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Introduction
MIDAS regression model was introduced by Ghysels et al. [2005]. It allows to deal
with data sampled at different time frequencies. Data of different time frequen-
cies are of general interest when amount of data generated is increasing constantly,
followed also by a greater accessibility level of it.

One of the key features of MIDAS regression is that parametric restrictions can
be imposed on original parameters. This is of huge help when higher lag orders with
more variables prevail in the model, making it possibly infeasible. Probably one of
the most common restrictions used is normalized exponential Almon polynomial.
It is quite popular in distributed lag literature and is used due to its flexibility for
shapes and low number of parameters needed to estimate.

In Andrade et al. [2013], Almon polynomial is one of the restrictions used to
forecast future inflation using different frequency variables. Also, MIDAS can be
used in a mixture with other models as well. In Engle et al. [2009] and Colacito
et al. [2009], MIDAS model is used together with GARCH or DCC models, extending
the standard ARCH model family.

In this work we apply new restriction functions that are be used to forecast
realized volatility. MIDAS regression with Almon restriction and HAR model as
introduced by Corsi [2009] are used as benchmark models. According to Müller
et al. [1997] we present restriction functions for market components that can be
complementary structures comparing to HAR model. Another approach is to use a
combination of two Gamma probability density functions as a restriction function.
It is capable to reflect more continuous separation of two market components than
HAR model.

In section 1 general MIDAS model is presented. Further in section 2 HAR model
is described, which is used to estimate realized volatility. In the same section HAR
model is linked with MIDAS. In section 3 new restriction functions are presented
which are used as alternatives for commonly used restriction functions to estimate
realized volatility. Later in section 4 it is shown that MIDAS model is capable to
recognize Gamma combination restriction function. Section 5 introduces the data
used in this thesis. Section 6 contains results and comparisons of the estimations
made with chosen restriction functions for S&P 500, Russel 2000 and Nikkei 225
indexes. Additional results for Kospi, Euro and FTSE 100 indexes can be found in
section 6.3.
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1 MIDAS
MIDAS model was introduced by Ghysels et al. [2005] to deal with data sampled
at different freqencies. Prior to MIDAS, aggregation was one of the main solutions,
which alligns low and high frequency variable to be at the same frequencies. Data
aggregation often leads to some information being lost. MIDAS represents a sim-
ple time series model that allows to use data sampled at different frequencies for
left-hand and right-hand side variables. It is especially important currently when
information gathering is improving dramatically. Important thing to mention is that
MIDAS can be both an autoregressive and non-autoregressive model, which depends
if the data in the past is of the same frequency or not.

1.1 MIDAS regression

In a most compact form, MIDAS regression can be expressed as:

α(B)yt = β(L)Txt,0 + εt, (1)

where
α(z) = 1−

p∑
j=1

αjz
j,
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(
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tmi
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tml

)T
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Here, {yt, t ∈ Z} is a univariate process observed at low frequency with B being
low frequency lag operator. {x(i)

τ , τ ∈ Z}, i = 0, . . . , k observed at higher frequency
with L being higher frequency lag operator. l denote a single order of the lag
polynomials. If some components of β(z) would be of lower order, it is easy to set
the rest of coefficients of the polynomial to zero. ith high frequency period τ can be
represent in terms of low frequency period t as τ = (t− 1)mi + j, j = 1, . . . ,mi.

Such notation of MIDAS allows to allign frequencies of left hand and right hand
side variables. Model in equation 1 can be also expressed in matrix notation. Explicit
matrix notation with several simple examples how frequencies are alligned can be
found in Ghysels et al. [2016].

1.2 Functional Restrictions

In some cases, the number of lags used for MIDAS regression can be quite high.
If there would be observations yt affected by daily values x(i)

τ of six months, 120
high-frequency lags (assuming month has 20 days and week has 5 days) would be
needed. In such case, model can easily become unfeasible, meaning that estimation
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of all parameters on the right-hand side of equation 1 of high-frequency variables
would take a lot of computational power. To bypass this issue, a sufficiently flexible
parametric estimation function with so-called hyper-parameters can be imposed on
the original parameters.

βij = fi(j, θi), j = 0, . . . , li, θi =
(
θ

(i)
1 , . . . , θ(i)

qi

)
, qi ∈ N.

Usually, number of hyper-parameters is quite low and makes it easy to estimate. It
is convenient to take βij in the following form:

βij := f(j; θi)∑li
k=0 f(k; θi)

. (2)

The advantage of such formulation is that it satisfies normalization constraint (sum
adds up to 1) and given that f(j; θ) is non-negative, equation 2 will also produce non-
negative values. Probably one of the most popular functional forms is exponential
Almon polynom. Naming is related to the “Almon lags” that are popular in the
distributed lag literature. Under Almon restriction approach, function f(j; θ) in
equation 2 is of the following form:

f(j; θ) := exp
{ q∑
i=1

θij
i

}
, (3)

where q denotes the number of parameters to be estimated and is freely chosen
by a user. Normalized exponential Almon restriction is one of the most frequent
restrictions chosen when using MIDAS. In papers Engle et al. [2009], Colacito et al.
[2009] and Andrade et al. [2013] Almon restriction is one of the main restrictions
used for estimations. It usually takes only few parameters to estimate and is capable
to reflect various possible functional shapes for parameters. In this work Almon
restriction function will be used as one of the benchmark restrictions. Examples of
different shapes of Almon restriction can be seen in figure 1.

There are other predefined functional restrictions for MIDAS regression in R
package midasr, like Beta, Gompertz, Log-Cauchy, Nakagami (all are analogues of
probability density functions). Definitions of these functional restriction forms can
be found in Ghysels et al. [2016].

2 Realized volatility
In this section, a clasical HAR model for realized volatility is described. Then it
is shown that it can be linked with MIDAS regression model. Since HAR model is
also one of the benchmark models in this work, it is good to get familiar with HAR
model fairly closely.

