

ŠIAULIAI UNIVERSITY

INSTITUTE OF REGIONAL DEVELOPMENT

Lukas Vaitkevičius

Detection of Scribbles Elements by Image Recognition

MASTERS THESIS

Supervisor: doc. dr. D. Dervinis

Reviewer: doc. dr. N. Ramanauskas

Šiauliai 2019

2

„Tvirtinu, jog darbe pateikta medžiaga nėra plagijuota ir paruošta naudojant literatūros

sąraše pateiktus informacinius šaltinius bei savo tyrimų duomenis“

Darbo autoriaus: Lukas Vaitkevičius

(vardas, pavardė, parašas)

„I declare that all material is my own work, not plagiarised, and fully acknowledged in the

reference list if adapted from other sources. “

Author Lukas Vaitkevičius

(name, surname, signature)

3

SANTRAUKA

Autorius: Lukas Vaitkevičius

Tema: Keverzonių elementų atpažinimas vaizdų apdorojimo metodu

Šiaulių universitetas 2019

Darbo tikslas – surasti arba sukurti keverzonių atpažinimui tinkantį metodą. Buvo išbandyti

keturi mašininio mokymo metodai:

 K artimiausių kaimynų metodas su dinaminiu laiko skalės iškreipimo atstumu

 Atraminių vektorių mašinos

 Atsitiktinis miškas

 Konvoliucinis neuroninis tinklas

Artimiausių kaimynų metodas pasirodė netinkamas dėl keverzonių sekų ir R. Kellogg sukurtų

klasių ypatybių. Klasės buvo sukurtos pagal vaikų piešimo ir asmenybės raidą.

Atraminių vektorių mašinų ir atsitiktinio miško metodai pasiekia neblogą tikslumą, nepaisant

to, kad įvesties duomenys galbūt galėtų būti geriau suglaudinti. Atsitiktinio miško metodas vis dėlto

reikšmingai lenkia atraminių vektorių mašinų metodą, greičiu ir tikslumu.

Konvoliucinių neuroninių tinklų metodas pasirodė geriausiai. Duomenų augmentacijos dėka, iš

7037 keverzonių sukuriamos papildomos 148,029 keverzonės. Taip apėjus konvoliucinio tinklo

permokymo problemą, metodas pasiekia apie 98% tikslumą.

Raktiniai žodžiai: vaikų keverzonės, piešimo analizė, mašininis mokymas, klasifikacija,

dinaminis laiko skalės iškreipimas, k-artimiausi kaimynai, atraminių vektorių mašinos, atsitiktinis

miškas, konvoliuciniai neuroniniai tinklai.

4

SUMMARY

Author: Lukas Vaitkevičius

Subject: Detection of Scribbles Elements by Image Recognition

Šiauliai University 2019

The goal is to find or create a method suitable for scribble recognition. Four overall machine

learning methods were tested:

 K Nearest Neighbour using DTW distance measure

 Support Vector Machines

 Random Forest

 Convolutional Neural Networks

KNN DTW is proven to be unsuitable due to the nature of vectorised drawing data and the

arbitrary class distinctions imposed by R. Kellogg, who naturally approached the problem of

classification from a children’s psychological development perspective.

Support vector machine and Random Forest methods perform admirably despite minimal

feature engineering, with Random Forest proving superior, reaching competitive accuracy and

classification speed.

Finally, convolutional neural networks are shown to handle scribbles as time-series-like data

well, except for significant overfitting, which was solved by taking advantage of data augmentation.

Most of R. Kellogg’s classes are easy to augment, bringing the dataset from 7037 scribble instances

to 148,029. The best accuracy of this classifier is approximately 98%.

Keywords: children scribbles, drawing analysis, machine learning, classification, dynamic time

warping, k-nearest neighbours, support vector machines, random forest, convolutional neural

networks.

5

AIM AND TASKS

Aim - To create and analyse potential methods for scribble recognition and select the best

candidate.

Tasks:

 Analyse methods suitable for scribble classification

 Acquire and prepare scribble data

 Adapt and apply classification methods to the task of scribble recognition

 Test methods to find the best candidate

Supervisor: doc. dr. D. Dervinis

(name, surname, signature)

6

TABLE OF CONTENTS

1. INTRODUCTION ... 9

2. THEORY ... 10

2.1. Classes of scribbles .. 10

2.2. Drawing data .. 11

2.2.1. Drawing data acquisition ... 11

2.2.2. Scribble data specifics ... 12

2.3. Comparison algorithms .. 13

2.3.1. Dynamic Time Warping .. 13

2.3.2. Multi-dimensional Dynamic Time Warping ... 14

2.4. Classification methods ... 14

2.4.1. Machine Learning methods ... 14

2.4.2. K Nearest Neighbours with DTW distance ... 15

2.4.3. Support Vector Machines .. 15

2.4.4. Decision Trees ... 15

2.4.5. Random Forest .. 16

2.4.6. Artificial Neural Networks .. 16

2.4.7. Convolutions and Convolutional Neural Networks .. 16

3. METHODOLOGY .. 18

3.1. Scribble dataset .. 18

3.2. Scribble data pre-processing .. 18

3.3. Scribble data augmentation .. 21

3.4. Evaluation metrics ... 22

3.5. Methods and algorithms for classification ... 22

3.5.1. K Nearest Neighbour with Dynamic Time Warping ... 22

3.5.2. Support Vector Machines .. 27

3.5.3. Random Forest .. 28

3.5.4. Convolutional networks .. 28

3.6. Method comparison ... 32

3.6.1. Accuracy .. 32

3.6.2. Time ... 33

4. DISCUSSION ... 35

5. CONCLUSIONS ... 37

6. REFERENCES .. 38

7

LIST OF TABLES

Table 3.1. Number of scribble examples in each class. ... 18

Table 3.2. Hyperparameter selection influence on SVM accuracy ... 27

Table 3.3. Hyperparameter selection influence on Random Forest accuracy. 28

Table 3.4. Classification report of basic CNN .. 29

Table 3.5. Method accuracy comparison. .. 32

Table 3.6. Time to compute distance matrices with UCR-Suite DTW ... 34

Table 3.7. Time to find hyperparameters for, train and evaluate SVM and Random Forest classifiers.

