the growth of
some of the markets in the past are not that significant at a later time, hence they can
be replaced in a timely matter with new indicators, especially when i.e. a new market
emerges. For this reason two different approaches to the forecasting exercise were taken:
first, we employ an expanding forecasting window exercise with the sample data starting
from 1982Q1 to 2004Q4, and the window is expanded by adding one additional quarter
during every iteration. The size of the window was chosen to be not too large, so that
there would be an appropriate amount of available historical monthly indicators, but large
enough for the models to be able to select a large amount of significant variables if needed.
However, under such approach it is likely that some of the variables are selected in order
to capture the historical dynamics of the modelled series rather than of the more present
ones. Second, in order to avoid the possible downsides of an expanding window, a rolling
window approach was also employed by using a 12-year sample window, starting from a
window of 1993Q1 to 2004Q4, and rolling it by adding an additional quarter to both the
start and the end of the window during every iteration. The size of the rolling window
was chosen such that it would capture at least one full business cycle.

To indicate how well did the models forecast, we present the ratio of the RMSE of the
LASSO models to the ARMA models, in addition to RMSE and pairwise DM tests on the
forecast errors for the expanding window exercise, and pairwise GW tests for the rolling
window exercise.

4.1 Expanding window: Gross Fixed Capital Formation
In this section we present the results of forecasting GFCF during the period of 2005Q1-
2014Q4. The results of RMSE of the forecasted values are presented in the table 4.1 for all
of the models and for all 4 forecast horizons. Here the models were selected using the best
parameters, chosen by the cross-validation (except for Sqrt, which uses the theoretically
optimal value). Additionally, the total results were divided into three periods (2005-
2008, 2008-2011, 2011-2015) in order to compare the models during different stages of the
economy: during the stable growth of 2005-2008, the crisis period of 2008-2011, and the

13Though it can be noted that since each variable included in the final model is individually forecasted
using ARMA models, the inclusion of more than the optimal number of variables as in the discussion may
in some cases be a safer bet: if some of the individual ARMA predictions are generated very inaccurately,
the larger number of other variables could act in a correcting way, while with a smaller amount of variables
only the relatively larger shrinkage would reduce the resulting negative effects. Also, the results from the
Monte Carlo experiment holds here, with the cases of q = 20 and q = 80 proving the point.
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stabilization period of 2011-2015. Dividing up the total results is also useful in inspecting
whether there are models, dominating every other competitor in the "horse race". Also,
in the table 4.2 are presented the results of Relative RMSE, when in comparison with the
performance of the benchmark ARMA models.

Table 4.1: RMSE of models forecasts during pseudo-real-time experiments for Gross Fixed Capital
Formation, here the bolded values are the smallest ones for every row, and for every block the last
line denotes the total forecast accuracy for the full time period of 2005Q1-2014Q4.

Sqrt LASSO Adaptive Relaxed PCA AdaPCA ARMA
Back
05-08 0.509 0.708 0.185 0.242 0.216 0.089 —
08-11 0.681 1.339 0.585 0.194 0.463 0.713 —
11-15 0.652 0.771 0.338 0.223 0.313 0.468 —
05-15 0.601 0.946 0.377 0.221 0.330 0.428 —

Now
05-08 0.829 0.930 0.817 0.958 0.761 0.857 1.246
08-11 1.605 1.867 1.516 1.383 1.478 1.509 3.115
11-15 1.089 1.075 1.130 1.114 1.094 1.116 1.228
05-15 1.185 1.315 1.166 1.155 1.116 1.161 2.038

Fore1Q
05-08 1.078 1.176 0.898 1.025 1.131 0.992 1.363
08-11 2.372 2.616 2.106 2.037 2.127 2.056 3.669
11-15 1.082 1.039 1.113 1.174 1.170 1.078 1.208
05-15 1.588 1.720 1.443 1.450 1.503 1.431 2.332

Fore2Q
05-08 1.263 1.328 1.263 1.331 1.327 1.214 1.396
08-11 2.775 3.032 2.455 2.478 2.547 2.455 4.046
11-15 1.076 1.052 1.095 1.146 1.114 1.080 0.997
05-15 1.833 1.979 1.692 1.726 1.75 1.680 2.553

Table 4.2: Relative (to ARMA models’) RMSE of models forecasts during pseudo-real-time exper-
iments for Gross Fixed Capital Formation, here the bolded values are the smallest ones for every
row, and for every block the last line denotes the total forecast accuracy for the full time period
of 2005Q1-2014Q4.

Sqrt LASSO Adaptive Relaxed PCA AdaPCA ARMA
Now
05-08 0.67 0.75 0.66 0.77 0.61 0.69 1
08-11 0.52 0.60 0.49 0.44 0.47 0.48 1
11-15 0.89 0.88 0.92 0.91 0.89 0.91 1
05-15 0.58 0.65 0.57 0.57 0.55 0.57 1

Fore1Q
05-08 0.79 0.86 0.66 0.75 0.83 0.73 1
08-11 0.65 0.71 0.57 0.56 0.58 0.56 1
11-15 0.90 0.86 0.92 0.97 0.97 0.89 1
05-15 0.68 0.74 0.62 0.62 0.64 0.61 1

Fore2Q
05-08 0.90 0.95 0.90 0.95 0.95 0.87 1
08-11 0.69 0.75 0.61 0.61 0.63 0.61 1
11-15 1.07 1.05 1.09 1.14 1.11 1.08 1
05-15 0.72 0.78 0.66 0.68 0.69 0.66 1

Table 4.3: This table reports the p-value of the Diebold Mariano test for equal predictive ability
with squared differences. The null hypothesis is that the column model has the same forecasting
performance as of the row model against a two-sided alternative. Bolded values marks p-values
smaller than 0.1.

Sqrt LASSO Adaptive Relaxed PCA AdaptivePCA ARMA
Nowcast

Sqrt - 0.05 0.79 0.72 0.42 0.79 0.023
LASSO - - 0.2 0.22 0.15 0.24 0.064
Adaptive - - - 0.86 0.39 0.89 0.023
Relaxed - - - - 0.36 0.93 0.033
PCA - - - - - 0.45 0.022
AdaptivePCA - - - - - - 0.027
ARMA - - - - - - -

1Q
Sqrt - 0.2 0.17 0.37 0.52 0.18 0.056
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Table 4.3: (continued)

Nowcast Sqrt LASSO Adaptive Relaxed PCA AdaptivePCA ARMA
LASSO - - 0.19 0.29 0.34 0.19 0.092
Adaptive - - - 0.9 0.25 0.65 0.05
Relaxed - - - - 0.12 0.74 0.081
PCA - - - - - 0.13 0.093
AdaptivePCA - - - - - - 0.053
ARMA - - - - - - -

2Q
Sqrt - 0.22 0.38 0.5 0.52 0.35 0.11
LASSO - - 0.29 0.35 0.34 0.28 0.16
Adaptive - - - 0.36 0.2 0.11 0.11
Relaxed - - - - 0.5 0.3 0.14
PCA - - - - - 0.16 0.13
AdaptivePCA - - - - - - 0.1
ARMA - - - - - - -

The results reveal that when forecasting the GFCF most of the models provide a rather
similar forecasting performance, with the ordinary LASSO and ARMA models having the
worst accuracy overall. When comparing the results with the benchmark, in almost every
case all of the models are able to predict with better accuracy than the benchmark ARMA
model, with one exception of a 2-quarter forecast over the period of 2011-2015, where the
ARMA models are able to outperform every other model by a small margin. Such a result
is consistent with the literature: for example, D’Agostino and Giannone (2006) highlights
the fact that during relatively steady growths (the authors analysed the Great Moderation
period in particular, where a sizeable decline in volatility of output and price measures was
observed) even sophisticated models can fail to outperform simple AR models. Therefore,
analysis of the recession period of 2008-2011 is the most interesting one, since then we are
comparing the performance of models during a unique event with no historical precedent.

Overall these results further emphasise the value of additional monthly data included
in the modelling, especially during the more volatile periods of 2005-2011.

Additionally, it is evident that both the Adaptive LASSO and the Relaxed LASSO
are able to increase the predictive performance of the regular LASSO just as expected.
Moreover, the results show that the usage of PCA in the estimation can additionally
improve the predictive performance of the models: in all of the forecast horizons either the
PCA or AdaPCA method generates the most accurate overall forecasts, while during the
different (spliced) time periods the worst results are not worse than ones of the Adaptive
LASSO.

In the table 4.3 the p-values of the DM test are reported, indicating the estimated
significance of the models predictive abilities when compared with each other over the
full testing period. Firstly, it can be noted that all of the LASSO models are able to
outperform the ARMA benchmark with p-values lower than 0.1 when testing the nowcasts
and 1-quarter forecasts. When comparing the pairwise results between the models, in
most cases the significance is much weaker, however, with 15% significance the PCA
model generates more accurate nowcasts than the LASSO. Since the PCA uses the same
variables as the LASSO for every quarter of the exercise, these results suggest that the
proposed transformation can increase the predictive accuracy.

Table 4.4: RMSE of selected models forecasts during pseudo-real-time experiments for Gross Fixed
Capital Formation, here the bolded value is the smallest one for every row in the block, and for every
block the last line denotes the total forecast accuracy for the full time period of 2005Q1-2014Q4.

