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Abstract. The multidimensional data model for kriging is developed using fractional Euclidean
distance matrices (FEDM). The properties of FEDM are studied by means of the kernel matrix
mehod. It has been shown that the factorization of kernel matrix enables us to create the embedded
set being a nonsingular simplex. Using the properties of FEDM the Gaussian random field (GRF)
is constructed doing it without positive definite correlation functions usually applied for such a
purpose. Created GRF can be considered as a multidimensional analogue of the Wiener process,
for instance, line realizations of this GRF are namely Wiener processes. Next, the kriging method
is developed based on FEDM. The method is rather simple and depends on parameters that are
simply estimated by the maximum likelihood method. Computer simulation of the developed kriging
extrapolator has shown that it outperforms the well known Shepard inverse distance extrapolator.
Practical application of the developed approach to surrogate modelling of wastewater treatment
is discussed. Theoretical investigation, computer simulation, and a practical example demonstrate
that the proposed kriging model, using FEDM, can be efficiently applied to multidimensional data
modelling and processing.

Key words: scattered data, fractional Euclidean distance matrices, multivariate normal distribution,
homogeneous Gaussian field, maximum likelihood.

1. Introduction

A lot of computational models applied in the business and industry, using multidimen-
sional data, obtained by measuring, sometimes require to fulfil expensive simulations. In
these cases, the kriging method is proposed to increase the efficiency of solving mod-
elling, prediction and optimization problems (Jones, 2001; Forrester and Keane, 2009;
Xiao et al., 2018). Since the kriging method was developed as a consequence of its accu-
rate predictions (Krige, 1951), it became one of the most promising numerical approaches
in the various fields of engineering design, spatial statistics, experimental design, and so
on (Kwon and Choi, 2015; Bhosekar and Ierapetritou, 2018; Carpio et al., 2017). In gen-
eral, kriging is a method of interpolation for which the interpolated values are modelled by
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a multivariate Gaussian process, governed by prior covariances. The basic idea of kriging
is to predict the value of a response function at a given point by computing a weighted
average of the known values of this function in the neighbourhood of the point. Thus,
kriging gives a way of anticipating, with some probability, a result associated with values
of the parameters that have never been met before using the existing information (e.g. the
experimental measurements).

The first step in kriging is to create a stochastic model that likely best describes the set
of observed data. The assumption is usually made that the sample values are sufficiently
homogeneous, as well as the correlation between two random points solely depends on the
distance between them, but it is independentof their location. In this way, the stochastic ho-
mogeneous and isotropic model for kriging is constructed using the correlation functions
that have to obey the conditions of positive definiteness according to Bochner’s theorem
(Abrahamsen, 1997). Following this approach, many models in spatial statistical research
and applications are developed using the Whittle-Matern correlation family (Abraham-
sen, 1997; Guttorp and Gneiting, 2005), Gneiting correlation class (Guttorp and Gneiting,
2005), etc. In this paper, the application of Euclidean distance matrices (EDM) to multi-
variate data modelling and kriging is considered, doing it without the standard way based
on positive definite correlation functions.

EDM’s have received increased attention due to their applications in recently ac-
tive fields of research, such as molecular conformation in bioinformatics, dimension-
ality reduction in machine learning and statistics, semidefinite programming, wireless
sensor network localization (Pham et al., 2008; Ghiasi et al., 2018; Koo et al., 2018;
Qian et al., 2008). However, in recent years square EDM’s are mostly studied in litera-
ture (Schoenberg, 1935; Gower, 1984; Weinberger et al., 2004), although the Euclidean
geometry in the real world is dealing with a square root, i.e. the fractional degree of dis-
tance squares. Moreover, fractional degrees of distance squares appear in some applica-
tions as well, however many fundamental issues about their properties remain unstudied.
Therefore, this work focuses on the geometry of Fractional Euclidean Distance Matri-
ces (FEDM) and their application in the multidimensional data analysis using kriging in
the context of computer modelling and solving of practical examples. Sakalauskas (2013)
considered a random field with a positive definite correlation function tending its scale
parameter to zero as well as infinitely increasing the variance of field, and in this way
has derived that the limiting kriging method relates with inverse FEDM’s (see, also Re-
mark 1 below). Usually EDM’s are studied using the Gram matrix of the observed data
set, called a kernel matrix (Gower, 1984, etc.). Using the kernel matrix method (Pozniak
and Sakalauskas, 2017) has shown FEDM with a strongly fractional degree of distance
squares to be nonsingular, and, consequently, the derived kriging method in can be used
correctly. In this paper, the multinormal data model and the kriging method are developed
taking covariances proportional to the elements of kernel matrix, and, thus, avoiding the
standard way, based on positive definite correlation functions. Once constructed, the krig-
ing model can be used for data modelling, prediction, and optimization. The objective is
to discuss and demonstrate the applicability of the kriging technique, based on FEDM,
and to verify the computational efficiency of the developed approach.
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2. Geometrical Properties of FEDM

