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Registration of Functional Data

Abstract

This paper investigates both landmark and continuous registration meth-
ods for functional data that are expected to reduce phase variation between
observations. The empirical part is dedicated to the analysis of IT system
issues within a company, which satisfies all necessary conditions of the non-
homogeneous Poisson process. Results reveal the existence of two clusters
that could be registered separately using a two-step approach. This leads
to lower variance and more precise representation of the underlying process,
compared to unregistered cases, while there are no significant changes in
pointwise probability density functions. Also, more than 95% of all data
points lies within a 2-σ range away from the mean function, while only less
than 40% of functions are fully covered with these boundaries. Moreover,
registration reduces maximum deviations from the mean functions. There-
fore, these results correspond to the existing literature and extend knowledge
about potential benefits of applied registration.

Key words: landmark registration, continuous registration, time-warping
functions, k-means clustering, non-homogeneous Poisson process.



Funkcinių duomenų registravimas

Santrauka

Šiame darbe apžvelgiami funkcinių duomenų registravimo, pagal konkrečius
taškus ar visą intervalą, metodai, kurie turėtų padėti sumažinti stebinių
tarpusavio variaciją. Empirinė dalis yra skirta IT sistemos sutrikimų dienos
metu, atitinkančių nehomogeninį Puasono procesą, tyrimui. Gauti rezul-
tatai padeda atskleisti du duomenų klasterius, kurie gali būti modeliuo-
jami atskirai, naudojantis dviejų žingsnių metodu. Tai leidžia sumažinti
duomenų variaciją bei geriau atspindi tikrąjį procesą lyginant su neregistruo-
tais stebiniais, tačiau tai neturi reikšmingos įtakos turimų duomenų skirs-
tiniui konkrečiuose taškuose. Taip pat, daugiau, nei 95% stebinių patenka į
2-σ intervalą nuo vidurkio funkcijos, nors tik mažiau, nei 40% visų funkcijų
yra pilnai padengiami šių rėžių. Taip pat, registracija sumažina maksimal-
ius skirtumus lyginant su vidurkio funkcija. Gauti rezultatai sutampa su
kitų empirinių darbų išvadomis bei padeda praplėsti žinias apie funkcinių
duomenų registracijos naudą.

Raktiniai žodžiai: registravimas pagal konkrečius taškus, registravimas
per visą intervalą, laiko deformacijos funkcijos, k-vidurkių klasterizavimas,
nehomogeniškas Puasono procesas.
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1 Introduction
Functional data analysis has long provided an opportunity to study intrin-
sically smooth processes that occur in various fields of science or everyday
situations. However, the subject receives relatively less attention compared
to the usual multivariate settings, mostly because it requires maintaining
a strict ordering on dimensions. In other words, functional processes are
usually investigated over a given time period or some specific development
phases. Despite these limitations, the area has expanded rapidly in the
recent years due to an increasing amount of available information world-
wide, which offers more options for modelling functional processes or other
unstructured data sources, such as images, sounds or shapes.

In many cases, multiple functional observations are available for the anal-
ysed period, but those are not necessarily aligned properly in terms of phase
variation. For instance, one might need to investigate maximum values
which do not occur at the exact same moment. Therefore, various regis-
tration techniques are applied in such situations so that researchers could
focus on amplitude variations only. As a result, more accurate representa-
tion of the mean value is achieved while having less noise between functional
observations.

Despite different registration methods have been introduced in the em-
pirical literature, their behaviour vastly depends on the particular problem
at hand. Hence, the main purpose of this paper is to investigate both land-
mark and continuous registration methods in situations, when there are
several clusters within a given sample. Also, this paper introduces an op-
tion to model the underlying process using its mean value and variance only,
given that there is no exact causal relationship for the occurrence of random
events.

More specifically, the case study analyses a volume of IT system issues
that occur during the day in which an arrival rate could be characterized as
the non-homogeneous Poisson process. In other words, it counts a total num-
ber of requests within each 5-minute interval that has a location-dependent
Poisson parameter. Also, data has been smoothed using Fourier basis func-
tions which reveals two large peaks in the underlying process. These are
then registered using landmark and continuous methods.

Empirical findings suggest that continuous registration leads to the largest
reduction in variance for a given sample of functions, while the result could
be improved using a two-step approach. It means that one could register all
observations, check for possible clusters and then choose a new registration
method for those distinct groups. In addition, this paper concludes that
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there are no significant changes in pointwise probability density functions
before and after the registration, as the normality is rejected in both cases.
Finally, more than 95% of all data points are within 2-σ range away from the
mean function, while less than 40% of functions are fully covered by these
boundaries. Also, maximum deviations from the mean function are reduced
using registration which gives an improved representation of the underlying
process.

The following section provides an overview of the existing literature in
this field, including some history of the functional data analysis, registration
methods and applied case studies. Then, the methodology part introduces
some mathematical notations and formulas necessary for the analysis, while
case study gives an explicit description of the available dataset. This paper is
concluded with the main empirical findings as well as provides some possible
options for further discussions in this field.

10



2 Literature Review
The following section is dedicated to the related literature, which introduces
the main ideas behind the topic of functional registration and its develop-
ment throughout the years. First, it presents functional data in general and
then focus on papers with proposed theoretical registration methods. Fi-
nally, the section is concluded with several recent examples of actual cases
studies in this field.

2.1 History of functional data analysis

Functional data analysis (FDA) is a field of statistics that considers each
element in a sample being some function. Hence, the topic is closely related
to the registration literature, because it provides a theoretical background
for data smoothing techniques, estimation of derivatives or principal com-
ponents. A general overview has been provided in Wang et al. (2016) [21],
where authors summarize the current progress in this area. Also, there is
a proposed split between the first and next generation of functional data,
where the latter is described as some complex data objects that include
shapes and images.