AdaPCA15 AdaRL15 AdaPCA20 AdaRL20 AdaPCA30 AdaRL30
Back
05-08 0.554 0.705 0.528 0.598 0.447 0.549
08-11 0.899 1.048 0.798 1.027 0.673 0.938
11-15 0.775 0.983 0.669 0.909 0.609 0.934
05-15 0.730 0.902 0.637 0.846 0.542 0.794
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Table 4.4: (continued)

AdaPCA15 AdaRL15 AdaPCA20 AdaRL20 AdaPCA30 AdaRL30
Now
05-08 0.821 0.832 0.799 0.776 0.740 0.777
08-11 1.608 1.525 1.510 1.523 1.514 1.484
11-15 1.147 1.170 1.128 1.183 1.091 1.250
05-15 1.200 1.195 1.150 1.191 1.120 1.179

Fore1Q
05-08 0.979 1.052 0.987 0.991 0.957 0.990
08-11 2.210 2.289 2.159 2.221 2.187 2.260
11-15 1.159 1.048 1.125 1.106 1.124 1.167
05-15 1.530 1.547 1.492 1.519 1.484 1.532

Fore2Q
05-08 1.120 1.217 1.181 1.152 1.179 1.247
08-11 2.531 2.665 2.566 2.591 2.667 2.692
11-15 1.059 1.021 1.048 1.001 1.062 1.039
05-15 1.694 1.771 1.710 1.721 1.759 1.781

Additionally, in order to directly inspect the gains of using the principal component
transformation on the (relaxed) data, a few more comparisons were made. First, in the
table 4.4 are presented the results of forecasting GFCF when the number of preselected
variables were fixed to 15, 20, and 30. Note that the results in tables 4.1 and 4.2 are
generated by models with cross-validated hyperparameters, therefore the estimated num-
ber of significant variables may differ greatly during different time periods and between
different models. In this case, in order to inspect the performance of the models in greater
detail, we found that restricting the hyperparameter selection problem to select only a
fixed amount of (the same) variables is useful. Therefore, in the table 4.4 we examine
the results of two models: AdaPCA, where the preselected variables are transformed into
principal components, and AdaRL, where no transformation is made, only the coefficients
are re-estimated in the style of Relaxed LASSO. Not only is the number of variables used
the same, but also all of the variables selected are the same. The results provide evi-
dence that AdaPCA in some cases can improve the forecasting accuracy when compared
with ordinary methods. Additionally, by comparing the predictive accuracy of the models
with the Diebold-Mariano test we found that with 5% significance the AdaPCA30 model
generated significantly better 1-quarter forecasts than the AdaRL30 model14. Overall the
improvement can be visible even on a relatively sparse number of variables selected, but
the results suggest that the gains from using the PCA transformation are larger when
more variables are included in the estimation. This result is natural, since with larger
samples we’re likely to include more intercorrelated variables, thus allowing for a clearer
extraction of the common factors.

Moreover, the results from the table E.1 suggest that additional forecasting accuracy
can be gained when using a cross between the two methods (see AdaPCAX), where both
the principal components and the original preselected data are included in the model. The
latter results are also consistent over different number of variables used.

Secondly, in the previously presented results in total two hyperparameters were used:
first one for the selection of variables used in modelling, and second one for the second
step selection and for the amount of shrinkage applied. However, it may also be useful
to examine the differences between the forecasting accuracy under a number of different
hyperparameter values. For this we chose a set of indicators, preselected as optimal by
the LASSO, and ran the pseudo-real-time forecasting exercise over the period of 2011Q1-
2014Q4 for two cases: first, where the rotation to the principal components is used and
second, where no transformation is applied, here the latter in a way corresponds to the
Relaxed LASSO. Additionally, for completeness, the case of the Adaptive LASSO was
included as well. The results are presented in the figure A.7. Note that the Adaptive
LASSO uses a different set of variables for the prediction, therefore an additional number
is added in the graph to enumerate the sets of variables used (also, note the different

14For other sample sizes and forecast horizons the differences were not that great, resulting in a larger
estimated p-values of the DM test with squared errors and two-tailed alternative hypothesis.
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corresponding scales of log(λ)). The results show a slight increase in both the average
forecast accuracy (mean RMSE) and a smaller standard deviation for many different
values of the hyperparameter λ used. These results provide further evidence that the
use of principal components transformation in some cases can provide additional gains in
forecast accuracy.

For the macroeconomist it can be of great value to inspect the leading indicators for
the GFCF, therefore in the figure 4.1 we present the top indicators15, often selected by the
Adaptive LASSO during the pseudo-real-time experiments. We can see that there are sev-
eral variables selected consistently during every period, therefore they can be understood
as the key variables for explaining the investment in the US. Additionally, it’s interesting
to note that some of the variables seem to form certain clusters, where one part is included
only before the crisis, while the other part becoming significant after the crisis, indicating
a possible structural break in the data.

Among the most frequently selected are the number of employees in the Construction
services, which, together with the number of building permits (both not started and un-
der construction) and building completions, in addition to the Consumer Price Index in
the housing sector and industrial production for construction supplies, can form a rather
detailed view of the situation in the market of the housing sector. As we know, the invest-
ment in construction takes up a large part of the total GFCF. Additionally, explaining
the remaining investments in the country, a San Francisco Tech Pulse indicator is consis-
tently selected, capturing the tendencies in the IT sector, which is understandable, since
investing to efficient, state-of-the-art technology and R&D can significantly enhance the
performance of various industries. Also, Coincident Economic Activity (CEA) Index is
often selected. Noteworthy, that instead of the global index for the whole US some par-
ticular regions are consistently selected, i.e. Arizona, Virginia, Arkansas, Minnesota and
other. Firstly, they are likely to be correlated when selected together, hence the use of
principal components to extract the underlying common factor, driving the economic ac-
tivity in those regions, seem useful for a more efficient estimation. Secondly, it may be
insightful to examine why are the particular regions selected instead of the total index
for the US: i.e., according to OECD16, Minnesota and Virginia seem to be among the top
states when measured by the quality of housing (numbers of rooms per person, housing
expenditures and etc.) and income per capita, while Arizona and Arkansas appear to be
on the lower end of the scale, which suggest that the inclusion of these variables to the
model in a way acted as a re-weighting of the total CEA for the US, where the "new"
weights were re-estimated by the model and the selected regions acted as proxies for both
the richer and poorer regions.

Table 4.5: Accuracies of models forecasts during pseudo-real experiments for Gross Fixed Capital
Formation, here the bolded value is the smallest one for every row, and for every block the last
line denotes the total error of the period 2005-2015.

DirectPCA AggregatedPCA
Back
05-08 0.528 0.528
08-11 0.564 0.564
11-15 0.694 0.694
05-15 0.585 0.585

Now
05-08 0.708 0.843
08-11 1.477 1.330
11-15 1.148 1.158
05-15 1.135 1.096

15Note that there were some indicators, preselected as significant for a smaller amount of times, therefore
for convenience they are omitted from the graph.

16Data published at https://www.oecdregionalwellbeing.org/
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Table 4.5: (continued)

DirectPCA AggregatedPCA
Fore1Q
05-08 1.299 1.034
08-11 2.892 2.073
11-15 1.104 1.131
05-15 1.917 1.459

Fore2Q
05-08 1.254 1.297
08-11 3.496 2.475
11-15 1.723 1.077
05-15 2.262 1.698

Furthermore, in order to evaluate the ideas from section 3.3 under real data, the
following additional experiment was made. Just like in the aforementioned discussions, 20
significant variables were preselected by the Adaptive LASSO during every quarter of the
pseudo-real-time exercise, however, instead of a second step estimation the following post-
LASSO model was considered: using the first five principal components (when ordered by
their variance explained)17 an OLS regression was made, treating the extracted factors as
observable data. However, as discussed in section 3.3, two ways of forecasting those factors
present themselves: first, by fitting an appropriate ARMA model for each of the component
and forecasting them directly (DirectPCA); and second, by forecasting the preselected
variables and aggregating their forecasts (AggregatedPCA). The resulting performance of
both of these two methods are presented in the table 4.5, and a few conclusions arise. First,
we can see that the nowcasting performance is rather similar, with the aggregated method
being able to explain the crisis period with greater accuracy than the direct method.
However, such similar results can be expected, since some monthly information is already
known during the nowcasted quarter, and since the factors compared are the same, such
comparison essentially depends from the method used to fill the ragged edges18. Second,
the forecasting performance for most of the periods is significantly19 improved when using
the aggregated forecast method, with the biggest differences visible during the period
of 2008-2011. It is likely that such a decrease in accuracy by forecasting directly can be
caused by underestimating the complexity of the extracted factors – even if in this exercise
the amount of sample data is relatively large, it may not be large enough to efficiently
estimate large numbers of ARMA parameters, and while the same holds for forecasting the
preselected variables, the aggregation of their forecasts appears to significantly improve
the results. The benefits of such aggregation, as discussed in section 3.1, seem to be
twofold: firstly, by forecast aggregation we create a more complex dynamics of the final
forecasts than by forecasting directly, and secondly, the applied aggregation can act in a
self-correcting way, by smoothing out the possible cases of highly "shooting" individual
forecasts (if such cases occur while forecasting directly – the final forecast can be highly
inaccurate, while with aggregation the negative effect can be significantly diminished).

