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Abstract: Background: New technologies to improve post-stroke rehabilitation outcomes are of great 
interest and have a positive impact on functional, motor, and cognitive recovery. Identifying the 
most effective rehabilitation intervention is a recognized priority for stroke research and provides 
an opportunity to achieve a more desirable effect. Objective: The objective is to verify the effect of 
new technologies on motor outcomes of the upper limbs, functional state, and cognitive functions 
in post-stroke rehabilitation. Methods: Forty two post-stroke patients (8.69 ± 4.27 weeks after stroke 
onset) were involved in the experimental study during inpatient rehabilitation. Patients were 
randomly divided into two groups: conventional programs were combined with the Armeo Spring 
robot-assisted trainer (Armeo group; n = 17) and the Kinect-based system (Kinect group; n = 25). The 
duration of sessions with the new technological devices was 45 min/day (10 sessions in total). 
Functional recovery was compared among groups using the Functional Independence Measure 
(FIM), and upper limbs’ motor function recovery was compared using the Fugl–Meyer Assessment 
Upper Extremity (FMA-UE), Modified Ashworth Scale (MAS), Hand grip strength (dynamometry), 
Hand Tapping test (HTT), Box and Block Test (BBT), and kinematic measures (active Range Of 
Motion (ROM)), while cognitive functions were assessed by the MMSE (Mini-Mental State 
Examination), ACE-R (Addenbrooke’s Cognitive Examination-Revised), and HAD (Hospital 
Anxiety and Depression Scale) scores. Results: Functional independence did not show meaningful 
differences in scores between technologies (p > 0.05), though abilities of self-care were significantly 
higher after Kinect-based training (p < 0.05). The upper limbs’ kinematics demonstrated higher 
functional recovery after robot training: decreased muscle tone, improved shoulder and elbow 
ROMs, hand dexterity, and grip strength (p < 0.05). Besides, virtual reality games involve more arm 
rotation and performing wider movements. Both new technologies caused an increase in overall 
global cognitive changes, but visual constructive abilities (attention, memory, visuospatial abilities, 
and complex commands) were statistically higher after robotic therapy. Furthermore, decreased 
anxiety level was observed after virtual reality therapy (p < 0.05). Conclusions: Our study displays 
that even a short-term, two-week training program with new technologies had a positive effect and 
significantly recovered post-strokes functional level in self-care, upper limb motor ability (dexterity 
and movements, grip strength, kinematic data), visual constructive abilities (attention, memory, 
visuospatial abilities, and complex commands) and decreased anxiety level. 
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1. Introduction 

Insufficient motor control compromises the ability of Stroke Patients (SP) to perform activities 
of daily living and will likely have a negative impact on the quality of life. Improving Upper Limb 
(UL) function is an important part of post-stroke rehabilitation in order to reduce disability [1]. 
Recovery in the context of motor ability may refer to the return of pre-stroke muscle activation 
patterns or to compensation involving the appearance of alternative muscle activation patterns that 
attempt to compensate for the motor function deficit [2]. The past decades have seen rapid 
development of a wide variety of assistive technologies that can be used in UL rehabilitation. These 
include electromyographic biofeedback, virtual reality, electromechanical and robotic devices, 
electrical stimulation, transcranial magnetic stimulation, direct current stimulation, and orthoses [3]. 
Currently, two effective technologies that provide external feedback to SP during training, improve 
the retention of learned skills, and may be able to enhance the motor recovery are discussed [4]. 

Virtual Reality (VR): The Microsoft TM Kinect-based system provides feedback on movement 
execution and/or goal attainment [5]. Incorporating therapy exercises into virtual games can make 
therapy more enjoyable and more realistic, such that task-based exercises have increased applicability 
in the clinical environment [6,7], increasing motivation and therefore adherence, which are useful for 
navigating this virtual environment; this has been identified as the most feasible for future 
implementation [7]. 

Electromechanical and robotic devices can move passive UL along more secure movement 
trajectories and provide either assistance or resistance to movement of a single joint or control of 
inter-segmental coordination. Recent technological advances have the ability to control multiple 
joints accurately at the same time, enabling them to produce more realistic task-based exercises for 
SP [8]. Compared to manual therapy, robots have the potential to provide intensive rehabilitation 
consistently for a longer duration [9]. Recovery of sensorimotor function after CNS damage is based 
on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for 
self-independence. This requires physiological limb muscle activation, which can be achieved 
through functional UL movement exercises and activation of the appropriate peripheral  
receptors [10]. The Armeo Spring robot-assisted trainer device may improve UL motor function 
recovery as predicted by reshaping of cortical and transcallosal plasticity, according to the baseline 
cortical excitability [11]. Knowledge of the potential brain plasticity reservoir after brain damage 
constitutes a prerequisite for an optimal rehabilitation strategy [12,13]. There is evidence that robot 
training for the hand is superior; during post-stroke rehabilitation, hand training is likely to be the 
most useful [8,13]. 

