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Abstract

We study generalised prime (g-prime) systems P and g-integer systems N obtained

from them. The asymptotic distribution of g-integers is given with the assumption

that g-prime counting function πP(x) behaves as

πP(x) = bx

log x + O(xα) (x→ +∞)

for some b > 0, α ∈ (0, 1).
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Chapter 1

Introduction

1.1 Generalised Primes and Beurling Zeta Func-

tions

As usually, let s denote a complex variable with σ and t it’s real and imaginary

parts respectively. We always assume that x→∞.

A generalised prime system P is a sequence of positive reals p1, p2, . . . satisfying

1 < p1 ≤ p2 ≤ · · · ≤ pn ≤ . . .

and for which pn → ∞ as n → ∞. From these can be formed the system N of

generalised integers or Beurling integers; that is, the numbers of the form

pk1
1 p

k2
2 · · · pkmm

where m ∈ N and k1, . . . , km ∈ N0.1 This system generalises the notion of prime

numbers and the natural numbers obtained from them. Such systems (along with the

attached zeta functions) were first introduced by Beurling [1] and have been studied

by numerous authors since then (see, for instance, the papers by Fainleib [6], Hall [7],

Hilberdink and Lapidus [9], Stankus [15] and Zhang [18–20]).

First define the counting functions πP(x) and NP(x) by

πP(x) =
∑

p≤x, p∈P
1, (1.1)

NP(x) =
∑

n≤x, n∈N
1. (1.2)

1Here and henceforth N0 = N ∪ {0}.
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Here, as elsewhere in the paper, we write∑p∈P to mean a sum over all the generalised

primes, counting multiplicities. Similarly for ∑n∈N . Much of the research on this

subject has been about connecting the asymptotic behaviour of the generalised prime

counting function (1.1) and of the generalised integer counting function (1.2) as

x → ∞. Specifically, given the asymptotic behaviour of πP(x), what can be said

about the bahaviour of NP(x), and vice versa.

Many of the known results involve the associated zeta function, often referred to

as a Beurling zeta function in the literature, which we define formally by the Euler

product

ζP(s) =
∏
p∈P

1
1− p−s .

This infinite product may be formally multiplied out to give the Dirichlet series

ζP(s) =
∑
n∈N

1
ns
.

Note that when P is the set of (rational) primes, and hence N is the set of

natural numbers, ζP coincides with the classical Riemann zeta function. Further,

πP(x) (resp. NP(x)) is just the standard prime (resp. integer) counting function.

All the classical functions (whenN = N) are written without any index: ζ(s),Λ(n).

1.2 Overview of Relevant Known Results

In this section we give a summary of the known results relating the asymptotic

behaviour of πP(x) and NP(x).

The research has concentrated on finding conditions for which results of the form

NP(x) = ax+ E1(x) ⇐⇒ πP(x) = li(x) + E2(x)

hold. Here a is a positive constant, li(x) is the logarithmic integral given by

li(x) = lim
ε→0+

(∫ 1−ε

0
+
∫ x

1+ε

) dt
log t ,

and E1(x) and E2(x) are error terms of smaller order than x and li(x), respectively.

The error terms which have been studied (and seem to occur naturally) are of three

types; namely, those of the form

O
(

x

(log x)γ

)
,O

(
xe−c(log x)α

)
and O(xθ),

where γ > 1, c > 0 and α, θ ∈ (0, 1).
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• Beurling ( [1], 1937) showed that

NP(x) = ax+ O
(

x

(log x)γ

)
for some γ > 3/2 implies πP(x) ∼ x

log x,
2

which is an analogue (in this more general context) of the Prime Number

Theorem. Furthermore, he showed by example that this is false in general for

γ = 3/2. Conversely, it follows from Diamond’s work ( [4], Theorem 2) that

πP(x) = x

log x + O
(

x

(log x)1+δ

)
for some δ > 0 implies NP(x) ∼ ax.

• Nyman ( [13], 1949) showed that

NP(x) = ax+ O
(

x

(log x)A

)
(∀A) ⇐⇒ πP(x) = li(x) + O

(
x

(log x)A

)
(∀A).

