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Аннотация

После 1975 г. работы Воронина известно, что некоторые дзета и 𝐿-функции универсаль-
ны в том смысле, что их сдвигами приближается широкий класс аналитических функций.
Рассматриваются два типа сдвигов: непрерывный и дискретный.

В работе изучается универсальность дзета-функций Лерха 𝐿(𝜆, 𝛼, 𝑠), 𝑠 = 𝜎 + 𝑖𝑡, кото-
рые в полуплоскости 𝜎 > 1 определяются рядами Дирихле с членами 𝑒2𝜋𝑖𝜆𝑚(𝑚 + 𝛼)−𝑠 с
фиксированными параметрами 𝜆 ∈ R и 𝛼, 0 < 𝛼 6 1, и мероморфно продолжаются на
всю комплексную плоскость. Получены совместные дискретные теоремы универсальности
для дзета-функций Лерха. Именно, набор аналитических функций 𝑓1(𝑠), . . . , 𝑓𝑟(𝑠) одно-
временно приближаются сдвигами 𝐿(𝜆1, 𝛼1, 𝑠 + 𝑖𝑘ℎ), . . . , 𝐿(𝜆𝑟, 𝛼𝑟, 𝑠 + 𝑖𝑘ℎ), 𝑘 = 0, 1, 2, . . . ,
где ℎ > 0 - фиксированное число. При этом требуется линейная независимость над полем
рациональных чисел множества

{︀
(log(𝑚+ 𝛼𝑗) : 𝑚 ∈ N0, 𝑗 = 1, . . . , 𝑟), 2𝜋ℎ

}︀
. Доказательство

теорем универсальности использует вероятностные предельные теоремы о слабой сходи-
мости вероятностных мер в пространстве аналитических функций.
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Abstract

After Voronin’s work of 1975, it is known that some of zeta and 𝐿-functions are universal in
the sense that their shifts approximate a wide class of analytic functions. Two cases of shifts,
continuous and discrete, are considered.

The present paper is devoted to the universality of Lerch zeta-functions 𝐿(𝜆, 𝛼, 𝑠), 𝑠 = 𝜎+𝑖𝑡,
which are defined, for 𝜎 > 1, by the Dirichlet series with terms 𝑒2𝜋𝑖𝜆𝑚(𝑚+𝛼)−𝑠 with parameters
𝜆 ∈ R and 𝛼, 0 < 𝛼 6 1, and by analytic continuation elsewhere. We obtain joint discrete
universality theorems for Lerch zeta-functions. More precisely, a collection of analytic functions
𝑓1(𝑠), . . . , 𝑓𝑟(𝑠) simultaneously is approximated by shifts 𝐿(𝜆1, 𝛼1, 𝑠+𝑖𝑘ℎ), . . . , 𝐿(𝜆𝑟, 𝛼𝑟, 𝑠+𝑖𝑘ℎ),
𝑘 = 0, 1, 2, . . . , where ℎ > 0 is a fixed number. For this, the linear independence over the field
of rational numbers for the set

{︀
(log(𝑚+ 𝛼𝑗) : 𝑚 ∈ N0, 𝑗 = 1, . . . , 𝑟), 2𝜋ℎ

}︀
is required. For the

proof, probabilistic limit theorems on the weak convergence of probability measures in the space
of analytic function are applied.
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Dedicated to the 100th birthday of Nikolai Mikhailovich Korobov

1. Introduction

In [18], see also [4], S.M. Voronin discovered the universality of the Riemann zeta-function
𝜁(𝑠), 𝑠 = 𝜎+𝑖𝑡, that a wide class of analytic functions can be approximated by shifts 𝜁(𝑠+𝑖𝜏), 𝜏 ∈ R.
After Voronin’s work, various authors extended his universality theorem for some other zeta- and
𝐿-functions, and classes of Dirichlet series. One of universal zeta-functions is the Lerch zeta-function
𝐿(𝜆, 𝛼, 𝑠) with parameters 𝜆 ∈ R and 𝛼, 0 < 𝛼 6 1, which is defined, for 𝜎 > 1, by the Dirichlet
series

𝐿(𝜆, 𝛼, 𝑠) =
∞∑︁

𝑚=0

𝑒2𝜋𝑖𝜆𝑚

(𝑚+ 𝛼)𝑠
.

The function 𝐿(𝜆, 𝛼, 𝑠) was introduced and studied independently by R. Lipschitz [14] and M. Lerch
[13]. The analytic properties of 𝐿(𝜆, 𝛼, 𝑠) depend on the parameters 𝜆 and 𝛼, and in particular case,
this is true for the analytic continuation to the whole complex plane. If 𝜆 ̸∈ Z, then 𝐿(𝜆, 𝛼, 𝑠) is an
entire function, while, for 𝜆 ∈ Z, 𝐿(𝜆, 𝛼, 𝑠) reduces to the Hurwitz zeta-function

𝜁(𝑠, 𝛼) =
∞∑︁

𝑚=0

1

(𝑚+ 𝛼)𝑠
, 𝜎 > 1,

which is analytically continued to the whole complex plane, except for a simple pole at the point
𝑠 = 1 with residue 1. In virtue of the periodicity of 𝑒2𝜋𝑖𝜆𝑚, it suffices to suppose that 0 < 𝜆 6 1.
The theory of the Lerch zeta-function is given in [7].

The first universality result for the function 𝐿(𝜆, 𝛼, 𝑠) was obtained in [5]. Let

𝐷 =

{︂
𝑠 ∈ C :

1

2
< 𝜎 < 1

}︂
,

𝒦 be the class of compact subsets of the strip 𝐷 with connected complements, and let 𝐻(𝐾) with
𝐾 ∈ 𝒦 denote the class of continuous functions on 𝐾 that are analytic in the interior of 𝐾. Let
meas𝐴 denote the Lebesgue measure of a measurable set 𝐴 ⊂ R. Then it was obtained in [5] that
if 𝛼 is transcendental, then for 𝐾 ∈ 𝒦, 𝑓(𝑠) ∈ 𝐻(𝐾), 0 < 𝜆 6 1 and every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{︂
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
|𝐿(𝜆, 𝛼, 𝑠+ 𝑖𝜏)− 𝑓(𝑠)| < 𝜀

}︂
> 0.