2.1 HAR model for realized volatility

HAR-RV (Heterogeneous Autoregressive model of Realized Volatility) model was
presented in Corsi [2009]. The idea of the model was to introduce a simple com-
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Figure 1: Possible shapes of Almon restriction function. Shapes in the figure are
normalized exponential Almon polynomials built with R function nealmon with
parameters: θ1, θ2, θ3 equal to (1; 0; -0.05), (3; 0; -0.005), (4; 0; -0.0005) and (4;
0.08; -0.005). Parameter θ1 is the scaling parameter, while θ2 and θ3 are Almon
polynomial parameters.

ponent model for conditional volatility which would be able to reproduce main
empirical features in the data, such as a very strong persistence of autocorrelations
of the square and absolute returns that last for long time periods or leptokurtic
probability density functions of return with shapes depending on the time scale,
presenting a very slow convergence to the normal distribution as time scale increase.
As it is stated in Corsi [2009], popular GARCH and stochastic volatility models are
not able to reproduce all of these features.

Standard definition of realized volatility is:

RV
(d)
t =

√√√√√M−1∑
j=0

r2
t−j·∆, (4)

where ∆ = 1d/M and rt−j·∆ = p(t− j ·∆)− p(t− (j + 1) ·∆) defines continuously
compounded ∆-frequency returns, i.e. intraday returns sampled at time interval ∆.
1d denotes full trading day with natural number M dividing it into equally spaced
intraday return series. t denotes day index and j denotes time within the day. In
this case, quantities over various time horizons are designed as normalized sums of
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one-period realized volatilities. For example, weekly realized volatility would be a
simple average of daily realized volatilities:

RV
(w)
t = 1

5
(
RV

(d)
t +RV

(d)
t−1d + · · ·+RV

(d)
t−4d

)
. (5)

RV
(m)
t would define monthly realized volatility as average of 20 daily realized volatil-

ities.
HAR-RV model itself can be written as:

RV
(d)
t+1d = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ωt+1d, (6)

where ωt+1d are measurement errors of realized volatility.

2.2 Realized volatility in MIDAS

From the first paper about MIDAS, one of primary applications that MIDAS was
used for was to forecast realized volatility. For instance, Ghysels et al. [2005] esti-
mated realized volatility from within-month daily returns as:

σ2
t+1 =

22∑
d=0

r2
t+1−d.

Another example to forecast next month’s variance was proposed by French et al.
[1987]. It is called rolling window approach which also uses within-month daily
squared returns for forecasting:

V RW
t = 22

D∑
d=0

1
D
r2
t−d,

where D is the number of days used in the estimation and multiplier 22 is for
measuring variance in monthly units.

2.3 HAR with MIDAS

It is known that MIDAS is primarily used for different frequency sampled data and
that realized volatility is one of the main subjects MIDAS is used to estimate. Since
HAR model in section 2.1 considers realized volatilities over different interval sizes
it is quite natural to link it with MIDAS regression. Recalling, that in HAR model
quantities over various time horizons are designed as normalized sums of one-period
realized volatities and assuming that a week has 5 days and a month has 20 days,
HAR model can be rewritten as a special case of MIDAS regression:

RV
(d)
t+1 = c+

19∑
j=0

βjRV
(d)
t−j + ωt+1, (7)

where

βj =


β(d) + 1

5β
(w) + 1

20β
(m), for j = 0,

1
5β

(w) + 1
20β

(m), for j = 1, . . . , 4,
1
20β

(m), for j = 5, . . . , 19.

(8)
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The latter equation is an expression of functional restriction to use in MIDAS re-
gression. The result is a three-step restriction function.

3 Selection of new functional restrictions
The main purpose of this work is to find alternative functional restrictions that could
outperform HAR and Almon in realized volatility forecasting.

3.1 Gamma restriction

As a first approach, probability density function of Gamma distribution was taken.
Gamma probability density functions was chosen due to flexibility of shapes it can
reflect. We denote Gamma density restriction function as:

f(x; γ, α, β) := γ
αβxβ−1e−xα

Γ(β) . (9)

Here x is a lag series, while α, β and γ are three parameters that need to be
estimated. γ parameter works as a scaling factor here. Few instances of Gamma
restriction function can be seen in figure 2.
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Figure 2: Various shapes of Gamma restriction function. Shapes in the figure are
built using different sets of α, β and γ parameters in equation 9.
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3.2 HAR alternatives

As proposed in HAR model in Corsi [2009], different time intervals reflect time
frames of one day, one week and one month. But these components are based
mostly on calendar periods. There could be other breakdowns of time intervals that
would reflect market components possibly better.

Another possible approach was proposed by Müller et al. [1997], which is also
mentioned in Corsi [2009] as an inspiration for building HAR model. Paper was
written for HARCH (heterogeneous ARCH) model due to asymmetric propagation
of volatility between long and short time horizons. Originally, HARCH model was
not used for realized volatility estimation, but since Corsi [2009] adjusted the model
for realized volatility estimation, in this work we use the original idea of market
components for HARCH model and apply them for MIDAS regression. Idea in
the paper is that market components could be determined by power of two natural
numbers: pm, where m determines market components. Thresholds of each market
component then are determined by pi, i = 0, . . . ,m−1. In the original paper, p and
m were chosen to be 4 and 7, respectively. That lead to 4096 lags of time series.
Depending on the frequency of time series, range of 4096 in time series can lead up to
12 weeks for 30 minutes lagged data up to 17 years for daily data. It is important to
choose numbers p and m reasonably. In this work we consider two cases: p = 3 with
m = 5 and p = 2 with m = 7. The aim is to take the number of market components
close to the one in the original HARCH model. But 8 market components on base
as 4 would lead to too many lags. One of the decisions was to take smaller amount
of market components based on smaller p number. Other structures could be taken
as well, for example, one could take only few market components, which would be
based on fairly high number p.

