
70 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

Learning to Play Games with PlaNet

Lukas Valatka

Vilnius University, Faculty of Mathematics and Informatics,
Institute of Computer Science, Didlaukio str. 4, LT-08303 Vilnius
lukas.valatka@mif.stud.vu.lt

Summary. An evaluation of a recent state of the art model-based
reinforcement learning PlaNet in a gaming environment is presented.
Author analyzes PlaNet capabilities to solve several problems in Atari
and VizDoom domains. Author identifies that PlaNet’s observation and
reward encoders have trouble capturing small details in Atari games
(Pong, Breakout), often critical to the agent’s performance playing games.
Hyperparameter tuning strategy is suggested. Author confirms latent
overshooting is crucial for VizDoom Take Cover scenario, implying it
is necessary for similar environments. This suite of experiments was
carried out as a preparatory work for future PlaNet‘s evaluation to handle
simultaneous control of multiple agents in games.

Keywords: PlaNet, Model-based reinforcement learning, Latent space
planning, Atari gym suite, VizDoom.

1 Introduction

Deep Planning Network (PlaNet) is a novel (published 12 Nov 2018) deep
reinforcement learning algorithm developed by Google Research and Deep
Mind [2]. PlaNet is a model-based RL algorithm. Being such, it achieves th
same accuracy on the DeepMind open source control suite as state of the
art model-free D4PG algorithm [3] more efficiently, which is accomplished
by learning environment dynamics and using the model to plan actions.
Sample efficiency, as well as possibility to re-use the model between
related tasks makes PlaNet an interesting empyric research candidate.

Playing games is an established way to benchmark reinforcement
learning algorithms. Games are simplified models of the real world.
They feature things such as multiple agents, stochastic dynamics, partial

mailto:lukas.valatka@mif.stud.vu.lt

Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 71

observability – problems common to our everyday lives. Making algorithm
solve problems encapsulating part or all of these components is a step
towards making reinforcement learning algorithms solve real world
problems [5].

Motivated by the promises of PlaNet, author formulates an objective
to evaluate PlaNet‘s capabilities to solve reinforcement learning game
problems. This work encapsulates authors findings adapting PlaNet
to solve several popular discrete OpenAI gym Atari [6] and VizDoom [7]
scenarios.

2 PlaNet Algorithm

PlaNet is a model-based reinforcement learning algorithm. It uses a learned
model to generate most rewarding action sequences. In this section the
author describes the mechanics of PlaNet in detail.

Environment
PlaNet models an environment as a partially observable Markov decision
process (POMDP). That is, PlaNet is unsure which state the model might be
in, yet models a separate mechanism to increase this certainty.

Model
PlaNet is not given a model. It learns environment dynamics by interacting
with its suroundings. It records observation, action, reward triplets and
learns from them. Consider ht to be a deterministic latent state, st to be a
stochastic latent state, ot to be an observation, at to be an action and rt to
be a reward, all at timestep t. PlaNet learns models as follow:

• Transition models
• Deterministic state model:

Model

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡 𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

•
o ℎ𝑡𝑡 = 𝑓𝑓(ℎ𝑡𝑡−1, 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning

𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning

– reconstrution
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

. Implemented
as a recurrent neural network (GRU).

• Stochastic state posterior model:

Model

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡 𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

•
o ℎ𝑡𝑡 = 𝑓𝑓(ℎ𝑡𝑡−1, 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning

𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning

– reconstrution
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

 Implemented
as a feed-forward neural network parameterized Gaussian
distribution.

• Stochastic state (prior) model:

Model

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡 𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

•
o ℎ𝑡𝑡 = 𝑓𝑓(ℎ𝑡𝑡−1, 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning

𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning

– reconstrution
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

 Implemented
as a feed-forward neural network parameterized Gaussian
distribution.

72 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

• Observation model:

Model

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡 𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

•
o ℎ𝑡𝑡 = 𝑓𝑓(ℎ𝑡𝑡−1, 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning

𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning

– reconstrution
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

 Implemented as a Gaussian
with mean parameterized by deconvolutional neural network and
identity variance.

• Reward model:

Model

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡 𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

•
o ℎ𝑡𝑡 = 𝑓𝑓(ℎ𝑡𝑡−1, 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning

𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning

– reconstrution
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

 Implemented as a feed-forward neural
network parameterized Gaussian.

Observation model is only used for training. Transition models and
the reward model are used for planning. Posterior models increases the
certainty which latent state the agent currently resides in.