The case of rational 𝛼 is more complicated. Some conditional result in this direction has been
obtained in [7]. If both 𝛼 and 𝜆 are rational, then the function 𝐿(𝛼, 𝜆, 𝑠) becomes the periodic
Hurwitz zeta-function, and, for it, an universality theorem of type of [9] is true. In this case, a
certain condition connecting 𝛼 and 𝜆 is involved.

The universality of 𝐿(𝛼, 𝜆, 𝑠) with algebraic irrational 𝛼 is an open problem. The case of 𝛼
with linearly independent set 𝐿(𝛼) = {log(𝑚+ 𝛼) : 𝑚 ∈ N0 = N ∪ {0}} over the field of rational
numbers Q can be viewed as a certain approximation to that problem, see [17] and [6].

For the function 𝐿(𝛼, 𝜆, 𝑠), also a discrete universality when 𝜏 in 𝐿(𝛼, 𝜆, 𝑠+𝑖𝜏) takes values from
a certain discrete set is considered. One of the simplest discrete sets is the arithmetic progression
{𝑘ℎ : 𝑘 ∈ N0} with ℎ > 0. Denote by #𝐴 the cardinality of the set 𝐴. If 𝛼 is transcendental and
the number exp{2𝜋

𝑘 } is rational, then it is known [3], [8] that, for 𝐾 ∈ 𝒦, 𝑓(𝑠) ∈ 𝐻(𝐾), 0 < 𝜆 6 1
and every 𝜀 > 0,

lim inf
𝑁→∞

1

𝑁 + 1
#

{︂
0 6 𝑘 6 𝑁 : sup

𝑠∈𝐾
|𝐿(𝜆, 𝛼, 𝑠+ 𝑖𝑘ℎ)− 𝑓(𝑠)| < 𝜀

}︂
> 0.
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Let, for ℎ > 0,

𝐿(𝛼, ℎ, 𝜋) =

{︂
(log(𝑚+ 𝛼) : 𝑚 ∈ N0),

2𝜋

ℎ

}︂
.

Then, in [12], the transcendence of 𝛼 and rationality of exp{2𝜋
ℎ } were replaced by the linear

independence over Q of the set 𝐿(𝛼, ℎ, 𝜋).
The aim of this paper is joint discrete universality theorems for Lerch zeta-functions. We

note that the joint universality for Lerch zeta-functions is an interesting problem connecting
algebraic properties of the parameters 𝛼1, . . . , 𝛼𝑟 and 𝜆1, . . . , 𝜆𝑟 with analytic properties of a
collection 𝐿(𝜆1, 𝛼1, 𝑠), . . . , 𝐿(𝜆𝑟, 𝛼𝑟, 𝑠), therefore, there are many results of such a kind. The first
joint universality theorem for Lerch zeta-functions was proved in [10], [11].

Theorem 1. Suppose that the parameters 𝛼1, . . . , 𝛼𝑟 are algebraically independent over Q,
𝜆1 = 𝑎1

𝑞1
, . . . , 𝜆𝑟 = 𝑎𝑟

𝑞𝑟
, (𝑎1, 𝑞1) = 1, . . . , (𝑎𝑟, 𝑞𝑟) = 1, are rational numbers, 𝑘 is the least common

multiple of 𝑞1, . . . , 𝑞𝑟, and that the rank of the matrix⎛⎜⎜⎝
𝑒2𝜋𝑖𝜆1 𝑒2𝜋𝑖𝜆2 . . . 𝑒2𝜋𝑖𝜆𝑟

𝑒4𝜋𝑖𝜆1 𝑒4𝜋𝑖𝜆2 . . . 𝑒4𝜋𝑖𝜆𝑟

. . . . . . . . . . . .
𝑒2𝑘𝜋𝑖𝜆1 𝑒2𝑘𝜋𝑖𝜆2 . . . 𝑒2𝑘𝜋𝑖𝜆𝑟

⎞⎟⎟⎠
is equal to 𝑟. For 𝑗 = 1, . . . , 𝑟, let 𝐾𝑗 ∈ 𝒦 and 𝑓𝑗 ∈ 𝐻(𝐾𝑗). Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{︃
𝜏 ∈ [0, 𝑇 ] : sup

16𝑗6𝑟
sup
𝑠∈𝐾𝑗

|𝐿(𝜆𝑗 , 𝛼𝑗 , 𝑠+ 𝑖𝜏)− 𝑓𝑗(𝑠)| < 𝜀

}︃
> 0.

Let
𝐿(𝛼1, . . . , 𝛼𝑟) = {(log(𝑚+ 𝛼1) : 𝑚 ∈ N0), . . . , (log(𝑚+ 𝛼𝑟) : 𝑚 ∈ N0)} .

Then in [16], under the hypothesis that the set 𝐿(𝛼1, . . . , 𝛼𝑟) is linearly independent over Q, it was
obtained that the inequality of Theorem 1 is true for all 0 < 𝜆 6 1, 𝑗 = 1, . . . , 𝑟.

We will focus on joint discrete analogues of the above results. For ℎ > 0, define the set

𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) =

{︂
(log(𝑚+ 𝛼1) : 𝑚 ∈ N0) , . . . , (log(𝑚+ 𝛼𝑟) : 𝑚 ∈ N0) ,

2𝜋

ℎ

}︂
.

Then we have

Theorem 2. Suppose that the set 𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) is linearly independent over Q. For
𝑗 = 1, . . . , 𝑟, let 𝐾𝑗 ∈ 𝒦, 𝑓𝑗 ∈ 𝐻(𝐾𝑗) and 0 < 𝜆𝑗 6 1. Then, for every 𝜀 > 0,

lim inf
𝑁→∞

1

𝑁 + 1
#

{︃
0 6 𝑘 6 𝑁 : sup

16𝑗6𝑟
sup
𝑠∈𝐾𝑗

|𝐿(𝜆𝑗 , 𝛼𝑗 , 𝑠+ 𝑖𝑘ℎ)− 𝑓𝑗(𝑠)| < 𝜀

}︃
> 0.