The term functional data analysis has been initially introduced in Ram-
say (1982) [14] and Ramsay and Dalzell (1991) [15], while the general subject
is much older and its origins could be found in Grenander (1950) [6] or Rao
(1958) [19]. According to the literature, functional data has intrinsically
infinite number of dimensions, which causes issues for both theoretical and
empirical development of this area. On the other hand, it offers various op-
portunities for more advanced data analysis given its complex nature. Also,
an increase in computational capacity has made it easier to apply these
theoretical techniques in practise over the last few decades.

An explicit review of key mathematical concepts of functional data anal-
ysis has been provided in Hsing and Eubank (2015) [8]. This incorporates
foundations for the probability theory from the perspective of random el-
ements in Hilbert spaces as well as continuous time stochastic processes.
In addition, inferential methods have been investigated in Horvath and
Kokoszka (2012) [7], where authors present different aspects of statistical
hypothesis testing for functional data settings. These include model speci-
fication, change points and functional principal component tests.

On the other hand, complicated theoretical literature might be less suit-
able for researchers with a limited statistical background. Therefore, much
less mathematical notation is used in Ramsay and Silverman (2005) [18],
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which allows introducing the topic among people, who are not directly linked
to the discipline of statistics. This is particularly important given that lots
of functional data is generated in various fields of science such as biology,
medicine, physics or economics. As a result, authors offer a review that
could build knowledge for many new empirical researches.

2.2 Review of existing registration methods

As it has been mentioned before, registration methods have some direct
dependency on functional data analysis, because it deals with situations
when phase variation exists among functional observations. In other words,
the underlying process could sometimes be represented more accurately once
the registration is applied. The idea is to manipulate domain values in order
to get a better phase alignment within a given sample of functions.

One of the main building blocks of these methods is known as land-
mark registration, which has been studied extensively in Bookstein (1991)
[1], Kneip and Gasser (1992) [10], Gasser and Kneip (1995) [3]. It allows
detecting some specific touch-points in a set of functions using both manual
and automated techniques. Despite it is a relatively straightforward task
to identify key landmarks, there might be situations when this becomes
complicated due to some unexpected functional shapes.

For this reason, an algorithm to register functional data, based on some
baseline functions rather than specific landmarks, has been proposed in
Kneip and Ramsay (2008) [11]. The main idea is that functional observa-
tions should deviate only in terms of amplitude variation and it is possible
to minimize eigenvalue of some underlying matrix [16]. In addition, authors
provide an explicit theoretical justification for functional registration, which
includes mathematical derivations for consistency as well as quantitative
separation between phase and amplitude variations.

An increasing popularity of this subject has led to a development of
several new registration techniques that are provided in both theoretical
and empirical literature. For instance, a pairwise curve synchronisation
has been introduced in Tang and Müller (2008) [20], which exploits all the
available information in given a sample in order to obtain robust estimates
for individual time-warping functions.

Other methods involve curve alignment by moments (James, 2008) [9],
self-modelling warping functions (Gervini & Gasser, 2004) [4], alignment
using dynamic time-warping (Wang & Gasser, 1997) [22] or some non-
parametric estimations (Gervini & Gasser, 2005) [5]. Despite all these
suggested methods have different theoretical justifications, the main idea
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behind functional registration is to identify the most suitable set of domain
transformations for a dataset at hand.

2.3 Applied cases studies in this field

Statistical methods described in the literature of functional data analysis are
applicable for both registered and unregistered observations, which provides
many different opportunities for data modelling. One of these situations is
presented in Račkauskas and Laukaitis (2002) [12], where authors incorpo-
rate functional autoregressive models to predict a total number of financial
transactions during some specific weekdays. Hence, it sometimes possible to
analyse financial data using a measure of intensity and then predict future
volumes with relative accuracy.

Possible applicability of functional registration methods has also been
presented in Ramsay and Silverman (2002) [17], which is later exploited with
working examples using R and MATLAB statistical packages (Ramsay &
Silverman, 2009) [16]. More specifically, authors investigate children growth
functions, yearly volumes of non-durable goods, handwriting recognition or
even the juggling process. As a result, it is possible to see opportunities
for applying registration techniques with datasets that are less frequently
analysed in the empirical literature.

Another advantage of functional registration is the opportunity to anal-
yse images or 3-dimensional objects. These situations have been presented
in Zhang et al. (2015) [23], where authors consolidate the knowledge about
both registration and usual shape analysis. So, applied cases are not limited
to observations over some time period only, but could also be considered
with other types of data as well. This definitely offers many theoretical and
empirical challenges for future researches.
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3 Methodology
The following section is dedicated to the review of relevant theories in this
field of statistics, which is later applied in the proposed case study. So,
the main focus is on both mathematical notations and definitions that are
necessary for the empirical part of this paper.

3.1 Functional data analysis techniques

Basic definitions for the functional data analysis are provided in Müller
(2005) [13], where author identifies it as a sample of random curves that
represents i.i.d realizations of an underlying stochastic process. In general,
functions are usually smooth and integrable that allows investigating their
derivatives (i.e. velocity or acceleration). More precisely:

yij = xi(tij) + εij (3.1)

where t represents some continuum (i.e. time) so that xi(t) is smooth.

Functional data analysis provides several advantages over the multivari-
ate approach, where neighbourhood and order of observations are less rele-
vant. For instance, one could easily change a position of some component
in a multivariate data vector without any effect on the further statistical
analysis, while functional process would necessarily be impacted.

In general, functional data usually consists of some high-frequency data
that represents complex underlying processes. So, the applied smoothing
techniques allow achieving generalization that is needed for the investiga-
tion of derivatives. This becomes even more complicated when functions
are representing many repeated observations (i.e. daily temperature) or
have multiple dimensions (i.e. shapes in 3D). As a result, functional prin-
cipal component analysis, clustering, time-warping and other methods are
used to reduce dimensions and achieve more reliable empirical estimates.
Further sections provide a brief summary of these techniques and their in-
terpretation.