• Malliavin ( [12], 1961) showed that

NP(x) = ax+ O
(
xe−c1(log x)α

)
(1.3)

for some α ∈ (0, 1) and c1 > 0, implies

πP(x) = li(x) + O
(
xe−c2(log x)β

)
(1.4)

for some c2 > 0, where β = α/10. Hall ( [8], 1971) improved this to β = α/7.91.

Conversely, Malliavin ( [12], 1961) showed that if (1.4) holds for some β ∈ (0, 1)

and c2 > 0, then (1.3) holds for some a, c1 > 0 and α = β
2+β . Diamond ( [3],

1970) improved this to α = β
1+β , and furthermore, Diamond’s result contains

log x log log x instead of log x in the exponent.

• Landau ( [10], 1903) proved that

NP(x) = ax+ O(xθ) for some θ < 1 (1.5)

implies

πP(x) = li(x) + O(xe−c
√

log x) for some c > 0.

Diamond, Montgomery and Vorhauer have recently shown (see [5]) that this

is essentially best possible by exhibiting a (discrete) system for which (1.5)

holds but

πP(x)− li(x) = Ω(xe−c′
√

log x) for some c′ > 0.3

2Here and henceforth, all such statements are implicitly assumed to be asymptotic as x→∞.

Moreover, by f(x) ∼ g(x), we mean f(x)/g(x)→ 1 as x→∞.
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• Bredikhin ( [2], 1960) proved that if

πP(x) = bx

log x +O

(
x

log1+ε x

)

for some b > 0 and ε > 0, then

NP(x) = Cx logb−1 x+O

(
x logb−1 x

(log log x)ε1

)
, (1.6)

where ε1 = min(1, ε), C > 0 is a constant.

• Hilberdink and Lapidus ( [9], 2008) showed that if

πP(x) = x

log x +O (xα)

for some α ∈ (0, 1), then there exist positive constants C and δ such that

NP(x) = Cx+O
(
xe−δ

√
log x log log x

)
. (1.7)

1.3 The Main Result

In order to state our result we need several notations and results.

We shall see below that the following definition plays a special role.

Definition 1. Let b > 0 and set the function

Z(s) = s−1((s− 1)ζ(s))b,

where Z(s) is defined on any simply connected domain which does not contain a

zero of ζ(s) and does not contain the point s = 0. We shall always suppose that this

domain includes the real half-line [1,+∞). We can then choose the principal value

of the complex logarithm, so that Z(1) = 1.

Lemma 2. The function Z(s) is holomorphic in the disc |s − 1| < 1, and can be

represented there by the Taylor series

Z(s) =
∞∑
j=0

1
j!γj(b)(s− 1)j

where the coefficients γj(b) for all ε > 0 satisfy the upper bound

1
j!γj(b)�b,ε (1 + ε)j.

3Here, f(x) = Ω(g(x)) as x → ∞ means that there exists c > 0 such that |f(x)| ≥ cg(x) for

some arbitrary large x.
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The proof can be found in [16], pp. 182.

Throughout this paper, we shall use the weighted counting function

ψP(x) =
∑

pk≤x,k∈N
log p =

∑
n≤x,n∈N

ΛP(n).

Here ΛP denotes the (generalised) von Mangoldt function, defined for n in the

multiset N by ΛP(n) = log p if n = pm for some p ∈ P and m ∈ N, and ΛP(n) = 0

otherwise. We shall also write

φP(s) = −ζ
′
P(s)
ζP(s) =

∑
n∈N

ΛP(n)
ns

.

The counting functions NP(x) and ψP(x) are related to ζP(s) and φP(s) via

ζP(s) = s
∫ ∞

1

NP(x)
xs+1 dx and φP(s) = s

∫ ∞
1

ψP(x)
xs+1 dx.

As a result, it is often more convenient to work with ψP(x), rather than πP(x). Note

that for α ∈ [1
2 , 1), b > 0, the statements

πP(x) = bx

log x + O
(
xα+ε

)
(∀ε > 0) and ψP(x) = bx+ O

(
xα+ε

)
(∀ε > 0),

are equivalent. For N = N, it is well-known that the above are equivalent to the

absence of zeros of the Riemann zeta function in the region {s ∈ C : <s > α}.