Theorem 2 has the following modification.

Theorem 3. Suppose that the set 𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) is linearly independent over Q. For
𝑗 = 1, . . . , 𝑟, let 𝐾𝑗 ∈ 𝒦, 𝑓𝑗 ∈ 𝐻(𝐾𝑗) and 0 < 𝜆𝑗 6 1. Then the limit

lim
𝑁→∞

1

𝑁 + 1
#

{︃
0 6 𝑘 6 𝑁 : sup

16𝑗6𝑟
sup
𝑠∈𝐾𝑗

|𝐿(𝜆𝑗 , 𝛼𝑗 , 𝑠+ 𝑖𝑘ℎ)− 𝑓𝑗(𝑠)| < 𝜀

}︃
> 0

exists for all but at most countably many 𝜀 > 0.

The proofs of Theorems 2 and 3 are based on statistical properties of Lerch zeta-functions,
more precisely, on limit theorems of weakly convergent probability measures in the space of analytic
functions.
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2. Discrete limit theorems

Denote by ℬ(𝑋) the Borel 𝜎-field of the space 𝑋. We recall that 𝐷 =
{︀
𝑠 ∈ C : 1

2 < 𝜎 < 1
}︀
.

Denote by 𝐻(𝐷) the space of analytic functions on 𝐷 endowed with the topology of uniform
convergence on compacta. In this section, we consider the weak convergence of probability measures
defined on (𝐻(𝐷),ℬ(𝐻(𝐷))).

We use the notation 𝛾 = {𝑠 ∈ C : |𝑠| = 1}, and define

Ω =
∞∏︁

𝑚=0

𝛾𝑚,

where 𝛾𝑚 = 𝛾 for all 𝑚 ∈ N0. Then, by the famous Tikhonov theorem, the torus Ω with the product
topology and pointwise multiplication is a compact topological Abelian group. Putting

Ω𝑟 = Ω1 × · · · × Ω𝑟,

where Ω𝑗 = Ω for 𝑗 = 1, . . . , 𝑟, by the Tikhonov theorem again, we have that Ω𝑟 is a compact
topological Abelian group. Therefore, on (Ω𝑟,ℬ(Ω𝑟)), the probability Haar measure 𝑚𝐻 can be
defined. This gives the probability space (Ω𝑟,ℬ(Ω𝑟),𝑚𝐻). Denote by 𝑚𝑗𝐻 the probability Haar
measure on (Ω𝑗 ,ℬ(Ω𝑗)), 𝑗 = 1, . . . , 𝑟. Then we have that

𝑚𝐻 = 𝑚1𝐻 × · · · ×𝑚𝑟𝐻 .

Let 𝜔𝑗 be the elements of Ω𝑗 , 𝑗 = 1, . . . , 𝑟, and 𝜔 = (𝜔1, . . . , 𝜔𝑟 denote the elements of Ω𝑟. Moreover,
denote by 𝜔𝑗(𝑚) the projection of an element 𝜔𝑗 ∈ Ω𝑗 to the circle 𝛾𝑚, 𝑚 ∈ N0, 𝑗 = 1, . . . , 𝑟. Now,
on the probability space (Ω𝑟,ℬ(Ω𝑟),𝑚𝐻), define the 𝐻𝑟(𝐷)-valued random element 𝐿(𝜆, 𝛼, 𝑠, 𝜔),
where 𝜆 = (𝜆1, . . . , 𝜆𝑟) and 𝛼 = (𝛼1, . . . , 𝛼𝑟), by

𝐿(𝜆, 𝛼, 𝑠, 𝜔) = (𝐿1(𝜆1, 𝛼1, 𝑠, 𝜔1), . . . , 𝐿𝑟(𝜆𝑟, 𝛼𝑟, 𝑠, 𝜔𝑟)),

where

𝐿𝑗(𝜆𝑗 , 𝛼𝑗 , 𝑠, 𝜔𝑗) =
∞∑︁

𝑚=0

𝑒2𝜋𝑖𝜆𝑗𝑚𝜔𝑗(𝑚)

(𝑚+ 𝛼𝑗)𝑠
, 𝑗 = 1, . . . , 𝑟.

We note that the latter series are uniformly convergent on compact subsets of the strip 𝐷 [7], thus,
they define the 𝐻(𝐷)-valued random elements.

Having the above definitions, we state a joint discrete limit theorem for Lerch zeta-functions.

Theorem 4. Suppose that the set 𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) is linearly independent over Q.Then

𝑃𝑁 (𝐴)
def
=

1

𝑁 + 1
# {0 6 𝑘 6 𝑁 : 𝐿(𝜆, 𝛼, 𝑠+ 𝑖𝑘ℎ) ∈ 𝐴} , 𝐴 ∈ ℬ(𝐻𝑟(𝐷)),

converges weakly to the distribution 𝑃𝐿 of the random element 𝐿(𝜆, 𝛼, 𝑠, 𝜔) as 𝑁 → ∞.

We remind that, for 𝐴 ∈ ℬ(𝐻𝑟(𝐷)),

𝑃𝐿(𝐴) = 𝑚𝐻 {𝜔 ∈ Ω𝑟 : 𝐿(𝜆, 𝛼, 𝑠, 𝜔) ∈ 𝐴} .

We divide the proof of Theorem 4 into lemmas. The first of them deals with the weak
convergence of probability measures on (Ω𝑟,ℬ(Ω𝑟)), and for that the linear independence of the set
𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) is essentially applied.