Previous studies have shown that the use of systems based on VR environments, motion sensors, 
and robotics can improve motor function. Currently, no high-quality evidence can be found for any 
interventions that are currently used as part of routine practice, and evidence is insufficient to enable 
comparison of the relative effectiveness of interventions [14–16]. 

The objectives of the study are to clarify in which area of functional UL recovery these new 
technologies are more suitable and effective and how much these interventions affect functional state 
and cognitive functions. 

We raise the hypothesis that a robot-assisted device and virtual reality both have a positive effect 
on functional independence recovery in stroke-affected patients; however, having a different 
influence on UL motor function and cognitive changes. We assume that the robot-assisted device is 
more efficient and more accurately allows selecting tasks for developing specific motor function 
(range of motion, strength or dexterity of the affected arm), while Kinect-based games provide more 
free movements that are less suitable for specific motor function development and may be more 
targeted for cognitive functions. 
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2. Materials and Methods 

2.1. Selection and Description of Participants 

According to very strict inclusion criteria and a small number of patients undergoing post-stroke 
rehabilitation in our inpatient unit (<70–80 patients/year), a total of 60 post-stroke patients, i.e., 30 
patients in each group, were involved in a randomized prospective clinical trial. However, some of 
the patients did not complete the research due to worsening health: fever, high blood pressure, heart 
rate problems, and intolerance of physical load. A total of 42 patients completed the study, and their 
results were analyzed. The main steps of our study are presented in the flowchart in Figure 1. 

 
Figure 1. Study flowchart for patients’ selection, assessment, and analysis. 

The following were the inclusion criteria: (1) ischemic or hemorrhagic stroke (confirmed by 
neuroimaging tests), (2) 60–74 years old (according to WHO’s definition of elderly people),  
(3) stroke-affected arm paresis, (4) disturbed deep and superficial sensations, and (5) MMSE score 
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>21 points (no cognitive impairment 24–30 or mild impairment 18–23 points). Exclusion criteria were 
the following: (1) stroke-affected arm paralysis, (2) MMSE score <21 points (severe cognitive  
impairment = 0–17 points), (3) aphasia, (4) painful shoulder syndrome, and (5) hypertonic stroke-
affected arm (≥2 according to the Modified Ashworth Scale). 

Patients were randomly (i.e., by chance) assigned to either a treatment based on a combination 
of a conventional rehabilitation program with the Armeo Spring robot-assisted trainings (Armeo 
group (AG); n = 17) and with the virtual reality Kinect-based system trainings (Kinect group (KG); 
n = 25) to measure and compare the effect and value of a treatment against different technologies. All 
patients gave their written informed consent. The study was approved by the Vilnius Regional 
Biomedical Research Ethics Committee, No. 158200-17-912-422. 

The conventional post-stroke rehabilitation program lasted 4–3 h daily, 5 days/week (physical 
therapy, occupational therapy, neuropsychological training, speech therapy, etc.), and the duration 
of sessions with new technological devices (Kinect or Armeo robot) was 45 min/day (10 sessions in 
total). All training sessions consisted of a sequence of motor tasks followed by a short resting phase. 
The patients were asked to perform a large variety of tasks and the exercise program selected 
individually for each patient. All patients completed 45 min per day for a total of 10 intensive therapy 
sessions. The trainings were supervised by an occupational therapist who modified the exercise 
program according to each patient’s progress. At the start of each training session, the clinician 
examined arm impairment to investigate motor function recovery and pain or other complications. 
All patients sat on a chair or wheelchair fitted with seat belts to limit torso movements and prevent 
falling. Patients were instructed to contribute actively to the exercise according to the goal 
movements. 

2.2. Technical Information 

The main outcome measures used for evaluation of UL recovery after stroke were the following: 
the Fugl–Meyer Assessment Upper Extremity (FMA-UE, 0 = lowest score; 66 = highest score) [8,13,17]; 
the shoulder, elbow, and wrist flexion tones were assessed by using the Modified Ashworth Scale 
(MAS, range 0–4 points) [8]; the gross manual dexterity were assessed by Box and Block Test (BBT, 
count of cubes during 60 s) [8]; the Hand Tapping Score Test (HTS, score(s) of 25 arm movements) 
[14]; and to obtain kinematic parameters of requested movements, active Range Of Motion (ROM) of 
the shoulder, elbow, and wrist was measured [9], and the affected hand grip strength was measured 
with a hand-grip dynamometer (average of grip strength in kg). The Modified Functional 
Independence Measure (FIM, 6-item self-care, max 42 point) [15] was used for evaluation of the 
degree of independence and assistance needed in activities of daily living; to measure cognitive 
impairment, the Mini-Mental State Examination (MMSE, range 21 ≥ 30 point) [16] and Addenbrooke’s 
Cognitive Examination-Revised (ACE-R, max 100 points; a higher score reflects a better outcome) 
were used [18], and the psycho-emotional state was assessed by the Hospital Anxiety and Depression 
Scale (HAD, range 0–21 points; a higher score reflects higher anxiety and depression level) [19]. The 
following assessments were extracted at the beginning (pre-outcomes) and at the end (post-
outcomes) of the therapy. 