3.1.1 Basis functions

Basis functions are invoked to model processes that are both complicated
and unpredictable [16]. The main objective is to have parameters that could
be estimated easily while maintaining a complex functional form. Despite
various methods have been proposed in the empirical literature, this paper
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emphasizes B-Spline and Fourier basis functions that are most frequently
used in similar studies.

A linear combination of basis functions φk, k = 1, ...,K could be ex-
pressed in the mathematical notation:

x(t) =

K∑
k=1

ckφk(t) = c′φ(t) (3.2)

which is called a basis function expansion with coefficients c1, c2, ..., cK .

Here, c represents a vector of K coefficients and φ is a vector of length K
that contains basis functions. However, if a sample consists of N functions
then this notation becomes:

x(t) = Cφ(t) (3.3)

where x(t) is a vector of length N incorporating functions xi(t), i =
1, ..., N while the coefficient matrix C has N rows and K columns. Also, t
is not included in the notation when one defines functions in a general sense
rather than at a specific time value.

Then, assuming functions are smooth, one could define derivatives as:

dmx(t)

dtm
= c d

mφ(t)

dtm
(3.4)

with m = 1 and m = 2 representing velocity and acceleration respec-
tively. Derivatives could reveal important dynamics of the underlying pro-
cess and are studied extensively in the related empirical literature.

Also, the selection of some particular basis functions usually depends on
a given dataset. For example, Fourier methods are more suitable for periodic
functions in which observations are equally spaces. More specifically, these
basis functions are sine and cosine pairs of growing frequency:

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), ... , sin(mωt), cos(mωt) (3.5)

where constant ω and period T has a relationship ω = 2π/T .

One the other hand, B-Spline basis functions tend to perform better
given some complex data structures and constraints in which separate poly-
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nomial segments are expected to be smooth at joins known as knots. So,
the system could then be represented as:

number of basis functions = order + number of interior knots (3.6)

where knots define a number of matching derivatives at each break point
and determine smoothness for a given sample of functions. So, a large
volume of basis functions leads to a better fit to the data, but this could
also imply overfitting. In other words, the representation of some underlying
process could deviate according to the selection of basis functions.

3.1.2 Least-squares estimates

Estimation of coefficients for basis functions is essential in order to get
smooth representation of any noisy data. For this reason, one could ap-
ply the ordinary least-squares method.

First of all, the minimization of the sum of squared errors:

SSE(x) =

n∑
j=1

[yj − x(tj)]
2 (3.7)

could be defined as a basis function expansion:

SSE(c) =

n∑
j=1

[yj −
K∑
k=1

ckφk(tj)]
2 =

n∑
j=1

[yj − φ(tj)
′c]2 (3.8)

which is based on the error model:

yj = x(tj) + εj = c′φ(t) + εj = φ′(tj)c + εj (3.9)

Suppose y is a vector (y1, ..., yn)′, ε contains the corresponding residual
values and Φ is N by K matrix with basis functions φk(tj), then:

y = Φc + ε (3.10)

so that the coefficient vector c is estimated using the least-squares:

ĉ = (Φ′Φ)−1Φ′y, (3.11)

Then, one could find a vector of fitted values using:
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ŷ = Φ(Φ′Φ)−1Φ′y (3.12)

The resulting data fit depends on a number of basis functions selected so
that a large volume will lead to lower smoothness. On the other hand, it is
possible to introduce a penalty parameter that could adjust these estimates
to find some optimal fit. This option is presented in the next section.

3.1.3 Smoothing penalties

The selection of a smoothing parameter defines curvature of the data fit.
So, this could lead to different local minimum values that might be relevant
for further registration purposes. Let, J [x] measure the roughness of x, so
that the penalized least-squares estimate becomes:

PENSSE =
n∑
j=1

[yj − x(tj)]
2 + λJ [x] (3.13)

where an increase in λ leads to more smooth data fit, while the opposite
situation reduces the total penalty.

Penalties are defined differently for both B-Spline and Fourier basis func-
tions. The first one often measures a total curvature as an integrated squared
second derivative:

J [x] =

∫
[D2x(t)]2dt (3.14)

while Fourier penalty usually is defined as harmonic acceleration operator
[18] that uses shifted sinusoidal variation as some baseline behaviour:

x(t) = c0 + a1 sinωt+ b1 cosωt (3.15)

then, if ω = 2π/T it is possible to define the differential operator as
L = ω2D + D3, given that ω2Dx + D3x for this functions is equal to zero.
As a result, an integral of this squared harmonic acceleration operator is:

J [x] =

∫
[Lx(t)]2dt (3.16)

After defining x(t) = c′φ(t) = φ′(t)c, one could use:∫
[Lx(t)]2dt =

∫
c′[Lφ(t)][Lφ(t)]′cdt = c′Rc (3.17)

17



where the penalty matrix is [R]jk =
∫

[Lφj(t)][Lφk(t)]
′dt and the penal-

ized least squares estimate for c could be defined as:

ĉ = [Φ′Φ + λR]−1Φ′y (3.18)

which corresponds to a linear smoother:

ŷ = Φ[Φ′Φ + λR]−1Φ′y = S(λ)y (3.19)

Degrees of freedom for the smoothed data are equal to a number of basis
functions K in the least-squares estimation. So, for the penalized version
it is possible to have K > n, meaning that a penalty parameter reduces
flexibility of the actual data fit. As degrees of freedom are determined by λ,
the actual measure becomes:

df(λ) = trace[S(λ)], (3.20)

S(λ) = Φ[Φ′Φ + λR]−1Φ′ (3.21)

Therefore, the smoothing parameter λ could be estimated using a method
of generalized cross validation:

GCV (λ) =

∑
(yi − xλ(ti))

2

[trace(I− S(λ))]2
(3.22)

In general, one could achieve an optimal fit using the least squares esti-
mates together with some smoothing penalty. Then, it is possible to apply
registration methods that are described in the next section.

3.2 Registration of functional data

Registration of the functional data is a pivotal part of this paper, given that
all previous steps are needed only for the initial data preparation. Despite,
there are many different options available in the empirical literature, the
main focus is on landmark and continuous registration methods. However,
the first step requires defining time-warping functions in general.