Let, for 𝐴 ∈ ℬ(Ω𝑟),

𝑄𝑁 (𝐴) =
1

𝑁 + 1
#
{︁
0 6 𝑘 6 𝑁 : ((𝑚+ 𝛼1)

−𝑖𝑘ℎ : 𝑚 ∈ N0), . . . , ((𝑚+ 𝛼𝑟)
−𝑖𝑘ℎ : 𝑚 ∈ N0)) ∈ 𝐴

}︁
.
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Lemma 1. Suppose that the set 𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) is linearly independent over Q. Then 𝑄𝑁

converges weakly to the Haar measure 𝑚𝐻 as 𝑁 → ∞.

Proof.

We consider the Fourier transform of 𝑄𝑁 . Since characters of the group Ω𝑟 are of the form

𝑟∏︁
𝑗=1

∞∏︁
𝑚=0

𝜔
𝑘𝑗𝑚
𝑗 (𝑚),

where only a finite number of integers 𝑘𝑗𝑚 are distinct from zero, we have that the Fourier transform
𝑔𝑁 (𝑘1, . . . , 𝑘𝑟), 𝑘𝑗 = (𝑘𝑗𝑚 : 𝑘𝑗𝑚 ∈ Z, 𝑚 ∈ N0), 𝑗 = 1, . . . , 𝑟, of 𝑄𝑁 is

𝑔𝑁 (𝑘1, . . . , 𝑘𝑟) =

∫︁
Ω𝑟

𝑟∏︁
𝑗=1

∞∏︁
𝑚=0

𝜔
𝑘𝑗𝑚
𝑗 (𝑚)d𝑄𝑁 =

1

𝑁 + 1

𝑁∑︁
𝑘=0

𝑟∏︁
𝑗=1

∞∏︁
𝑚=0

(𝑚+ 𝛼𝑗)
−𝑖𝑘ℎ𝑘𝑗𝑚

=
1

𝑁 + 1

𝑁∑︁
𝑘=0

exp

⎧⎨⎩−𝑖𝑘ℎ
𝑟∑︁

𝑗=1

∞∑︁′

𝑚=0

𝑘𝑗𝑚 log(𝑚+ 𝛼𝑗)

⎫⎬⎭ , (1)

where
∑︀′ means that only a finite number of integers 𝑘𝑗𝑚 are distinct from zero. Clearly,

𝑔𝑁 (0, . . . , 0) = 1. (2)

Since the set 𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) is linearly independent over Q,

exp

⎧⎨⎩−𝑖ℎ
𝑟∑︁

𝑗=1

∞∑︁′

𝑚=0

𝑘𝑗𝑚 log(𝑚+ 𝛼𝑗)

⎫⎬⎭ ̸= 1

for (𝑘1, . . . , 𝑘𝑟) ̸= (0, . . . , 0). Actually, if this inequality is not true, the

ℎ
𝑟∑︁

𝑗=1

∞∑︁′

𝑚=0

𝑘𝑗𝑚 log(𝑚+ 𝛼𝑗)−
2𝜋𝑙

ℎ
= 0

with 𝑙 ∈ Z, and this contradicts the linear independence of the set 𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋). Thus, in this
case, we find by (1) that

𝑔𝑁 (𝑘1, . . . , 𝑘𝑟) =
1− exp

{︁
−(𝑁 + 1)𝑖ℎ

∑︀𝑟
𝑗=1

∑︀′∞
𝑚=0 𝑘𝑗𝑚 log(𝑚+ 𝛼𝑗)

}︁
(𝑁 + 1)

(︁
1− exp

{︁
−𝑖ℎ

∑︀𝑟
𝑗=1

∑︀′∞
𝑚=0 𝑘𝑗𝑚 log(𝑚+ 𝛼𝑗)

}︁)︁ .
This and (2) show that

lim
𝑁→∞

𝑔𝑁 (𝑘1, . . . , 𝑘𝑟) =

{︂
1 if (𝑘1, . . . , 𝑘𝑟) = (0, . . . , 0),
0 if (𝑘1, . . . , 𝑘𝑟) ̸= (0, . . . , 0).

Since the right-hand side of the latter equality is the Fourier transform of the Haar measure 𝑚𝐻 ,
the lemma is proved. 2

Now, we will apply Lemma 1 to obtain a joint limit theorem in the space of analytic functions
for functions given by absolutely convergent Dirichlet series connected to Lerch zeta-functions. Let
�̂� > 1

2 be a fixed number, and, for 𝑚 ∈ N0 and 𝑛 ∈ N,

𝑣𝑛(𝑚,𝛼𝑗) = exp

{︃
−
(︂
𝑚+ 𝛼𝑗

𝑛+ 𝛼𝑗

)︂�̂�
}︃
, 𝑗 = 1, . . . , 𝑟.
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Define
𝐿𝑛(𝜆, 𝛼, 𝑠) = (𝐿𝑛(𝜆1, 𝛼1, 𝑠), . . . , 𝐿𝑛(𝜆𝑟, 𝛼𝑟, 𝑠))

and
𝐿𝑛(𝜆, 𝛼, 𝑠, 𝜔) = (𝐿𝑛(𝜆1, 𝛼1, 𝑠, 𝜔1), . . . , 𝐿𝑛(𝜆𝑟, 𝛼𝑟, 𝑠, 𝜔𝑟)),

where

𝐿𝑛(𝜆𝑗 , 𝛼𝑗 , 𝑠) =

∞∑︁
𝑚=0

𝑒2𝜋𝑖𝜆𝑗𝑚𝑣𝑛(𝑚,𝛼𝑗)

(𝑚+ 𝛼𝑗)𝑠
, 𝑗 = 1, . . . , 𝑟,

and

𝐿𝑛(𝜆𝑗 , 𝛼𝑗 , 𝑠, 𝜔) =

∞∑︁
𝑚=0

𝑒2𝜋𝑖𝜆𝑗𝑚𝜔𝑗(𝑚)𝑣𝑛(𝑚,𝛼𝑗)

(𝑚+ 𝛼𝑗)𝑠
, 𝑗 = 1, . . . , 𝑟,

It is known [7] that the series for 𝐿𝑛(𝜆𝑗 , 𝛼𝑗 , 𝑠) and 𝐿𝑛(𝜆𝑗 , 𝛼𝑗 , 𝑠, 𝜔𝑗) are absolutely convergent for
𝜎 > 1

2 .
The next lemma deals with weak convergence for

𝑃𝑁,𝑛(𝐴)
def
=

1

𝑁 + 1
# {0 6 𝑘 6 𝑁 : 𝐿𝑛(𝜆, 𝛼, 𝑠+ 𝑖𝑘ℎ) ∈ 𝐴} , 𝐴 ∈ ℬ(𝐻𝑟(𝐷)).