A few additional observations can be made from these results: first, because of the
complexity of modelling each individual component, the aggregation is feasible for only a
small subset of variables used, therefore it cannot be applied for large and dense problems.
However, the complexity of the problem with preselected (targeted) predictors essentially
boils down to the complexity of the Relaxed LASSO method. Second, it can be seen

17It is often found in the literature that a small number of principal components is usually enough when
the initial data sample is not large. In our case with 20 variables selected this number seems optimal since
it is not too large for efficient OLS estimation and not too small to be risking omittance of significant data.
Also, since the variables are preselected by the LASSO, it is likely that principal components, explaining
the most variance, will be the most significant in the OLS estimation.

18In this exercise the ragged edges were filled using the Holt-Winters procedure. It is not the most
commonly used method for such a problem, but we have found it producing adequate results. ARMA
methods are also a good alternative, however we did not want to have coinciding nowcasts with the ones
from the AggregatedPCA.

19The Diebold-Mariano test for both 1-quarter and 2-quarter forecasts with 5% significance rejects the
null hypothesis of equal predictive performance between the models.
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Figure 4.1: Most often selected variables during the expanding window pseudo-real-time experi-
ments for Gross Fixed Capital Formation over 2005Q1-2014Q4. Number of times selected denotes
only the number of the same variables selected (i.e. the variable and a one-quarter lag) but not
the number of lag that was most oftenly selected.

when comparing the results from the table 4.4 with table 4.5, that since the 20 variables
preselected are the same in both cases, the post-LASSO solution with using only the first
few extracted principal components can even lead to more accurate overall results than
applying the LASSO shrinkage.

4.2 Rolling window: Gross Fixed Capital Formation
In this section we inspect the forecasting performance of the main models under a 12-year
rolling window instead of the expanding window as in the section 4.1. The size of the
window has been chosen in order to account for the likely occurrence of structural breaks:
since the business cycle tends to last around 5-7 years, we expect to cover 1-2 cycles. The
main motivation for such a comparison is to inspect whether there are some variables,
consistently selected by the LASSO as significant only because they help explaining the
older historical data, but are less useful when forecasting during the later times, therefore
producing inaccuracies in the forecasts.

The main results are presented in the tables 4.6 and 4.7. As in the previous case with
the expanding forecast window we can see that all of the models in comparison are able
to outperform the ARMA benchmark, with the LASSO and Square-Root LASSO overall
producing the least accurate forecasts. Additionally, the results show that in most cases the
AdaPCA forecasts are not worse than the ones from the Adaptive LASSO, with the largest
improvement in the RMSE visible when inspecting the nowcasts over the crisis period of
2008-2011. Moreover, the AdaPCAX method, combining both the original preselected data
and its rotation to the principal components, show some additional gains in forecasting
accuracy when compared to the AdaPCA: it produces more accurate nowcasts for every
spliced period during the exercise, and slightly better 1-quarter and 2-quarter forecasts,
only with worse results for 1-quarter forecasts during the 2008-2011. While the gains are
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not large, these results suggest that mixing the variables with their principal components
can further increase the forecasting performance, and overall the AdaPCAX showed the
highest forecast accuracy.

Additionally, all of the aforementioned results, using the dataset preselected by the
Adaptive LASSO, are more accurate than the ones, where the ordinary LASSO did the
preselection (i.e. PCA, Relaxed), providing evidence that in some cases the Adaptive
LASSO is able to select better predictors than the LASSO. This result is very important,
since the selection of good predictors can be crucial in nowcasting exercises.

In the figure 4.2 is presented the list of top variables, preselected by the Adaptive
LASSO during the forecasting exercise. It can be seen that, similarly to the results from
the expanding window exercise, most of the consistently selected indicators are explaining
the construction and housing sectors in the US: the employment rate in the construction
sector, together with numbers on building permissions and building completions, comple-
mented by the Consumer Price Index in the housing sector provide a rather detailed view
on the situation in the housing market. Additionally, just as in the case of the expanding
window, the Coincident Economic Activity (CEA) for Virginia (and other states, such as
Arizona, Arkansas and Minnesota, which were selected less often than for the Virginia,
therefore not included in the figure among the top predictors) is also often found sig-
nificant. Among other variables we find that the employment data from various states
(Michigan, Arizona, Kentucky, Vermont, Florida and other) are often chosen when ex-
plaining the dynamics of GFCF. Also, it can be noted that the LIBOR interest rates are
always included, reminding of the importance of the health of the global financial sector
when explaining the investments: LIBOR is often served as a benchmark reference rate
for various debt instruments (i.e. mortgages), often used by the investors.

However, we can note that the San Francisco Tech Pulse, indicating the health of the
IT sector, is no longer included so often to the models, suggesting that it was likely more
significant when explaining the historical data. With the rapid growth of the informa-
tion technologies’ market during the 1995-2001 (note the dot-com bubble in the stock
markets during that time), affecting the performance of various industries through rapid
technological advancement, it is likely that much of the investment was aimed to the IT
infrastructure. Additionally, the interest rates during that period were relatively low and
many investors during that period were less risk averse than usual, likely causing a growth
of investments in various sectors, correlating with the rapid growth of the IT sector.

Table 4.6: RMSE of models forecasts during rolling window pseudo-real-time experiments for Gross
Fixed Capital Formation, here the bolded values are the smallest ones for every row, and for every
block the last line denotes the total forecast accuracy for the full time period of 2005Q1-2014Q4.

Sqrt LASSO Adaptive PCA AdaPCA AdaPCAX Relaxed ARMA
Back
05-08 0.619 0.918 0.418 0.456 0.363 0.198 0.430 —
08-11 0.555 1.388 0.704 0.549 0.587 0.187 0.136 —
11-15 0.549 0.777 0.536 0.489 0.452 0.245 0.367 —
05-15 0.555 1.022 0.526 0.468 0.438 0.219 0.346 —

Now
05-08 0.921 1.077 0.742 0.933 0.809 0.799 0.860 1.316
08-11 1.749 1.985 1.470 1.875 1.382 1.326 1.678 2.916
11-15 1.188 1.080 1.176 1.218 1.103 1.100 1.226 1.342
05-15 1.291 1.405 1.182 1.360 1.127 1.106 1.246 2.001

Fore1Q
05-08 1.088 1.183 0.952 1.124 1.032 0.980 1.055 1.526
08-11 2.377 2.479 2.226 2.245 2.168 2.213 2.325 3.467
11-15 1.181 1.182 1.209 1.183 1.213 1.191 1.202 1.483
05-15 1.623 1.698 1.549 1.569 1.52 1.516 1.586 2.327

Fore2Q
05-08 1.276 1.342 1.195 1.339 1.230 1.187 1.205 1.660
08-11 2.882 3.024 2.906 2.813 2.890 2.866 2.922 3.719
11-15 1.204 1.261 1.224 1.170 1.232 1.217 1.207 1.337
05-15 1.903 2.005 1.901 1.874 1.893 1.876 1.911 2.485
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Table 4.7: Relative (to ARMA models’) RMSE of models forecasts during rolling window pseudo-
real-time experiments for Gross Fixed Capital Formation, here the bolded values are the smallest
ones for every row, and for every block the last line denotes the total forecast accuracy for the full
time period of 2005Q1-2014Q4.

Sqrt LASSO Adaptive PCA AdaPCA AdaPCAX Relaxed ARMA
Now
05-08 0.70 0.82 0.56 0.71 0.62 0.60 0.65 1
08-11 0.60 0.68 0.5 0.64 0.47 0.45 0.57 1
11-15 0.89 0.80 0.88 0.91 0.82 0.81 0.91 1
05-15 0.65 0.70 0.59 0.68 0.56 0.55 0.62 1

Fore1Q
05-08 0.71 0.78 0.62 0.74 0.68 0.64 0.69 1
08-11 0.69 0.72 0.64 0.65 0.63 0.63 0.67 1
11-15 0.80 0.80 0.82 0.80 0.82 0.80 0.81 1
05-15 0.70 0.73 0.67 0.67 0.65 0.65 0.68 1

Fore2Q
05-08 0.77 0.81 0.72 0.81 0.74 0.71 0.72 1
08-11 0.77 0.81 0.78 0.76 0.78 0.77 0.78 1
11-15 0.90 0.94 0.92 0.88 0.92 0.91 0.90 1
05-15 0.77 0.81 0.76 0.75 0.76 0.75 0.76 1
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Figure 4.2: Most often selected variables by the AdaptiveLASSO during the rolling window pseudo-
real-time forecasting exercise for the Gross Fixed Capital Formation.