It could be that ζP(s) has no meromorphic continuation to some region to the

left of 1. Because of that we will use an auxiliary function

G(s) = ζP ζ
−b(s) (σ > 1).

Denote

R =


s ∈ C : σ ≥ max

(
1− A

(log|t|)−
2
3 (log log|t|)−

1
3
, α
)

for |t| ≥ 3,

s ∈ C : σ ≥ max
(

1− A

(log 3)−
2
3 (log log 3)−

1
3
, α
)

for |t| ≤ 3,

where α ∈ (0, 1), A is a positive constant from Lemma 11. We can assume that

A < 1.

Lemma 3. Suppose that for some α ∈ (0, 1) and b > 0, we have

ψP(x) = bx+ O(xα).

Then G(s) has an analytic continuation to the region R, which is defined above.
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The proof of this lemma is given in section 2.1.

In the region R, where G(s) is analytic, we set

λk(b) = 1
Γ(b− k)

∑
h+j=k

1
h!j!G

(h)(1)γj(b) (1.8)

where the γj(b) are the coefficients appearing in Lemma 2.

Our aim is to prove the following theorem.

Theorem 4. Let N be a positive integer, b > 0 and α ∈ (0, 1). If

πP(x) = bx

log x +O (xα)

then we have, uniformly in N ,

NP(x) = x(log x)b−1
{

N∑
k=0

λk(b)
(log x)k + O (RN(x))

}
(1.9)

with

RN(x) = e−c6
√

log x +
(
c4N + 1

log x

)N+1

.

The positive constants c4, c6 and the implicit constant in the Landau symbol depend

at most on b and α. The coefficients λk(b) are defined by formula (1.8).

We prove this theorem in section 2.2. Theorem 4 can be compared to the results

of Bredikhin (formula (1.6)) and Hilberdink and Lapidus (formula (1.7)).

Corollary 5. Let b ∈ N and α ∈ (0, 1). If

πP(x) = bx

log x +O (xα) ,

then we obtain

NP(x) = x(log x)b−1
{
P

(
1

log x

)
+ O

(
e−c6

√
log x

)}
,

where P is a polynomial of degree at most b− 1, c6 > 0 is a constant which depends

at most on b and α.

Proof. By formula (1.8) we have λk(b) = 0 whenever k ≥ b. We can hence choose

N so as to minimise the error term in (1.9). By choosing N = [(log x)/ec4] 4 in

Theorem 4, we get the desired result.

4Here we use square brackets to denote the integer part of a number.
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Chapter 2

Proofs

2.1 Auxiliary Statements

Definition 6. In the half-plane σ > 0 Gamma function Γ(s) is defined by the

integral

Γ(s) =
∫ ∞

0
e−uus−1 du.

Definition 7. Given a positive parameter r, we designate by Hankel contour the

path in the complex plane continuing from −∞ along the real line (arbitrary close,

but below it) to −r, counterclockwise around a circle of radius r at 0, back to −r on

the real line, and back to −∞ along the real line (arbitrary close, but above it). (See

Figure 2.1 below).

σr

t

0−r

Figure 2.1: Hankel contour

Lemma 8. For each x > 1, let H(x) denote the part of the Hankel contour situated
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in the half-plane σ > −x. Then we have uniformly for z ∈ C

1
2πi

∫
H(x)

s−zes ds = 1
Γ(z) + O

(
47|z| Γ(1 + |z|) e− 1

2x
)
.

The proof can be found in [16], pp. 184.

Lemma 9. (Stirling’s formula) For δ > 0 ∃ c = c(δ), such that for s ∈ {s ∈ C :

−π + δ ≤ arg s ≤ π − δ, s 6= 0},

∣∣∣log Γ(s)−
(
(s− 1/2) log s− s+ log

√
2π
)∣∣∣ < c

|s|
,

where we take the principal part of the logarithm.

For a proof see, for example [11], pp. 30.