Define the function 𝑢𝑛 : Ω𝑟 → 𝐻𝑟(𝐷) by the formula

𝑢𝑛(𝜔) = 𝐿𝑛(𝜆, 𝛼, 𝑠, 𝜔), 𝜔 ∈ Ω.

Since the series for 𝐿𝑛(𝜆𝑗 , 𝛼𝑗 , 𝑠, 𝜔𝑗), 𝑗 = 1, . . . , 𝑟, are absolutely convergent for 𝜎 > 1
2 , the function

𝑢𝑛 is continuous, hence it is (ℬ(Ω𝑟),ℬ(𝐻𝑟(𝐷)))-measurable. Therefore, the measure 𝑚𝐻 induces [1]

on (𝐻𝑟(𝐷),ℬ(𝐻𝑟(𝐷))) the unique probability measure 𝑃𝑛
def
= 𝑚𝐻𝑢

−1
𝑛 , where, for 𝐴 ∈ ℬ(𝐻𝑟(𝐷)),

𝑃𝑛(𝐴) = 𝑚𝐻𝑢
−1
𝑛 (𝐴) = 𝑚𝐻(𝑢−1

𝑛 𝐴).

Lemma 2. Suppose that the set 𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) is linearly independent over Q. Then 𝑃𝑁,𝑛

converges weakly to 𝑃𝑛 as 𝑁 → ∞.

Proof.

Let 𝑄𝑁 be defined in Lemma 1. Then the definitions of 𝑃𝑁,𝑛, 𝑄𝑁 and 𝑢𝑛 show that,for every
𝐴 ∈ ℬ(𝐻𝑟(𝐷)),

𝑃𝑁,𝑛(𝐴) =
1

𝑁 + 1
#
{︁
0 6 𝑘 6 𝑁 :

(︁
((𝑚+ 𝛼1)

−𝑖𝑘ℎ : 𝑚 ∈ N0), . . . ,

((𝑚+ 𝛼𝑟)
−𝑖𝑘ℎ : 𝑚 ∈ N0)

)︁
∈ 𝑢−1

𝑛 𝐴
}︁
= 𝑄𝑁 (𝑢−1

𝑛 𝐴),

i.e., 𝑃𝑁,𝑛 = 𝑄𝑁𝑢
−1
𝑛 . This, Lemma 1, the continuity of 𝑢𝑛 and Theorem 5.1 from [1] show that 𝑃𝑁,𝑛

converges weakly to the measure 𝑚𝐻𝑢
−1
𝑛 as 𝑁 → ∞.

Now, we will approximate 𝐿(𝜆, 𝛼, 𝑠) by 𝐿𝑛(𝜆, 𝛼, 𝑠). For 𝑔1, 𝑔2 ∈ 𝐻(𝐷), let

𝜌(𝑔1, 𝑔2) =

∞∑︁
𝑙=1

2−𝑙 sup𝑠∈𝐾𝑙
|𝑔1(𝑠)− 𝑔2(𝑠)|

1 + sup𝑠∈𝐾𝑙
|𝑔1(𝑠)− 𝑔2(𝑠)

,

where {𝐾𝑙 : 𝑙 ∈ N} is a sequence of compact subsets of the strip 𝐷 such that

𝐷 =

∞⋃︁
𝑙=1

𝐾𝑙,
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𝐾𝑙 ⊂ 𝐾𝑙+1 for all 𝑙 ∈ N, and if 𝐾 ⊂ 𝐷 is a compact subset, then 𝐾 ⊂ 𝐾𝑙 for some 𝑙. The proof of the
existence of the sequence {𝐾𝑙 : 𝑙 ∈ N} can be found, for example, in [2]. The metric 𝜌 induces the
topology of the space 𝐻(𝐷) of uniform convergence on compacta. The metric 𝜌 in 𝐻𝑟(𝐷) inducing
the product topology is defined by

𝜌(𝑔
1
, 𝑔

2
) = max

16𝑗6𝑟
𝜌(𝑔

1𝑗
, 𝑔

2,𝑗
),

where 𝑔
1
= (𝑔11, . . . 𝑔1𝑟), 𝑔

2
= (𝑔21, . . . 𝑔2𝑟) ∈ 𝐻𝑟(𝐷). 2

Lemma 3. For all 𝜆, 𝛼 and ℎ > 0,

lim
𝑛→∞

lim sup
𝑁→∞

1

𝑁 + 1

𝑁∑︁
𝑘=0

𝜌 (𝐿(𝜆, 𝛼, 𝑠+ 𝑖𝑘ℎ), 𝐿𝑛(𝜆, 𝛼, 𝑠+ 𝑖𝑘ℎ)) = 0.

Proof.

The definition of the metric 𝜌 shows that the equality of the lemma follows from the equalities

lim
𝑛→∞

lim sup
𝑁→∞

1

𝑁 + 1

𝑁∑︁
𝑘=0

𝜌 (𝐿𝑗(𝜆𝑗 , 𝛼𝑗 , 𝑠+ 𝑖𝑘ℎ), 𝐿𝑛(𝜆𝑗 , 𝛼𝑗 , 𝑠+ 𝑖𝑘ℎ)) = 0,

𝑗 = 1, . . . , 𝑟, that were obtained in Lemma 3 of [12]. 2
We recall that the measure 𝑃𝑛 was defined in Lemma 2.

Lemma 4. Suppose that the set 𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) is linearly independent over Q. Then
the sequence {𝑃𝑛 : 𝑛 ∈ N} is tight, i.e., for every 𝜀 > 0, there exists a compact subset
𝐾 = 𝐾(𝜀) ⊂ 𝐻𝑟(𝐷) such that

𝑃𝑛(𝐾) > 1− 𝜀

for all 𝑛 ∈ N.