In figure 3 there is presented a comparison of estimated parameters for first 20
lagged variables using HAR, HAR 35 and HAR 27 as market component structures.

3.3 Gamma combination

In figure 3 interesting behaviour of estimated parameters can be seen for HAR 27

structure. It suggests a possible existence of more expressed market component
in the area between 10 - 20 lagged periods. It gave a birth to an idea to have a
smoother transition between different market components than alternatives of HAR
model. Recall Gamma restriction function 9. Main idea of this work is to show how
a combination of two Gamma restriction functions would perform against standard
HAR or Almon restrictions. Restriction function using a combination of two Gamma
density functions is defined according to formula:

f(x; θ, α1, β1, α2, β2) := θ1

(
θ2
αβ1

1 x
β1−1e−xα1

Γ(β1) + (1− θ2)α
β2
2 x

β2−1e−xα2

Γ(β2)

)
, (10)

where θ1 is a scaling parameter and θ2 is a weight distribution between two Gamma
density functions. An example of combination of two Gamma distribution functions
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Figure 3: Market component structure for different HAR approaches for first 20
lags. Solid line stands for classical HAR, dotted line stands for HAR 35 and dashed
line stands for HAR 27.

can be seen in figure 4.

4 Simulation
In this section estimation results on simulated data regarding Gamma combination
restriction function are presented. Before using Gamma combination restriction
function for real data estimation, it must be assured that MIDAS can identify the
process.

1000 simulations were made on N(0, 1) data with N(0, 0.1) residuals. Two esti-
mations were done, with correct starting values for optimization process and false
starting values for optimisation process. Restriction function to simulate the process
is exactly the same as in figure 4. As can be seen in figure 5, correct starting values
lead to good estimation results. Reading histograms from left to right and from top
to bottom represent parameters θ1, θ2, α1, β1, α2, β2 in the formula 10, respectively.
On the other hand, if false starting values for optimisation algorithm are taken, it
depends which Gamma density function of two starting values are closer to. For ex-
ample, figure 6 shows how parameters α1, β1 changed places with parameters α2, β2.
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Figure 4: Restriction function using combination of two Gamma density functions.

But this is reasonable, since restriction function used to simulate the process took θ2

weight as 0.5. That means that switching place of Gamma density functions inside
the restriction function doesn’t change the output. But if weight θ2 would be some-
thing else than 0.5, histograms of estimation results can be somewhat misleading.
For simplicity, θ2 was taken 0.5 just for demonstrative purposes.

5 Data

All the estimations and tests made in this work are based on realized volatility
data provided by Oxford-Man Institute of Quantitative Finance1. In this paper
data used from the source is daily reaziled volatility which is built on 5-minutes
index data. At the time of estimations were done, data source contained time series
from January 3rd, 2001, up to September 22nd, 2016. Sample contained more than
4000 obervations. Realized volatilities from the source were transformed to reflect
annualized realized volatities using transformation rvt = log(100

√
252RVt), where

RVt is the initial series of realized volatilities.
1Data source can be accessed via link http://realized.oxford-man.ox.ac.uk/data/download. See

Gerd et al. [2009] for full reference.
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Figure 5: Histograms of estimated parameters. Correct starting values used for
optimisation algorithm. Original parameter values under the name of each histogram
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Figure 6: Histograms of estimated parameters. False starting values used for
optimisation algorithm. Original parameter values under the name of each histogram

There were six indexes of realized volatilities selected on which all the estima-
tions were made: S&P 500, Russel 2000, Nikkei 225, Cospi, Euro and FTSE 100.
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Indexes were chosen to reflect MIDAS performance on various markets in different
geographical locations in the world. Results for first three of them can be found
in section 6 while results for the rest can be found in section 6.3. Graphs of time
series for S&P 500, Russel 2000 and Nikkei 225 can be seen in figures 7, 8 and 9,
respectively.
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Figure 7: Realized volatility of S&P 500 index

6 Results
In this section we present some results for the functional restrictions mentioned in
sections 2.3 and 3. Just few more additional comments on the size of lags chosen
for some restrictions are mentioned.

Size of lags can be split into short and long regions. Short region consists basically
of two options, choices of 12 and 20 lags. Decision to take such lag sizes is taken
according to paper Ishida and Kvedaras [2015]. Since the source of the data used in
referenced paper is the same, there is no contradiction not to use same specifications
for restriction functions, which are 12 and 20 lags. For lag size of 12, Almon, Gamma
(as in equation 9) and Gamma combination (as in equation 10) restriction functions
are used. For lag size of 20, HAR restriction function is additionally used. For so-
called long region of lags, size of lags is determined mainly by the predefined length of
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Figure 8: Realized volatility of Russel 2000 index

HAR 27 and HAR 35, which is 128 and 243, respectively. Also, another extension of
HAR was used, to reflect daily, weekly, monthly, 3-monthly and 6-monthly market
components. Extension is straight forward from original HAR model, except it
takes 120 lags and is called HAR-HALFYEAR. For simplicity, Almon, Gamma and
Gamma combination restrictions are based on size of 128 lags to avoid too many
models being presented. There will be seen two Gamma combination models, named
GAMMA-COMB and GAMMA-COMB-2. Difference between them is the method
of the estimation of parameters. GAMMA-COMB model uses BFGS optimization
method for optim function, but has a bypass in the restriction function. It is known,
that Gamma function with negative values can produce infinite values, which lead
to exceptions during optimization algorithm with no outcome. To avoid this issue,
restriction function returns function f(x) = 1/x, in case it gets negative candidates
for parameters (x is a lag order). GAMMA-COMB-2 uses L-BFGS-B optimization
algorithm with explicitly predefined restrictions for estimated parameters, where
θ1 > 0, θ2 ∈ [0, 1] and α1, β1, α2, β2 > 0.