3.2.1 Time-warping functions

The main idea behind the registration process is to perform some transfor-
mation of time that is achieved using time-warping functions. However, a
formal definition has been provided in Tang and Müller (2008) [20].
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Suppose Y1, Y2, ..., Yn are n continuous curves, defined over some bounded
interval T = [0, T ]. Given that these curves are observed at discrete time
points tj , j = 1, ...,m, and observed data for each curve is (tj , yij), then one
could define a model:

yij = Yi(tj) + εij = Xi{h−1i (tj)}+ εij , tj ∈ T (3.23)

where X is a random function defined over T with independent realiza-
tions Xi, while error terms are defined as independently distributed random
noise with properties E(ε) = 0 and E(ε2) = σ2 < ∞. Then time-warping
random functions Xi could be modelled using:

Xi(t) = µ(t) + δZi(t), for t ∈ T (3.24)

where µ is some fixed function, while Zi represents independent random
trajectories. These are realizations of a process Z with E{Z(t)} = 0 and
E{Z2(t)} < ∞ for t ∈ T . Also, δ is some small constant converging to
zero together with an increasing sample size. The functions hi : T → T are
time-warping functions that measure realizations of random synchronization
function h. Hence, the internal time scale of a trajectory is defined by the
inverse mapping h−1. Also, there are several conditions that these random
time-warping functions h have to satisfy, i.e. common endpoints:

h(0) = 0, h(T ) = T (3.25)

Then, strict monotonicity, which requires to obey then fact that time
always moves forwards as well as ensures invertibilty of h functions:

h(t1) < h(t2), for 0 ≤ t1 ≤ t2 ≤ T (3.26)

Finally, an average identity, defined as:

E{h(t)} = t for t ∈ T (3.27)

In general, this is a formal definition of time-warping functions. On
the other hand, an illustrative example provided in Ramsay et al. (2008)
[16] might give some better understanding of these time transformations.
Authors investigate pubertal growth spurts for a sample of girls in which
the focus is on acceleration functions crossing zero values (Figure 1). The
goal is to align curves according to the mean point at around 11-12 years:
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Figure 1: An example of time-warping functions for growth data of girls
(Ramsay et al. (2008)) [16]

Two examples of growth acceleration curves are provided on the left-
hand-side, while their corresponding time-warping functions are presented
on the right-hand-side. In this situation, both functions would be shifted to
the left or right in order to match the dotted line at the zero crossing value
(Figure 2).

Figure 2: A full sample of registered functions (Ramsay et al. (2008)) [16]
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As a result, it would be possible to measure an extent of these growth
spurts which otherwise suffers from phase variation. On the other hand, re-
sults largely depend on the applied registration method. The example above
uses the landmark approach, but it is also possible to introduce continuous
registration as well.

3.2.2 Registration methods

Landmark registration offers a relatively straightforward approach that is
often used as the first option for the analysis. Its main objective is to detect
some specific data points for each observation (i.e. maximum, minimum,
zero-crossing, etc.) and align them to the corresponding mean value. For
instance, functions of yearly temperature could be synchronized based on a
maximum value throughout this period. As a result, these new functions
would provide a better representation of the mean function in terms of am-
plitude variation.

More specifically, one needs to select some specific points ti1, ..., tiK for
each function xi(t) and then decide on a general reference point t01, ..., t0K ,
given the constrains:

wi(0) = 0, wi(T ) = T (3.28)

so that:

wi(tij) = t0j (3.29)

Usually, it is possible to perform automated landmark registration for
each function within a pre-defined interval. However, issues could occur in
situation when the functional shape is highly inconsistent.

Continuous registration does not suffer from such issues, because it uses
information of the entire curves rather then specific landmarks. The main
idea behind this method is that registered functions are expected deviate
only in terms of amplitude, which is measured as a proportion between
registered curve x[h(t)] and target curve x0(t) over a range of t values. More
specifically, plotting values of these functions should provide a straight line
that goes through the origin. As a result, principal component analysis of
the order two matrix T(h) of integrated products of these values should
essentially detect one component, and the smallest eigenvalue close to zero:

C(h) =

[ ∫
{x0(t)}2dt

∫
x0(t)x[h(t)]dt∫

x0(t)x[h(t)]dt
∫
{x[h(t)]}2dt

]
(3.30)
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Therefore, it is necessary to estimate h so that it minimizes the lowest
eigenvalue of C(h). As a result, continuous registration tends to capture the
underlying mean function better compared to landmark registration. Also,
it is possible to use different target curves, while mean function is often
applied as a primary choice for such registration.

3.2.3 Phase and amplitude separation

A method to evaluate an impact of registration in terms of phase and am-
plitude variation has been proposed in Kneip and Ramsay (2008) [11]. The
idea is to compare actual data fit before and after registration is applied and
identify the most suitable option for a given dataset.

For instance, suppose that for a sample of N observations, xi represents
ith unregistered observation, while yi and hi are registered and time-warping
functions respectively. Also, x̄ and ȳ indicate some mean values. Hence, the
total mean square error could be defined as follows:

MSEtotal = N−1
N∑
i=1

∫
[xi(t)− x̄(t)]2dt (3.31)

In order to quantify the amount of separation between phase and ampli-
tude variation, one needs to define a constant CR, which indicates covaria-
tion between deformed Dhi and squared registered functions y2i :

CR = 1 +
N−1

∑N
i

∫
[Dhi(t)−N−1

∑N
i Dhi(t)][y

2
i −N−1

∑N
i y

2
i (t)]dt

N−1
∑N

i

∫
y2i (t)dt

(3.32)
So, mean square errors for both amplitude and phase variations could

be separated using formulas:

MSEamp = CRN
−1

N∑
i=1

∫
[yi(t)− ȳ(t)]2dt (3.33)

MSEphase = CR

∫
ȳ2(t)dt−

∫
x̄2(t)dt (3.34)

which leads to a general definition:

MSEtotal = MSEamp +MSEphase (3.35)
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and

R2 =
MSEphase
MSEtotal

(3.36)

In general, a value of MSEphase represents the amount of phase varia-
tion that is reduced by the applied registration method. Therefore, higher
R2 number suggests a better fit for the unregistered data and should be
considered for the actual registration. Also, it is possible to have MSEphase
as a negative value, which means that the selected registration method does
not improve the fit. Hence, it might be an indicator for overfitting the data
as well as allow comparing different registration options.