Proof.

Consider the marginal measures of 𝑃𝑛, i.e., the measures

𝑃𝑛,𝑗(𝐴) = 𝑃𝑛

⎛⎜⎝𝐻(𝐷)× · · · ×𝐻(𝐷)⏟  ⏞  
𝑗−1

×𝐴×𝐻(𝐷)× · · · ×𝐻(𝐷)

⎞⎟⎠ , 𝐴 ∈ ℬ(𝐻(𝐷)),

where 𝑗 = 1, . . . , 𝑟. The linear independence of the set 𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) implies that for 𝐿(𝛼𝑗 , ℎ, 𝜋),
𝑗 = 1, . . . , 𝑟. Therefore, in view of the proof of Lemma 5 from [12], we have that 𝑃𝑛,𝑗 converges
weakly to the distribution 𝑃𝐿𝑗 of the random element 𝐿𝑗(𝜆𝑗 , 𝛼𝑗 , 𝑠, 𝜔𝑗) as 𝑛 → ∞, 𝑗 = 1, . . . , 𝑟.

Hence, the sequence {𝑃𝑛,𝑗 : 𝑛 ∈ N} is relatively compact, 𝑗 = 1, . . . , 𝑟. Since the set 𝐻(𝐷)
is complete and separable, by the inverse Prokhorov Theorem [1, Theorem 6.2], the sequence
{𝑃𝑛,𝑗 : 𝑛 ∈ N} is tight, 𝑗 = 1, . . . , 𝑟. Thus, for every 𝜀 > 0, there exists a compact subset𝐾𝑗 ⊂ 𝐻(𝐷)
such that

𝑃𝑛(𝐾𝑗) > 1− 𝜀

𝑟
, 𝑗 = 1, . . . , 𝑟,

for all 𝑛 ∈ N. The set 𝐾 = 𝐾1 × · · · ×𝐾𝑟 is compact in 𝐻𝑟(𝐷). Moreover,

𝑃𝑛(𝐻
𝑟(𝐷) ∖𝐾) = 𝑃𝑛

(︂
𝑟
∪
𝑗=1

(𝐻(𝐷) ∖𝐾𝑗)

)︂
6

𝑟∑︁
𝑗=1

𝑃𝑛,𝑗(𝐻(𝐷) ∖𝐾𝑗) < 𝜀

for all 𝑛 ∈ N, i.e.,the sequence {𝑃𝑛 : 𝑛 ∈ N} is tight. 2
For convenience, we recall one result from [1]. Suppose that (𝑆, 𝜚)-valued random elements

𝑌𝑛, 𝑋1𝑛, 𝑋2𝑛, . . . are defined on the same probability space with measure P, and that the space 𝑆
is separable.
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Lemma 5. Suppose that, for every 𝑘,

𝑋𝑘𝑛
𝒟−−−→

𝑛→∞
𝑋𝑘

and
𝑋𝑘

𝒟−−−→
𝑘→∞

𝑋.

Moreover, for every 𝜀 > 0, let

lim
𝑘→∞

lim sup
𝑛→∞

P{𝜌(𝑋𝑘𝑛, 𝑌𝑛) > 𝜀} = 0.

Then 𝑌𝑛
𝒟−−−→

𝑛→∞
𝑋.

The lemma is Theorem 4.2 from [1].
Proof of Theorem 3. By Lemma 4 and the Prokhorov theorem [1, Theorem 6.1], the sequence

{𝑃𝑛 : 𝑛 ∈ N} is relatively compact. Hence, every subsequence of 𝑃𝑛 contains a subsequence
{𝑃𝑛𝑘

} such that 𝑃𝑛𝑘
converges weakly to a certain probability measure 𝑃 on (𝐻𝑟(𝐷),ℬ(𝐻𝑟(𝐷)))

as 𝑘 → ∞. Therefore, denoting by �̂�𝑛 = �̂�𝑛(𝑠) the 𝐻𝑟(𝐷)-valued random element having the
distribution 𝑃𝑛, we have that

�̂�𝑛𝑘

𝒟−−−→
𝑘→∞

𝑃. (3)

Moreover, by Lemma 2,

𝑋𝑁,𝑛
𝒟−−−−→

𝑁→∞
�̂�𝑛, (4)

where the 𝐻𝑟(𝐷)-valued random element 𝑋𝑁,𝑛 = 𝑋𝑁,𝑛(𝑠) is defined by

𝑋𝑁,𝑛(𝑠) = 𝐿𝑛(𝜆, 𝛼, 𝑠+ 𝑖𝜃𝑁 ),

and 𝜃𝑁 is a random variable defined on a certain probability space (Ω̂,ℱ ,P) by the formula

P(𝜃𝑁 = 𝑘ℎ) =
1

𝑁 + 1
, 𝑘 = 0, 1, . . . , 𝑁.

Define one more 𝐻𝑟(𝐷)-valued random element

𝑌𝑁 = 𝑌𝑁 (𝑠) = 𝐿(𝜆, 𝛼, 𝑠+ 𝑖𝜃𝑁 ).

Then, in view of Lemma 3, for every 𝜀 > 0,

lim
𝑛→∞

lim sup
𝑁→∞

P(𝜚(𝑋𝑁,𝑛, 𝑌𝑁 ) > 𝜀)

= lim
𝑛→∞

lim sup
𝑁→∞

1

𝑁 + 1
#
{︀
0 6 𝑘 6 𝑁 : 𝜌 (𝐿(𝜆, 𝛼, 𝑠+ 𝑖𝑘ℎ), 𝐿𝑛(𝜆, 𝛼, 𝑠+ 𝑖𝑘ℎ)) > 𝜀

}︀
6 lim

𝑛→∞
lim sup
𝑁→∞

1

(𝑁 + 1)𝜀

𝑁∑︁
𝑘=0

𝜚(𝐿(𝜆, 𝛼, 𝑠+ 𝑖𝑘ℎ), 𝐿𝑛(𝜆, 𝛼, 𝑠+ 𝑖𝑘ℎ)) = 0.