 ... 35

Table 3.8. Time to train and evaluate CNN models. ... 35

8

LIST OF FIGURES

Fig. 2.1. Rhoda Kellogg`s scribble classification system. ... 10

Fig. 2.2. Samples of Rhoda Kellogg`s classes created in Drawing Recorder software. 12

Fig. 2.3. Angle/rotation dependent scribble classes .. 13

Fig. 2.4. Angle/rotation invariant scribble classes... 13

Fig. 2.5. Example of warping path between two scribbles. ... 14

Fig. 3.1. Scribble in coordinate space before and after normalization. ... 19

Fig. 3.2. Distribution of scribble instances, by the number of data points. 19

Fig. 3.3. Effects of different truncation schemes. .. 20

Fig. 3.4. Effects of different padding schemes. ... 20

Fig. 3.5. Illustration of angle vector. Red lines represent the angle between neighbouring points, each

angle is within -1 and +1. .. 21

Fig. 3.6. KNN-DTW classification accuracy. ... 23

Fig. 3.7. Synthetic ideal self-similarity matrix. ... 24

Fig. 3.8. Real self-similarity matrix of scribbles categorized by R. Kellogg’s classes. 25

Fig. 3.9. Self-similarity matrix of different class 8 variations. .. 26

Fig. 3.10. Different ways to render class 8. ... 26

Fig. 3.11. Self-similarity matrix of different class 16 variations. .. 26

Fig. 3.12. Ways to draw class 16. While this class is not a spiral, this is the trend of the pen motion

as it is rendered. ... 26

Fig. 3.13. Basic generic CNN architecture. ... 29

Fig. 3.14. CNN architecture tailored for scribble recognition. .. 30

Fig. 3.15. Confusion matrix for tailored CNN trained and evaluated on base dataset. 31

Fig. 3.16. Visual representation of classification labels. ... 31

Fig. 3.17. Confusion matrix for tailored CNN trained and evaluated on augmented dataset............ 32

Fig. 3.18. Time dependence on number of samples for self-similarity matrix calculations with

FastDTW. .. 34

9

1. INTRODUCTION

There has been interest in children drawings since the end of the 19th century. Researchers (ex.

Kellogg[18], Widlocher[34], Arnheim[2], Lowenfeld[22]) have given much attention to the analysis

of children drawings. According to them, such analysis can tell much about the mental development

of children, based on the drawer’s age and the features, details of the work. However, there is lack of

consensus between researchers, as to what drawing features should be attributed to what age of

development. For example, Widlocher[34] claims, that the first scribbles can be made by children 18

months old, meanwhile Lowenfield[22] states that they’re a feature of drawings by children 2 – 3

years of age. According to Widlocher[34], children begin with diagonal lines, but to R. Kellogg, they

first master horizontal and vertical lines, and only then move on to other angles.

These inconsistencies make it difficult to use children drawings as a measure of their

development, thus more research into correlation between age and hand-eye coordination is required.

To this end, it could be useful for researchers to have a tool for drawing analysis; in this particular

case, scribble classification. Currently, there is no software readily available to aid in drawing

analysis.

There has been much research in the area of human drawing through digital input interfaces.

Starting with Sutherland and his Sketchpad system[31], that used a light pen to allow graphical input.

Since then, digitizer pen tablets have become widely available and affordable computer input tools.

Most works can be placed in one of two categories:

Recognition with raster image input, such as using convolutional networks for sketch

classification[35], statistical models[29], or hand-drawn symbol recognition[9]

Vector graphics, or pen stroke input recognition, for example, scribble recognizer as input

interface[7,8], scribble gesture recognition as input[20], recurrent neural network used in categorized

scribble generation[13].

Recognition of scribble categories as defined by R. Kellogg is a similar problem, but these

specific classes have not been used in automatic recognition, in particular, using vectorized single-

stroke input. This work sets out to find a viable approach by testing several distinct methods in order

to a predictor with most favourable properties.

10

2. THEORY

2.1. Classes of scribbles

R. Kellogg, has analysed a little under a million of children drawings[18]. She determined that

children between the age of 2 and 3 develop their drawing ability by scribbling in specific patterns.

She has come up with a distinct set of scribble classes, which will be used as labels for the scribble

classifier. Her classification system is in Figure 2.1.

Fig. 2.1. Rhoda Kellogg`s scribble classification system.

11

2.2. Drawing data

Drawings for analysis are acquired via Drawing Recorder software[11]. The program captures

user actions, such that the entire drawing process can be recreated. This has several advantages and

disadvantages.

A special set up is required for drawing acquisition, namely a digitizer tablet connected to a

computer running the recorder software, better if the tablet can double as an interactive screen.

Furthermore, this precludes the use of scanned or photographed drawings for analysis, which

eliminates a lot of potential samples for data.

On the other hand, recording the drawing process digitally allows for extracting more

information from a single drawing session. Without the need for digitizing physical drawings, there

is no noise from scanning or photographing the drawings. Recording the drawing process itself adds

a time dimensionality to the data, as opposed to a still 2D image that could be acquired by digitizing

a physical drawing. Having a time dimension avoids the loss of information within a drawing, in case

elements are drawn on top of one another, and enables the handling of drawing strokes as time-series

data.

2.2.1. Drawing data acquisition

Drawing data is categorized by events:

 Drawing/pen movement

 Brush size change

 Brush colour change

In the programming context, mouse events are used, but in this case the mouse can be any

pointing device, whether a physical mouse or a digitizer tablet stylus.