Let us assume that a data set X = (x1, x2, . . . , xK ) of K vectors xi ∈ R
d , 1 6 i 6K , d > 1

be given, at which the values of some response function Y = (y1, y2, . . . , yK)T are used,
obtained by physical measurement, computer simulation, etc. Denote the K × K matrix
of fractional degrees δ of Euclidean distance squares among pairs of vectors by

A =
[(

‖xi − xj‖
)δ]K

i,j=1
,

where ‖xi − xj‖ = (xi − xj )
T · (xi − xj ), xi ∈ R

d , 1 6 i, j 6 K , 0 6 δ 6 1. Note that
δ = 1/2 in a special case of usual Euclidean distances. Recently the properties of matrices
of Euclidean distance squares are studied most, i.e. as δ = 1 (Schoenberg, 1935; Gower,
1984; Weinberger et al., 2004). Usually the main tool for EDM study is the Gram matrix
of data set X, called a kernel matrix. Thus, following this approach, the matrix

F = −
(

I − E · sT
)

· A ·
(

I − s · ET
)

(1)

is introduced, called hereinafter a kernel matrix, where I denotes K × K unit matrix, E

denotes K-dimensional vector-column of units, s ∈ R
K is a certain vector-column.

Proposition 1. Let xi, xj ∈ X, xi 6= xj , if i 6= j , 1 6 i, j 6 K , 0 6 δ < 1, sT · E = 1.

Then, kernel matrix (1) is positively semi-definite of rank K − 1.

The proof can be seen in Pozniak and Sakalauskas (2017), Theorem 1. Note that, if
δ = 1, then the rank of kernel matrix can be less K − 1.

Proposition 2. Assume A is a FED matrix, s1, s2 ∈ RK , s1
T · E = 1, s2

T · E = 1. Then,

F1 = −
(

I − E · s1
T
)

· A ·
(

I − s1 · ET
)

=
(

I − E · s1
T
)

· F2 ·
(

I − s1 · ET
)

,

where

F2 = −
(

I − E · s2
T
)

· A ·
(

I − s2 · ET
)

.

The proposition implied by an easily verified equality of idempotence as

(

I − E · s1
T
)

·
(

I − E · s2
T
)

=
(

I − E · s1
T
)

.

Let us consider FEDM geometrical properties more.

Proposition 3. Under the conditions of Proposition 1, the embedded set Z = (z1, z2, . . . , zK )T

exists such that zK ∈ R
K−1, Z is a full rank matrix, and

A =
1

2
·
[

(zi − zj )
T · (zi − zj )

]K

i,j=1
.
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Proof. Meanwhile, according to Proposition 1, one can get F = Z̃ · Z̃T by factorization
of the kernel matrix. Then, the embedded set is obtained taking first K − 1 columns of
set Z̃, the rank of which strictly K − 1.

Note that (1) implies

diag(F ) = 2 · A · s − sT · A · s · E.

Next, by means of the latter formula after simple manipulations one can make sure
that the proposition is true, because:

1

2
·
[

(zi − zj )
T · (zi − zj )

]K

i,j=1
,

=
[zi

T · zi ]
K

i,j=1 + [zj
T · zj ]

K

i,j=1

2
−
[

zi
T · zj

]K

i,j=1

=
diag(F ) · ET + E · diag(F )T

2
− F

= E · sT · A + A · s · ET − sT · A · s · E · ET +
(

I − E · sT
)

· A · (I − s · ET)

= A.