This equality together with relations (3) and (4) shows that all hypotheses of Lemma 5 are satisfied.
Therefore, we obtain the relation

𝑌𝑁
𝒟−−−−→

𝑁→∞
𝑃. (5)

Thus, we have that 𝑃𝑁 converges weakly to 𝑃 as 𝑁 → ∞. Moreover, the relation (5) shows that the
measure 𝑃 is independent of the choice of the subsequence 𝑃𝑛𝑘

. Since the sequence 𝑃𝑛 is relatively
compact, hence we obtain that

�̂�𝑛
𝒟−−−→

𝑛→∞
𝑃.
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This means that �̂�𝑛 converges weakly to 𝑃 as 𝑛 → ∞. The latter remark allows easily to identify
the measure 𝑃 . Actually, in [16], it was obtained that, under hypothesis that the set 𝐿(𝛼1, . . . , 𝛼𝑟)
is linearly independent over Q,

1

𝑇
meas {𝜏 ∈ [0, 𝑇 ] : 𝐿(𝜆, 𝛼, 𝑠+ 𝑖𝜏) ∈ 𝐴} , 𝐴 ∈ ℬ(𝐻𝑟(𝐷)), (6)

also converges weakly to the limit measure 𝑃 of 𝑃𝑛 as 𝑛 → ∞, and that 𝑃 coincides with 𝑃𝐿.
Obviously,the linear independence of the set 𝐿(𝛼1, . . . , 𝛼𝑟;ℎ, 𝜋) implies that of the set 𝐿(𝛼1, . . . , 𝛼𝑟).
Therefore, 𝑃𝑁 also converges weakly to 𝑃𝐿 which is the limit measure of 𝑃𝑛. The theorem is proved.
2

3. Proofs of universality

We remind the Mergelyan theorem on approximation of analytic functions by polynomials [15].

Lemma 6. Let 𝐾 be a compact subset on the complex plane with connected complement, and
let 𝑓(𝑠) be a function continuous on 𝐾 and analytic in the interior of 𝐾. Then, for every 𝜀 > 0,
there exists a polynomial 𝑝(𝑠) such that

sup
𝑠∈𝐾

|𝑓(𝑠)− 𝑝(𝑠)| < 𝜀.

We also need the explicit form of the support of the measure 𝑃𝐿. We recall that the support of
𝑃𝐿 is a closed minimal set 𝑆𝐿 such that 𝑃𝐿(𝑆𝐿) = 1. The set 𝑆𝐿 consists of all 𝑔 ∈ 𝐻𝑟(𝐷) such
that, for every open neighbourhood 𝐺 of 𝑔, the inequality 𝑃𝐿(𝐺) > 0 is true.

Lemma 7. The support of the measure 𝑃𝐿 is the whole of 𝐻𝑟(𝐷).

Proof.

It was observed above that 𝑃𝐿 is the limit measure of (6). Thus, the lemma follows from [16],
see the proof of Theorem 2.1. 2

We also recall two equivalents of the weak convergence of probability measures. Let 𝑃𝑛, 𝑛 ∈ N,
and 𝑃 be probability measures on (𝑋,ℬ(𝑋)). The set 𝐴 ∈ ℬ(𝑋) is called a continuity set of 𝑃 if
𝑃 (𝜕𝐴) = 0, where 𝜕𝐴 is the boundary of 𝐴.

Lemma 8. The following statements are equivalent:
1∘ 𝑃𝑛 converges weakly to 𝑃 ;
2∘ for every open set 𝐺 ⊂ 𝑋,

lim inf
𝑛→∞

𝑃𝑛(𝐺) > 𝑃 (𝐺),

3∘ for every continuity set 𝐴 of the measure 𝑃 ,

lim
𝑛→∞

𝑃𝑛(𝐴) = 𝑃 (𝐴).

The lemma is a part of Theorem 2.1 from [1].
Proof of Theorem 2.

In view of Lemma 6, there exist polynomials 𝑝1(𝑠), . . . , 𝑝𝑟(𝑠) such that

sup
16𝑗6𝑟

sup
𝑠∈𝐾𝑗

|𝑓𝑗(𝑠)− 𝑝𝑗(𝑠)| <
𝜀

2
. (7)

Consider the set

𝐺𝜀 =

{︃
(𝑔1, . . . , 𝑔𝑟) ∈ 𝐻𝑟(𝐷) : sup

16𝑗6𝑟
sup
𝑠∈𝐾𝑗

|𝑔𝑗(𝑠)− 𝑝𝑗(𝑠)| <
𝜀

2

}︃
.
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Then the set 𝐺𝜀 is open, and,by Lemma 7, is a neighborhood of the collection (𝑝1(𝑠), . . . , 𝑝𝑟(𝑠))
which is an element of the support of the measure 𝑃𝐿. Therefore, the inequality

𝑃𝐿(𝐺𝜀) > 0 (8)

is satisfied. Hence, by Theorem 4 and 2∘ of Lemma 8,

lim inf
𝑁→∞

𝑃𝑁 (𝐺𝜀) > 𝑃𝐿(𝐺𝜀) > 0. (9)

This, and the definitions of 𝑃𝑁 and 𝐺𝜀 show that

lim inf
𝑁→∞

1

𝑁 + 1
#

{︃
0 6 𝑘 6 𝑁 : sup

16𝑗6𝑟
sup
𝑠∈𝐾𝑗

|𝐿(𝜆𝑗 , 𝛼𝑗 , 𝑠+ 𝑖𝑘ℎ)− 𝑝𝑗(𝑠)| <
𝜀

2

}︃
> 0. (10)

Let 𝑘 ∈ N satisfy the inequality

sup
16𝑗6𝑟

sup
𝑠∈𝐾𝑗

|𝐿(𝜆𝑗 , 𝛼𝑗 , 𝑠+ 𝑖𝑘ℎ)− 𝑝𝑗(𝑠)| <
𝜀

2
.