Lemma 10. (Perron’s formula) Let

F (s) =
∞∑
n=1

ann
−s

be a Dirichlet series with abscissa of convergence σc and

A(x) =
∑
n≤x

an (x ≥ 0)

be the summatory function of its coefficients. Then for κ > max(0, σc) and x ≥ 1,

we have ∫ x

0
A(t) dt = 1

2πi

∫ κ+i∞

κ−i∞
F (s)xs+1 ds

s(s+ 1) .

For the proof see [16], pp. 134.

Lemma 11. Let A be a positive constant. The region

σ ≥ 1− A(log t)− 2
3 (log log t)− 1

3 (t ≥ 3)

is free of zeros of the function ζ(s) and in this region

1
ζ(s) � (log t) 2

3 (log log t) 1
3 (t→∞).

The proof can be found in [17], pp. 135.

Proof of Lemma 3. Denote

f(s) =
(

log ζP(s)
ζb(s)

)′
.
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Then we can write f(s) as

f(s) = ζ ′P
ζP

(s)− b ζ
′

ζ
(s) = ζ ′P

ζP
(s) + b ζ(s)−

(
b
ζ ′

ζ
(s) + b ζ(s)

)
. (2.1)

The sum in the parentheses of (2.1) is analytic in the region R. It follows because

of the following facts. The function ζ(s) is analytic in the whole plane, except

for a simple pole at s = 1, with residue 1 and ζ(s) does not have any zeros for

σ ≥ 1 − A(log|t|)− 2
3 (log log|t|)− 1

3 , |t| ≥ 3 (see Lemma 11). We also know (see [17],

pp. 389) that ζ(s) does not have any zeros in the half-plane σ > 0 with |t| ≤ 14.

Hence ζ′

ζ
(s) is analytic in the region R, except for a simple pole at s = 1 with residue

equal to −1. In the sum b ζ
′

ζ
(s) + b ζ(s) the first terms of the Laurent series of the

functions ζ(s) and ζ′

ζ
(s) cancell out, making this sum analytic in R.

Further, we write ζ′P
ζP

(s) + b ζ(s) as a Dirichlet series

ζ ′P
ζP

(s) + b ζ(s) = −
∑
n∈N

ΛP(n)
ns

+
∑
n∈N

b

ns
=

∑
n∈N∪N

an
ns

(σ > 1),

where

an =



−Λp(n) , if n ∈ N , n 6= N

b , if n ∈ N, n 6= N

b− Λp(n) , if n ∈ N ∩ N.

Thus, from the lemma’s assumption ψP(x) = ∑
n≤x
n∈N

ΛP(n) = bx + O(xα) and the

fact that ∑n≤x
n∈N

1 = x+ O(1), we have

∑
n≤x

n∈N∪N

an =
∑
n≤x
n∈N

b−
∑
n≤x
n∈N

ΛP(n) = O(xα).

Using this result and applying Abel summmation
∑

n∈N∪N

an
ns

= −s O
(∫ ∞

1

xα

xσ+1 dx
)
.

Since the latter integral converges in the half-plane σ > α, the function ζ′P
ζP

(s)+b ζ(s)

is analytic in this region. Hence,

f(s) = ζ ′P
ζP

(s) + b ζ(s)−
(
b
ζ ′

ζ
(s) + b ζ(s)

)

is analytic in the region R.

Therefore, the function

G(s) = ζP(s)
ζb(s) = exp

(∫ s

2
f(u) du+ log ζP(2)

ζb(2)

)

is also analytic in the region R, which was our claim.
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2.2 Proof of the Main Theorem

For the proof we use the Selberg-Delange method, see Chapter II.5 in Tenen-

baum [16].

For a beginning of the proof of Theorem 4 define the domain D by deleting the

real segment (α, 1] from the region R.

Set

NP(x) =
∑

n≤x, n∈N
1.

Then Perron formula (Lemma 10) allows us to write∫ x

1
NP(t) dt = 1

2πi

∫ κ+i∞

κ−i∞
ζP(s)xs+1 ds

s(s+ 1) (2.2)

with κ = 1 + 1
log x . Using this version of Perron’s formula we get the function NP ,

that we are searching for, under the integral sign. Fortunately, this does not cause

much trouble, since we can take it out and approximate using relations we will get

in the sequel (see Lemma 13 in the end of the proof).