Hence, the embedded set presents itself as a nonsingular K − 1-dimensional sim-
plex. �

Corollary 1. Let us consider the factorization F = Z · ZT of the kernel matrix F , con-

structed according to assumptions of Proposition 1, where Z is the embedded set. Assume

sT
c · E = 1, sc ∈ R

K , and denote zc = ZT · sc. Then, according to Proposition 2:

F = −
(

I − E · sc
T
)

· A ·
(

I − sc · ET
)

=
(

I − E · sc
T
)

· F ·
(

I − sc · ET
)

=
(

I − E · sc
T
)

· Z · ZT ·
(

I − sc · ET
)

=
(

Z − E · zc
T
)

·
(

ZT − zc · ET
)

.

Hence, Corollary 1 shows us the geometrical sense of vector s, that displays the ori-
gin of coordinates to the point zc in the embedded space. Therefore, if sT · E = 1, it is
reasonable to call s a centering vector.

The next corollary follows from (1).

Corollary 2. If under the conditions of Proposition 1, the origin in the embedded space

is displaced at the point z1, namely, s = (1,0,0, . . . ,0), then the elements of the kernel

matrix are as follows:

Fi,j = Ai,i + Aj,j − Ai,j , 1 < i, j 6K,

F0,0 = 0, F1,j = 0, Fi,1 = 0, 1 < i, j 6K.
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Corollary 3. Under the conditions of Proposition 1, the centering vector s = E/K min-

imizes the trace of kernel matrix.

Proof. Indeed, after simple manipulations it follows:

tr(F ) = tr
((

Z − E · zc
T
)

·
(

ZT − zc · ET
))

= tr
((

I − E · sT
)

· Z · ZT ·
(

I − s · ET
))

= −tr
((

I − E · sT
)

· A ·
(

I − s · ET
))

= 2 · sT · A · E − K · sT · A · s.

By differentiating the latter expression with respect to s and equating the obtained deriva-
tive to zero, one can be sure of the truth of corollary. �

Corollary 4. If the conditions of Proposition 1 are valid, then ET · A−1 · E 6= 0, besides,

the centering vector

s =
A−1 · E

ET · A−1 · E

displays the origin of coordinates in the centre of the circumscribed sphere of the embed-

ded simplex.

Proof. Note that the diagonal of F consists of squares of distances from vertices of the
embedded simplex to the origin in the embedded space. By means of (1), one can easily
verify that diag(F ) = 2 · A · s − (sT · A · s) · E. Since the distances from vertices to the
centre of the circumscribed sphere should be the same, find the centering vector s, i.e.
which obeys the condition 2 · A · s − (sT · A · s) · E = r · E, where r is the radius of the
circumscribed sphere. Thus, the latter condition implies that

s =
r + v

2
· A−1 · E,

because the inverse of matrix A exists, as proved in Pozniak and Sakalauskas (2017), The-
orem 2, and, therefore, it can be used correctly. Then, using the normalization condition
one can derive

r + v

2
· ET · A−1 · E = 1.

The latter equality means 1) that ET · A−1 · E 6= 0, 2) it helps us to establish:

r + v

2
=

1

ET · A−1 · E
,

and finally,

r =
1

ET · A−1 · E
.
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�

Let us consider the inverse and determinantof FEDM more in detail. Denote by (x0,X)

the set obtained adding some point x0 ∈ Rd to the observation set X, as well as the respec-
tive vector of fractional degrees of Euclidean distance squares between x0 and X by

a =
(

‖x1 − x0‖
δ,‖x2 − x0‖

δ, . . . ,‖xK − x0‖
δ
)T

.

Now, define the extended kernel matrix, respective to FEDM Ã =

[

0 aT

a A

]

of the set

(x0,X), calculated at the centering vector s̃T = (s′, sT) and presented in the block matrix:

F̃ =

[

ν f T

f F

]

≡ −

[

1 − s′ −sT

−s′ · E S

]

·

[

0 aT

a A

]

·

[

1 − s′ −s′ · ET

−s ST

]

, (2)

where, due to (1):

S = I − E · sT, (3)

F = s′ · E · aT · ST + s′ · S · a · ET − S · A · ST, (4)

f = S · A · s − s′ · E · aT · s − S · a · (1 − s′), (5)

ν = 2 · (1 − s′) · sT · a − sT · A · s. (6)

Then next theorem relates the inverse and determinant of FEDM with that of the kernel
matrix.