For each index there are three tables presented. One table with p-values of hAh
test (hAh test checks the adequacy of the MIDAS regression coefficients. Regard-
ing hAh test, more can be found in Kvedaras and Zemlys [2012]). Second table
presents AIC/BIC values for each model on different sampling sizes. While third
table presents mean squared errors of rolling forecast.
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Figure 9: Realized volatility of Nikkei 225 index

6.1 S&P 500

hAh test p-values can be found in Table 1. The majority of the models show that
MIDAS coefficients are adequate, except few models under the biggest sampling size.
Table 2 shows that both AIC/BIC criterias are more favourable for ALMON model
with lower lag order. Table 3 shows that at least one of the newly introduced
restriction functions for MIDAS regression can be better at forecasting realized
volatility regarding mean squared error (MSE). For sample sizes of 1 - 3000, in
section of high order of lags, ALMON restriction shows the worst performance of all
models.
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Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: hAh - p-value hAh - p-value hAh - p-value

ALMON(12) 0.38 0.35 0.29
GAMMA(12) 0.25 0.07 0.04

GAMMA-COMB(12) 0.18 0.47 0.15
GAMMA-COMB-2(12) 0.14 0.36 0.09

HAR 0.32 0.11 0.00
ALMON(20) 0.41 0.30 0.32
GAMMA(20) 0.60 0.34 0.00

GAMMA-COMB(20) 0.39 0.31 0.22
GAMMA-COMB-2(20) 0.40 0.21 0.22

ALMON(128) 0.37 0.09 0.03
GAMMA(128) 0.47 0.24 0.09

GAMMA-COMB(128) 0.40 0.20 0.11
GAMMA-COMB-2(128) 0.40 0.21 0.12

HAR-2to7(128) 0.46 0.40 0.15
HAR-3to5(243) 0.85 0.31 0.08

HAR-HALFYEAR 0.23 0.04 0.01

Table 1: hAh test p-values for different sample sizes of S&P 500 index. Values in
bold denote functional constraints that can be rejected as inadequate.

Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: AIC BIC AIC BIC AIC BIC

ALMON(12) 158.81 183.29 415.05 443.03 894.68 924.69
GAMMA(12) 162.65 187.13 424.97 452.94 903.57 933.58

GAMMA-COMB(12) 165.64 204.81 422.73 467.49 900.37 948.39
GAMMA-COMB-2(12) 166.91 206.07 427.94 472.69 905.78 953.80

HAR 160.99 185.43 422.47 450.42 917.05 947.04
ALMON(20) 159.46 183.89 417.48 445.44 891.88 921.88
GAMMA(20) 158.05 182.49 417.05 445.01 896.40 926.40

GAMMA-COMB(20) 162.72 201.82 420.30 465.03 896.44 944.44
GAMMA-COMB-2(20) 163.57 202.67 421.45 466.17 897.45 945.44

ALMON(128) 133.35 157.21 397.07 424.75 875.24 905.05
GAMMA(128) 129.97 153.83 388.50 416.17 867.30 897.11

GAMMA-COMB(128) 135.36 173.53 392.55 436.83 866.51 914.21
GAMMA-COMB-2(128) 136.31 174.47 393.02 437.30 866.97 914.68

HAR-2to7(128) 134.55 182.26 383.96 439.31 864.75 924.38
HAR-3to5(243) 124.88 161.92 379.72 423.49 868.79 916.16

HAR-HALFYEAR 134.35 167.81 387.10 425.87 884.70 926.46

Table 2: AIC/BIC values using different samples of S&P 500 index. Values in bold
represent best models regarding AIC/BIC for each set of different lag models.
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Out - sample: 1001 - 2000 2001 - 3000 3001 - 4000
In - sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: MSE MSE MSE

ALMON(12) 1.00000 1.00000 1.00000
GAMMA(12) 1.00384 0.99972 1.00658

GAMMA-COMB(12) 1.00230 1.00001 0.99957
GAMMA-COMB-2(12) 1.00281 0.99952 1.00009

HAR 1.00783 1.01740 1.01896
ALMON(20) 1.00000 1.00000 1.00000
GAMMA(20) 1.00320 1.00232 1.01364

GAMMA-COMB(20) 1.00444 1.00080 1.00008
GAMMA-COMB-2(20) 0.99960 1.00227 0.99927

ALMON(128) 1.00000 1.00000 1.00000
GAMMA(128) 0.99691 0.99884 0.99526

GAMMA-COMB(128) 1.00189 0.99840 0.98448
GAMMA-COMB-2(128) 0.99601 0.99868 0.98451

HAR-2to7(128) 1.00346 1.00321 0.98159
HAR-3to5(243) 1.00468 1.01063 0.98285

HAR-HALFYEAR 1.00052 1.01795 0.99818

Table 3: Relative MSE values of different samples for S&P 500 index. Values in
bold represent better MSE results comparing to the best of HAR or ALMON model
for particular set of models with same order of lags.

6.2 Russel 2000

If S&P 500 index consists mainly of large capitalization stocks, Russel 2000 index is
combined from small to medium market capitalization stocks traded at New York
Stock Exchange and is used as a most common benchmark for mutual funds.