Let T > exp(e2b) be a parameter whose value will be determined later. Put

ε(t) = A(1 − α) log log|t|
log|t| for |t| ≥ 3, where A is a constant from the definition of the

region R. It is worth noting that α < 1 − ε(t) < 1. The residue theorem allows us

to deform the segment of integration [κ− iT, κ+ iT ] into some path joining the end-

points κ− iT, κ+ iT and contained entirely in D. We choose the path symmetrically

with respect to the real axis (see Figure 2.2 below). Its upper part is made up of: the

truncated Hankel countour Γ, surrounding the point s = 1, with radius r = 1
2 log x ,

and linear part joining 1− r to 1− ε(3); the vertical segment [1− ε(3), 1− ε(3) + 3i];

the curve

σ(t) = 1− ε(t) = 1− A(1− α) log log|t|
log|t|

for 3 ≤ t ≤ T ; and the horizontal segment [σ(T ) + iT, κ+ iT ].

The contour is entirely contained in D since

A(1− α) log log|t|
log|t| <

A

log
2
3 (|t|)(log log|t|) 1

3

for |t| ≥ 3, which implies that 1− ε(t) is in the region R for all |t| ≤ T .

We shall see that the main contribution arises from the integral over the trun-

cated Hankel contour Γ. We denote this integral by I1:

I1 = 1
2πi

∫
Γ

ζP(x)xs+1

s(s+ 1) ds.
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|−T ||||

t

|−3 |

σ1 κ
||

|

|T

3

r

Γ

1− ε(3) + 3i b

|

|

|

|

|

0

|

|

|

α

|
|

|

Figure 2.2: Contour of integration

The other parts of the path are denoted as follows.

I2 = 1
2πi

∫
[1−ε(3),1−ε(3)+3i]

ζP(x)xs+1

s(s+ 1) ds+ 1
2πi

∫
[1−ε(3),1−ε(3)−3i]

ζP(x)xs+1

s(s+ 1) ds,

I3 = 1
2πi

∫
1−ε(t)

ζP(x)xs+1

s(s+ 1) ds for t ∈ [−T,−3] ∪ [3, T ],

I4 = 1
2πi

∫
[σ(T )+iT,κ+iT ]

ζP(x)xs+1

s(s+ 1) ds+ 1
2πi

∫
[σ(−T )−iT,κ−iT ]

ζP(x)xs+1

s(s+ 1) ds,

I5 = 1
2πi

∫
[κ+iT,κ+i∞]

ζP(x)xs+1

s(s+ 1) ds+ 1
2πi

∫
[κ−iT,κ−i∞]

ζP(x)xs+1

s(s+ 1) ds,

I0 = 1
2πi

∫
[κ−iT,κ+iT ]

ζP(x)xs+1

s(s+ 1) ds,

where
∫

[s1,s2] denotes an integral over the interval starting at s1 and ending at s2.

Using these notations (see Figure 2.2) we have

I0 = I1 + I2 + I3 + I4.

Notice that all the integrals Ij for j = 0, 1, . . . , 5 are functions of x, i.e. I1 = I1(x),

I2 = I2(x) and so on. To evaluate some of these integrals, we need a bound of ζP .
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Lemma 12. For sufficiently large |t| we have

|ζP(1− ε(t) + it)| ≤ |t|
2b

log log|t| .

Proof. To get this bound we follow part of the proof of Theorem 2.2 of Hilberdink

and Lapidus paper [9]. Let ψP(x) = bx+ r(x), so that r(x) = O(xα). It follows that

φP(s) = s
∫ ∞

1

bx+ r(x)
xs+1 dx = bs

s− 1 +
∫ ∞

1

r(x)
xs+1 dx.

The latter integral converges for <s > α and represents an analytic function in this

half-plane. This provides the analytic continuation of φ(s) to {s ∈ C : <s > α}

except for a simple pole at s = 1 with residue b. Moreover, ζP(s) has no zeros in

this region, for if it did, then φP(s) = − ζP (s)′
ζP (s) would have a singularity.