Drawing/movement data is captured on left button down event, and until the button up event

fires, signifying the end of the stroke either by mouse or pen. On each tick of program execution, the

values for pointer coordinates, pressure (when using stylus, otherwise 0) and milliseconds from last

execution tick are saved within a list. One such list represents a drawing stroke. Recording the time

between each point of capture is useful, because the software is likely to run at varying frequencies

between different machines, so this variation can be accounted for if necessary. In practice, for various

reasons, these intervals are irregular even on the same machine.

 This series of data is stored as a list inside the drawing event, alongside a timestamp for the

mouse down/up event for macro time tracking.

Modifications of the brush state are saved as separate events, such that the current colour and

stroke width of a line is determined by how the brush parameters were set last.

12

R. Kellogg’s classified scribbles can be digitized by redrawing them with the Drawing Recorder

software. Each stroke can be saved as a separate set of data to be used as a template for later

comparison. Examples of drawn and recreated scribbles in Figure 2.2.

Fig. 2.2. Samples of Rhoda Kellogg`s classes created in Drawing Recorder software.

2.2.2. Scribble data specifics

A drawing, when created within the drawing process recorder, is essentially a collection of two-

dimensional time-series representing brush or pen strokes. For the purposes of scribble analysis, an

assumption is made that generally a single stroke will equate to a single scribble. In these strokes, the

2D coordinate information is most significant, with brush size having some significance for the

resulting shape, and the colour component being rather irrelevant to a scribble unless multiple

adjoining strokes are considered as potentially a single scribble.

Due to the nature of drawing and the way it is captured within software, certain features are

expected to vary between samples of the same scribble class.

Start position. Each stroke has a starting coordinate, while this might commonly be the top left

corner of the resulting stroke shape, in theory it can be within any part of a scribble.

Stroke location. Captured coordinates are relative to the digital canvas in the recorder software,

as each stroke can be anywhere within the canvas, coordinates between two strokes can, as a

collection, can be arbitrary distances apart.

Scribble angle. Scribbles can be drawn at an arbitrary angle. While R. Kellogg’s classifies

some scribbles by their shape and angle (classes 2,3,4,6,7,8, Figure 2.3), other classes are angle

invariant (Figure 2.4).

13

Fig. 2.3. Angle/rotation dependent scribble classes

Fig. 2.4. Angle/rotation invariant scribble classes.

2.3. Comparison algorithms

2.3.1. Dynamic Time Warping

DTW is an algorithm for measuring distance (similarity) between two time-series. It is

commonly used for evaluating differences between two time-series signals, because of its ability to

compensate for shift and distortion in the time domain[23]. Translating this to the context of a drawing

stroke, the DTW metric should be more sensitive to the shape and change in direction of the stroke,

rather than length or duration of it.

The Dynamic Time Warping distance has two major steps in its calculation.

First, a matrix D is built, n by m, where n is length of the first series A and m is length of the

second series B. This matrix is filled according to formula:

Eq. 2.1. Dynamic time warping distance matrix calculation.

Where if i-1 or j-1 is not a valid index (such as at the starting edges of the matrix), then the

value is considered to be 0.

Next, the algorithm searches for a path from the value 𝐷𝑛,𝑚 , to value 𝐷0,0 by choosing lowest

neighbouring values from three of possible previous matrix elements (𝐷𝑛−1,𝑚−1, 𝐷𝑛−1,𝑚, 𝐷𝑛,𝑚−1)

14

until it reaches 𝐷0,0. Example path in Figure 2.5. After the path is complete, the sum of each element

within this path is computed and returned as the DTW’s distance metric.

Fig. 2.5. Example of warping path between two scribbles.

2.3.2. Multi-dimensional Dynamic Time Warping

DTW can be generalized to accept multi-dimensional time series in two ways[3014].

Independent Multidimensional DTW computes distance separately for each dimension

in subject time-series. This distance is summed to produce the final result.

Dependent Multidimensional DTW takes all dimensions at once, and converges them

to a single distance for each data point comparison, building a single matrix D that is used for the

final path distance computation. The matrix formula, compared to one dimensional case, shown in

Equation 2.2.

Eq. 2.2 Multidimensional time warping distance matrix calculation.

Where f is used to iterate over the additional dimensions in each time-series.

2.4. Classification methods

2.4.1. Machine Learning methods

In 1959, Arthur Samuel conceived the term “Machine Learning” as “field of study that gives

computers the ability to learn without being explicitly programmed.” A machine learning program is

able to adjust and improve its decision-making from input data it is exposed to, without its code being

altered. In a way, it is data-driven decision making. For scribble recognition, it would not be

inappropriate to use supervised learning.

Supervised machine learning involves providing training input data combined with desired

output data, so the machine learning algorithm can adjust the model to meet desired expectations.

With enough training, a suitable algorithm can create a model that is able predict appropriate outputs

for new input data. Supervised learning can be used to perform regression and to train a model to

predict numerical values for given inputs, or it can be used to categorize data. R. Kellogg has already

15

provided the categories for scribbles, what is left then, to create a model that can learn how to label

them from a dataset.

2.4.2. K Nearest Neighbours with DTW distance

While the KNN algorithm does not process nor train on input data, a labelled data set is still

necessary. The KNN method is to compare an input to all samples of an available labelled dataset,

and pick the k number of closest samples. Closeness or distance can be determined by an arbitrary

function or algorithm, in this case, the Dynamic Time Warping algorithm. The final label for the new

input would be that which appears most frequently in the K number of nearest neighbours, though

the voting-selection function can also be arbitrary[3,14].

2.4.3. Support Vector Machines

A SVM classifier will attempt to discriminate classes, by treating them as points in

multidimensional space, where the number of dimensions is equal to the number of features given to

the algorithm. Then, the algorithm will attempt to calculate hyperplanes that separate input points by

classes in said multidimensional space. Intuitively, in 2D space, a hyperplane is a line, in 3D space,

a hyperplane is a plane. Support vectors are data points of different classes, nearest to the hyperplane

on each boundary side. Hyperplanes are calculated during training, in such a way as to maximize the

distance from the face of the hyperplane to its support vectors. In essence, training SVM on labelled

data allows it to angle the hyperplane such that it can balance the distance for each support vector,

maximizing the boundary[4].