In this work we present Russel 2000 index as an example that MIDAS regression
is not always a good choice. Table 4 shows that MIDAS regression coefficients are
adequate mainly for 1-1000 sample size only. Most of the models for higher sample
sizes show that functional constraints tend not to hold. Table 5 shows same pattern
as for S&P 500 index, AIC/BIC criterias are more favourable for new restriction
functions using higher amount of information. Table 6 with MSE values shows
somewhat controversial results. If GAMMA-COMB(20) shows better forecasting
prediction for sample size 1-1000, better forecasting errors for sample size 1-2000
for the same model could be questioned because hAh test is on the very limit to
pass adequacy of the MIDAS coefficients not to be rejected. All other models with
sample sizes 1-2000 or 1-3000 that have MSE values lower than 1 have very low
p-values for hAh test and adequacy of MIDAS coefficients doesn’t hold either.
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Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: hAh - p-value hAh - p-value hAh - p-value

ALMON(12) 0.20 0.07 0.04
GAMMA(12) 0.19 0.06 0.01

GAMMA-COMB(12) 0.25 0.01 0.01
GAMMA-COMB-2(12) 0.17 0.03 0.01

HAR 0.57 0.07 0.00
ALMON(20) 0.43 0.12 0.04
GAMMA(20) 0.44 0.12 0.03

GAMMA-COMB(20) 0.07 0.05 0.02
GAMMA-COMB-2(20) 0.25 0.05 0.02

ALMON(128) 0.12 0.00 0.00
GAMMA(128) 0.12 0.00 0.02

GAMMA-COMB(128) 0.05 0.00 0.05
GAMMA-COMB-2(128) 0.09 0.00 0.06

HAR-2to7(128) 0.06 0.00 0.04
HAR-3to5(243) 0.92 0.01 0.03

HAR-HALFYEAR 0.16 0.01 0.00

Table 4: hAh test p-values for different sample sizes of Russel 2000 index. Values
in bold denote functional constraints that can be rejected as inadequate.

Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: AIC BIC AIC BIC AIC BIC

ALMON(12) 548.98 573.46 862.53 890.50 1231.86 1261.88
GAMMA(12) 549.21 573.69 863.03 891.00 1237.00 1267.01

GAMMA-COMB(12) 554.97 594.13 869.16 913.92 1237.77 1285.79
GAMMA-COMB-2(12) 555.45 594.62 869.16 913.92 1240.00 1288.02

HAR 543.94 568.38 860.94 888.89 1246.10 1276.10
ALMON(20) 891.88 921.88 858.82 886.77 1225.44 1255.44
GAMMA(20) 545.83 570.27 858.73 886.69 1228.88 1258.88

GAMMA-COMB(20) 551.78 590.88 864.75 909.47 1232.31 1280.30
GAMMA-COMB-2(20) 551.79 590.89 864.92 909.65 1231.21 1279.20

ALMON(128) 465.75 489.60 777.47 805.15 1159.31 1189.12
GAMMA(128) 465.76 489.62 777.20 804.88 1149.71 1179.52

GAMMA-COMB(128) 470.88 509.05 783.20 827.48 1145.18 1192.88
GAMMA-COMB-2(128) 471.50 509.66 783.11 827.39 1150.07 1197.78

HAR-2to7(128) 476.58 524.29 784.48 839.83 1146.64 1206.27
HAR-3to5(243) 361.40 398.43 673.93 717.70 1051.27 1098.64

HAR-HALFYEAR 471.41 504.87 785.19 823.97 1169.64 1211.40

Table 5: AIC/BIC values using different samples of Russel 2000 index. Values in
bold represent best models regarding AIC/BIC for each set of different lag models.
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Out - sample: 1001 - 2000 2001 - 3000 3001 - 4000
In - sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: MSE MSE MSE

ALMON(12) 1.00000 1.00000 1.00000
GAMMA(12) 1.00014 1.00521 1.00661

GAMMA-COMB(12) 1.00200 1.06614 1.00077
GAMMA-COMB-2(12) 0.99875 0.99846 1.00073

HAR 1.00895 1.01935 1.01232
ALMON(20) 1.00000 1.00000 1.00000
GAMMA(20) 1.00039 1.00497 1.00971

GAMMA-COMB(20) 0.99943 0.99975 0.99920
GAMMA-COMB-2(20) 1.00022 1.00018 0.99915

ALMON(128) 1.00000 1.00000 1.00000
GAMMA(128) 1.00031 0.99138 0.98904

GAMMA-COMB(128) 1.00609 0.98444 0.97693
GAMMA-COMB-2(128) 1.00082 0.98441 0.97612

HAR-2to7(128) 1.00586 0.98303 0.97763
HAR-3to5(243) 1.01104 0.99471 0.97148

HAR-HALFYEAR 1.00494 1.00541 0.98911

Table 6: Relative MSE values of different samples for Russel 2000 index. Values in
bold represent better MSE results comparing to the best of HAR or ALMON model
for particular set of models with same order of lags.

6.3 Nikkei 225

Nikkei 225 index is a stock market index of Tokyo Stock Exchange and reflects
the performance of Japanese equities. Table 7 shows that only few models didn’t
pass hAh test of MIDAS coefficients adequacy. All except one model that failed
hAh adequacy test used sample size of 1-2000 and almost half of them are ALMON
models. There is slightly different behaviour for AIC/BIC values for Nikkei 225
index comparing to S&P 500 or Russel 2000 indexes. Table 8 shows that HAR
model is best regarding AIC/BIC at the middle section of the table. Again as for
S&P 500 and Russel 2000 indexes, AIC/BIC values for higher lag models goes for
new restriction MIDAS models. Nikkei 225 index is also interesting in sense that
better forecasting performance regarding MSE values is achieved for all high order of
lags GAMMA-COMBO and GAMMA-COMBO-2 models using all possible sample
sizes (see Table 9).
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Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: hAh - p-value hAh - p-value hAh - p-value

ALMON(12) 0.76 0.04 0.86
GAMMA(12) 0.98 0.00 0.60

GAMMA-COMB(12) 0.93 0.21 0.80
GAMMA-COMB-2(12) 0.93 0.80 0.90

HAR 0.40 0.35 0.01
ALMON(20) 0.46 0.32 0.08
GAMMA(20) 0.85 0.00 0.50

GAMMA-COMB(20) 0.79 0.82 0.72
GAMMA-COMB-2(20) 0.79 0.85 0.83

ALMON(128) 0.73 0.00 0.07
GAMMA(128) 0.80 0.65 0.66

GAMMA-COMB(128) 0.82 0.77 0.68
GAMMA-COMB-2(128) 0.83 0.77 0.73

HAR-2to7(128) 0.85 0.92 0.83
HAR-3to5(243) 0.97 0.68 0.42

HAR-HALFYEAR 0.72 0.74 0.24

Table 7: hAh test p-values for different sample sizes of Nikkei 225 index. Values
in bold denote functional constraints that can be rejected as inadequate.

Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: AIC BIC AIC BIC AIC BIC

ALMON(12) -190.48 -166.00 -120.04 -92.06 -46.54 -16.52
GAMMA(12) -191.01 -166.53 286.36 314.33 -29.50 0.52

GAMMA-COMB(12) -188.37 -149.20 -115.63 -70.87 -40.64 7.38
GAMMA-COMB-2(12) -184.22 -145.05 -114.36 -69.60 -34.04 13.98

HAR -189.61 -165.17 -132.75 -104.80 -38.73 -8.73
ALMON(20) -190.65 -166.21 -123.39 -95.43 -48.06 -18.06
GAMMA(20) -193.64 -169.20 403.95 431.90 -37.44 -7.45

GAMMA-COMB(20) -191.76 -152.66 -128.82 -84.09 -56.21 -8.22
GAMMA-COMB-2(20) -190.97 -151.87 -122.04 -77.31 -43.27 4.73

ALMON(128) -206.00 -182.15 207.18 234.85 -33.68 -3.87
GAMMA(128) -208.96 -185.11 -129.86 -102.19 -47.76 -17.95

GAMMA-COMB(128) -207.29 -169.12 -138.11 -93.83 -62.10 -14.39
GAMMA-COMB-2(128) -204.90 -166.73 -133.17 -88.89 -55.73 -8.03

HAR-2to7(128) -207.03 -159.33 -152.71 -97.36 -67.50 -7.87
HAR-3to5(243) -208.09 -171.06 -142.23 -98.46 -65.66 -18.28

HAR-HALFYEAR -205.67 -172.21 -148.43 -109.65 -53.29 -11.54

Table 8: AIC/BIC values using different samples of Nikkei 225 index. Values in
bold represent best models regarding AIC/BIC for each set of different lag models.
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Out - sample: 1001 - 2000 2001 - 3000 3001 - 4000
In - sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: MSE MSE MSE

ALMON(12) 1.00000 1.00000 1.00000
GAMMA(12) 1.00336 1.33194 1.00939

GAMMA-COMB(12) 1.00515 1.00327 0.99550
GAMMA-COMB-2(12) 0.99940 1.00155 0.99522

HAR 1.00000 1.01776 1.00000
ALMON(20) 1.00937 1.00000 1.00138
GAMMA(20) 1.01063 1.48834 1.00426

GAMMA-COMB(20) 1.00935 0.99872 0.99313
GAMMA-COMB-2(20) 1.00574 0.99453 0.99319

ALMON(128) 1.00000 1.00000 1.00000
GAMMA(128) 0.98747 0.85013 0.98373

GAMMA-COMB(128) 0.98765 0.84829 0.97269
GAMMA-COMB-2(128) 0.98037 0.84578 0.97237

HAR-2to7(128) 0.97320 0.85748 0.97377
HAR-3to5(243) 0.98046 0.85235 0.97815

HAR-HALFYEAR 0.97709 0.86449 0.97873

Table 9: Relative MSE values of different samples for Nikkei 225 index. Values in
bold represent better MSE results comparing to the best of HAR or ALMON model
for particular set of models with same order of lags.
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Summary
In this work, MIDAS regression model was used as a main tool to forecast realized
volatility. Classical HAR model and normalized exponential Almon polynomial were
used as benchmark functional restriction to compare other MIDAS models. New re-
striction functions were introduced as alternatives to HAR and Almon. Alternatives
for HAR model were chosen according to Müller et al. [1997], where different market
participants with different time horizons can be expressed as a power of two natural
numbers. Some empirical results lead to an inclusion of restriction function as a
combination of two Gamma probability density functions.

Estimation results have shown that newly proposed functional constraints quite
often show better forecasting performance regarding mean squared errors. There are
also indexes for which new restriction functions are worse or don’t fit at all, what
means that one must not choose new restriction functions blindly against classical
ones all the time.

If combination of two Gamma probability density functions is fairly easy to
understand, there are some more questions regarding decision what parameters one
need to choose for restriction function proposed by Müller et al. [1997]. More tests
could be done to clarify the decision.
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Appendix
In this section results are presented for indexes Kospi, Euro and FTSE 100. Same
output is provided as for indexes S&P 500, Russel 2000 and Nikkei 225.

Kospi index
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Figure 10: Realized volatility of Kospi index
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Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: hAh - p-value hAh - p-value hAh - p-value

ALMON(12) 0.26 0.33 0.28
GAMMA(12) 0.47 0.25 0.09

GAMMA-COMB(12) 0.28 0.09 0.13
GAMMA-COMB-2(12) 0.27 0.08 0.12

HAR 0.89 0.08 0.00
ALMON(20) 0.43 0.32 0.19
GAMMA(20) 0.59 0.09 0.04

GAMMA-COMB(20) 0.55 0.30 0.26
GAMMA-COMB-2(20) 0.41 0.41 0.21

ALMON(128) 0.92 0.54 0.01
GAMMA(128) 0.93 0.71 0.13

GAMMA-COMB(128) 0.91 0.85 0.24
GAMMA-COMB-2(128) 0.90 0.82 0.26

HAR-2to7(128) 0.94 0.84 0.17
HAR-3to5(243) 0.98 0.66 0.27

HAR-HALFYEAR 0.94 0.79 0.01

Table 10: hAh test p-values for different sample size of Kospi index. Values in
bold denote functional constraints that can be rejected.

Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: AIC BIC AIC BIC AIC BIC

ALMON(12) -135.24 -110.76 -287.02 -259.05 -247.91 -217.90
GAMMA(12) -135.11 -110.63 -280.13 -252.16 -230.97 -200.96

GAMMA-COMB(12) -131.95 -92.79 -280.31 -229.85 -242.58 -194.56
GAMMA-COMB-2(12) -129.06 -89.89 -279.11 -234.35 -240.93 -192.91

HAR -140.16 -115.72 -286.73 -258.78 -229.69 -199.69
ALMON(20) -132.89 -108.45 -293.02 -265.06 -254.04 -224.04
GAMMA(20) -132.00 -107.56 -277.71 -183.81 -230.39 -200.39

GAMMA-COMB(20) -129.37 -90.27 -286.83 -225.56 -251.23 -203.23
GAMMA-COMB-2(20) -128.95 -89.85 -284.29 -239.56 -250.86 -202.86

ALMON(128) -153.27 -129.41 -300.08 -272.41 -239.13 -209.32
GAMMA(128) -153.03 -129.18 -301.08 -273.41 -250.78 -220.97

GAMMA-COMB(128) -148.84 -110.68 -310.49 -228.74 -268.58 -220.88
GAMMA-COMB-2(128) -147.68 -109.52 -306.11 -261.83 -268.96 -221.26

HAR-2to7(128) -150.46 -102.75 -308.14 -252.79 -262.90 -203.28
HAR-3to5(243) -159.73 -122.69 -311.05 -267.28 -271.74 -224.36

HAR-HALFYEAR -153.34 -119.88 -301.36 -262.59 -238.82 -197.06

Table 11: AIC/BIC values of different samples for Kospi index. Values in bold
represent best models regarding AIC/BIC for each set of different lag models.
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Out - sample: 1001 - 2000 2001 - 3000 3001 - 4000
In - sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: MSE MSE MSE

ALMON(12) 1.00000 1.00000 1.00000
GAMMA(12) 1.00311 1.00702 1.00525

GAMMA-COMB(12) 1.00458 0.99981 0.99780
GAMMA-COMB-2(12) 1.00145 0.99891 0.99771

HAR 1.01261 1.01635 1.00000
ALMON(20) 1.00000 1.00000 1.00594
GAMMA(20) 1.00316 1.00734 1.01141

GAMMA-COMB(20) 1.02094 0.99873 1.00196
GAMMA-COMB-2(20) 1.00302 0.99891 1.00184

ALMON(128) 1.00000 1.00000 1.00000
GAMMA(128) 0.99631 0.99089 0.98031

GAMMA-COMB(128) 0.99652 0.98334 0.97026
GAMMA-COMB-2(128) 0.99502 0.98166 0.96977

HAR-2to7(128) 1.00547 0.99074 0.96294
HAR-3to5(243) 1.00327 0.98379 0.96763

HAR-HALFYEAR 1.00729 1.00272 0.96388

Table 12: Relative MSE values of different samples for Kospi index. Values in bold
represent better MSE results comparing to the best of HAR or ALMON model for
particular set of models with same order of lags.
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Euro index
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Figure 11: Realized volatility of Euro index

28



Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: hAh - p-value hAh - p-value hAh - p-value

ALMON(12) 0.01 0.00 0.00
GAMMA(12) 0.07 0.01 0.02

GAMMA-COMB(12) 0.10 0.00 0.00
GAMMA-COMB-2(12) 0.11 0.00 0.00

HAR 0.19 0.03 0.00
ALMON(20) 0.09 0.00 0.00
GAMMA(20) 0.23 0.05 0.01

GAMMA-COMB(20) 0.28 0.02 0.00
GAMMA-COMB-2(20) 0.32 0.02 0.00

ALMON(128) 0.15 0.00 0.00
GAMMA(128) 0.24 0.02 0.00

GAMMA-COMB(128) 0.32 0.02 0.00
GAMMA-COMB-2(128) 0.29 0.02 0.00

HAR-2to7(128) 0.17 0.02 0.00
HAR-3to5(243) 0.96 0.06 0.04

HAR-HALFYEAR 0.27 0.03 0.00

Table 13: hAh test p-values for different sample size of Euro index. Values in bold
denote functional constraints that can be rejected.

Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: AIC BIC AIC BIC AIC BIC

ALMON(12) 138.61 163.09 601.94 629.91 801.38 831.39
GAMMA(12) 135.31 159.79 599.83 627.80 804.90 834.90

GAMMA-COMB(12) 135.49 174.65 598.15 642.90 795.69 843.71
GAMMA-COMB-2(12) 136.83 176.00 597.60 642.36 796.87 844.89

HAR 141.02 165.46 596.58 624.54 797.21 827.21
ALMON(20) 144.34 168.78 603.79 631.74 803.66 833.66
GAMMA(20) 140.74 165.17 600.64 628.59 806.47 836.47

GAMMA-COMB(20) 144.18 183.28 610.64 655.37 798.58 846.58
GAMMA-COMB-2(20) 142.06 181.16 599.79 644.52 797.18 845.18

ALMON(128) 119.32 143.18 586.71 614.38 798.09 827.91
GAMMA(128) 114.40 138.25 572.41 600.08 777.60 807.42

GAMMA-COMB(128) 113.01 151.17 572.05 616.33 770.52 818.22
GAMMA-COMB-2(128) 116.17 154.34 573.68 617.96 771.26 818.96

HAR-2to7(128) 122.78 170.49 576.03 631.37 768.03 827.65
HAR-3to5(243) 122.21 159.24 575.18 618.95 775.62 822.99