In order to investigate the effectiveness of VR-based rehabilitation on UL functional recovery 
after stroke, the Microsoft Kinect for Windows Software Development Kit (SDK) 2.0 was used: a 
sensor is equipped with a webcam, a depth camera, and a microphone array designed to facilitate a 
natural user interface [13]. These trainings consisted of exercise games (the term “exergames” is also 
commonly used) in a variety of areas. Exergames aim to combine natural human movements and the 
entertainment of video games to promote patient exercise, according to each patient’s progress. For 
robot-assisted treatment, the Armeo Spring (Hocoma AG, Volketswil, Switzerland) as used to train 
UL motor function. During the first session, the device was adjusted for the patient’s arm size and 
the required angle of suspension (45° shoulder flexion and 25° elbow flexion, approximately). After 
the UL had been fitted to the system, the working space was measured, and the exercises the patient 
was able to perform were selected from a large variety of tasks. At the end of robot-therapy sessions, 
patients were asked to perform specific evaluation exercises making use of virtual reality software, 
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then the working space and the angle of suspension were recalibrated. After a treatment session, the 
following outcome measures were assessed: Active Range Of Motion (A-ROM) [9], active motion in 
3D space (A MOVE), and movement quality in percent. For clinical assessment of affected arm 
capability, goniometers were used [12]. 

2.3. Statistics 

A statistical power analysis was performed in order to estimate the sample size. It was 
determined that a total of 70 post-stroke individuals would be needed to detect a difference between 
groups, with a one-tailed α of 0.05 and a (1-β) of 0.95. The G-power software package  
(Version 3.1.2.9; Franz Faul, University of Kiel, Kiel, Germany) was used to calculate the required 
sample size of subjects with a significance level of 0.05 and a power of 0.95. Frequencies were 
calculated for categorical variables. For continuous variables, means ± standard deviations (SD) were 
obtained. The Shapiro–Wilk normality test (p < 0.05) was used to verify data normality. Normally-
distributed data were compared by means of a parametric statistical method, i.e., with one-way 
ANOVA (p < 0.05). Non-normally-distributed (p < 0.01) and normally-distributed data were 
compared by means of a non-parametric statistical method, i.e., with the Kruskal–Wallis test (p < 
0.05). 

3. Results 

Our study included 42 patients (mean age ± standard deviation of 64.6 ± 4.2 years old) with 
hemiparesis secondary to ischemic (n = 29) or hemorrhagic stroke (n = 13), who participated 
consecutively in a specialized rehabilitation unit for a post-stroke time of 8.69 ± 4.27 weeks. In both 
groups, male participants and the right hand being affected dominated (Table 1). 

Table 1. Clinical and demographic characteristics of Armeo group (AG) and Kinect group (KG)  
(n = 42). 

Variables 
AG 

(n = 17) 
KG 

(n = 25) 
p-Value 

Age (years) 66 (60.5—70)  62 (61—69) >0.05 K 
Gender (M/W) 11/6 17/8 >0.05 

Affected arm (R/L) 11/6 14/11 >0.05 
Stroke onset (weeks) 7 (6—11.5) 

7 (5-12)16/9 
>0.05 K 

Stroke type (I/H) 13/4 >0.05 
Values are represented as the median (interquartile range). K Kruskal–Wallis test. Stroke onset is the 
number of weeks before the beginning of a treatment session. L, Left; M, Men; NA, Not Applicable; 
R, Right; W, Women; H, Hemorrhagic; I, Ischemic. 

All the results were obtained by comparing the impact of new technologies on UL recovery. In 
particular, all data were divided into three important parts: functional independence in daily life 
activities, UL motor abilities, and cognitive functions. The level of functional independence increased 
statistically in both groups, but after Kinect-based rehabilitation, SP demonstrated a higher level of 
independence in self-care activities (p < 0.05) than after robot training (Table 2). 

Table 2. Functional independence testing results (n = 42). FIM, Functional Independence Measure. 

Variables 
AG 

(n = 17) 
KG 

(n = 25) 
p-Value 

FIM Score  
Pre 83.00 ± 14.49 71.68 ± 19.89 >0.05 A 
Post 98.29 ± 12.86 97.16 ± 10.02 >0.05 A 

Post-pre difference 15.29 ± 4.52 25.48 ± 18.48  <0.05 A* 
Modified FIM Score (Self-Care) 
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Pre 24.41 ± 5.18 21.40 ± 6.60 >0.05 A 
Post 31.94 ± 4.39 32.24 ± 3.18 >0.05 A 

Post-pre difference 7.53 ± 2.50 10.84 ± 6.47 <0.05 A * 
Values are represented as the mean ± SD. A ANOVA test. Post-pre, the effect of treatment or changes 
between post-treatment and baseline.  