2.4.4. Decision Trees

Conceptually, a decision tree is a branching structure of questions or conditions. The conditions

with the most significant impact are at the top, and the most impactful is the root decision. Each

decision splits the input data in half, repeating until there are no more splits to be made.

Similarly, in machine learning, a tree will split the features of its input based on conditions that

it learns, until the final nodes are the classification answers for categorical tasks or real values for

regression. Splits are chosen in such a way as to minimize prediction error or standard deviation in

the two new halves. Trees are built using training data, and if unconstrained, will continue to split

until it achieves 100% accuracy, however this will often lead to severe overfitting as the tree will

create splits based on very small and specific differences in the training dataset that will not transfer

to the general case. Trees are constrained by setting the maximum depth (decision trees are

16

conventionally presented as growing from top to bottom) or pruning. Pruning removes the branches

with low or no influence on prediction results, reducing the tree complexity and overfitting.

2.4.5. Random Forest

As an ensemble method, random forest uses the combined results of multiple decision trees to

improve overall accuracy and reduce overfitting. Feature bagging is used to ensure that individual

trees grow significantly different from each other. This process subsamples the original feature set,

distributing the new subsets to each tree. If individual trees were not forced to deviate from each other

in this way, their combined errors would be the random variation of the same set and in the end

average out to no benefit. The basic idea is to create a forest of many shallow trees and combine their

results, circumventing the overfitting problem of one complex tree[5].

2.4.6. Artificial Neural Networks

In vague resemblance to a human brain, artificial neural networks pass information through

interconnected matrices of scaling weights and biases to transform input into desired output. These

matrices or layers represent the network’s generalized knowledge[15]. At first, a network will be

inept at any task, but given enough labelled data, an ANN can learn from its errors and appropriately

adjust the values that represent the strength of individual connections. This process is called

backpropagation, as the error feedback travels back up the network, in an attempt to minimize it for

the next incoming input[21]. In this manner, an Artificial Neural Network can approximate rules that

tie an arbitrary set of inputs to an arbitrary set of expected outputs. A classical ANN has one neuron

layer between its input and output, neural networks with multiple layers are called deep neural

networks and their governing field of study is Deep Learning.

Neural networks generally require large labelled training datasets in order to make accurate

predictions about unlabelled data. They are, however, able to autonomously infer features within a

dataset, that define different classes, provided that the classes are distinct enough[27].

2.4.7. Convolutions and Convolutional Neural Networks

In signal and image processing, a convolution is the process of applying a filter in order to glean

features from data, different filters are able to transform input data into different feature maps (for

example, thresholds of edges).

The same concept is applied in convolutional neural networks, however the filters are learned

by the network and not predefined for specific features. Stacking multiple such operations, a network

17

can learn the features of previous feature maps and create an abstracted representation of the input

space at different levels of complexity[10].

Although digitized scribbles are recorded as “X” and “Y” signals, and saved as coordinate

vectors for each axis, convolutional networks are still applicable. The signals are still geometrically

related, and can be thought of as a more condensed representation of a 2D image. If the scribble

vectors were recreated as images from saved data, the interpolation between data points would

essentially be two dimensional padding. So these signals can be thought of as condensed image

information.

The “X” and “Y” vectors can be concatenated together into a two pixel wide (or tall) image,

and thus processed by a traditional convolutional network. In fact, each vector could be processed

individually by a 1D convolution. Convolution layers are good at finding structure and data

correlations within their windows, which is appropriate use for drawing signals when it’s necessary

to find structure within them[19]. Using convolutional layers, it is possible for a network to learn the

features of scribbles shapes, without relying on actual image data.

18

3. METHODOLOGY

3.1. Scribble dataset

Multiple scribbles are hand-drawn within the drawing process recorder software, one class at a

time, they are batch exported into a labelled folder. The process is repeated for all twenty classes.

Counts of samples in each scribble class are shown in Figure 3.1.

Each scribble example is stored in its own CSV (comma separated value) file, where each line

represents a sample point in chronological order. Important columns in each row is the coordinate on

the X axis and the Y axis for each sample in time.

Table 3.1. Number of scribble examples in each class.

3.2. Scribble data pre-processing

Data engineering is done in the Python programming language[25] with the following steps:

First, the dataset is loaded, inferring the class of each scribble based on its parent folder.

Then, the coordinates for the top-left corner of a scribble’s bounding box is found. This point

is subtracted from the scribble coordinate vector element-wise, so the stroke is shifted from global

canvas space, to its own local space. In canvas space, the top left corner is (0, 0), which is where the

shifted scribble now appears.

Next, the width and height of are computed for the scribble’s bounding box. Then the geometric

centre of this box is found. This point is then used to again subtract from the coordinate vector

element-wise, the result is a scribble centred on the point (0, 0) in its own local space.

The largest dimension (X or Y axis) of the bounding box is found, and used to normalize all

vectors within the range (-1, 1), both “X” and “Y” vectors are normalized by the maximum size in a

single dimension, in order to keep the scribble’s aspect ratio intact. Example of input and output of

this process is shown in Figure 3.1.

19

Fig. 3.1. Scribble in coordinate space before and after normalization.

To perform machine learning, it is generally much easier to work with samples of fixed size.

Therefore, padding and truncation is performed in order to normalize sample sizes. 500 is chosen as

the vector length, to fit most samples in the training set, as can be seen in Figure 3.2. Padding is

performed for both beginning and end of coordinate vectors, with original data remaining in the

middle of the vector. This is mostly for the sake of truncation, so if a complex scribble were to lose

data points, the deformation would be uniform between the beginning and end of scribble. In some

cases, a biased truncation could deform a scribble from one class into another. In Figure 3.3, a class

16 sample is shown to become like class 17.

Fig. 3.2. Distribution of scribble instances, by the number of data points.

20

Fig. 3.3. Effects of different truncation schemes.