3.3 Descriptive statistics for functional data

Functional data analysis has similar descriptive statistics compared to mul-
tivariate cases. So, one could easily calculate a value of the mean function:

x̄(t) = N−1
N∑
i=1

xi(t) (3.37)

as well as functional variance:

s(t) = (N − 1)−1
N∑
i=1

[xi(t)− x̄(t)]2 (3.38)

On the other hand, it is sometimes more valuable to study covariance
between different points rather than specific t values. Hence, bivariate co-
variance function σ(s, t) is estimated by:

v(s, t) = (N − 1)−1
N∑
i=1

[xi(s)− x̄(s)][xi(t)− x̄(t)] (3.39)

where xi(s) and xi(t) are curve values at s and t respectively. Result-
ing estimates correspond to the variance-covariance surface which identifies
areas with the largest deviations within a given sample of observations.

The vast majority of these theoretical concepts have been incorporated in
the empirical part of this paper. Hence, the following two sections includes
a description of a given dataset and actual results based on the functional
registration techniques.
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4 Case Study

4.1 Description of the available dataset

The next section describes an available dataset and its preparation for the
analysis. This involves splitting and summarizing records, exclusion of week-
ends or public holidays, data smoothing and registration. Also, the main
graphs with descriptive statistics, including mean functions and variance-
covariance surfaces, are provided at the end of this paper (Appendix C).

4.1.1 Data collection process

The case study investigates a volume of IT system issues that occurred
during a period of fifteen weeks (Figure 3). Data has been provided by
a real company, which monitors its performance from the perspective of
information technologies. More specifically, raw data file contains records
as dates, specifying an exact time of the event, which are then split into
5 minute intervals. Hence, this corresponds to an intensity measure of the
non-homogeneous Poisson process (Appendix D). On other hand, interesting
patters are revealed only after smoothing procedures have been applied to
this data using Fourier basis functions.

Figure 3: A number of daily requests during the period of fifteen weeks

Applied data smoothing indicates two large peaks during usual working
hours, while significantly lower activity is observed at night or the lunch
time. Also, weekends and public holidays have been excluded from the
analysis, because there are almost no requests during these days. Moreover,
one hour is added to a half of dates due to an official time shift change in
the region. Hence, this provides a more natural alignment of the underly-
ing process that could otherwise bias the registration procedure. So, the
final dataset consists of 71 functions (working days) suitable for the further
analysis.
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4.1.2 Applied smoothing techniques

All daily observations have been smoothed using 65 Fourier basis functions
together with some penalty parameter. So, resulting values show the inten-
sity of events that occurred during the last 24 hours (Figure 4).

(a) Non-smoothed (b) Smoothed

Figure 4: A volume of daily observations divided into 5-minute intervals

In general, one could argue that daily activity increases starting from 7
a.m. (85th interval) and then drops at around 3 p.m. (180th interval), while
other periods have a much lower volume of IT issues. Hence, the primary
goal of this paper is to correctly capture those active periods, especially peak
values, and their deviations from the mean function.

Also, the generalized cross-validation method has been used in order
to estimate a smoothing parameter λ. It determines a roughness of the
analysed sample of functions and could distort the registration process if
selected inappropriately.

Figure 5: Estimated λ values using the generalized cross-validation method
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According to the graph, λ = 12, 000 provides the best fit to the under-
lying data and is used for the analysis (Figure 5).

4.1.3 Comparison of registered functions

Both landmark and continuous registration methods have been applied to
the event data after the initial pre-processing steps (Figure 6). Hence,
the landmark registration approach leads to a relatively strict alignment
of curves for both maximums that are set exactly to their mean values. Un-
fortunately, several functions are not captured properly, especially during
the second peak.

(a) Landmark (b) Continuous

Figure 6: Comparison of the two registration methods

On the other hand, the continuous registration approach does not pos-
sess these limitations and provides a better alignment for the second half
of the day. One could see an exact quantitative comparison between the
two methods in terms of amplitude and phase separation (Table 1), while
the difference is relatively small in absolute terms. Also, it might be in-
teresting to check actual time-warping functions which are available at the
end of this paper (Appendix E). Hence, it is possible to conclude that the
provided synchronization is not so significant compared to the example in
the methodology section. This is because unregistered peaks are relatively
close to each other and phase variation is rather small. More formally, this
is measured by the R2 value in the table below. On the other hand, regis-
tration is still relevant in this case, because it allows reducing variation in a
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given sample and leads to an improved representation of the mean function.

Table 1: Phase and amplitude separation for the [85th − 180th] interval

Measure Landmark Continuous
MSEphase 18.60 36.10

MSEamplitude 230.54 205.73
MSEtotal 249.14 241.83

R2 0.075 0.149
C 0.981 1.001

All previous proposals are supported with estimated MSEtotal values,
meaning that continuous registration leads to a better alignment of all sam-
ple functions. Moreover, landmark registration reduces phase variation less
during the active period when compared to unregistered cases. Therefore,
continuous registration is selected as a primary option for the further anal-
ysis. In addition, detailed mathematical definitions for this approach have
already been provided in the methodology section.
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5 Results
This section provides an overview of the main empirical findings with an em-
phasis on benefits for using functional registration. Also, it offers a method
to analyse a given dataset that does not have any underlying causal rela-
tionship for further modelling.