4.3 Private Final Consumption Expenditure
When compared with the investments, the behaviour of private consumption is quite
different. First, it tends to show a much more stable and less volatile growth than the
investments. Second, it does not immediately react to the various stages of the business
cycle – it tends to take the momentum only when the expansion of the current cycle is
well under way, with reaching the peak after the cycle. Therefore, it is easier to reflect
various shocks in the economy when generating nowcasts for private consumption, since
in certain markets some of the shocks could be felt at an earlier time. Additionally, for
nowcasting, it is especially convenient that there are hard monthly indicators available,
which are released with a relatively small publication lag. Furthermore, the latter fact
highlights the importance of accurate individual forecasting of such monthly indicators.
It is very likely, that 1- and 2-quarter forecasts of private consumption would be greatly
improved if the forecasts of mentioned hard monthly indicators would be generated by
employing more sophisticated models, capable of including more explanatory information
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than ARIMA models.
The results of forecasting the PFCE are presented in the tables E.2 and E.3 over a

rolling 12-year window. First, it can be noted that in most cases the LASSO methods
are able to forecast the consumption with a greater accuracy than the benchmark ARMA
models, except for 1- and 2-quarter forecasts during the stable period of 2011-2015. The
most accurate nowcasts overall are produced by the Relaxed LASSO models, though it can
be seen that it is due to the most accurate performance during the period of 2008-2011.
During the other remaining periods the PCA method is able to generate more accurate
forecasts. Additionally, the most accurate 1- and 2-quarter forecasts are generated by the
AdaPCA method.

By examining the results from the GW test, presented in the table E.4, we can see that
with 10% significance all of the LASSO modifications are able to generate significantly
more accurate nowcasts than the ARMA models, with the greatest significance being
suggested for the Adaptive PCA method.

In figure 4.3 the top monthly variables are presented, most often preselected by the
Adaptive LASSO as significant. When inspecting the results we find that the most often
selected are the monthly indicators of real personal consumption expenditure (the index
of total expenditure, together with the expenditures excluding food and energy; and ex-
penditure on services) as was expected, since these are hard indicators and often used by
statistical agencies as the primary sources for their own preliminary nowcasts. This result
provides further evidence that LASSO is able to identify the main leading indicators from
a large set of available information.

In addition to that, during the period of financial crisis often the indicators on un-
employment rates in various regions were selected, indicating the obvious negative effects
caused by growing unemployment in the country to the private consumption. Additionally,
it is noteworthy that from the start of 2007, which is quite some time before the peak of
the recession, several indicators for certain luxury goods have been consistently included
in the models: namely, the employment in the retail trade sector of the automobile dealers
and the consumer price index for sugar and sweets, included in the models from 2007 to
2012, covering the whole recession period. Unemployment is often used in representing
the uncertainty on the labour market, regarding future income prospects. In the case of
growing rates of unemployment, it serves as the indicator for the hikes in precautionary
savings (for the rainy day) by households. On top of that, it indicates the diminished
bargaining power of the trade unions, and vice versa in the case of a drop in unemploy-
ment. It is natural, that due to increasing savings some cutting-down on the unnecessary
spending should occur, therefore, the indicators from the markets of various luxury goods
should be the first ones to react to such a change in consumer behaviour. Identifying these
indicators early before the crisis may be crucial in order to rapidly adapt to the change in
behaviour and predict the oncoming fall in private consumption expenditure, which the
LASSO models are able to accomplish.

Also, we can note the inclusion of industrial production index for durable goods. Sim-
ilarly to indicators for luxury goods, spending on durable goods can also be readily post-
poned in times of economic weakness, therefore such indicators tend to be quite cyclical,
capturing an important feature of the business cycle. During a drop in demand for such
goods, when households or businesses delay purchases of durable goods, it is likely that
the supply side will react accordingly. Therefore, this reaction may be reflected by such
industrial production indicators.

4.4 International Trade
Similarly to investments, the imports and exports of goods and services are much more
volatile than the aggregate GDP. The cyclical properties of international trade are quite
interesting, since they are determined by the balance of two forces: the desire of economic
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Figure 4.3: Most often selected variables by the AdaptiveLASSO during the rolling window pseudo-
real-time forecasting exercise for the Private Final Consumption Expenditure.

agents to smooth consumption using international markets and the additional cyclical
variability from the investments, that are permitted by the international capital flows. It
can also be noted that there usually exists a strong co-movement between imports and
exports. Even though one would expect that certain shocks may have an opposite effect on
real exports and imports20, it is likely that certain demand shocks might be transmitted
across different countries and affected by global cycles, for example, an increase in imports
due to the rise of domestic demand should result in a raise in foreign exports and foreign
income, which in turn should raise the domestic exports. As in the case with private
consumption, the nowcasting of these variables is simplified by the fact that there exists
hard monthly indicators of external trade, published with a small delay.

The results of forecasting Exports are presented in the tables E.5 and E.6 over a rolling
12-year window. First, it can be noted that all of the methods are able to outperform
the ARMA models during nowcasting, with the AdaPCA method providing overall the
most accurate nowcasts. Additionally, it may be interesting to see that both the PCA
and AdaPCA are able to outperform every other model when nowcasting the crisis period
of 2008-2011 by a large margin. Second, when comparing the forecast accuracy between
the PCA and the Relaxed LASSO, in most cases we can see the PCA method providing
both more accurate nowcasts and 1- and 2-quarter forecasts, further suggesting that the
rotation to the principal components can in some cases provide additional forecasting
accuracy, as was seen in the previous sections, since the variables preselected in the first
step were the same during every period of the exercise for both methods.

Overall, the AdaPCA method generated the most accurate nowcasts and 2-quarter
forecasts, while the 1-quarter forecasts were rather similar between most of the methods.

The results from the GW test, presented in the table E.7, suggest that with 11%
significance the Square-Root LASSO, LASSO and PCA are able to generate more accurate
forecasts than the benchmark ARMA model.

By inspecting the monthly variables, selected when modelling Exports, where the most
often selected are presented in the figure 4.4, as expected, we can see that the available
main monthly indicators of exports of goods and services are included, both the total
value, and often additionally the values of exports to the largest trading partners of the
US: Canada, China, Korea, Mexico, Japan. Moreover, for some of these countries at times

20For example, appreciation of the real effective exchange rate can be expected to decrease exports due
to the reduced price competitiveness, but increase imports by lowering the relative import prices.
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Figure 4.4: Most often selected variables by the AdaptiveLASSO during the rolling window pseudo-
real-time forecasting exercise for the Exports.

additional indicators were included, able to somewhat reflect their economic situation,
such as interest rates, total industry production or unemployment rate, indicating that
the economic health of the largest trading partners of the US can also have an effect
to the resulting trade balance numbers. Additionally, among the top variables included
is the industrial production of electronic components, the observed growth of which can
act as a leading indicator for growth in exports for some the electronic components; and
the San Francisco Tech Pulse, indicating the health of the IT sector, which, in addition
to explaining exports of electronic components, may also reflect the exports of computer
software. Also, the value of shipments for nondefense capital goods is often included,
which is a survey indicator, representing the shipments sent by a large part of the US
manufacturers, therefore it is natural to expect that similar tendencies can appear in the
national accounts data for exports.

Also, the results of forecasting Imports are presented in the tables E.8 and E.9 over a
rolling 12-year window. First, it can be noted that the PCA method was able to generate
both the most accurate overall nowcasts and the most accurate nowcasts during the fi-
nancial crisis period of 2008-2011, with the AdaPCA being the second best. Additionally,
the PCA method performed better than the Relaxed LASSO during the nowcasting. On
the other hand, when comparing the 1-quarter and 2-quarter forecasts all of the methods
performed similarly well, with the Square-Root LASSO being able to provide the most
accurate 1-quarter forecasts.

The results from the GW test, presented in the table E.10, suggest that with 10% sig-
nificance all of the LASSO modifications are able to produce significantly better nowcasts
than the benchmark ARMA models, with the highest significance found for the AdaPCA
method, and with p-value of 0.1 the AdaPCA is suggested to be able to generate signifi-
cantly better 1-quarter forecasts. Also, it can be noted that with 15% significance all of
the models, excluding ordinary LASSO, are able to outperform the ARMA benchmark in
1-quarter forecasts.

The monthly variables, most often selected for the modelling of Imports, are presented
in the figure 4.5. As expected, the available monthly indicators of volume of imports of
goods and services are constantly included. Again, as in the case of forecasting private
consumption or exports, with hard monthly information already available, it is important
to stress the value of accurate individual forecasting of these indicators. For example, one
way of improving the individual forecasts of imports and exports might be by forming
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Figure 4.5: Most often selected variables by the AdaptiveLASSO during the rolling window pseudo-
real-time forecasting exercise for the Imports.

(Global) VAR models, that would be able to capture the deeper underlying structures by
additionally including various domestic and international variables in the modelling.

Additionally, often selected are the indicators on the employment in the transportation
and warehousing sector, together with various producer price indices for different com-
modities used in manufacturing. Also, the indicators for unfilled orders and inventories-
to-shipments ratio for durable goods are constantly included, which are known as good
leading indicators of the health of industrial production in the country, together with
the average wage in the production sector and industrial production index – all possibly
indicating, whether the industries are slowing down, bottlenecking or working healthily.
For example, a growing amount of orders for the industry might indicate an increase in
demand for the particular capital goods, where the manufacturing needs of fulfilling those
orders may result in a future growth of imports of some of the materials used in the man-
ufacturing, or it may just indicate a healthy state of the economy and act as a business
cycle component.
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Chapter 5

Conclusions

Short-term forecasting of quarterly components of the GDP rely on the availability of
timely monthly information. In this thesis we studied the forecasting performance of the
LASSO and its popular modifications, together with our proposed modification of com-
bining LASSO with the method of principal components. This approach assumes a sparse
structure of the available information set required for adequate modelling, therefore is able
to distinguish and estimate the main important explanatory variables for the problem. The
forecasting performance was studied by conducting a pseudo-real-time forecasting exercise,
from which three main results emerge:

First, all of the LASSO methods show good forecasting performance, outperform-
ing the benchmark ARMA models. The advantages of including additional explanatory
monthly information are substantial during the crisis period of 2008-2011, where both the
nowcasts and 1- and 2-quarter forecasts in most cases provide more accurate results than
the benchmark model. Furthermore, in most cases the number of variables used by the
methods was not large, suggesting that the sparseness assumption for the data generating
process holds.