A significantly different effect of new technologies for the recovery of Upper Limb (UL) 
motor capability was not found (Table 3) According to the  
Fugl–Meyer Assessment Upper Extremity (FMA-UE) results, we can state that result of the 
mobility of the hemiparetic arm, including reflexes, the appearance of synergies, and each 
of the isolated movements of the upper limb, including grip, was improved in both groups  
(p > 0.05). However, the flexion muscle tone in the elbow and wrist was increased more in 
KG (Modified Ashworth Scale (MAS) score), which could limit the arm dexterity; therefore, 
the results of repetitive movements for 60 s (tapping test) and the box and block score of 
the affected arm increased more after robot trainings (p > 0.05). Hand grip strength 
recovered significantly more in AG, because of visibly lower muscle tone in the wrist and 
elbow that allowed patients to carry out these actions more easily. 

Table 3. UL motor function results (n = 42). 

Variables 
AG 

(n = 17) 
KG 

(n = 25) 
p-Value 

FMA-UE (Fugl–Meyer Assessment Upper Extremity 
Pre 39 (18—47)   >0.05 K 
Post 54 (26—59)  33 (23—41) 46 (42—55)  >0.05 K 

Post-pre difference  13 (12—15.5)  10 (7.5—22)  >0.05 K 
Modified Ashworth Scale (MAS Score, 0/1/1+ points) 

Shoulder (n = 42) (n = 42)  
Pre 14/2/1 21/3/1 NA 
Post 13/4/0 20/3/0 NA 

Elbow    
Pre 12/1/2 15/5/2 NA 
Post 12/2/2 14/6/3 NA 

Wrist    
Pre 12/2/3 15/4/3 NA 
Post 11/1/2 13/4/4 NA 

Hand dynamometry  20.29 ± 13.3/26.11 ± 18.5 21.48 ± 14.5/23.56 ± 17.2  
(R/L; kg) 24.29 ± 13.0/28.70 ± 18.1 23.72 ± 13.2/25.60 ± 17.2  

Post-pre difference 4.00 ± 0.33/2.59 ± 0.5 2.24 ± 1.2/2.04 ± 0.6 <0.05 A*/>0.05 A 
Hand tapping score  20.29 ± 13.3/26.11 ± 18.5 21.48 ± 14.5/23.56 ± 17.2  

(L/R, seconds) 24.29 ± 13.0/28.70 ± 18.1 23.72 ± 13.2/25.60 ± 17.2  
Post-pre difference 4.00 ± 0.33/2.59 ± 0.5 2.24 ± 1.2/2.04 ± 0.6 >0.05 K/>0.05 K 

Box and Block Score  
(L/R) 59.88 ± 14.84/54.64 ± 22.28 65.40 ± 13.17/63.21 ± 16.22  

(count of cubes during  
60 s) 

63.11 ± 15.50/59.70 ± 21.61 69.20 ± 15.21/66.75 ± 13.91  

Post-pre difference 3.94 ± 0.68/5.06 ± 0.39 3.81 ± 2.11/3.55 ± 2.34 >0.05 K/>0.05 K 
Values are represented as the median (interquartile range) or the mean ± SD. A ANOVA test.  
K Kruskal–Wallis test. The MAS score is presented as the number of persons having scores of  
0/1/1+ points; * p < 0.05; NA, Not Applicable; R/L, affected Right and Left hand, respectively. 

SP after Armeo training had better kinematic responses in the active range of motion in shoulder 
extension and flexion. Meaningful statistical differences were found only in shoulder adduction and 
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abduction (p < 0.05). However, rotational ROMs of the shoulder appeared improved after Kinect-
based training, while all elbow ROMs increased in the AG group. A significant increase in elbow 
supination (p < 0.05) occurred after Armeo robot training. Wrist movements did not show any 
significant difference between Armeo- and Kinect-based trainings (Table 4). 

Table 4. Kinematic data (n = 42). 

Variables 
AG 

(n = 17) 
KG 

(n = 25) 
p-Value 

Active ROMpost–ROMpre  
Shoulder 

Flexion 19.67 ± 1.11 17.20 ± 2.32 >0.05 K 
Extension 6.27 ± 0.18 7.00 ± 4.45 >0.05 K 
Abduction 28.55 ± 4.44 5.40± 2.21 <0.05 K* 
Adduction 6.93 ± 2.77 3.60± 0.45 <0.05 K* 

Internal rotation 5.51 ± 2.03 9.6 ± 7.34 >0.05 K 
External rotation 5.39 ± 2.09 8.00 ± 1.71 >0.05 K 

Elbow 
Flexion 15.90 ± 6.70 10.6 ± 2.90  >0.05 K 

Extension 3.40 ± 5.97 0.40 ± 0.66 >0.05 K 
Supination 8.77 ± 1.78 1.40 ± 1.46 <0.05 K* 
Pronation 7.00 ± 4.02 5.80 ± 0.02 >0.05 K 

Wrist 
Flexion 6.12 ± 3.34 6.80 ± 2.16 >0.05 K 

Extension 7.26 ± 0.61 4.24 ± 0.55 >0.05 K 
Ulnar deviation 1.89 ± 0.29 4.80 ± 0.16 >0.05 K 
Radial deviation 0.64 ± 0.81 4.20 ± 1.11 >0.05 K 

ROMpre –ROMpost are clinical measures of the stroke-affected arm before and after the treatment 
session, respectively. ROMpre–ROMpost is the change or effect of the treatment. Values are represented 
as the median (interquartile range) or the mean ± SD. K Kruskal–Wallis test. * p < 0.05. 