Now consider the sum ∑
n≤x

ΛP (n)
ns

for <s > α, where n ranges over elements of

N . We have ∑
n≤x,n∈N

ΛP(n)
ns

= ψP(x)
xs

+ s
∫ x

1

ψP(y)
ys+1 dy

= bx1−s + r(x)
xs

+ bs
∫ x

1

1
ys

dy + s
∫ x

1

r(y)
ys+1 dy (2.3)

= bx1−s

1− s + φP(s) + r(x)
xs
− s

∫ ∞
x

r(y)
ys+1 dy.

Thus

φP(s) =
∑

n≤x,n∈N

ΛP(n)
ns

− bx1−s

1− s −
r(x)
xs

+ s
∫ ∞
x

r(y)
ys+1 dy.

Writing s = σ + it, and using r(x) = O(xα), we obtain

|φP(σ + it)| ≤
∑

n≤x,n∈N

ΛP(n)
nσ

+ O
(
x1−σ

|t|

)
+ O(|t|xα−σ). (2.4)

Here and further in this lemma we assume that |t| under the big O symbol approaches

infinity. To estimate the first term on the right of (2.4), put t = 0 in (2.3) to give∑
n≤x,n∈N

ΛP(n)
nσ

= bx+ r(x)
xσ

+ bσ
∫ x

1
y−σ dy + σ

∫ x

1

r(y)
yσ+1 dy

= bx1−σ + bσ

1− σ
(
x1−σ − 1

)
+ O(xα−σ) + O(1)

= b
x1−σ − 1

1− σ + O(1). (2.5)

This also holds for σ = 1, if we interpret the first term on the right of (2.5) as

b log x. Moreover, with this interpretation, the above estimate (2.5) is uniform for

σ ∈ [α + δ, c0] for any c0 > 1 and δ > 0. Combining these gives

|φP(σ + it)| ≤ b
x1−σ − 1

1− σ + O(1) + O
(
x1−σ

|t|

)
+ O(|t|xα−σ).
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The optimal choice for x occurs when x1−σ and |t|xα−σ are of the same order. So

putting x = |t|
1

1−α , we obtain

|φP(σ + it)| ≤ b
|t|

1−σ
1−α − 1
1− σ + O(1) + O(|t|

1−σ
1−α ). (2.6)

Note that for σ = 1 this is

|φP(1 + it)| ≤ b

1− α log|t|+ O(1).

We use these inequalities to obtain bounds for |ζP(s)|. For σ ∈ (α, 1),

log ζP(σ + it) =
∫

[σ+it,2+it]
φP(z) dz + log ζP(2 + it)

=
∫ 2

σ
φP(y + it) dy + O(1).

Taking real parts, we obtain

log|ζP(σ + it)| ≤
∫ 2

σ
|φP(y + it)| dy + O(1).

Letting σ = 1− ε(t), |t| ≥ 3, we deduce from (2.6) that

log|ζP(1− ε(t) + it)| ≤
∫ 2

1−ε(t)
b
|t|

1−y
1−α − 1
1− y dy + O(1) + O

(∫ 2

1−ε(t)
|t|

1−y
1−α dy

)
.

The latter integral equals

1− α
log|t|

(
|t|

ε(t)
1−α − |t|−

1
1−α

)
<

1− α
log|t| |t|

ε(t)
1−α = 1− α.

Hence

log|ζP(1− ε(t) + it)| ≤ b
∫ 2

1−ε(t)

|t|
1−y
1−α − 1
1− y dy + O(1)

= b
∫ ε(t)

0

|t|
u

1−α − 1
u

du+ b
∫ 1

0

1− |t|−
v

1−α

v
dv + O(1)

= b
∫ ε(t) log|t|

1−α

0

ey − 1
y

dy + b
∫ log|t|

1−α

0

1− e−x
x

dx+ O(1)

= b
∫ log log|t|

1

ey
y

dy + O(log log|t|)

∼ b
log|t|

log log|t| .