5.1 Clustering

First of all, functional observations have been clustered into two groups
based on their maximum values. Therefore, it allows separating functions
that have a large volume of daily requests from those with a relatively lower
intensity. Also, these observations have different probability density func-
tions and such separation could improve actual representation of the under-
lying process. More specifically, the k-means method has been applied for
clustering:

J(V ) =

k∑
j=1

n∑
i=1

||x(j)i − vj ||
2 (5.1)

where ||x(j)i − vj || is the Euclidean distance between xi and vj , n is a
number of data points in ith cluster, and k counts centres. As two centroids
have been chosen for clustering, there is an evident distinction between
Mondays and the rest of weekdays (Figure 7).

Figure 7: K-mean clustering plot (K=2)
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This separation reveals that a vast majority of Mondays are included in
the first cluster together with several days after public holidays (Table 2).
Hence, it is likely that people are prone to raise more requests to the system
after some longer periods without an access.

Table 2: Results of k-means clustering by weekdays

Cluster Mon Tue Wed Thu Fri
Group 1 10 3 1 1 0
Group 2 2 12 14 14 14

However, these results do not necessarily imply a statistically significant
difference, which could be tested using permutations t-test:

T (t) =
|x̄1(t)− x̄2(t)|√

1
n1
V ar[x1(t)] + 1

n2
V ar[x2(t)]

(5.2)

The idea is to re-sample observations 200 times and then calculate point-
wise t-test values (Figure 8).

Figure 8: Permutations t-test

Results provide a strong proposition that the request volume is more
intense on Mondays compared to the rest of weekdays. So, it is reasonable to
register observations within these two clusters separately and then compare
it to the initial estimates.
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5.2 Two-step registration

Given the existence of two distinct groups of functions, one might expect
that application of different registration methods could lead to more accurate
estimates for both mean and variance. So, there is an option is to calculate
integrated mean-squared-errors for these functions separately and choose
method with the lowest value (Table 3):

Table 3: IMSE for different registration methods

Registration Mondays (IMSE) Rest (IMSE)
Unregistered 237.00 161.34
Landmark 304.63 150.27
Continuous 158.34 104.09
Two-step 148.95 101.07

As a result, both continuous registration methods tend to provide the
most appropriate fit for a given set of observations, while the two-step ap-
proach is slightly more accurate and should be chosen over the usual method.
So, an improved alignment of functional data suggests considering cluster
analysis before the actual modelling.

(a) Mondays (b) Rest

Figure 9: Pointwise variation for different registration methods
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In addition, landmark registration performs relatively worse, especially
within a sample of Monday functions. The method suffers in terms of accu-
racy due to some unusual shapes around the second peak, which sometimes
have more than one intense shock. So, it becomes difficult to properly cap-
ture the behaviour of these functions during the second half of the day, while
continuous registration does not encounter such issues and has the overall
lowest IMSE value for both groups. On the other hand, this is a likely
conclusion given that continuous registration uses a mean function from the
landmark approach as some baseline value.

Estimates of pointwise variances provide another useful way to compare
different registration methods. Also, it corresponds to the previous conclu-
sions that continuous method is the most suitable option for the dataset at
hand. The idea is that registration should reduce phase variations and im-
prove calculations of the mean function (Figure 9). So, one could compare
these estimates with unregistered cases and decide if registration is actually
needed for these observations.

In conclusion, both continuous registration methods (blue/purple) are
rather similar, and they both outperform the landmark registration (green).
Also, these empirical findings correspond to the previous IMSE estimates
and indicate specific intervals when registration fails to reduce variance for
the second peak.

5.3 Probability density functions

After the most suitable registration method is chosen, it is interesting to
analyse changes in pointwise probability density functions. The main goal
is to investigate if there are any significant shifts that could lead to some well-
known distributions, which are modelled using mean and variance. However,
it is not possible to investigate functions as an entity, so it is necessary to
pre-select some specific points that could be analysed further.

Despite two-step registration provides more accurate alignment of sample
observations, there are no significant changes in probability density functions
for both Mondays (Figure 10) and the rest of weekdays (Figure 11). Graphs
compare unregistered functions (orange) against their registered equivalents
(purple). One could see that those differences are relatively minor, especially
during the most active period of the day.
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Figure 10: Pointwise probability density functions for Mondays

Figure 11: Pointwise probability density functions for Rest
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The hypothesis of normality has been rejected using Kolmogorov–Smirnov
test for each of these data points. Therefore, it is not possible to apply stan-
dard statistical techniques to model distribution of sample observations. On
the other hand, one might consider some non-parametric approach that con-
siders the arrangement of all data points.

5.4 Modelling an average behaviour using σ boundaries

There is a limited possibility to model the request intensity due to relatively
random nature of the underlying process. More specifically, there are no
apparent predictors that could explain this process for any given day. Hence,
the following part investigates the behaviour of sample observations when
compared to the estimated mean function. For instance, one could check an
average number of points within different σ boundaries (Figure 12):

Pr{µ(t)− kσ(t) ≤ x(t) ≤ µ(t) + kσ(t)} = p(t) (5.3)

Figure 12: Average percent of values within σ boundaries (Mondays)

Results reveal that more than 95% of all values are within 2-σ intervals
for both Mondays and the rest of weekdays, while the actual estimates could
be found at the end of this paper (Appendix A). On the other hand, this
is a generalized average value of all data points, while it is more relevant to
know if functions are within these boundaries as a whole:
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Pr{µ(t)− kσ(t) ≤ x(t) ≤ µ(t) + kσ(t), ∀ t ∈ [0;T ]} ≈

1

N

N∑
j=1

1 (µ̂(t)− kσ̂(t) ≤ xj(t) ≤ µ̂(t) + kσ̂(t), ∀ t ∈ [0;T ]) =
M

N

(5.4)

In this situation, results are less optimistic, with less then 40% of all
functions within 2-σ range. So, one would be more confident using at least
3-σ interval, because it usually covers both data points and functions. On
the other hand, Mondays indicate less variation in a given sample of obser-
vations compared to the mean function. Hence, it could be modelled using a
narrower interval while the rest of weekdays values are more unpredictable.