Then, for such 𝑘, (7) implies the inequality

sup
16𝑗6𝑟

sup
𝑠∈𝐾𝑗

|𝐿(𝜆𝑗 , 𝛼𝑗 , 𝑠+ 𝑖𝑘ℎ)− 𝑓𝑗(𝑠)| < 𝜀.

Therefore, (10) gives the assertion of the theorem. 2
Proof of Theorem 3.

Consider the set

�̂�𝜀 =

{︃
(𝑔1, . . . , 𝑔𝑟) ∈ 𝐻𝑟(𝐷) : sup

16𝑗6𝑟
sup
𝑠∈𝐾𝑗

|𝑔𝑗(𝑠)− 𝑓𝑗(𝑠)| < 𝜀

}︃
.

Then the set �̂�𝜀 is open. Moreover, the boundary 𝜕𝐺𝜀 lies in the set{︃
(𝑔1, . . . , 𝑔𝑟) ∈ 𝐻𝑟(𝐷) : sup

16𝑗6𝑟
sup
𝑠∈𝐾𝑗

|𝑔𝑗(𝑠)− 𝑓𝑗(𝑠)| = 𝜀

}︃
.

Therefore, 𝜕�̂�𝜀1 ∩ 𝜕�̂�𝜀2 = ∅ for positive 𝜀1 ̸= 𝜀2. From this, it follows that 𝑃𝐿(�̂�𝜀) > 0 for at most
countably many 𝜀 > 0, i.e., the set �̂�𝜀 is a continuity set of 𝑃𝐿 for all but at most countably many
𝜀 > 0. Hence, by Theorem 4, and 1∘ and 3∘ of Lemma 8, the limit

lim
𝑁→∞

𝑃𝑁 (�̂�𝜀) = 𝑃𝐿(�̂�𝜀) (11)

exists for all but at most countably many 𝜀 > 0. Moreover, it is not difficult to see that if
(𝑔1, . . . , 𝑔𝑟) ∈ 𝐺𝜀, where 𝐺𝜀 is defined in the proof of Theorem 2, then, taking into account (7), we
find that

sup
16𝑗6𝑟

sup
𝑠∈𝐾𝑗

|𝑔𝑗(𝑠)− 𝑓𝑗(𝑠)| 6 sup
16𝑗6𝑟

sup
𝑠∈𝐾𝑗

|𝑔𝑗(𝑠)− 𝑝𝑗(𝑠)|+ sup
16𝑗6𝑟

sup
𝑠∈𝐾𝑗

|𝑓𝑗(𝑠)− 𝑝𝑗(𝑠)| < 𝜀.

This shows that 𝐺𝜀 ⊂ �̂�𝜀. Since, by (9), 𝑃𝐿(𝐺𝜀) > 0, the monotonicity of the measure gives the
inequality 𝑃𝐿(�̂�𝜀) > 0. This inequality and (11) prove the theorem. 2
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4. Conclusions

The Lerch zeta-function 𝐿(𝜆, 𝛼, 𝑠), 𝑠 = 𝜎+ 𝑖𝑡, with parameters 𝜆 ∈ R and 0 < 𝛼 6 1 is defined,
for 𝜎 > 1, by the series

𝐿(𝜆, 𝛼, 𝑠) =
∞∑︁

𝑚=0

𝑒2𝜋𝑖𝜆𝑚

(𝑚+ 𝛼)𝑠
,

and by analytic continuation elsewhere. In the paper, it is obtained that a collection of Lerch zeta-
functions (𝐿(𝜆1, 𝛼1, 𝑠), . . . , 𝐿(𝜆𝑟, 𝛼𝑟, 𝑠)) has a discrete universality property, i.e., a wide class of
analytic functions can be approximated by shifts 𝐿(𝜆1, 𝛼1, 𝑠 + 𝑖𝑘ℎ), . . . , 𝐿(𝜆𝑟, 𝛼𝑟, 𝑠 + 𝑖𝑘ℎ), ℎ > 0,
𝑘 = 0, 1, 2, . . . . For this, the linear independence over Q of the set{︂

(log(𝑚+ 𝛼𝑗) : 𝑚 ∈ N0, 𝑗 = 1, . . . , 𝑟),
2𝜋

ℎ

}︂
is required. More precisely, if 𝐾1, . . . ,𝐾𝑟 are compact subsets of the strip

{︀
𝑠 ∈ C : 1

2 < 𝜎 < 1
}︀
with

connected complements, and 𝑓1(𝑠), . . . , 𝑓𝑟(𝑠) are functions continuous on 𝐾1, . . . ,𝐾𝑟 and analytic
in the interior of 𝐾1, . . . ,𝐾𝑟, respectively, then, for every 𝜀 > 0 ,

lim inf
𝑁→∞

1

𝑁 + 1
#

{︃
0 6 𝑘 6 𝑁 : sup

16𝑗6𝑟
sup
𝑠∈𝐾𝑗

|𝐿(𝜆𝑗 , 𝛼𝑗 , 𝑠+ 𝑖𝑘ℎ)− 𝑓𝑗(𝑠)| < 𝜀

}︃
> 0.

It is possible to consider a more general situation, i.e., to consider the approximation of
𝑓1(𝑠), . . . , 𝑓𝑟(𝑠) by different shifts 𝐿(𝜆1, 𝛼1, 𝑠+𝑖𝑘ℎ1), . . . , 𝐿(𝜆𝑟, 𝛼𝑟, 𝑠+𝑖𝑘ℎ𝑟) with ℎ1 > 0, . . . , ℎ𝑟 > 0.
For this case, a new more general method than that of the paper is required, and it will be developed
in a subsequent paper.
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3. Ignatavičiūtė, J. 2002, “Discrete universality of the Lerch zeta-function”, Abstracts 8th Vilnius
Conference on Prob. Theory, pp. 116–117.

4. Karatsuba, A. A., Voronin, S. M. 1992, The Riemann zeta-function, Walter de Gruyter, Berlin.
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