Second, in most cases the modifications of LASSO, analysed in this thesis, are able to
improve the forecasting accuracy of the LASSO, suggesting not only theoretical, but also
practical usefulness of looking into the modifications of the classic LASSO method.

Third, while the LASSO is capable of generating adequate forecasts for different
macroeconomic data, our suggested modification by combining the methodologies of
LASSO and the principal components show additional gains in forecast accuracy, sug-
gesting that there still is room for further improvement. Namely, we found evidence that
in some cases the proposed combination was able to generate more accurate forecasts
than the Adaptive LASSO or the Relaxed LASSO, which already are modifications of the
original LASSO. Therefore, further gains can be expected with additional work on these
methods. On the other hand, the studied methods never find non-linearities if they are not
included into the initial information set. More time consuming, yet interesting extension
would be to go for second/third order interaction terms between the variables or their
power transforms, which might result in further improvement of forecasting performance.

As we have seen from the results of the forecasting exercise, the usage of weights by the
Adaptive LASSO in some cases has successfully improved forecast accuracy when com-
pared with LASSO, however, the weights chosen in this thesis were rather conventional,
most often suggested in the literature. While the currently chosen weights overall gener-
ated good results, it is likely that they can be further improved by searching for other,
more suitable weights (or an algorithm for their estimation) to optimally deal with the
high-dimensionality problem.

Moreover, in this thesis, when combining the method of principal components with the
LASSO, only the standard estimation procedure of the components was discussed, where
the preselected variables are scaled before the analysis. However, Stakėnas (2012) has
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shown significant improvement when using Weighted PCA or Generalized PCA for the
extraction of factors when nowcasting Lithuanian GDP, thus suggesting possible further
improvement of the method.
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Appendix A

Graphs

A.1 Results from Monte Carlo Experiment
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Figure A.1: Density plot of root mean squared errors (RMSE) and mean absolute errors (MAE)
of the forecasts, generated by both aggregated and direct predictions, q = 80
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Figure A.2: Density plot of R-squared (R2) of the forecasts, generated by both aggregated and
direct predictions, q = 80
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A.2 Results from the pseudo-real-time experiments
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Figure A.3: Graphs illustrating all 4 of the generated forecasts during the pseudo-real-
time experiments for the Gross Fixed Capital Formation over the expanding window for
selected models, with the number of preselected variables is fixed to 30.
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Figure A.4: Graphs illustrating all 4 of the generated forecasts during the pseudo-real-time exper-
iments for Private Final Consumption Expenditure over the rolling window for best models.

51



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
● ● ●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
● ●

●

● ● ●

● ●
●

● ●

●

●
●

●
●

● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
● ● ●

●

●
●

●●
●

●

● ●
●

●
●

●

●
●

●
●

●

●

●

●

●
● ●

● ●

●
●

●

●
●

●
● ● ● ●

●
●

●

●
●

●
●

●

−0.05

0.00

0.05

2005 2010 2015
Date

Q
ua

rt
er

ly
 g

ro
w

th

● ● ● ●Backc Nowc Forec Forec2

Sqrt

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●
●

●
●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
● ● ●

●

● ●

●
●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

● ●

● ●
●

●

●
● ● ● ● ●

● ●
●

●
●

●

●

●

−0.05

0.00

0.05

2005 2010 2015
Date

Q
ua

rt
er

ly
 g

ro
w

th

● ● ● ●Backc Nowc Forec Forec2

LASSO

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●
● ●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●
●

● ● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●
●

●
● ●

●

●

●
●

●● ●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

● ● ●
●

●

● ●
●

●
●

●

●
●

−0.10

−0.05

0.00

0.05

2005 2010 2015
Date

Q
ua

rt
er

ly
 g

ro
w

th

● ● ● ●Backc Nowc Forec Forec2

Adaptive

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

● ●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

●
●

●

● ●
●

●
●

●
●

●
●

● ●
●

●

●

●

●
●

● ●
●

● ●

●

● ●
●

●

●
● ●

● ●
●

● ● ●
●

●

●

●

−0.10

−0.05

0.00

0.05

2005 2010 2015
Date

Q
ua

rt
er

ly
 g

ro
w

th

● ● ● ●Backc Nowc Forec Forec2

AdaptivePCA

Figure A.5: Graphs illustrating all 4 of the generated forecasts during the pseudo-real-time exper-
iments for Exports over the rolling window for best models.
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Figure A.6: Graphs illustrating all 4 of the generated forecasts during the pseudo-real-time exper-
iments for Imports over the rolling window for best models.
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1. Adaptive LASSO 2. LASSO 2. LASSO + PCA
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Figure A.7: The results of forecasting accuracy during the pseudo-real-time experiments over 2011-
2014 with the set of preselected variables being fixed for the whole period, and the numbers (1.)
and (2.) enumerating the different sets of variables used.
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Appendix B

Main variables used in the
modelling

Table B.1: Acronyms and full names of all of the variables, used in presenting the top preselected
variables in the pseudo-real-time experiments, together with the transformation applied and the
publication lag of the variable. Ordinary acronym corresponds to the one used in the FRED’s
database, while the addition of "IFS" denotes the source of the data being the IMF IFS database.

Acronym Transf. Lag Name
AUTHNOTT ∆ ln 1 New Privately-Owned Housing Units Authorized, but Not Started:

Total
AZNAN ∆ 1 All Employees: Total Nonfarm in Arizona
CES4244110001 ∆ ln 1 All Employees: Retail Trade: Automobile Dealers
CEU2000000001 ∆ ln 1 All Employees: Construction
CEU2023800001 ∆ ln 1 All Employees: Construction: Specialty Trade Contractors
CEU6562000001 ∆ 1 All Employees: Education and Health Services: Health Care and So-

cial Assistance
COMPU1UNSA ∆ ln 1 New Privately-Owned Housing Units Completed: 1-Unit Structures
COMPU1USA ∆ ln 1 New Privately-Owned Housing Units Completed: 1-Unit Structures
CRESTKCPIXSLTRM-
159SFRBATL

∆ ln 1 Sticky Price Consumer Price Index less Food, Energy, and Shelter

CUUR0000SEFR ∆ 1 Consumer Price Index for All Urban Consumers: Sugar and sweets
CUURA423SAH ∆ 1 Consumer Price Index for All Urban Consumers: Housing in Seattle-

Tacoma-Bremerton, WA (CMSA)
DPCCRA3M086SBEA ∆ ln 1 Real personal consumption expenditures excluding food and energy

(chain-type quantity index)
DPCERA3M086SBEA ∆ ln 1 Real personal consumption expenditures (chain-type quantity index)
DSERRA3M086SBEA ∆ ln 1 Real personal consumption expenditures: Services (chain-type quan-

tity index)
FLUR ∆ ln 1 Unemployment Rate in Florida
FRBLMCI 1 Change in Labor Market Conditions Index
HOUSTWNSA ∆ 1 Housing Starts in West Census Region
HSN1FMW ∆ ln 1 New One Family Houses Sold in Midwest Census Region
IPB54100N ∆ ln 1 Industrial Production: Construction supplies
IPDCONGD ∆ ln 1 Industrial Production: Durable Consumer Goods
IPG321N ∆ ln 1 Industrial Production: Durable manufacturing: Wood product
IPG3331N ∆ ln 1 Industrial Production: Durable Goods: Agriculture, construction,

and mining machinery
IPG3344N ∆ ln 1 Industrial Production: Durable Goods: Semiconductor and other

electronic component
IPG336212N ∆ ln 1 Industrial Production: Durable Goods: Truck trailer
KYNAN ∆ 1 All Employees: Total Nonfarm in Kentucky
KYUR ∆ ln 1 Unemployment Rate in Kentucky
LNS11300032 ∆ 1 Labor Force Participation Rate: 20 years and over, Black or African

American Women
LNS12500000 ∆ 1 Employed, Usually Work Full Time
MEURN ∆ ln 1 Unemployment Rate in Maine
MINAN ∆ 1 All Employees: Total Nonfarm in Michigan
NEUR ∆ ln 1 Unemployment Rate in Nebraska
PCOCOUSDM ∆ ln 1 Global price of Cocoa
PCU3339113339111Z4 ∆ 1 Producer Price Index by Industry: Pump and Pumping Equipment

Manufacturing: Industrial Pumps, Except Hydraulic Fluid Power
Pumps

PERMIT1NSA ∆ ln 1 New Privately-Owned Housing Units Authorized by Building Permits:
1-Unit Structures
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Table B.1: (continued)

Acronym Transf. Lag Name
PORT941NA ∆ 1 All Employees: Total Nonfarm in Portland-Vancouver-Hillsboro, OR-