5.5 Density functions for maximum deviation from the mean

Another interesting option is to analyse a probability of some large outliers
compared to the mean function. More specifically, this could be represented
by the following density function:

F (a) = Pr
{

max
0≤t≤T

[
x(t)− µ(t)

]
≤ a

}
(5.5)

where a is identifies maximum deviations in terms of request volume.

Results are presented in following the graph (Figure 13), which compares
both registered (orange) and unregistered (purple) cases. Summary of these
estimations is presented at the end of this paper (Appendix B).

Figure 13: Distribution of maximum values (kernel method)
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Hence, the two-step continuous registration leads to lower maximum de-
viations from the mean function for both clusters. Empirical findings suggest
that 75% of these points are not larger than 3.41 and 5.31 for Mondays and
rest of the weekdays respectively. Also, maximum values are 4.55 and 7.09,
so one should not expect significant departures from mean functions in terms
of absolute volumes with relative confidence.

One the other hand, one might also be interested in standardized maxi-
mum deviations as well:

F (a) = Pr
{

max
0≤t≤T

[x(t)− µ(t)

σ(t)

]
≤ a

}
(5.6)

which leads to rather different results (Figure 14).

Figure 14: Distribution of standardized maximum values (kernel method)

Standardized maximum deviations from the mean function are similar
for both registered and unregistered cases. Also, values are much more
concentrated around the mean for Mondays when compared to the rest
of weekdays. In general, one might expect registered values to have lower
maximum deviations from its corresponding mean functions when compared
to unregistered cases. On the other hand, it is rather difficult to make any
conclusions about the true mean function for both clusters.
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5.6 Density functions for the L2 norm

One of the main issues with a given sample of functions is to measure their
closeness to the corresponding mean function. In other words, two-step
continuous registration should lead to a reduction of phase variation, which
then allows getting an improved mean estimate. So, there is a possibility to
evaluate these functions in the L2 space:

F (a) = Pr
{(∫ T

0
[xj(t)− µ(t)]2dt

) 1
2 ≤ a

}
(5.7)

Again, results are quite similar to both registered (orange) and unregis-
tered (purple) cases (Figure 15).

Figure 15: Distribution of values within L2 space (kernel method)

On the other hand, it is possible to conclude that functions registered
using the two step approach are more likely to be included within a specific
L2 space, because it is shifted more to the left compared to the unregistered
case. This is applicable for both Mondays and rest of weekdays.
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6 Conclusions
Functional data analysis provides various techniques to model datasets that
could be described as functional observations. The topic is gaining more
popularity due to some new sources of information available worldwide as
well as opportunity to model shapes or 3-D objects. However, there sit-
uations when functions suffer from phase variation, which does not allow
getting a clear view of the underlying process. Hence, different registration
methods could be applied in order to solve these issues and get some more
appropriate mean function.

This paper investigates a specific case study of daily IT system issues
that could be presented as the non-homogeneous Poisson process. A sam-
ple consists of 71 functional observations that have been constructed using
least-square estimates with a penalty parameter and Fourier basis functions.
Later these functions are registered using both landmark and continuous
methods. So, it is possible to show that functional registration reduces
phase variation for a given sample of observations.

Empirical findings reveal the existence of two functional clusters that
could be modelled separately. More specifically, these are Mondays and the
rest of weekdays, meaning that different volumes of requests are observed
for between those groups. Also, there are some evidence that two-step con-
tinuous registration provides even better fit to the data. Therefore, one
could use any registration method, detect clusters and then apply some dif-
ferent approach for these separate groups of functions. On the other hand,
there are no findings that would indicate any significant changes in pointwise
probability density functions.

Finally, it has been revealed that more than 95% of all data points are
within 2-σ range, while less than 40% of all functions are fully covered with
these boundaries. Hence, it might be more suitable to choose at least 3-σ
interval when modelling the actual volume of issues. In addition, registration
methods allow reducing maximum deviations from the mean function as
well as increases the inclusion of functions in the L2 space. These results
correspond to the empirical literature and provide some new options to
model functional datasets.
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A
Empirical estimates of σ boundaries

The bootstrapping procedure has been used to select a sample of functions
(200 - Mondays and 700 - Rest), while this cycle is repeated 10 times:

Table 4: σ estimates for Mondays

Sample 1-σ (P) 2-σ (P) 3-σ (P) 1-σ (F) 2-σ (F) 3-σ (F)
Set 1 66.85% 97.17% 100% 0% 40.00% 100%
Set 2 65.80% 96.40% 100% 0% 32.00% 100%
Set 3 67.46% 96.58% 100% 0% 38.50% 100%
Set 4 65.48% 96.23% 100% 0% 30.00% 100%
Set 5 66.58% 96.90% 100% 0% 38.00% 100%
Set 6 67.60% 97.11% 100% 0% 43.00% 100%
Set 7 67.11% 97.18% 100% 0% 41.00% 100%
Set 8 66.91% 96.94% 100% 0% 39.50% 100%
Set 9 67.61% 96.93% 100% 0% 40.00% 100%
Set 10 67.19% 96.63% 100% 0% 36.00% 100%

Average 66.86% 96.81% 100% 0% 37.80% 100%

Results with (P ) indicate an overall pointwise average value for each
set of observations, while (F ) estimate a percentage of functions that have
all data points within a given σ range. This has been calculated using the
two-step continuous registration method which provides the lowest variance
for the available sample of functions.
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Table 5: σ estimates for Rest