The changes in SP cognitive functions were reflected in the MMSE, ACE-R and HAD test scores. 
At the beginning of the sessions, all participants’ MMSE test scores were >21 points: in AG, the mean 
MMSE score was 24.06 ± 2.44 points and in KG, 23.2 ± 2.27 points (p > 0.05). Total cognitive changes 
due to MMSE were statistically higher in AG (p < 0.05) (Table 5). 

Table 5. Cognitive function data (n = 36). 

MMSE Score Pre- Post- Post-pre Difference p-Value 
Total Score  

AG (n = 17) 24.05 ± 2.43 26.51 ± 2.09 4.82 ± 3.45  
KG (n = 19) 23.21 ± 2.27 24.36 ± 1.46 2.21 ± 2.97 <0.05 A* 

Orientation (To Time, To Place)  
AG 4.32 ± 0.36 4.56 ± 0.65 0.17 ± 0.39  
KG 4.15 ± 0.70 4.28 ± 0.72 0.15 ± 0.37 > 0.05 K 

Registration  
AG 2.29 ± 0.66 2.41 ± 0.69 0.11 ± 0.33  
KG 2.10 ± 0.78 2.26 ± 0.71 0.15 ± 0.37 > 0.05 K 

Attention and Calculation 
AG 3.01 ± 1.13 3.58 ± 0.91 0.57 ± 0.71  
KG 2.83 ± 1.01 3.05 ± 1.14 0.21 ± 0.67 <0.05 K* 

Recall 
AG 2.23 ± 0.81 2.52 ± 0.60 0.29 ± 0.58 0 
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KG 2.10 ± 0.99 2.31 ± 0.86 0.21 ± 0.63 >0.05 K 
Language 

AG 1.88 ± 0.32 1.94 ± 0.23 0.05 ± 0.42  
KG 1.84 ± 0.36 1.89 ± 0.30 0.05 ± 0.22 <0.05 K* 

Repetition 
AG 0.88 ± 0.32 1.70 ± 0.66 0.83 ± 0.72  
KG 0.89 ± 0.30 0.94 ± 0.22 0.52 ± 0.40 >0.05 K 

Complex Commands 
AG 1.25 ± 1,05 1.99 ± 0.89 0.84 ± 0.94  
KG 1.30 ± 1.94 1.32 ± 1.95 0.03 ± 0.56 <0.05 K* 

Values are represented as the median (interquartile range) or the mean ± SD. K Kruskal–Wallis test, 
AANOVA, * p < 0.05. 

Nevertheless, further investigation of ACE-R scores for different abilities indicated 
significant differences in memory, fluency, and visuospatial abilities (p < 0.05)  
(Figure 2). 

 
 
 

 

Figure 2. The Addenbrooke’s Cognitive Examination-Revised (ACE–R score) (post-pre) distribution 
for different abilities in the groups (n = 36). Values are represented as the mean ± SD. The  
Kruskal–Wallis test was used for comparison. 

HAD score displayed the following: depression remained unchanged for both groups (p > 0.05), 
and anxiety was decreased by significantly more in KG (p < 0.05) (Table 6). 

Table 6. HAD testing results (n = 36). 

HAD Score Pre Post Post-Pre Difference  p-Value 
Depression 

AG 5.41 ± 3.12 4.94 ± 3.09 0.47 ± 0.03 >0.05 K 
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KG 8.40 ± 4.44 8.48 ± 4.43 0.08 ± 0.01 
Anxiety 

AG 5.52 ± 2.37 4.11 ± 1.93 1.41 ± 0.44 
<0.05 K* 

KG 9.16 ± 4.59 8.64 ± 4.15 0.52 ± 0.45 
Values are represented as the mean ± SD. The Kruskal–Wallis test was used for comparison. D/A, 
Depression/Anxiety according to the HAD score. 

4. Discussion 

It is not easy to measure the effectiveness of post-stroke rehabilitation treatment to restore lost 
UL functions [4]. The impact of new technologies on restoring functional state is not well defined. 
Recent scientific sources provide different criteria and sizes for the effectiveness of these technologies 
[7]. However, previous research has confirmed that new modern interventions have only a positive 
impact, be it large or small, on stroke rehabilitation [11,20]. We compared the influence of two new 
technologies, Armeo vs. Kinect, on the recovery of UL functions in post-stroke rehabilitation. Finally, 
the study showed clinical improvement in subjects who participated. 