Planning
PlaNet uses cross-entropy method to search for best action sequence
under the model [2]. Author suggests reading original PlaNet paper for the
details of the planning algorithm. The procedure can be summarized as
follows:

1. Infer a belief of a latent state from current observation and past
deterministic latent state via a stochastic state posterior model

Model

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡 𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

•
o ℎ𝑡𝑡 = 𝑓𝑓(ℎ𝑡𝑡−1, 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning

𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning

– reconstrution
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

2. Initialize H Normal distributions (i.e. time dependent Gaussian), each

distribution for each action in the to-be-planned action sequence
vector. H is a planning horizon.

3. Sample J action sequences from the distribution (all H length).
Actions are sampled by unrolling the stochastic state prior model
in time, which does not use encoded observations, thus being a key
ingredient to fast planning

Model

ℎ𝑡𝑡
𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡 𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡 𝑡𝑡

•
o ℎ𝑡𝑡 = 𝑓𝑓(ℎ𝑡𝑡−1, 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

o 𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡)

• 𝑜𝑜𝑡𝑡 ~ 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)

• 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 | 𝑠𝑠𝑡𝑡)

Planning

𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 | ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)

 𝐻𝐻
𝐻𝐻

 𝐽𝐽

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 | ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning

– reconstrution
latent overshooting

–

max (∑(𝐸𝐸𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡)[ln 𝑝𝑝 (𝑜𝑜𝑡𝑡 | 𝑠𝑠𝑡𝑡)] − 1
𝐷𝐷 ∑ 𝛽𝛽𝑑𝑑𝐸𝐸[𝐾𝐾𝐾𝐾[𝑞𝑞(𝑠𝑠𝑡𝑡 | 𝑜𝑜≤𝑡𝑡, 𝑎𝑎<𝑡𝑡) || 𝑝𝑝(𝑠𝑠𝑡𝑡 | 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1)]]

𝐷𝐷

𝑑𝑑=1
))

𝑇𝑇

𝑡𝑡=1

4. Re-fit the belief (i.e. action sequence distribution) to best K action

sequences, based on the sum reward of the sequence of actions
(using a reward model).

5. Repeat for I iterations.

Lastly, return the first action of the returned final mean action
sequence. After receiving a new observation, agent replans again, which
helps to avoid local optima.

Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 73

Learning
The algorithm utilises two objective functions to learn the model – a
reconstrution objective and a regularizing latent overshooting objective.
Below is the objective function for the observation model – reward model
learning objective follows the same analogy.

Reconstruction term forces the model to learn to encode rewards and
observations into the latent space and as accuratelly reconstruct them as
possible.

Latent overshooting term works as a regularizer – it encourages
consistency between one-step and multi-step predictions, which should be
equal in expectation over the training dataset. It is trained on all distances
until D (50 by default).

The goal is to maximize this combination of objective functions.
Note: the final objective includes the regularization term of latent space
distribution p(st) as well (author omits it here for readability), a common
regularization technique used in variational autoencoders [1].

3 Experiments

This section contains the evaluation results and discussions of PlaNet on
Atari and VizDoom OpenAI gym environments.

Experiments with Atari Breakout and Pong
Pong and Breakout games is a popular way to benchmark reinforcement
learning algorithms [9]. In a Pong game, the agent has to control a paddle
with up and down actions to score points (i.e. play a similar to tennis game).
In Breakout, the agent can move either left or right. The goal is to not let a
game ball this the ground, as well as hit as many bricks as possible.

Concretelly, the author used OpenAI Gym BreakoutNoFrameskip-v4
and PongNoFrameskip-v4 environments to remove implicit stochastic
action repeat and frameskip [8]. The environment was configured as is

 𝑟𝑟𝑡𝑡 ~ 𝑝𝑝 (𝑟𝑟𝑡𝑡 |𝑠𝑠𝑡𝑡)

Planning

𝑠𝑠𝑡𝑡 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡 |ℎ𝑡𝑡, 𝑜𝑜𝑡𝑡)
 𝐻𝐻

𝐻𝐻
 𝐽𝐽 𝐻𝐻

𝑠𝑠𝑡𝑡:𝐻𝐻 ~ 𝑝𝑝 (𝑠𝑠𝑡𝑡:𝐻𝐻 |ℎ𝑡𝑡:𝐻𝐻−1)
 𝐾𝐾

 𝐼𝐼

Learning
–

reconstrution latent overshooting
–

74 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

it is configured by OpenAI gym baselines for Atari games [9]. Pong game
observations were grayscaled before being inputted to the model to reduce
the computational cost.

Results

Table 1. PlaNet‘s evaluation on Atari Breakout and Pong games summary.

Figure 1. Zero-step reconstruction from Breakout and Pong games, respectivelly. Top rows
show ground truth agent observations, bottom rows – decoded posterior state.