Coordinate vectors are padded by same adjacent values, as 0 values could geometrically link the

beginning and end of a scribble to its centre-point, creating additional deformation, as seen in Figure

3.4.

Fig. 3.4. Effects of different padding schemes.

21

As an additional feature, “angle” or the “A” vector is extracted to complement the “X” and “Y”

vectors. The angle between each neighbouring coordinate point pair in the stroke is calculated, as

illustrated in Figure 3.5. This way, the angle vector describes the curvature of the scribble. The

benefits are dimensionality reduction and discarding information for size, and location, parameters

that should be irrelevant to scribble classification by R. Kellogg’s classes. Furthermore, the angle

vector has potential for feature engineering, for example, counting how many times the scribble

performs a loop, whether it is generally curving smoothly or contains sharp turns.

Fig. 3.5. Illustration of angle vector. Red lines represent the angle between neighbouring points, each angle is

within -1 and +1.

3.3. Scribble data augmentation

To combat overfitting encountered using machine learning methods, data augmentation was

performed.

Two different sets of augmentation operations are used, tailored to different groups within R.

Kellogg’s classes.

Group one is sensitive to rotation, as it is basically the same scribble, but classified separately

according to its angle (classes 2, 3, 4, 6, 7, 8). Group two contains classes where a scribble can be

freely rotated and remain within its original class (classes 1, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20).

Every transformation is preceded by a potential axis mirroring action. For group one, the

mirroring options are: no mirror, X axis mirror, Y axis mirror, both axis mirror. For group two: no

mirror, X axis mirror, Y axis mirror. With free rotation, mirroring will result in duplicate samples if

the angles align, so both axis mirroring is redundant. Meanwhile, group one is restricted to only slight

rotations, or else the sample will need to be give a new true label.

After mirroring, for each mirror option, group two samples are given a full rotation 0 to 360

degrees, for each degree step. Group one samples are rotated according to a list of small angles (for

example 5, 3, -3, 5) in both directions, to keep the original scribble inclination more or less intact.

22

Using these steps, the original data set of 7037 samples is supplemented with an additional

148,029 samples derived from the original set.

3.4. Evaluation metrics

Primary method of evaluation is an accuracy score. This is implemented by scikit-learn[24]

python package; for multi-label classification, this is the Jaccard index, where the input A is the set

of predicted labels and B is the set of true labels.

 𝑱(𝑨, 𝑩) =
|𝑨∩𝑩|

|𝑨∪𝑩|

Eq. 3.1. Jaccard index formula.

Training, evaluation and other time measures are taken with the built in python time

package[25].

3.5. Methods and algorithms for classification

3.5.1. K Nearest Neighbour with Dynamic Time Warping

Nearest Neighbour method with Dynamic Time Warping as a distance measure is a popular

approach for time-bound data classification.

For method evaluation purposes, a similarity matrix is computed. First, a
1

3
 test-

2

3
 train split is

made, then each example in the training data is compared to each example in the test data. From this

matrix, each scribble example has an arbitrary K number of nearest neighbours. To keep classes

balanced, 500 examples from each class in the augmented dataset are taken. Tests are done with the

angle vector and independent multidimensional dynamic time warping. Neither padding nor

truncation is performed, as the DTW algorithm will readily accept variable length vector input, and

empirically, padded vectors take longer to process. The classification results for variable K number

of nearest neighbours shown in Figure 3.6.

23

Fig. 3.6. KNN-DTW classification accuracy.

.

The reason for poor classification can be seen by examining a self-similarity matrix of the

dataset. In an ideal situation, the matrix would show a distinct diagonal pattern, where classes of the

same label are compared, such as in this synthetic toy example Figure 3.7.

24

Fig. 3.7. Synthetic ideal self-similarity matrix. Axis are class labels. E.g. between 1 and 2 are class 1 samples, 20

and above are all class 20 samples.

In practice, however, the self-similarity matrix of the scribble dataset does not contain such

convenient similarities, as shown in Figure 3.8.

25

Fig. 3.8. Real self-similarity matrix of scribbles categorized by R. Kellogg’s classes. Axis are class labels, same as

Fig 3.7.

White areas are distance measures that the optimized algorithm ended prematurely and

evaluated as pseudo-infinity (in this case, 1e10). It can be seen, that there is little obvious self-

similarity between the classes, and a lot of inter-class confusion. With a nearest neighbour method,

class 1 requires special treatment, as it readily matches as similar with all other classes. Other, simple

one line classes (2, 3, 4 ,5) have either been optimized away or match their adjacent classes. More

complex classes have variable relations with other complex classes, but show little in-class similarity

between examples.

By examining self-similarity within individual classes (Figures 3.9, 3.11), it can be seen why

scribble classes as defined by R. Kellogg, are not well categorized by the dynamic time warping

distance. Self-similarity matrices are computed by the FastDTW[28,32] algorithm to avoid

calculations omitted by optimization and increase visibility.

Fig. 3.9. Self-similarity matrix of different class 8

variations.

Fig. 3.10. Different ways to render class 8.

Fig. 3.11. Self-similarity matrix of different class

16 variations.

Fig. 3.12. Ways to draw class 16. While this

class is not a spiral, this is the trend of the pen

motion as it is rendered.

Within R. Kellogg’s classes, most scribbles can be rendered in at least several different ways

(Figure 3.10, 3.12) that the dynamic time warping algorithm is sensitive to. The same time-series,

mirrored geometrically, will yield large distance, or in other words, high dissimilarity. The problem

is more severe if DTW distance is calculated by separate “X”, “Y” vectors instead of the angle vector

– the inter-similarity between variations decreases, looking more like an ideal self-similarity matrix,

except in this case that is disadvantageous.

To use this method for scribble classification, R. Kellogg’s classes would need to be redefined,

some merged, some split, and perhaps further post-processing could transform the results to match

the original classes.

Furthermore, the average length of a scribble class is moderately correlated (0.675 correlation

coefficient) with the average dynamic time distance measure of that class. Shorter scribbles are

expected to be erroneously chosen more often as the nearest neighbour.