A detailed analysis of obtained outcomes was performed, and all results were divided into three 
main parts: functional independence, motor abilities of UL, and cognitive functions. Notably, the 
period from pre- to post-treatment was relatively short (two weeks (10 sessions)), and even so, 
statistically-significant results reflecting the effectiveness of new technology were obtained. 
Interestingly, the FIM test showed significantly better results in the KG group (p < 0.05). This result 
suggests that VR intervention helps to recover the UL motor function. Our findings are consistent 
with a study by Webster and Celik, who displayed that rehabilitation was promoted by the enhanced 
feedback in a virtual environment and that kinematic analysis of movements showed significant 
improvement on the functional level, which indicated motor recovery in  
post-stroke patients [21]. 

UL kinematics demonstrated increased functional recovery after robot training (AG group): 
decreased muscle tone, improved shoulder extension and flexion, increased elbow ROMs, a 
meaningful increase in elbow supination, and greater recovery of hand dexterity and grip strength 
(p < 0.05). Our findings only confirmed the fact that robotic devices can improve UL functions by 
moving passive limbs along more secure movement trajectories and provide either assistance or 
resistance to movement of a single joint or control of inter-segmental coordination. Recent 
technological advances in robot training have the ability to control multiple joints accurately and 
have a positive impact on UL recovery [10,12,22]. Besides, improved rotational ROMs of the shoulder 
were observed in the KG group. This can be attributed to the fact that Kinect games involve more 
rotation than the Armeo Spring robot allows. Furthermore, we must state that a robot-assistive device 
provides affected UL weight support and provides an opportunity to make the most accurate tasks 
during trainings, while Kinect does not provide UL weight support, and the movements of the 
affected arm are less accurate and wider. In most cases, as other works report, UL recovery ability 
depends on specific and precise training tasks, duration, exercising, and intensive repetition of 
specific movements, while the task’s completion time seems to improve regardless of the training 
method [5,10]. Furthermore, our research indicated a tendency for muscle tone increase in the elbow 
and wrist joints for SP who underwent VR interventions. This likely demonstrates the effectiveness 
of new technologies, but in truth, increased muscle tone limits UL functional recovery. Without a 
doubt, free hand movements during gaming interfere with the precision of UL motion, unlike in 
Armeo training. Furthermore, some factors (unstable body position, fall risk, compensated 
movements, and limited range of motions) during Kinect-based training could affect  
motor recovery [21]. 

Our study demonstrated good participant satisfaction and a positive impact on the psycho-
emotional state. It is well known that cognitive functions are very important for successful and 
effective post-stroke rehabilitation. We observed that, during training, variations in cognitive 
function due to ACE-R and MMSE testing results showed increased visual constructive abilities in 
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SP. Overall global cognitive changes due to MMSE were statistically higher in AG. These testing 
results were more sensitive to detecting changes in attention and especially in complex commands 
(executing a command, drawing or copying two pentagons) (p < 0.05). According to the ACE-R testing 
results, greater improvements in memory, fluency, and visuospatial abilities were observed in the 
AG group (p < 0.05). Memory improvements were consistent with a study by Gamito and colleagues 
[23], which compared a VR-based intervention with conventional rehabilitation and observed that 
the application of virtual reality-based serious games in cognitive rehabilitation is an effective 
cognitive training tool for developing SP attention and memory tasks consisting of daily life activities. 
The visuospatial improvements were consistent with a study by Kim and  
colleagues [24], which compared a VR-based intervention with a computer-based intervention. 
Patients interacted with displayed images, moved and manipulated virtual objects, and performed 
other actions in a way that attempted to “immerse” them in the simulated environment, thereby 
engendering a feeling of presence in the virtual world, and encouraging reflection, copying, 
repetition, and prediction [21,25]. 

Negative psychological outcomes occur frequently after stroke; one of the most common is 
anxiety disorders and anxiety symptoms, which often have an impact on rehabilitation outcomes. 
Although stroke rehabilitation is effective at decreasing anxiety symptoms, its effects in tandem with 
depression remain unclear [26]. Such research confirms our study results (HAD scale): SP felt a 
greater positive effect of training and significantly decreased anxiety (p < 0.05). This shows that 
participation in even a short, two-week period of rehabilitation can improve the outcome in terms of 
the psycho-emotional state and reduce anxiety symptoms. 

We acknowledge the limitations of our study. Despite the positive impact of new technologies, 
some limitations of our study must be considered when interpreting the results. Concerning the 
sample, 42 participants can be considered a small number, though it is comparable with previous 
similar interventions [23]. Moreover, the study was performed shortly after the stroke had occurred, 
and the training was only performed for a small number of sessions (10 sessions, 45 min/day). 
Furthermore, we observed that a 60-min duration of training with new technologies was too long for 
patients: after 30 min, they became tired, could hardly gather their attention, made long pauses, and 
did not perform the task correctly. Considering these indicators, the optimal training session duration 
we recommend is 30 min. Furthermore, we can state that effective results in post-stroke rehabilitation 
with new technologies depend on training duration and intensity, as well as the patient distribution 
according to sex, different affected arm (R/L), and stroke type (ischemic/hemorrhagic) with different 
recovery curves and the psycho-emotional state. 