WA (MSA)
RALACBM027SBOG ∆ ln 1 Residual (Assets Less Liabilities), All Commercial Banks
RIUR ∆ ln 1 Unemployment Rate in Rhode Island
SFTPINDM114SFRBSF ∆ ln 1 San Francisco Tech Pulse
SMS27334600000000026 ∆ 1 All Employees: Total Nonfarm in Minneapolis-St. Paul-Bloomington,

MN-WI (MSA)
SMU06310805000000001SA ∆ ln 1 All Employees: Information in Los Angeles-Long Beach-Anaheim, CA

(MSA)
UNDCON1USA ∆ ln 1 New Privately-Owned Housing Units Under Construction: 1-Unit

Structures
UNDCONTSA ∆ ln 1 New Privately-Owned Housing Units Under Construction: Total
USCONS ∆ ln 1 All Employees: Construction
USTRADE ∆ ln 1 All Employees: Retail Trade
VAPHCI ∆ 1 Coincident Economic Activity Index for Virginia
VAUR ∆ ln 1 Unemployment Rate in Virginia
VTUR ∆ ln 1 Unemployment Rate in Vermont
W875RX1 ∆ ln 1 Real personal income excluding current transfer receipts
WPS054321 ∆ ln 1 Producer Price Index by Commodity for Fuels and Related Products

and Power: Industrial Electric Power
WPU066 ∆ ln 1 Producer Price Index by Commodity for Chemicals and Allied Prod-

ucts: Plastic Resins and Materials
AHETPI ∆2 ln 1 Average Hourly Earnings of Production and Nonsupervisory Employ-

ees: Total Private
AZPHCI ∆2 ln 1 Coincident Economic Activity Index for Arizona
COPHCI ∆2 ln 1 Coincident Economic Activity Index for Colorado
CNP16OV ∆2 ln 1 Civilian Noninstitutional Population
MVMTD027MNFRBDAL ∆2 ln 1 Market Value of Marketable Treasury Debt
NCPHCI ∆2 1 Coincident Economic Activity Index for North Carolina
SCMFG ∆2 1 All Employees: Manufacturing in South Carolina
USPHCI ∆2 1 Coincident Economic Activity Index for the United States
USPRIV ∆2 ln 1 All Employees: Total Private Industries
WINAN ∆2 1 All Employees: Total Nonfarm in Wisconsin
WPSFD4131 ∆2 1 Producer Price Index by Commodity for Final Demand: Finished

Goods Less Foods and Energy
A33SNO ∆ ln 2 Value of Manufacturers’ New Orders for Durable Goods Industries:

Machinery
ANXAVS ∆ 2 Value of Manufacturers’ Shipments for Capital Goods: Nondefense

Capital Goods Excluding Aircraft Industries
BOPSEXP ∆ ln 2 Exports of Services, Balance of Payments Basis
BOPSIMP ∆ ln 2 Imports of Services, Balance of Payments Basis
BOPTEXP ∆ ln 2 Exports of Goods and Services, Balance of Payments Basis
BOXTVLM133S ∆ ln 2 U.S. Exports of Services - Travel
IFS_FILIBOR_1M_PA ∆ ln 2 Interest Rates, London Interbank Offer Rate, 1-Month, Percent per

Annum
IFS_FILIBOR_1Y_PA ∆ ln 2 Interest Rates, London Interbank Offer Rate, 1-Year, Percent per An-

num
IMPJP ∆ 2 U.S. Imports of Goods from Japan, Customs Basis
IMPMX ∆ ln 2 U.S. Imports of Goods from Mexico, Customs Basis
INTDSRJPM193N ∆ ln 2 Interest Rates, Discount Rate for Japan
MANC933URN ∆ ln 2 Unemployment Rate in Manchester, NH (NECTA)
S4233SM144NCEN ∆ ln 2 Merchant Wholesalers, Except Manufacturers’ Sales Branches and Of-

fices Sales: Durable Goods: Lumber and Other Construction Materi-
als Sales

U34HUO ∆ ln 2 Value of Manufacturers’ Unfilled Orders for Durable Goods Industries:
Computers and Electronic Products: Electronic Components

UMDMIS ∆ ln 2 Ratio of Manufacturers’ Total Inventories to Shipments for Durable
Goods Industries

XTEXVA01CHM657S 2 Exports: Value Goods for Switzerland
XTEXVA01JPM664N ∆ ln 2 Exports: Value Goods for Japan
XTEXVA01USM664N ∆ ln 2 Exports: Value Goods for the United States
BOERUKM ∆ ln 3 Bank of England Policy Rate in the United Kingdom
KORPROINDMISMEI ∆ ln 3 Production of Total Industry in Korea
MABMM301AUM657S 3 M3 for Australia
IFS_TMG_R_CIF_IX ∆ ln 3 Goods, Volume of Imports, Index
IFS_TXG_R_FOB_IX ∆ ln 3 Goods, Volume of Exports, US Dollars, Index
IR3TIB01PLM156N ∆ ln 3 3-Month or 90-day Rates and Yields: Interbank Rates for Poland
IRLTLT01CHM156N ∆ 3 Long-Term Government Bond Yields: 10-year: Main (Including

Benchmark) for Switzerland
SPASTT01DEM657N 3 Total Share Prices for All Shares for Germany
SPASTT01KRM661N ∆ ln 3 Total Share Prices for All Shares for the Republic of Korea
VALEXPKRM052N ∆ ln 3 Goods, Value of Exports for Republic of Korea
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Appendix C

Selected theorems, referenced in
the literature review

Assume that we are interested in modelling the data y = (y1, . . . , yn)′ and as the explana-
tory variables we are using X = (X1, . . . , Xp), where Xj = (X1j , . . . , Xnj)′. Additionally,
let’s assume that the data generating process has a linear form: E[y|X] = β1X1+. . .+βpXp,
and that all of the data is centered, therefore we can ignore the constant term in the re-
gression function.

Following Zou (2006) we require the following conditions for our data:

• Yi = Xiβ + εi, where εi ∼ i.i.d.(0, σ2), i = 1, . . . , n.

• n−1X ′X → C, where C is a positively defined matrix.

Assume that A = {1, 2, . . . , p0}, that is, the set of indices {1, . . . , p} are ordered in
such a way, that all of the significant variables are the first p0 ones from the full dataset.
Then

C =
[
C11 C12
C21 C22

]
,

where C11 is a p0 × p0 matrix.
Let’s study the LASSO estimator β̂LASSO:

β̂LASSO = arg min
β

||Y −
p∑
j=1

Xjβj ||22 + λ
p∑
j=1
|βj |, (C.1)

where λ = λn depends from the sample size n. Assume that An = {j : β̂j,LASSO 6= 0}.
Then the variable selection by the LASSO is consistent if and only if lim

n
P(An = A) = 1.

Then Knight and Fu (2000) proves that the following lemmas hold:

Lemma C.1. If λn/n→ λ0 ≥ 0, then β̂LASSO
p→ arg minV1, where

V1(u) = (u− β)′C(u− β) + λ0

p∑
j=1
|uj |

Lemma C.2. If λn/
√
n→ λ0 ≥ 0, then

√
n(β̂LASSO − β) D→ arg minV2, where

V2(u) = −2u′W + u′Cu+ λ0

p∑
j=1

[
ujsign(βj)1{βj 6=0} + |uj |1{βj=0}

]
,

where W is distributed by N (0, σ2C).
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Lemma C.2 shows that the LASSO estimator is
√
n-consistent. However, the lemma

C.1 guarantees the consistency only under the case of λ0 = 0 due to the imposed penalty.
On the other hand, if we study the asymptotics of the variable selection, lemma C.2 claims,
that when λn = O(

√
n), An cannot be equal to A with a positive probability. In other

words, the authors prove that the following proposition holds:

Proposition C.1. If λn/
√
n → λ0 ≥ 0, then lim sup

n
P(An = A) ≤ κ < 1, where κ is

some constant, dependent from the true data generating model.

Following this proposition, Zou (2006) proposes another interesting idea: let λ0 =∞,
how would then the β̂LASSO behave? Apparantly, this coincides with the case when
λn/n→ 0 and λn/

√
n→∞, where following this observation a lemma C.3 is proved, the

proof of which can be found in the cited paper.

Lemma C.3. Let λn/n→ 0 and λn/
√
n→∞, then n

λn
(β̂LASSO−β) p→ arg minV3, where

V3(u) = u′Cu+
p∑
j=1

[
ujsign(βj)1{βj 6=0} + |uj |1{βj=0}

]
.

It can be observed from the lemma C.3 that β̂LASSO converges at a slower rate than
of
√
n. Moreover, the limiting value is not random. Additionally, we can see that the

optimal rate of convergence can be achieved only when λn = O(
√
n), which in turn results

in asymptotically inconsistent variable selection. Additionally, the authors stress that even
by sacrificing some of the convergence rate of the estimates, the consistency of the variable
selection is still not guaranteed.

Theorem C.1. (Irrepresentable Condition). Let lim
n
P(An = A) = 1. Then there exists a

sign vector s = (s1, . . . , sp0)′, where sj = 1 or −1, such that the following holds:

|C21C
−1
11 s| ≤ 1, (C.2)

where the inequality is understood component-wise.