Thus,

|ζP(1− ε(t) + it)| ≤ exp
(

2b log|t|
log log|t|

)
,

for all |t| sufficiently large, which is our claim.
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We continue the proof of Theorem 4. Appealing to Lemma 12, we see immedi-

ately that

I5 �
∫ ∞
T

t
2b

log log tx2

t2
dt� x2

∫ ∞
T

t
2b

log logT −2 dt�b x
2T

2b
log logT −1.

This upper bound is equally valid for the integral I4 since

I4 �
∫ 1+ 1

log x

σ(T )

T
2b

log logT x2

T 2 dσ � x2T
2b

log logT −1.

The integral I2 is

I2 � x2−ε(3).

Finally, to get the upper bound for the arc σ(t) we choose a number k0 such that

Lemma 12 is valid for all |t| ≥ k0. Splitting the integral, we have

I3 �
∫ k0

3

|ζP(s)|x1+σ(k0)

t2
dt+ x1+σ(T )

∫ T

k0
t

2b
log log t−2 dt�b x

1+σ(T ).

Selecting T = e
√

log x for x > exp(e4b), leads us to the main formula∫ x

1
NP(t) dt = I1(x) + O(x2e−c1

√
log x), (2.7)

with

I1(x) = 1
2πi

∫
Γ
ζP(s) xs+1

s(s+ 1) ds,

where Γ is the truncated Hankel contour.

Here and for the rest of the proof we make the convention that all constants,

explicit ( c1, c2, c3, c4, . . .) or implicit, depend at most on b and α.

It remains to study the main term I1(x) of (2.7). Clearly, I1(x) is an infinitely

differentiable function of x on R+, and in particular we have

I ′1(x) = 1
2πi

∫
Γ
ζP(s)xsds

s
, I ′′1 (x) = 1

2πi

∫
Γ
ζP(s)xs−1 ds.

Recall that Z(s) = s−1((s− 1)ζ(s))b. For s ∈ D, we then can write

ζP(s) = s G(s)Z(s)(s− 1)−b.

From this and the result of Lemma 3, for s ∈ Γ,

ζP(s)� |s− 1|−b, as x→ +∞.

Since r = 1/(2 log x), it follows that

I ′′1 (x)�
∫

Γ

(
1

2 log x

)−b
xs−1 ds� (log x)b. (2.8)
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As both G(s) and Z(s) are holomorphic in the open set containing the disk |s−1| <

1− ε(3), so is their product, which can be represented there by the Taylor series

G(s)Z(s) =
∞∑
k=0

gk(b)(s− 1)k

with

gk(b) = 1
k!

∑
h+j=k

(
k

j

)
G(h)(1)γj(b) = Γ(b− k)λk(b).

In addition, since G(s)Z(s) is O(1) in the disk |s−1| < 1−ε(3), the Cauchy formulae

imply that

gk(b)� (1− ε(3))−k.

Observing that Γ is contained in the disk |s− 1| ≤ 1− ε(3), we can write for s ∈ Γ,

x→ +∞, N ≥ 0,

G(s)Z(s) =
N∑
k=0

gk(b)(s− 1)k + O
( |s− 1|

1− ε(3)

)N+1
 .

Therefore

I ′1(x) =
N∑
k=0

gk(b)
1

2πi

∫
Γ
xs(s− 1)k−b ds+ O((1− ε(3))−N−1B(x)) (2.9)

with

B(x) =
∫

Γ
|xs(s− 1)N+1−b| |ds|

�
∫ 1−r

1−ε(3)
(1− σ)N+1−bxσ dσ + xr+1rN+2−b.