Our hypothesis was confirmed, that trainings with new technologies showed significantly 
improved functional level of post-stroke patients. However, the effects of trainings on upper limbs’ 
motor function recovery demonstrate that Armeo robot-assisted devices present the same tracking 
capabilities as the Kinect-based system, while being individually modified for each patient and 
accurately overcoming limitations. Thus, the potential efficacy of Kinect and Armeo therapy in the 
rehabilitation of post-stroke survivors needs to be investigated in greater depth. 

5. Conclusions 

Recently, new techniques based on robotic-assistive devices or VR have proven increasingly 
beneficial. Our research has shown that even a short-term, two-week training program with new 
technologies had a positive effect and significantly recovered SP functional level in self-care, UL 
motor ability (dexterity and movements, grip strength, kinematic data), visual constructive abilities 
(attention, memory, visuo-spatial abilities, and complex commands), and decreased anxiety level. 
Obviously, in order to achieve the recovery of a specific impairment, it is very important to select 
accurately the most appropriate method for effective recovery. These findings suggest the need to 
explore and carefully plan strategies to stimulate positive improvement within rehabilitation. 

Author Contributions: Conceptualization and methodology: A.A. and K.D.; Software, formal analysis, and data 
curation: K.D.; investigation: A.A.; resources: J.R. and A.A.; writing, original draft preparation: A.A. and K.D.; 



Medicina 2019, 55, 98 11 of 12 

 

writing, review and editing: J.R., R.K., and L.V.; supervision: R.K and J.R..; project administration: J.R., R.K., and 
L.V.; funding acquisition: J.R. 

Funding: This research received no external funding. 

Acknowledgments: We would like to thank the rehabilitation team of the Rehabilitation, Physical and Sports 
Medicine Center, Vilnius University Hospital Santaros clinics, who participated in the collection of research data. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Langhorne, P.; Legg, L. Evidence behind stroke rehabilitation. J. Neurol. Neurosurg. Psychiatry 2003, 
doi:10.1136/jnnp.74.suppl_4.iv18. 

2. Levin, M.F.; Kleim, J.A.; Wolf, S.L. What Do Motor “Recovery” and “Compensation” Mean in Patients 
Following Stroke? Neurorehabil. Neural. Repair 2009, doi:10.1177/1545968308328727. 

3. Mehrholz, J.; Hädrich, A.; Platz, T.; Kugler, J.; Pohl, M. Electromechanical and robot-assisted arm training 
for improving generic activities of daily living, arm function, and arm muscle strength after stroke. In: 
Cochrane Database of Systematic Reviews; NCBI 2012, doi:10.1002/14651858.CD006876.pub3. 

4. Subramanian, S.K.; Massie, C.L.; Malcolm, M.P.; Levin, M.F. Does provision of extrinsic feedback result in 
improved motor learning in the upper limb poststroke? A systematic review of the evidence. Neurorehabil. 
Neural. Repair 2010, doi:10.1177/1545968309349941. 

5. Liao, W.; McCombe Waller, S.; Whitall, J. Kinect-based individualized upper extremity rehabilitation is 
effective and feasible for individuals with stroke using a transition from clinic to home protocol. Cogent. 
Med. 2018, 5, 1–12, doi:10.1080/2331205X.2018.1428038. 

6. Pool, S.M.; Hoyle, J.M.; Malone, L.A.; Cooper, L.; Bickel, C.S.; McGwin, G.; Rimmer, J.H.; Eberhardt, A.W. 
Navigation of a virtual exercise environment with Microsoft Kinect by people post-stroke or with cerebral 
palsy. Assist. Technol. 2016, doi:10.1080/10400435.2016.1167789. 

7. Huang, V.S.; Krakauer, J.W. Robotic neurorehabilitation: A computational motor learning perspective. J. 
Neuroeng. Rehabil. 2009, doi:10.1186/1743-0003-6-5. 

8. Franceschini, M.; Goffredo, M.; Pournajaf, S.; Agosti, M.; De Pisi, F.; Galafate, D.; Posteraro, F. Predictors 
of activities of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients. 
PLoS ONE 2018, 13, 1–13, doi:10.1371/journal.pone.0193235. 

9. Calabrò, R.S.; Russo, M.; Naro, A.; Milardi, D.; Balletta, T.; Leo, A.; Filoni, S.; Bramanti, P. Who May Benefit 
From Armeo Power Treatment? A Neurophysiological Approach to Predict Neurorehabilitation 
Outcomes. PMR 2016, doi:10.1016/j.pmrj.2016.02.004. 

10. Orihuela-Espina, F.; Roldán, G.F.; Sánchez-Villavicencio, I.; Palafox, L.; Leder, R.; Sucar, L.E.; Hernández-
Franco, J. Robot training for hand motor recovery in subacute stroke patients: A randomized controlled 
trial. J. Hand. Ther. 2016, doi:10.1016/j.jht.2015.11.006. 