27

3.5.2. Support Vector Machines

The scikit-learn[24] python package was used to implement a SVM classifier. It was given the

same train-test split for training and evaluation as in other tests. The input was the angle vector (as an

alternative to the “X” and “Y” vectors), in order to have reduced dimensionality.

This SVM implementation has several hyperparameters that can be tuned. A search for good

hyperparameters was done by creating sets of parameter options then running the classifier through

each permutation, with cross validation for evaluation. Different hyperparameter selections are shown

in Table 3.2. After final tweaks with individual adjustments, the chosen parameters with most

influence to evaluation results were:

C (soft margin parameter): 30

Gamma (RBF kernel param.): 0.04

Choosing these hyperparameters yielded significant gains over the default settings, and

evaluated with the base dataset (4714 training, 2323 test data), the classifier produced about 69.7%

accuracy. Training and testing with the same parameters on the augmented dataset (99179 training,

48850 test data) yields 83% accuracy.

Table 3.2. Hyperparameter selection influence on SVM accuracy

28

3.5.3. Random Forest

A random forest classifier was implemented the same way as with SVM – through the scikit

learn[24] Python package. Input was identical to what SVM received.

Search for good hyperparameter values was done similarly as with SVM, except the parameter

permutations were chosen and tested randomly, instead of exhaustively, to reduce the amount of

calculations. Parameters were first tested with subsampled base dataset, 10 samples per class, then 50

samples per class, until the available parameter choices were trimmed and finally evaluated through

with the full dataset. Parameters with most influence over the results are shown in Table 3.3. Their

final values are:

Max depth: 30

No. of estimators (trees): 1700

The final accuracy for the base dataset (same split as SVM) is 87.1%. With the augmented dataset,

accuracy is 94.5%

Table 3.3. Hyperparameter selection influence on Random Forest accuracy.

3.5.4. Convolutional networks

Keras[6] with Tensorflow[1] backend was used to quickly prepare and test neural network

models, processing on a GPU for speed.

A CNN was not the first choice for scribble classification, as recurrent neural networks (RNN)

are traditionally used to support variable length input. However, padding was inevitable, as the

scribble vectors can be as short as a single point of data. If padding is embraced to have scribble

vectors at consistent length, then it is trivial to use non recurrent network architectures. After forming

a 500 by 2 input image set from scribble coordinate vectors, a simple CNN was first to be tested, its

29

architecture is shown in Figure 3.13, the accuracy for the base dataset is 88% with classification report

shown in Tabke 3.4.

Fig. 3.13. Basic generic CNN architecture.

Table 3.4. Classification report of basic CNN

Because scribble data is spatial and adjacent values represent connections, padding is done by

copying the first and last value in the vector, this way, no additional geometric structure should be

introduced. As padding did not seem to cause any obvious issue discriminating between originally

short and originally long scribble sequences, using a neural network is worth further investigation.

By making small changes to the network and testing for accuracy improvements, it’s been

determined that a pooling layer is unnecessary, and accuracy increases significantly when a layer with

convolution window height 2 is introduced. Previously, each “X” and “Y” vector have been parsed

30

by the network individually, then merged only in the final dense layer. The improved network (Figure

3.14) yielded validation accuracy of 93%. Model confusion matrix in Figure 3.15.

Overfitting was observed, despite various

alterations to network configuration with

insignificantly differences in results. Thus, the

augmented dataset was used instead to counter

overfitting, producing 98% accuracy; confusion

matrix is shown in Figure 3.17.

In all tests, datasets were split,
2

3
 for training

and
1

3
 for evaluation. All models were trained

with adam optimizer and cross-entropy loss

function.

Adapting the network to also take the angle

vector in its input “image” (500x3) made no

perceptible differences in classification accuracy.

Fig. 3.14. CNN architecture tailored for scribble

recognition.

31

Fig. 3.15. Confusion matrix for tailored CNN trained and evaluated on base dataset.

Fig. 3.16. Visual representation of classification labels.

32

Fig. 3.17. Confusion matrix for tailored CNN trained and evaluated on augmented dataset.

3.6. Method comparison

3.6.1. Accuracy

Best accuracy achieved by each model is shown in Table 3.5.

Table 3.5. Method accuracy comparison.

33

K Nearest Neighbour classifier with DTW distance measure is a popular choice for time-series

classification, but is incompatible with scribble classification using R. Kellogg’s classes. Simply,

these classes have feature differences between each other that DTW is incompatible with for

comparison.

Vectors with 500 elements is not ideal input for either SVM nor Random Forest classifiers, as

each element becomes a feature dimension. The vector length is necessary, to not trim longer scribble

instances, however, and it is still much more condensed data than a scribble image would’ve been,

similar to an extracted contour[1619]. Despite the high dimensionality, with the large number of

scribble examples in the augmented dataset, SVM and especially Random Forest methods achieve

respectable accuracy.

Convolutional neural networks for time-series classification is not a new concept, and perhaps

particularly fitting for scribble classification as the time series are still spatial data. Using data

augmentation has practically eliminated overfitting, as training and validation accuracies are

generally very close. The accuracy limit of this simple network has been reached, could perhaps be

improved only by inspecting the base dataset for any erroneous samples and tuning augmentation

parameters as in some cases rotation during augmentation could produce samples that ought to be

under a different class post-augmentation.

Other neural network methods that could learn the relevant features of R. Kellogg’s classes

from the given dataset are also likely to be very successful, however a CNN has proven to be very

easy to implement while giving good results.

Recurrent networks were considered because of varying scribble sample vector lengths,

however a constant size window is still required to travel over each data sample, most of which are

not very long and some (in class 1) are just a single point, thus a padding scheme was mandatory and

when all vector lengths are equalized, simpler networks than RNN are much easier to implement.