Using the change of variable t = (1− σ) log x, we obtain

B(x)� x(log x)b−2−N
(∫ ∞

1
2

tN+1−be−t dt+ 2−N
)

� x(log x)b−2−N
(∫ 1

1
2

(1
2

)1−b
e−1/2 dt+

∫ ∞
1

tN+1+be−t dt+ 2−N
)

� x(log x)b−2−NΓ(N + b+ 2)� x(log x)b−1
(
N + 1
log x

)N+1

,

To estimate the integral which appears in (2.9), we change the variable w = (s −

1) log x and with the notation of Lemma 8 and the use of Stirling’s formula (Lemma 9),

we get
1

2πi

∫
Γ
xs(s− 1)k−b ds = x

2πi(log x)b−1−k
∫
H(ε(3) log x)

wk−bew dw

= x(log x)b−1−k
{

1
Γ(b− k) + O

(
47b−kΓ(|b− k|+ 1) e−

ε(3)
2 log x

)}

= x(log x)b−1−k
{

1
Γ(b− k) + O

(
(c2k + 1)kx−ε(3)/2

)}
.
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Thus for the main term of (2.9) we have

N∑
k=0

gk(b)
1

2πi

∫
Γ
xs(s− 1)k−b ds = x(log x)b−1

{
N∑
k=0

λk(b)
(log x)k + O(EN)

}

with

EN = x−
ε(3)

2

N∑
k=0
|gk(b)|

(
c2k + 1
log x

)k

� x−
ε(3)

2

N∑
k=0

(1− ε(3))−k
(
c2k + 1
log x

)k

� x−
ε(3)

2

(
c3N + 1

log x

)N
�
(
c3N + 1

log x

)N+1

.

Substituting in (2.9), it follows that

I ′1(x) = x(log x)b−1


N∑
k=0

λk(b)
(log x)k + O

(
c4N + 1

log x

)N+1
 . (2.10)

Next we show that I ′1(x) is a suitable approximation for NP(x).

Lemma 13. NP(x) = I ′1(x) + O
(
xe−c5

√
log x

)
.

Proof. To this end, let us take a parameter h, 0 < h < x
2 , and apply (2.7) for both

x and x+ h. Subtracting these estimates, we obtain∫ x+h

x
NP(t) dt = I1(x+ h)− I1(x) + O

(
x2e−c1

√
log x

)
, (2.11)

while (2.8) implies that

I1(x+ h)− I1(x) = hI ′1(x) + h2
∫ 1

0
(1− t)I ′′1 (x+ th) dt

= hI ′1(x) + O
(
h2(log x)b

)
. (2.12)

Further, ∫ x+h

x
(NP(t)−NP(x)) dt =

∫ x+h

x
NP(t) dt−NP(x)h.

From here,

NP(x) = h−1
∫ x+h

x
NP(t) dt− h−1

∫ x+h

x
(NP(t)−NP(x)) dt.

Making use of equalities (2.11) and (2.12) we can write

NP(x) = I ′1(x) + O
(
x2h−1e−c1

√
log x + h(log x)b + h−1L

)
,
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with

L =
∫ x+h

x
(NP(t)−NP(x)) dt.

By (2.11) and (2.12)

L ≤
∫ x+h

x
(NP(t)−NP(x)) dt ≤

∫ x+h

x
NP(t) dt−

∫ x+h

x
NP(x)dt

≤
∫ x+h

x
NP(t) dt−

∫ x

x−h
NP(t) dt

� x2e−c1
√

log x + h2(log x)b.

Thus, choosing

h = xe− 1
2 c1
√

log x,

it follows that

NP(x) = I ′1(x) + O
(
xe−c5

√
log x

)
, (2.13)

as required.

Theorem 4 follows by combining (2.10)and (2.13).
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Beurling’o natūraliųjų skaičių asimptotinis pasiskirstymas

Santrauka

Nagrinėjame apibendrintų pirminių skaičių sistemas P, iš jų gautas apibendrintų

natūraliųjų (Beurlingo) skaičių sistemas N ir apibendrintas dzeta funkcijas ζP(s). Tar-

dami, kad funkcija πP(x), skaičiuojanti apibendrintus pirminius neviršijančius x, yra lygi

πP(x) = bx

log x + O(xα) (x→ +∞),

čia b > 0, α ∈ (0, 1), gauname asimptotinį apibendrintų natūraliųjų skaičių pasiskirstymą.

Šis rezultatas yra gaunamas pritaikius Perron’o formulę specialiai sukonstruotai Dirichlet

eilutei ir panaudojus kontūrinio integravimo metodą.
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