If the C.2 inequality does not hold, the resulting variable selection of the LASSO is
inconsistent. Authors claim that there are many situations in reality where the mentioned
requirement is broken, however on the average case the LASSO is able to adequatelly per-
form the variable selection. Additionally, it is noted that when the LASSO is performed on
orthogonal data, the consistency of the variable selection is guaranteed since the inequality
C.2 will always hold.
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Appendix D

Discussion on LASSO screening

In the context of this thesis it is worth highlighting the importance of the screening pro-
cedure. One of the main reasons for making LASSO method attractive for practitioners
is the ability to identify the significant explanatory variables from the whole information
set. However, when this set becomes very large (p >> n), the (analytical) solution of
the LASSO problem (1.1) is not trivial, therefore the solution is usually obtained through
various mathematical algorithms (i.e. LARS, coordinate descent and other), requiring
serious computing capabilities. For this reason, the initial problem is simplified by per-
forming screening procedure on the main information set. That is, this set is simplified by
removing the inactive set of variables, consisting of truly insignificant variables. In this
way, the mathematical algorithms are able to work with a reduced feature matrix, making
the calculations faster and more efficient.

Currently existing screening methods for LASSO may be divided into two categories:
the heuristic and the safe screening methods. Noteworthy that the heuristic screening
methods are not able to fully guarantee that their inactive set is consisting of only truly
insignificant variables. Most popular of such methods – SIS (Fan and Lv (2008)) and strong
rules (Tibshirani et al. (2012)), the former of which is based on associations between
explanatory and modelled variables, while the latter relies on the assumption that the
absolute values of the inner products between features and the residue are non-expansive
with respect to the parameter values. Wang et al. (2012) claim that this assumption does
not always hold in reality, therefore when applying heuristic screening methods in practice,
during every step of the LASSO estimation, the Karush-Kuhn-Tucker (KKT) conditions
are also checked to ensure the correctness of the solution. In case of a violation, the
screened set is weakened and the process is repeated. On the other hand, safe algorithms
can guarantee that the discarded variables are absent from the true sparse model. The
most popular safe methods are SAFE (Ghaoui et al. (2010)) and DOME (Xiang and
Ramadge (2012)), based on an estimation of the dual optimal solution of the LASSO.

The main reason why highlighting these facts is important is the fact that the current
software, developed for the efficient and fast estimation of the LASSO under large-scale
problems is using the heuristic methods due to their relative simplicity and rapid calcula-
tions. For example, according to the authors of glmnet package for R, the use of heuristic
strong method should not in reality produce inaccurate screening, even though the authors
provide an example when the method fails. In addition to this, Wang et al. (2012) propose
an even more efficient (calculation speed-wise) screening method, which is not heuristic
and guarantees accurate screening, however, it is not yet implemented in R.

For this reason, while working with large-scale data in practice it may be useful in some
cases to avoid the heuristic screening by either reducing to slower, but more accurate safe
screening procedures for the LASSO, or, for example, skipping the screening procedure by
iterating through smaller subsets, if the scale of the problem allows it.
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Appendix E

Tables

Table E.1: RMSE of models forecasts during pseudo-real-time experiments for Gross Fixed Capital
Formation, here the bolded values are the smallest ones for every row, and for every block the last
line denotes the total forecast accuracy for the full time period of 2005Q1-2014Q4.

AdaPCA15 AdaRL15 AdaPCA15X AdaPCA20 AdaRL20 AdaPCA20X AdaPCA25 AdaRL25 AdaPCA25X
Back

05-08 0.554 0.705 0.470 0.528 0.598 0.492 0.514 0.569 0.421
08-11 0.899 1.048 0.669 0.798 1.027 0.614 0.749 1.038 0.561
11-15 0.775 0.983 0.645 0.669 0.909 0.584 0.717 0.883 0.607
05-15 0.730 0.902 0.589 0.637 0.846 0.543 0.620 0.832 0.501

Now
05-08 0.821 0.832 0.918 0.799 0.776 0.827 0.746 0.791 0.765
08-11 1.608 1.525 1.522 1.510 1.523 1.386 1.520 1.550 1.477
11-15 1.147 1.170 1.148 1.128 1.183 1.136 1.125 1.175 1.159
05-15 1.200 1.195 1.191 1.150 1.191 1.112 1.133 1.199 1.137

Fore1Q
05-08 0.979 1.052 1.017 0.987 0.991 1.026 0.993 1.005 1.009
08-11 2.210 2.280 2.116 2.159 2.221 2.120 2.217 2.316 2.170
11-15 1.159 1.048 1.159 1.125 1.106 1.129 1.141 1.099 1.156
05-15 1.530 1.547 1.485 1.492 1.519 1.483 1.511 1.555 1.499

Fore2Q
05-08 1.120 1.217 1.134 1.181 1.152 1.223 1.236 1.206 1.261
08-11 2.531 2.665 2.494 2.566 2.591 2.540 2.631 2.699 2.585
11-15 1.059 1.021 1.059 1.048 1.001 1.061 1.064 1.012 1.082
05-15 1.694 1.771 1.679 1.710 1.721 1.710 1.747 1.782 1.738

E.1 Private Final Consumption Expenditure

Table E.2: RMSE of models forecasts during rolling window pseudo-real-time experiments for
Private Final Consumption Expenditure, here the bolded values are the smallest ones for every
row, and for every block the last line denotes the total forecast accuracy for the full time period
of 2005Q1-2014Q4.

Sqrt LASSO Adaptive PCA AdaPCA Relaxed ARMA
Back
05-08 0.166 0.183 0.0817 0.079 0.059 0.056 —
08-11 0.137 0.283 0.108 0.183 0.098 0.180 —
11-15 0.120 0.157 0.116 0.155 0.123 0.144 —
05-15 0.140 0.210 0.102 0.147 0.097 0.137 —

Now
05-08 0.361 0.391 0.348 0.354 0.313 0.365 0.453
08-11 0.350 0.438 0.314 0.325 0.387 0.285 0.700
11-15 0.233 0.219 0.239 0.212 0.237 0.217 0.284
05-15 0.301 0.341 0.289 0.286 0.307 0.279 0.485

Fore1Q
05-08 0.451 0.470 0.426 0.441 0.406 0.443 0.493
08-11 0.640 0.670 0.592 0.646 0.589 0.619 0.838
11-15 0.340 0.309 0.329 0.322 0.321 0.326 0.317
05-15 0.472 0.480 0.445 0.470 0.437 0.461 0.568

Fore2Q
05-08 0.503 0.519 0.474 0.478 0.429 0.481 0.532
08-11 0.783 0.804 0.761 0.776 0.753 0.768 0.970
11-15 0.365 0.343 0.366 0.352 0.362 0.358 0.326
05-15 0.556 0.563 0.540 0.546 0.526 0.544 0.652
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Table E.3: Relative (to ARMA models’) RMSE of models forecasts during rolling window pseudo-
real-time experiments for Private Final Consumption Expenditure, here the bolded values are the
smallest ones for every row, and for every block the last line denotes the total forecast accuracy
for the full time period of 2005Q1-2014Q4.

Sqrt LASSO Adaptive PCA AdaPCA Relaxed ARMA
Now
05-08 0.80 0.86 0.77 0.78 0.69 0.81 1
08-11 0.50 0.63 0.45 0.46 0.55 0.41 1
11-15 0.82 0.77 0.84 0.75 0.83 0.76 1
05-15 0.62 0.70 0.60 0.59 0.63 0.58 1

Fore1Q
05-08 0.91 0.95 0.86 0.89 0.82 0.90 1
08-11 0.76 0.80 0.71 0.77 0.70 0.74 1
11-15 1.07 0.98 1.03 1.01 1.01 1.02 1
05-15 0.83 0.85 0.78 0.83 0.77 0.81 1

Fore2Q
05-08 0.95 0.98 0.89 0.90 0.81 0.90 1
08-11 0.80 0.82 0.78 0.79 0.77 0.78 1
11-15 1.11 1.05 1.12 1.07 1.11 1.09 1
05-15 0.85 0.86 0.83 0.84 0.81 0.83 1

Table E.4: This table reports the p-value of the Giacomini-White test for equal predictive ability
with squared differences for Private Final Consumption Expenditure. The null hypothesis is that
the column model has the same forecasting performance as of the row model against a two-sided
alternative. Bolded values marks p-values smaller than 0.1.

Sqrt LASSO Adaptive PCA AdaptivePCA Relaxed ARMA
Nowcast

Sqrt - 0.43 0.68 0.53 0.16 0.13 0.068
LASSO - - 0.26 0.076 0.41 0.29 0.22
Adaptive - - - 0.9 0.36 0.61 0.082
PCA - - - - 0.32 0.77 0.05
AdaptivePCA - - - - - 0.17 0.044
Relaxed - - - - - - 0.054
ARMA - - - - - - -

1Q
Sqrt - 0.0014 0.055 0.071 0.12 0.0048 0.54
LASSO - - 0.16 0.32 0.15 0.3 0.48
Adaptive - - - 0.33 0.34 0.34 0.33
PCA - - - - 0.11 0.63 0.43
AdaptivePCA - - - - - 0.24 0.19
Relaxed - - - - - - 0.37
ARMA - - - - - - -

2Q
Sqrt - 0.33 0.35 0.19 0.09 0.036 0.7
LASSO - - 0.36 0.31 0.26 0.34 0.47
Adaptive - - - 0.87 0.15 0.23 0.67
PCA - - - - 0.21 0.21 0.68
AdaptivePCA - - - - - 0.28 0.38
Relaxed - - - - - - 0.65
ARMA - - - - - - -

E.2 Exports

Table E.5: RMSE of models forecasts during rolling window pseudo-real-time experiments for
Exports, here the bolded values are the smallest ones for every row, and for every block the last
line denotes the total forecast accuracy for the full time period of 2005Q1-2014Q4.