11. Masiero, S.; Armani, M.; Rosati, G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke 
patients: Focused review and results of new randomized controlled trial. J. Rehabil. Res. Dev. 2011, 
doi:10.1682/JRRD.2010.04.0063. 

12. Gijbels, D.; Lamers, I.; Kerkhofs, L.; Alders, G.; Knippenberg, E.; Feys, P. The Armeo Spring as training tool 
to improve upper limb functionality in multiple sclerosis: A pilot study. J. Neuroeng. Rehabil. 2011, 
doi:10.1186/1743-0003-8-5. 

13. Kiper, P.; Szczudlik, A.; Agostini, M.; Opara, J.; Nowobilski, R.; Ventura, L.; Tonin, P.; Turolla, A. Virtual 
Reality for Upper Limb Rehabilitation in Subacute and Chronic Stroke: A Randomized Controlled Trial. 
Arch. Phys. Med. Rehabil. 2018, doi:10.1016/j.apmr.2018.01.023. 

14. Emery, C.F.; Leatherman, N.E.; Burker, E.J.; MacIntyre, N.R. Psychological outcomes of a pulmonary 
rehabilitation program. Chest 1991, doi:10.1378/chest.100.3.613. 

15. Oczkowski, W.J.; Barreca, S. The functional independence measure: Its use to identify rehabilitation needs 
in stroke survivors. Arch. Phys. Med. Rehabil. 1993, doi:10.1016/0003-9993(93)90081-K. 

16. Pangman, V.C.; Sloan, J.; Guse, L. An examination of psychometric properties of the mini-mental state 
examination and the standardized mini-mental state examination: Implications for clinical practice. Appl. 
Nurs. Res. 2000, doi:10.1053/apnr.2000.9231. 

17. Klamroth-Marganska, V.; Blanco, J.; Campen, K.; Curt, A.; Dietz, V.; Ettlin, T.; Felder, M.; Fellinghauer, B.; 



Medicina 2019, 55, 98 12 of 12 

 

Guidali, M.; Kollmar, A.; et al. Three-dimensional, task-specific robot therapy of the arm after stroke: A 
multicentre, parallel-group randomised trial. Lancet Neurol. 2014, doi:10.1016/S1474-4422(13)70305-3. 

18. Fiedorova, D.; Krulova, P.; Ressner, P.; Jaremova, V.; Slonkova, J.; Bar, M.; Skoloudik, D.; Srovnalova, H.Z. 
Addenbrooke’s Cognitive Examination in Nondemented Patients after Stroke. Neuropsychiatry 2018, 8, 505–
512. 

19. Depression, H.; Scale, R. Hamilton Depression Rating Scale (Ham-D) (Ham). Time 2004, 
doi:10.1124/jpet.106.103382.oped. 

20. Gassert, R.; Dietz, V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological 
perspective. J. Neuroeng. Rehabil. 2018, doi:10.1186/s12984-018-0383-x. 

21. Webster, D.; Celik, O. Systematic review of Kinect applications in elderly care and stroke rehabilitation. J. 
Neuroeng. Rehabil. 2014, doi:10.1186/1743-0003-11-108. 

22. Colomer, C.; Baldoví, A.; Torromé, S.; Navarro, M.D.; Moliner, B.; Ferri, J.; Noé, E. Efficacy of Armeo® 
Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis. Neurologia 2013, 
doi:10.1016/j.nrl.2012.04.017. 

23. Gamito, P.; Oliveira, J.; Coelho, C.; Morais, D.; Lopes, P.; Pacheco, J.; Brito, R.; Soares, F.; Santos, N.; Barata, 
A.F. Cognitive training on stroke patients via virtual reality-based serious games. Disabil. Rehabil. 2017, 
doi:10.3109/09638288.2014.934925. 

24. Kim, Y.M.; Chun, M.H.; Yun, G.J.; Song, Y.J.; Young, H.E. The Effect of Virtual Reality Training on 
Unilateral Spatial Neglect in Stroke Patients. Ann. Rehabil. Med. 2011, doi:10.5535/arm.2011.35.3.309. 

25. Rose, F.D.; Brooks, B.M.; Rizzo, A. Virtual reality in brain damage rehabilitation: Review. Cyberpsychol. 
Behav. 2005, doi:10.1089/cpb.2005.8.241. 

26. Campbell Burton, C.A.; Murray, J.; Holmes, J.; Astin, F.; Greenwood, D.; Knapp, P. Frequency of anxiety 
after stroke: A systematic review and meta-analysis of observational studies. Int. J. Stroke. 2013, 
doi:10.1111/j.1747-4949.2012.00906.x. 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


	1. Introduction
	2. Materials and Methods
	2.1. Selection and Description of Participants
	2.2. Technical Information
	2.3. Statistics

	3. Results
	4. Discussion
	5. Conclusions
	References