HAR-HALFYEAR 117.68 151.14 569.32 608.09 767.56 809.31

Table 14: AIC/BIC values of different samples for Euro index. Values in bold
represent best models regarding AIC/BIC for each set of different lag models.
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Out - sample: 1001 - 2000 2001 - 3000 3001 - 4000
In - sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: MSE MSE MSE

ALMON(12) 1.00000 1.00000 1.00000
GAMMA(12) 0.99745 1.00251 0.99743

GAMMA-COMB(12) 0.99924 0.99781 1.00345
GAMMA-COMB-2(12) 0.99760 0.99857 1.00337

HAR 1.00000 1.00142 1.00832
ALMON(20) 1.00266 1.00000 1.00000
GAMMA(20) 0.99968 1.00380 1.00601

GAMMA-COMB(20) 0.99862 1.02256 1.01041
GAMMA-COMB-2(20) 1.00112 0.99988 1.00929

ALMON(128) 1.00000 1.00000 1.00000
GAMMA(128) 0.98902 0.99033 0.99713

GAMMA-COMB(128) 0.99158 0.98573 0.99980
GAMMA-COMB-2(128) 0.99031 0.98693 0.99872

HAR-2to7(128) 0.99842 0.98416 1.00329
HAR-3to5(243) 1.00002 0.99005 0.99425

HAR-HALFYEAR 0.99370 0.98861 0.99862

Table 15: Relative MSE values of different samples for Euro index. Values in bold
represent better MSE results comparing to the best of HAR or ALMON model for
particular set of models with same order of lags.
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FTSE 100 index
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Figure 12: Realized volatility of FTSE100 index
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Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: hAh - p-value hAh - p-value hAh - p-value

ALMON(12) 0.64 0.02 0.00
GAMMA(12) 0.73 0.02 0.00

GAMMA-COMB(12) 0.53 0.02 0.00
GAMMA-COMB-2(12) 0.54 0.02 0.00

HAR 0.02 0.02 0.00
ALMON(20) 0.19 0.02 0.00
GAMMA(20) 0.24 0.11 0.00

GAMMA-COMB(20) 0.12 0.05 0.00
GAMMA-COMB-2(20) 0.12 0.05 0.00

ALMON(128) 0.54 0.21 0.00
GAMMA(128) 0.64 0.08 0.01

GAMMA-COMB(128) 0.57 0.22 0.01
GAMMA-COMB-2(128) 0.57 0.16 0.01

HAR-2to7(128) 0.48 0.15 0.01
HAR-3to5(243) 0.99 0.13 0.05

HAR-HALFYEAR 0.50 0.14 0.01

Table 16: hAh test p-values for different sample size of FTSE100 index. Values in
bold denote functional constraints that can be rejected.

Sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: AIC BIC AIC BIC AIC BIC

ALMON(12) 129.11 153.59 124.41 152.38 2571.23 2601.24
GAMMA(12) 128.48 152.96 125.12 153.10 208.66 238.67

GAMMA-COMB(12) 133.21 172.38 125.64 170.40 217.79 265.81
GAMMA-COMB-2(12) 134.13 173.29 126.26 171.02 201.59 249.61

HAR 140.07 164.51 124.88 152.83 200.29 230.29
ALMON(20) 130.96 155.40 125.36 153.31 205.18 235.18
GAMMA(20) 130.16 154.59 123.45 151.41 207.02 237.02

GAMMA-COMB(20) 135.42 174.52 124.86 169.59 213.00 261.00
GAMMA-COMB-2(20) 135.71 174.81 126.12 170.85 200.91 248.91

ALMON(128) 141.85 165.71 144.66 172.33 235.56 265.38
GAMMA(128) 138.30 162.16 130.31 157.99 213.60 243.41

GAMMA-COMB(128) 143.74 181.91 129.91 174.19 206.42 254.13
GAMMA-COMB-2(128) 143.76 181.92 132.50 176.78 206.87 254.57

HAR-2to7(128) 149.43 197.14 132.39 187.73 200.72 260.35
HAR-3to5(243) 125.34 162.37 113.14 156.91 181.24 228.62

HAR-HALFYEAR 143.28 176.74 121.29 160.06 190.92 232.68

Table 17: AIC/BIC values of different samples for FTSE100 index. Values in bold
represent best models regarding AIC/BIC for each set of different lag models.
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Out - sample: 1001 - 2000 2001 - 3000 3001 - 4000
In - sample: 1 - 1000 1 - 2000 1 - 3000
Criterion: MSE MSE MSE

ALMON(12) 1.00000 1.00000 1.00000
GAMMA(12) 1.00012 1.00076 0.49997

GAMMA-COMB(12) 1.00012 0.99474 0.50022
GAMMA-COMB-2(12) 0.99762 0.99603 0.50174

HAR 1.00000 1.00000 1.00000
ALMON(20) 1.01092 1.00454 1.00008
GAMMA(20) 1.00974 1.00569 1.00435

GAMMA-COMB(20) 1.00915 1.00013 1.00531
GAMMA-COMB-2(20) 1.00765 1.00098 1.00809

ALMON(128) 1.00000 1.00000 1.00000
GAMMA(128) 0.98485 0.98957 0.99613

GAMMA-COMB(128) 0.98265 0.98092 0.99549
GAMMA-COMB-2(128) 0.98639 0.98621 0.99754

HAR-2to7(128) 0.98575 0.98092 0.99629
HAR-3to5(243) 0.99212 0.97964 1.00280

HAR-HALFYEAR 0.97745 0.97988 0.99222

Table 18: Relative MSE values of different samples for FTSE100 index. Values in
bold represent better MSE results comparing to the best of HAR or ALMON model
for particular set of models with same order of lags.
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