Sqrt LASSO Adaptive PCA AdaPCA Relaxed ARMA
Back
05-08 0.975 0.700 0.444 1.078 0.161 0.994 —
08-11 0.819 0.649 0.439 0.888 0.454 0.551 —
11-15 0.732 0.622 0.473 0.774 0.325 0.712 —
05-15 0.847 0.668 0.464 0.915 0.343 0.768 —

Now
05-08 1.431 1.405 1.267 1.590 1.335 1.721 1.632
08-11 3.099 3.392 3.020 2.587 2.562 3.018 4.259
11-15 1.057 0.966 1.044 1.264 1.087 1.149 1.073
05-15 2.041 2.166 1.967 1.887 1.768 2.089 2.698
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Table E.5: (continued)

Sqrt LASSO Adaptive PCA AdaPCA Relaxed ARMA

Fore1Q
05-08 1.462 1.380 1.392 1.490 1.400 1.471 1.584
08-11 3.743 3.478 3.901 3.843 3.880 5.153 4.337
11-15 1.043 1.030 1.088 1.054 1.136 1.013 0.950
05-15 2.387 2.233 2.460 2.452 2.462 3.137 2.735

Fore2Q
05-08 1.533 1.483 1.534 1.587 1.476 1.509 1.606
08-11 4.023 3.925 3.445 3.835 3.444 4.761 3.936
11-15 1.091 1.058 1.091 1.109 1.107 1.111 0.989
05-15 2.583 2.517 2.279 2.498 2.272 2.983 2.552

Table E.6: Relative (to ARMA models’) RMSE of models forecasts during rolling window pseudo-
real-time experiments for Exports, here the bolded values are the smallest ones for every row,
and for every block the last line denotes the total forecast accuracy for the full time period of
2005Q1-2014Q4.

Sqrt LASSO Adaptive PCA AdaPCA Relaxed ARMA
Now
05-08 0.88 0.86 0.78 0.97 0.82 1.05 1
08-11 0.73 0.80 0.71 0.61 0.60 0.71 1
11-15 0.99 0.90 0.97 1.17 1.01 1.07 1
05-15 0.76 0.80 0.73 0.70 0.66 0.77 1

Fore1Q
05-08 0.92 0.87 0.88 0.94 0.88 0.93 1
08-11 0.86 0.80 0.90 0.89 0.89 1.18 1
11-15 1.09 1.08 1.14 1.10 1.19 1.06 1
05-15 0.87 0.82 0.90 0.90 0.90 1.10 1

Fore2Q
05-08 0.95 0.92 0.96 0.99 0.92 0.94 1
08-11 1.02 0.99 0.88 0.97 0.88 1.20 1
11-15 1.10 1.06 1.10 1.12 1.12 1.12 1
05-15 1.01 0.99 0.89 0.98 0.89 1.16 1

Table E.7: This table reports the p-value of the Giacomini-White test for equal predictive ability
with squared differences for Exports. The null hypothesis is that the column model has the same
forecasting performance as of the row model against a two-sided alternative. Bolded values marks
p-values smaller than 0.15.

Sqrt LASSO Adaptive PCA AdaptivePCA Relaxed ARMA
Nowcast

Sqrt - 0.3 0.43 0.34 0.39 0.88 0.04
LASSO - - 0.29 0.34 0.23 0.88 0.11
Adaptive - - - 0.51 0.53 0.59 0.15
PCA - - - - 0.64 0.36 0.11
AdaptivePCA - - - - - 0.23 0.19
Relaxed - - - - - - 0.16
ARMA - - - - - - -

1Q
Sqrt - 0.5 0.54 0.6 0.66 0.32 0.48
LASSO - - 0.36 0.38 0.37 0.33 0.23
Adaptive - - - 0.97 0.86 0.3 0.89
PCA - - - - 1 0.34 0.73
AdaptivePCA - - - - - 0.31 0.85
Relaxed - - - - - - 0.45
ARMA - - - - - - -

2Q
Sqrt - 0.3 0.35 0.6 0.33 0.5 0.48
LASSO - - 0.42 0.12 0.39 0.45 0.38
Adaptive - - - 0.28 0.54 0.43 0.14
PCA - - - - 0.25 0.6 0.33
AdaptivePCA - - - - - 0.51 0.15
Relaxed - - - - - - 0.53
ARMA - - - - - - -

E.3 Imports
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Table E.8: RMSE of models forecasts during rolling window pseudo-real-time experiments for
Imports, here the bolded values are the smallest ones for every row, and for every block the last
line denotes the total forecast accuracy for the full time period of 2005Q1-2014Q4.

Sqrt LASSO Adaptive PCA AdaPCA Relaxed ARMA
Back
05-08 0.552 0.838 0.692 0.782 0.800 0.647 —
08-11 0.374 0.833 0.582 0.547 0.451 0.428 —
11-15 0.430 0.592 0.369 0.607 0.410 0.520 —
05-15 0.456 0.763 0.549 0.647 0.563 0.521 —

Now
05-08 1.140 1.305 1.226 1.163 1.138 1.213 1.507
08-11 2.286 2.922 2.629 2.071 2.234 2.322 5.385
11-15 1.204 1.125 1.098 1.243 1.126 1.221 1.012
05-15 1.626 1.946 1.782 1.535 1.585 1.659 3.277

Fore1Q
05-08 1.250 1.400 1.331 1.229 1.268 1.298 1.464
08-11 3.352 3.609 3.475 3.469 3.513 3.383 5.636
11-15 1.108 1.140 1.073 1.120 1.001 1.127 1.006
05-15 2.164 2.327 2.232 2.219 2.226 2.188 3.443

Fore2Q
05-08 1.235 1.378 1.288 1.304 1.255 1.243 1.503
08-11 4.215 4.280 4.247 4.297 4.214 4.165 5.358
11-15 1.036 1.048 1.056 1.007 0.990 1.051 1.052
05-15 2.636 2.690 2.661 2.684 2.628 2.611 3.335

Table E.9: Relative (to ARMA models’) RMSE of models forecasts during rolling window pseudo-
real-time experiments for Imports, here the bolded values are the smallest ones for every row,
and for every block the last line denotes the total forecast accuracy for the full time period of
2005Q1-2014Q4.

Sqrt LASSO Adaptive PCA AdaPCA Relaxed ARMA
Now
05-08 0.76 0.87 0.81 0.77 0.76 0.80 1
08-11 0.42 0.54 0.49 0.38 0.41 0.43 1
11-15 1.18 1.11 1.08 1.22 1.11 1.20 1
05-15 0.50 0.59 0.54 0.47 0.48 0.51 1

Fore1Q
05-08 0.85 0.96 0.91 0.84 0.87 0.89 1
08-11 0.59 0.64 0.62 0.62 0.62 0.6 1
11-15 1.10 1.13 1.06 1.11 0.99 1.12 1
05-15 0.63 0.68 0.65 0.64 0.65 0.64 1

Fore2Q
05-08 0.82 0.92 0.86 0.87 0.83 0.83 1
08-11 0.79 0.80 0.79 0.80 0.79 0.78 1
11-15 0.98 0.99 1.00 0.96 0.94 0.99 1
05-15 0.79 0.81 0.80 0.80 0.79 0.78 1

Table E.10: This table reports the p-value of the Giacomini-White test for equal predictive ability
with squared differences for Imports. The null hypothesis is that the column model has the same
forecasting performance as of the row model against a two-sided alternative. Bolded values marks
p-values smaller than 0.1.

Sqrt LASSO Adaptive PCA AdaptivePCA Relaxed ARMA
Nowcast

Sqrt - 0.28 0.37 0.45 0.66 0.79 0.093
LASSO - - 0.43 0.4 0.25 0.27 0.42
Adaptive - - - 0.46 0.12 0.42 0.078
PCA - - - - 0.49 0.33 0.088
AdaptivePCA - - - - - 0.31 0.06
Relaxed - - - - - - 0.099
ARMA - - - - - - -

1Q
Sqrt - 0.11 0.22 0.31 0.52 0.62 0.14
LASSO - - 0.11 0.14 0.097 0.096 0.18
Adaptive - - - 0.24 0.43 0.29 0.14
PCA - - - - 0.4 0.22 0.14
AdaptivePCA - - - - - 0.53 0.1
Relaxed - - - - - - 0.14
ARMA - - - - - - -

2Q
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Table E.10: (continued)

Nowcast Sqrt LASSO Adaptive PCA AdaptivePCA Relaxed ARMA
Sqrt - 0.26 0.14 0.51 0.37 0.6 0.21
LASSO - - 0.77 0.17 0.67 0.13 0.35
Adaptive - - - 0.18 0.15 0.15 0.32
PCA - - - - 0.65 0.48 0.2
AdaptivePCA - - - - - 0.62 0.25
Relaxed - - - - - - 0.22
ARMA - - - - - - -
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