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Summary. An evaluation of a recent state of the art model-based 
reinforcement learning PlaNet in a gaming environment is presented. 
Author analyzes PlaNet capabilities to solve several problems in Atari 
and VizDoom domains. Author identifies that PlaNet’s observation and 
reward encoders have trouble capturing small details in Atari games 
(Pong, Breakout), often critical to the agent’s performance playing games. 
Hyperparameter tuning strategy is suggested. Author confirms latent 
overshooting is crucial for VizDoom Take Cover scenario, implying it 
is necessary for similar environments. This suite of experiments was 
carried out as a preparatory work for future PlaNet‘s evaluation to handle 
simultaneous control of multiple agents in games.

Keywords: PlaNet, Model-based reinforcement learning, Latent space 
planning, Atari gym suite, VizDoom.

1  Introduction

Deep Planning Network (PlaNet) is a novel (published 12 Nov 2018) deep 
reinforcement learning algorithm developed by Google Research and Deep 
Mind [2]. PlaNet is a model-based RL algorithm. Being such, it achieves th 
same accuracy on the DeepMind open source control suite as state of the 
art model-free D4PG algorithm [3] more efficiently, which is accomplished 
by learning environment dynamics and using the model to plan actions. 
Sample efficiency, as well as possibility to re-use the model between 
related tasks makes PlaNet an interesting empyric research candidate.

Playing games is an established way to benchmark reinforcement 
learning algorithms. Games are simplified models of the real world. 
They feature things such as multiple agents, stochastic dynamics, partial 
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observability – problems common to our everyday lives. Making algorithm 
solve problems encapsulating part or all of these components is a step 
towards making reinforcement learning algorithms solve real world 
problems [5].

Motivated by the promises of PlaNet, author formulates an objective 
to evaluate PlaNet‘s capabilities to solve reinforcement learning game 
problems. This work encapsulates authors findings adapting PlaNet 
to solve several popular discrete OpenAI gym Atari [6] and VizDoom [7] 
scenarios.

2 PlaNet Algorithm

PlaNet is a model-based reinforcement learning algorithm. It uses a learned 
model to generate most rewarding action sequences. In this section the 
author describes the mechanics of PlaNet in detail.

Environment 
PlaNet models an environment as a partially observable Markov decision 
process (POMDP). That is, PlaNet is unsure which state the model might be 
in, yet models a separate mechanism to increase this certainty. 

Model 
PlaNet is not given a model. It learns environment dynamics by interacting 
with its suroundings. It records observation, action, reward triplets and 
learns from them. Consider ht to be a deterministic latent state, st to be a 
stochastic latent state, ot to be an observation, at to be an action and rt to 
be a reward, all at timestep t. PlaNet learns models as follow:

• Transition models
• Deterministic state model: 

Model 

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡   𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

• 
o ℎ𝑡𝑡 =  𝑓𝑓(ℎ𝑡𝑡−1,   𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning 

 
𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning 

–  reconstrution 
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

. Implemented 
as a recurrent neural network (GRU). 

• Stochastic state posterior model: 

Model 

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡   𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

• 
o ℎ𝑡𝑡 =  𝑓𝑓(ℎ𝑡𝑡−1,   𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning 

 
𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning 

–  reconstrution 
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

 Implemented 
as a feed-forward neural network parameterized Gaussian 
distribution. 

• Stochastic state (prior) model: 

Model 

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡   𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

• 
o ℎ𝑡𝑡 =  𝑓𝑓(ℎ𝑡𝑡−1,   𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning 

 
𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning 

–  reconstrution 
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

 Implemented 
as a feed-forward neural network parameterized Gaussian 
distribution. 
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• Observation model: 

Model 

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡   𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

• 
o ℎ𝑡𝑡 =  𝑓𝑓(ℎ𝑡𝑡−1,   𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning 

 
𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning 

–  reconstrution 
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

 Implemented as a Gaussian 
with mean parameterized by deconvolutional neural network and 
identity variance. 

• Reward model: 

Model 

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡   𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

• 
o ℎ𝑡𝑡 =  𝑓𝑓(ℎ𝑡𝑡−1,   𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning 

 
𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning 

–  reconstrution 
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

 Implemented as a feed-forward neural 
network parameterized Gaussian. 

Observation model is only used for training. Transition models and 
the reward model are used for planning. Posterior models increases the 
certainty which latent state the agent currently resides in.

Planning 
PlaNet uses cross-entropy method to search for best action sequence 
under the model [2]. Author suggests reading original PlaNet paper for the 
details of the planning algorithm. The procedure can be summarized as 
follows:

1. Infer a belief of a latent state from current observation and past 
deterministic latent state via a stochastic state posterior model  

Model 

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡   𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

• 
o ℎ𝑡𝑡 =  𝑓𝑓(ℎ𝑡𝑡−1,   𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning 

 
𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning 

–  reconstrution 
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

 
2. Initialize H Normal distributions (i.e. time dependent Gaussian), each 

distribution for each action in the to-be-planned action sequence 
vector. H is a planning horizon. 

3. Sample J action sequences from the distribution (all H length). 
Actions are sampled by unrolling the stochastic state prior model 
in time, which does not use encoded observations, thus being a key 
ingredient to fast planning 

Model 

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡   𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

• 
o ℎ𝑡𝑡 =  𝑓𝑓(ℎ𝑡𝑡−1,   𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning 

 
𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡,  𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning 

–  reconstrution 
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

 
4. Re-fit the belief (i.e. action sequence distribution) to best K action 

sequences, based on the sum reward of the sequence of actions 
(using a reward model). 