3.6.2. Time

For nearest neighbour classification with DTW, the most expensive operation is computing the

similarity matrix between training and test data. Naïve DTW’s time complexity is O(N M) where N

and M are sequence lengths. Displayed times in Table 3.6 are for 500 samples per class, with 20

classes, making it 10,000 samples of scribbles. The train-test split separates them into 6700 training

and 3300 evaluation samples, forming a 6700 by 3300 matrix, which is 22,110,000 DTW operations.

Fortunately, the UCR-Suite[26] of optimizations for DTW exists, making the KNN DTW method

evaluation possible. Independent multi-dimensional DTW requires two operations per sample, which

is still done in very reasonable time. Dependent M-DTW was not evaluated as it could not be

34

confirmed whether the UCR-Suite DTW package supports multidimensional operation directly,

though classification accuracy is not expected to be much improved from independent M-DTW.

Table 3.6. Time to compute distance matrices with UCR-Suite DTW

To paint a picture how time-consuming DTW is without the UCR-Suite, time taken to compute

self-similarity matrices as a function of samples per class shown in Figure 3.18. using

FastDTW[28,32] pure python implementation. Inconsistencies are due to random sampling of the

dataset for each subset of classes used in self-similarity matrix computation.

.

Fig. 3.18. Time dependence on number of samples for self-similarity matrix calculations with FastDTW.

Support Vector Machines and Random Forest classifiers share a similarity in that there are

standard methods to search for good hyperparameters that are similar in process to training a model

on a dataset, taking significant time, thus SVM and Random Forest classifier times are both in Figure

3.7. It is likely that high dimensionality has significantly hampered SVM classifier performance. It is

notable that Random Forest is able to make predictions very quickly.

35

Table 3.7. Time to find hyperparameters for, train and evaluate SVM and Random Forest classifiers.

When testing convolutional neural networks, the largest time expense is in training. Times

shown in Figure 3.8. Empirically, training time depends on the size of the training dataset, number of

epochs, and the number of parameters that the model is trying to learn. Training was done on a

GeForce GTX 1070 Ti GPU.

Table 3.8. Time to train and evaluate CNN models.

CNN0 is the first arbitrary example network while CNN1 is the final network tailored for

scribble recognition accuracy, yet still very simple. These CNNs are able to process the training slice

of the entire augmented dataset, perhaps a more complex CNN or different type of neural network

with higher accuracy would take more time.

It is, however, unfair to directly compare the CNN times to other methods, as the Tensorflow

backend for the model was always run on a graphics card, taking advantage of NVIDIA’s CUDA

technology, which is significantly faster than if the model was run on a CPU. Furthermore, CUDA

implementations of other evaluated models exist[17][12][33] (but were not tested for implementation

simplicity and tool compatibility).

4. DISCUSSION

Potential combinations or enhancements of tested methods are still unexplored. For example:

feature reduction using neural networks before classification by Random Forest, cross-class

relationships of DTW distances as classification feature. Entirely untried is the concept of compound

scribbles (two classes made with a single stroke), that has potential solutions in adapting the CNN

classifier for a sliding window approach. Nevertheless, without complicating the problem further, the

current chosen best CNN classifier is difficult to defeat, especially considering its simplicity. For the

36

particular problem of scribble recognition by R. Kellogg’s classes, CNNs or other neural networks

deserve further efforts.

It would have been interesting to find scribble instances in the dataset which are most often

misclassified, this could be an efficient method to verify whether all samples belong to correct classes,

as there could be errors in initial input or too aggressive transformations during augmentation.

Progress has been made creating auxiliary software for dataset inspection and preparations for

classification as a result of this work.

The final classifier will need to be connected with the Drawing Recorder software to run real-

time for practical purposes. Hopefully it might lead to new research into children scribbles in the field

of psychology, in particular, early development, hand-eye coordination and motor functions.

37

5. CONCLUSIONS

A scribble dataset was created with an adjustable augmentation scheme that can multiply the

dataset to a greater or lesser degree. After analysing the dataset and attempting practical nearest

neighbour classification with dynamic time warping as the distance measure it was shown that the

method is incompatible with R. Kellogg’s scribble classes.

Support vector machine and random forest machine learning algorithms reach moderate

performance, 83.06% and 94.59% accuracy respectively, on reduced dimensionality data (from points

to angles). However, there is space for further feature engineering for dimensionality reduction on

the time axis, which could lead to better generalizations.

Convolutional neural networks are found to be able to discriminate well between R. Kellogg’s

classes, and is chosen as the best classifier among the tested. Recorded scribbles vectorised as points

in time seem to be fairly condensed and distinct representations considering the ease with which

CNNs handle them. Though the tested network can predict scribbles with 98% accuracy, the model’s

architecture is very simple, and more complex, deeper layer arrangement, with enough tailoring,

could achieve even better results.

38

6. REFERENCES

1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, …, X. Zheng. TensorFlow:

Large-scale machine learning on heterogeneous systems. 2015. Available at:

https://tensorflow.org. [accessed: 2018-06-30].

2. R. Arnheim. Art and Visual Perception: A Psychology of the Creative Eye. University of

California Press, 2004.

3. A. Bagnall, J. Lines. 2014. An Experimental Evaluation of Nearest Neighbour Time Series

Classification. arXiv:1406.4757 [cs.LG]. Available at: https://arxiv.org/abs/1406.4757

[accessed: 2019-05-29].

4. B. E. Boser, I. M. Guyon, V. N. Vapnik. A training algorithm for optimal margin classifiers.

Proceedings ACM Workshop on Computational learning theory, pp.144-152, 1992 USA.

ISBN:0-89791-497-X.

5. L. Breiman. Random Forests. Machine Learning, v.45 n.1, pp.5-32, 2001

[doi>10.1023/A:1010933404324].

6. D. Falbel, J. J. Allaire, F. Chollet, Y. Tang, W. V. D. Bijl, M. Studer, S. Keydana. 2015.

Keras. Available at: https://keras.io [accessed: 2019-04-24].