Latent space encoding issue: Poor Table 1 results imply issues with
PlaNet‘s default configuration. Figure 1 suggests the latent space is not
capable to encapsulate small details. Author observed the reconstruction
loss is not affected by small critical objects e.g. a ball. Author observed
that the reward model is innaccurate even till 10 – 15 steps into the future,
which implies the algorithm cannot perform correct planning (as the
default PlaNet‘s planning horizon is 12).

After extensive discussions with one of the PlaNet‘s authors Danijar
Hafner, author suggests reducing regularization impact of latent
overshooting objective: reducing the divergence scale and global prior
scale parameters. Author validated that this makes small details visible in
much fewer episodes. Increasing free nats parameter increases the lower
limit of divergence losses, which helps the model retain small, seemingly
unimportant observation details in the latent space.

–

𝑝𝑝(𝑠𝑠𝑡𝑡)

3 Experiments

Experiments with Atari Breakout and Pong

Results

Table 1. PlaNet‘s evaluation on Atari Breakout and Pong games summary.

–

Latent space encoding issue
PlaNet‘s default configuration. Figure 1 suggests the latent space is not

–

nning (as the default PlaNet‘s planning horizon is 12).
After extensive discussions with one of the PlaNet‘s authors Danijar

Experiments with VizDoom

–

Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 75

Experiments with VizDoom
After incorporating all the changes, based on the findings from the Atari
game suite experiments, the author decided to begin experiment in the
VizDoom domain.

VizDoom is a reinforcement learning algorithm evaluation environment,
based on an open-source clone of a once popular first person shooter
Doom. VizDoomTakeCover-v0 gym environment was chosen. Agent has
two actions – left and right. It is rewarded with +1 for each tick of an
episode. Episode ends when the agent losses all lives, which can be lost by
getting collided with fireballs, being shooted by monsters on the opposite
side of the game room.

Table 2. PlaNet‘s evaluation on VizDoom TakeCover scenario.

Overshooting loss importance: Table 2 result suggest that decreasing
overshooting loss horizon decreases performance. It is clear that
decreasing the regularization horizon makes the model less robust. This
was discussed by the PlaNet‘s authors as well [2].

4 Conclusion

Author evaluated PlaNet algorithm on two game environments – Atari
Breakout and Pong, and VizDoom. Results suggest that default PlaNet‘s
configuration suffers from small visual artefact loss in the latent space,
often crucial to the agent‘s performance. The default configuration,
although forcing reconstructions to be robust, overregularizes the model.
Although it is important to reduce overshooting loss scale, the horizon is
suggested to be kept long to achieve better performance. Tuned according
to these findings, PlaNet algorithms is a suitable candidate for sample
efficient learning to solve game problems.

Table 2. PlaNet‘s evaluation on VizDoom TakeCover scenario.

Overshooting loss importance:

was discussed by the PlaNet‘s authors as well [2].

4 Conclusion
–

Breakout and Pong, and VizDoom. Results suggest that default PlaNet‘s

often crucial to the agent‘s performance. The default configu

References

76 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

References
[1] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114.
[2] Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Hong-

lak Lee ir James Davidson. Learning latent dynamics for planning from pixels. CoRR,
abs/1811.04551, 2018.

[3] Thanh Thi Nguyen and Ngoc Duy Nguyen and Saeid Nahavandi. Deep Reinforcement
Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications.
CoRR, abs/1811.04551, 2018.

[4] David Ha and Juergen Schmidhuber (2018). World Models. CoRR, abs/1803.10122.
[5] Open AI. Artificial life: objective and approach. https://docs.google.com/ document/

d/1_76rYTPtPysSh2_cFFz3Mfso-9VL3_tF5ziaIZ8qmS8/edit. 2018.
[6] M. G. Bellemare, Y. Naddaf, J. Veness ir M. Bowling. The arcade learning environment:

an evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013-06.

[7] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek ir Wojciech Jas-kowski.
Vizdoom: A doom-based AI research platform for visual reinforcement learning. CoRR,
abs/1605.02097, 2016. arXiv:1605.02097. http://arxiv.org/abs/1605.02097.

[8] Bongsang Kim. OpenAI Gym Environment Full List . 2018. https://medium.com/@
researchplex/openai-gym-environment-full-list-8b2e8ac4c1f7.

[9] Dhariwal, Prafulla and Hesse, Christopher and Klimov, Oleg and Nichol, Alex and
Plappert, Matthias and Radford, Alec and Schulman, John and Sidor, Szymon and Wu,
Yuhuai and Zhokhov