Sample 1-σ (P) 2-σ (P) 3-σ (P) 1-σ (F) 2-σ (F) 3-σ (F)
Set 1 71.16% 95.90% 99.18% 0% 34.00% 81.71%
Set 2 71.30% 95.81% 99.09% 0% 35.14% 80.29%
Set 3 71.31% 95.80% 99.10% 0% 32.14% 79.57%
Set 4 70.44% 95.35% 98.89% 0% 29.57% 76.00%
Set 5 72.12% 95.81% 99.09% 0% 35.00% 79.71%
Set 6 72.28% 96.02% 99.19% 0% 34.71% 82.57%
Set 7 71.21% 95.87% 99.14% 0% 36.43% 79.86%
Set 8 71.93% 95.96% 99.21% 0% 34.57% 82.00%
Set 9 72.07% 95.96% 99.14% 0% 34.00% 81.00%
Set 10 71.25% 95.74% 98.98% 0% 34.29% 78.00%

Average 71.51% 95.82% 99.10% 0% 33.99% 80.07%

B
Empirical estimates of maximum deviations

The following tables present the distribution of maximum deviations away
from the mean function in which the largest pointwise differences are calcu-
lated in absolute terms. A short summary of the main quartiles from the
corresponding density estimates are provided below:

Table 6: Quartiles of maximum deviations for Mondays

Quantile Unregistered Registered
Min. 0 0

1st Qu. 1.46 1.14
Median 2.92 2.28
Mean 2.92 2.28

3rd Qu. 4.38 3.41
Max. 5.85 4.55
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Table 7: Quartiles of maximum deviations for Rest

Quantile Unregistered Registered
Min. 0 0

1st Qu. 1.86 1.77
Median 3.72 3.54
Mean 3.72 3.54

3rd Qu. 5.58 5.31
Max. 7.43 7.09

C
Graphs with descriptive statistics

These graphs indicate estimated mean functions for unregistered (red) as
well as registered using landmark (green), continuous (blue) and two-step
continuous (purple) methods.

(a) Mondays (b) Rest

Figure 16: Estimated mean functions using different methods
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Variance-covariance surfaces compare unregistered observations with those
registered cases using the two-step continuous approach:

(a) Unregistered (b) Two-step registration

Figure 17: Comparison of variance-covariance surfaces for Mondays

(a) Unregistered (b) Two-step registration

Figure 18: Comparison of variance-covariance surfaces for Rest
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D
Non-homogeneous Poisson process

This section is based on a book chapter in Gallager (2012) [2], where author
provides a theoretical background for the non-homogeneous Poisson process.

First of all, the Poisson process is usually characterized using some con-
stant arrival measure λ. However, in some situations it is more reasonable
to loosen this assumption and consider a flexible arrival rate that changes
as a function of time. So, it is defined as the non-homogeneous Poisson
process with a measure λ(t), where counting process {N(t); t > 0} could be
characterized by independent increment property, when for all t ≤ 0, δ > 0,
it satisfies the following equations:

Pr
{
Ñ(t, t+ δ) = 0

}
= 1− δλ(t) + o(δ)

Pr
{
Ñ(t, t+ δ) = 1

}
= δλ(t) + o(δ)

Pr
{
Ñ(t, t+ δ) ≥ 2

}
= o(δ)

(D.1)

where Ñ(t, t+ δ) = N(t+ δ)−N(t). Hence, the property of stationary
increments is not applicable for the non-homogeneous Poisson process.

Also, one could use "shrinking Bernoulli process" as an approximation,
but first λ(t) must be bounded away from zero. Later, domain values are
divided into separate increments with length δ, which varies inversely with
λ(t), in order to maintain the probability of the arrival p = δλ(t) fixed for
any interval value. Hence, once ignoring variation in λ(t) for the moment,
it leads to:

Pr
{
Ñ
(
t, t+

p

λ(t)

)
= 0
}

= 1− p+ o(p)

Pr
{
Ñ
(
t, t+

p

λ(t)

)
= 1
}

= p+ o(p)

Pr
{
Ñ
(
t, t+

p

λ(t)

)
≥ 2
}

= o(ε)

(D.2)

It might be easier to define m(t) as:

m(t) =

∫ t

0
λ(τ)dτ (D.3)
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Let {Yi; i ≥ 1} be some sequence of independent and identically dis-
tributed (i.i.d) random variables with Pr{Yi = 1} = p and Pr{Yi = 0} =
1 − p. Then, consider a counting process {N(t); t > 0}, where Yi for each
i ≥ 1, indicates a volume of arrivals during the interval (ti−1, ti] so that ti
satisfies m(ti) = ip. Hence, N(ti) = Y1+Y2+ ...+Yi. Given that p decreases
as 2−j , each interval could be divided into the pair of increments:

Pr
{
N(t) = n

}
=

[1 + o(p)][m(t)]n exp[−m(t)]

n!
(D.4)

Also, for any interval (t, τ ] given that m̃(t, τ) =
∫ T
t λ(u)du and t = tk,

τ = ti for a set of k, i, we find:

Pr
{
Ñ(t, τ) = n

}
=

[1 + o(p)][m̃(t, τ)]n exp[−m̃(t, τ)]

n!
(D.5)

As p→ 0 in the limit, the counting process N(t); t > 0 approaches some
non-homogeneous Poisson process, providing the following theorem:

Theorem D.1 For a non-homogeneous Poisson process with some right
continuous arrival measure λ(t) bounded away from zero, the distribution
of Ñ(t, τ), the number of arrivals in (t, τ ], satisfies:

Pr
{
Ñ(t, τ) = n

}
=
m̃(t, τ)]n exp[−m̃(t, τ)]

n!
(D.6)

where m̃(t, τ) =
∫ T
t λ(u)du.

In conclusion, given a non-linear time scale, one could see a homogeneous
Poisson process as its non-homogenous counterpart. For instance, if there
is a (homogeneous) Poisson process {N∗(s); s ≥ 0} with rate 1, then non-
homogeneous Poisson process could be represented as N(t) = N∗(m(t)) for
each t.
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E
Graphs with time-warping functions

The following graphs present three sample curves and their corresponding
time-warping functions using the continuous registration method. Given
that there are 71 observations available, only curves number 16, 33 and 49
have been chosen for illustration.

Figure 19: Functions before registration (left) and their corresponding time-
warping functions (right) using the continuous registration method
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