5. Repeat for I iterations. 

Lastly, return the first action of the returned final mean action 
sequence. After receiving a new observation, agent replans again, which 
helps to avoid local optima.
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Learning 
The algorithm utilises two objective functions to learn the model – a 
reconstrution objective and a regularizing latent overshooting objective. 
Below is the objective function for the observation model – reward model 
learning objective follows the same analogy.

Reconstruction term forces the model to learn to encode rewards and 
observations into the latent space and as accuratelly reconstruct them as 
possible. 

Latent overshooting term works as a regularizer – it encourages 
consistency between one-step and multi-step predictions, which should be 
equal in expectation over the training dataset. It is trained on all distances 
until D (50 by default). 

The goal is to maximize this combination of objective functions. 
Note: the final objective includes the regularization term of latent space 
distribution  p(st) as well (author omits it here for readability), a common 
regularization technique used in variational autoencoders [1].

3 Experiments

This section contains the evaluation results and discussions of PlaNet on 
Atari and VizDoom OpenAI gym environments.

Experiments with Atari Breakout and Pong
Pong and Breakout games is a popular way to benchmark reinforcement 
learning algorithms [9]. In a Pong game, the agent has to control a paddle 
with up and down actions to score points (i.e. play a similar to tennis game). 
In Breakout, the agent can move either left or right. The goal is to not let a 
game ball this the ground, as well as hit as many bricks as possible.

Concretelly, the author used OpenAI Gym BreakoutNoFrameskip-v4 
and PongNoFrameskip-v4 environments to remove implicit stochastic 
action repeat and frameskip [8]. The environment was configured as is 

 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 |𝑠𝑠𝑡𝑡)

 
Planning  

 

𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 |ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)
 𝐻𝐻

𝐻𝐻
 𝐽𝐽 𝐻𝐻

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 |ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning 
–

reconstrution latent overshooting 
–
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it is configured by OpenAI gym baselines for Atari games [9]. Pong game 
observations were grayscaled before being inputted to the model to reduce 
the computational cost.

Results

Table 1. PlaNet‘s evaluation on Atari Breakout and Pong games summary.

Figure 1. Zero-step reconstruction from Breakout and Pong games, respectivelly. Top rows 
show ground truth agent observations, bottom rows – decoded posterior state. 

Latent space encoding issue: Poor Table 1 results imply issues with 
PlaNet‘s default configuration. Figure 1 suggests the latent space is not 
capable to encapsulate small details. Author observed the reconstruction 
loss is not affected by small critical objects e.g. a ball. Author observed 
that the reward model is innaccurate even till 10 – 15 steps into the future, 
which implies the algorithm cannot perform correct planning (as the 
default PlaNet‘s planning horizon is 12). 

After extensive discussions with one of the PlaNet‘s authors Danijar 
Hafner, author suggests reducing regularization impact of latent 
overshooting objective: reducing the divergence scale and global prior 
scale parameters. Author validated that this makes small details visible in 
much fewer episodes. Increasing free nats parameter increases the lower 
limit of divergence losses, which helps the model retain small, seemingly 
unimportant observation details in the latent space.

–

𝑝𝑝(𝑠𝑠𝑡𝑡)

3 Experiments 

Experiments with Atari Breakout and Pong 

Results 

Table 1. PlaNet‘s evaluation on Atari Breakout and Pong games summary.

 

–

Latent space encoding issue
PlaNet‘s default configuration. Figure 1 suggests the latent space is not 

–

nning (as the default PlaNet‘s planning horizon is 12). 
After extensive discussions with one of the PlaNet‘s authors Danijar 

Experiments with VizDoom  

–
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Experiments with VizDoom 
After incorporating all the changes, based on the findings from the Atari 
game suite experiments, the author decided to begin experiment in the 
VizDoom domain. 

VizDoom is a reinforcement learning algorithm evaluation environment, 
based on an open-source clone of a once popular first person shooter 
Doom. VizDoomTakeCover-v0 gym environment was chosen. Agent has 
two actions – left and right. It is rewarded with +1 for each tick of an 
episode. Episode ends when the agent losses all lives, which can be lost by 
getting collided with fireballs, being shooted by monsters on the opposite 
side of the game room.

Table 2. PlaNet‘s evaluation on VizDoom TakeCover scenario.

Overshooting loss importance: Table 2 result suggest that decreasing 
overshooting loss horizon decreases performance. It is clear that 
decreasing the regularization horizon makes the model less robust. This 
was discussed by the PlaNet‘s authors as well [2].

4 Conclusion

Author evaluated PlaNet algorithm on two game environments – Atari 
Breakout and Pong, and VizDoom. Results suggest that default PlaNet‘s 
configuration suffers from small visual artefact loss in the latent space, 
often crucial to the agent‘s performance. The default configuration, 
although forcing reconstructions to be robust, overregularizes the model. 
Although it is important to reduce overshooting loss scale, the horizon is 
suggested to be kept long to achieve better performance. Tuned according 
to these findings, PlaNet algorithms is a suitable candidate for sample 
efficient learning to solve game problems.

Table 2. PlaNet‘s evaluation on VizDoom TakeCover scenario.

Overshooting loss importance: 

was discussed by the PlaNet‘s authors as well [2].

4 Conclusion 
–

Breakout and Pong, and VizDoom. Results suggest that default PlaNet‘s 

often crucial to the agent‘s performance. The default configu
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