7. M. J. Fonseca, C. Pimentel, J. A. Jorge. CALI: An Online Scribble Recognizer for Calligraphic

Interfaces. AAAI Spring Symposium on Sketch Understanding, pp.51-58, 2002.

8. M. J. Fonseca, J. A. Jorge. Experimental evaluation of an on-line scribble recognizer. Pattern

Recognition Letters, v.22 n.12, pp.1311-1319, 2001.

9. A. Fornnés, J. Lladós, G. Sánchez, D. Karatzas. Rotation invariant hand-drawn symbol

recognition based on a dynamic time warping model. International Journal on Document

Analysis and Recognition v.13 n.3, pp.229-241, 2010.

10. K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biological Cybernetics v36 n4, pp.193-202,

1980.

11. V. Giedrimas. L. Vaitkevičius. A. Vaitkevičienė. Drawing process recording tool for Eye-

hand Coordination modeling. International Convention on Information and Communication

Technology, Electronics and Microelectronics, pp. 588-592, 2017. Electronic ISBN: 978-953-

233-090-8.

12. H. Grahn, N. Lavesson, M. Hellborg Lapajne, D. Slat. CudaRF: A CUDA-based

implementation of random forests. IEEE/ACS International Conference on Computer Systems

and Applications, pp.95-101, 2011.

https://tensorflow.org/
https://arxiv.org/abs/1406.4757
https://keras.io/

39

13. D. Ha, D. Eck. 2017. A Neural Representation of Sketch Drawings. arXiv:1704.03477 [cs.NE]

Available at: https://arxiv.org/abs/1704.03477 [accessed: 2019-05-20].

14. G.A. ten Holt, M.J.T. Reinders, E.A. Hendriks. Multi-Dimensional Dynamic Time Warping for

Gesture Recognition. Thirteenth annual conference of the Advanced School for Computing and

Imaging 2007.

15. J. J. Hopfield. Neural networks and physical systems with emergent collective computational

abilities. National Academy of Sciences v.79 n.8, pp.2554-2558 1982. Print ISSN: 0027-8424.

16. S. Hou, K. Ramani. Structure-oriented contour representation and matching for engineering

shapes. Computer-Aided Design v.40 n.1, pp.94-108, 2008.

17. C. Hundt, B. Schmidt, E. Schömer. CUDA-Accelerated Alignment of Subsequences in

Streamed Time Series Data. 43rd International Conference on Parallel Processing, pp.10-19,

2014 USA. Print ISSN: 0190-3918.

18. R. Kellogg, Analyzing Children's Art, Girard & Stewart, 2015.

19. Y. LeCun, P. Haffner, L. Bottou, Y. Bengio.. Object Recognition with Gradient-Based

Learning. Proceeding Shape, Contour and Grouping in Computer Vision, p.319, 1999.

ISBN:3-540-66722-9.

20. W. Li, T. Hammond. Using scribble gestures to enhance editing behaviors of sketch recognition

systems. Proceeding CHI '12 Extended Abstracts on Human Factors in Computing Systems,

pp.2213-2218. 2012. ISBN: 978-1-4503-1016-1.

21. S. Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical

Mathematics, v.16 n.2, pp.146-160, 1976. ISSN: 1572-9125.

22. V. Lowenfeld, W. Brittain. Creative and mental growth, seventh edition, Macmillian

Publishing Co. Inc, 1982.

23. T. Mitsa. Temporal Data Mining. CRC Press, 2010.

24. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michael, B. Thirion, O. Grisel, …, E.

Duchesnay. Scikit-learn: Machine Learning in Python. The Journal of Machine Learning

Research, v.12, pp.2825-2830, 2011. Software available at: https://scikit-

learn.org/stable/about.html [accessed: 2019-03-27].

25. Python Software Foundation. Python Language Reference, version 3.6. Software available at

http://www.python.org [accessed: 2018-02-28].

26. T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria, E.

Keogh. Searching and Mining Trillions of Time Series Subsequences under Dynamic Time

Warping. Proceedings of the 18th ACM SIGKDD international conference on Knowledge

discovery and data mining, pp.262-270, 2012 China.

https://arxiv.org/abs/1704.03477
https://scikit-learn.org/stable/about.html
https://scikit-learn.org/stable/about.html
http://www.python.org/

40

27. E. Reingold. Artificial Neural Networks. Available at:

http://www.psych.utoronto.ca/users/reingold/courses/ai/ [accessed: 2019-05-20].

28. S. Salvador, P. Chan. FastDTW: Toward accurate dynamic time warping in linear time and

space. Intelligent Data Analysis, v.11 n.5 pp.561-580, 2007.

29. R. Schneider, T. Tuytelaars. Sketch classification and classification-driven analysis using

Fisher vectors. ACM Transactions on Graphics, v.33 n.6, 2014.

30. M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, E. Keogh. Generalizing Dynamic Time Warping

to the MultiDimensional Case Requires an Adaptive Approach. Data Mining and Knowledge

Discovery, v.31 n.1, pp.1-31, 2017.

31. I. E. Sutherland. Sketch pad a man-machine graphical communication system. Proceedings of

the SHARE design automation workshop, pp.6329-6346, 1964, USA.

32. K. Tanida. 2017. slaypni/fastdtw: fastdtw-0.3.2. Software available at:

https://pypi.org/project/fastdtw/ [accessed: 2019-03-27].

33. Z. Wen, J. Shi, B. He, Q. Li, J. Chen. 2018. ThunderSVM: A Fast SVM Library on GPUs and

CPUs. The Journal of Machine Learning Research, v.19 n.1, pp797-801, 2018.

34. D. Widlöcher. L’interprétation des dessins d’enfants. Liège: Mardaga, 1998.

35. H. Zhang, S. Liu, C. Zhang, W. Ren, R. Wang, X. Cao.2016. SketchNet: Sketch Classification

with Web Images. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp.1105-1113, 2016, USA. Electronic ISBN: 978-1-4673-8851-1.

http://www.psych.utoronto.ca/users/reingold/courses/ai/
https://pypi.org/project/fastdtw/