Theorem 1. Assume FEDM

A =
[(

(xi − xj )
T · (xi − xj )

)δ]K

i,j=1
,

the vector of fractional degrees of distances

a =
{

(xi − x0)
T · (xi − x0)

δ
}K

k=1

as well as the centering vector (s′, s) to be given, where

xi, xj ∈ R
d , xi 6= xj , i 6= j, 0 6 i, j 6 K, K > 1,

0 6 δ < 1, d > 1, s ∈ RK , s′ + ET · s = 1.

Then the inverse of K × K lower-right submatrix of kernel matrix (2) is as follows:

F−1 = M =
A−1 · E · ET · A−1

ET · A−1 · E
− A−1 +

q · qT

D
, (7)
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where

q = s + s′ · A−1 ·

(

a + E ·
1 − ET · A−1 · a

ET · A−1 · E

)

, (8)

D = (s′)2 ·

(

aT · A−1 · a −
(1 − ET · A−1 · a)

2

ET · A−1 · E

)

, (9)

s′ = 1 − ET · s. (10)

Besides, the determinants of matrices F and A are related

|F | = (−1)K+1 · |A| · D · ET · A−1 · E. (11)

Corollary 5. Suppose the conditions of Theorem 1 to be satisfied. Then,

F−1 −
F−1 · E · ET · F−1

ET · F−1 · E
= −A−1 +

A−1 · E · ET · A−1

ET · A−1 · E
.

The proof of Theorem 1 and Corollary 5 is given in Appendix. It is of interest that the
right part of conclusion of Corollary 5 is invariant to the choice of the centering vector s

and point x0.

3. Creation of the Gaussian Random Field Using FEDM

Statistical approach for modelling the response function by a random field has the origin
in the works of Kushner (1964), Žilinskas (1985), and Mockus (1989). In this section,
a probabilistic model of response surface (scalar function) is developed, the values of
which are collected by observation, physical measurements or computer simulation, etc.
Due to the fact that there are no further data except the measurement performance at the
experimental points, the surface which represents the objective response function can be
designed as a homogeneous Gaussian random field (GRF) Z(x,ω), which for each point
in the variable space x ∈ R

d , is a measurable function of random event ω ∈ (�,6,P )

in some probability space (Mockus, 1989; Jones, 2001; Sakalauskas, 2013). To model
the observed data in a probabilistic way, one has to define the probability distribution of
response surface values Z(x,ω) = (Z(x1,ω),Z(x2,ω), . . . ,Z(xK ,ω)) in the given set
of points X = (x1, x2, . . . , xK). Consider this probability distribution with the constant
mean vector:

EZ(x,ω) = µ · E, (12)

and covariance matrix

E
(

Z(x,ω) − µ · E
)

·
(

Z(x,ω) − µ · E
)T

= β2 · F, (13)

where µ and β are parameters, β > 0, and F is a positively defined matrix.
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Taking into account geometrical properties of FEDM, explored in the previous section,
choose matrix F as a lower-right submatrix of kernel matrix (2), calculated using some
point x0 and centering vector (s′, s) such that s′ + ET · s = 1, s′ 6= 0. Note that matrix F

is positively defined according to Proposition 1.
Thus, the multivariate Gaussian density is written down as well:

px0,X(Y ) =
exp

[

− (Y−µ·E)T·F−1·(Y−µ·E)

2·β2

]

(2π)d/2 · βd · |F |1/2
. (14)

However, as one can easily see that this density, using denotations of the previous
section and (7)–(11), can be rewritten in an equivalent manner:

px0,X(Y ) =
exp

[

− 1
2·β2 · Y T(A−1 − A−1·E·ET ·A−1

ET ·A−1·E
) · Y − (Y T·q−µ)

2

2·β2·D

]

(2π)K/2 · βK · ((−1)K+1 · |A| · D · ET · A−1 · E)
1/2

. (15)

In order to describe the random field by its finite-dimensional (cumulative) distribu-
tions, latter ones have to obey the consistency conditions of symmetry and compatibility
(Abrahamsen, 1997). This is done by the next theorem under the appropriate choice of
centering vector.

Theorem 2. The random Gaussian field Z(x,ω) exists in some probability space

(�,6,P ), having the functions

px0,XK (YK )

=

exp
[

− 1
2·β2 · Y T

K

(

A−1
K −

A−1
K ·EK ·ET

K ·A−1
K

BK

)

· YK −
(Y T

K ·A−1
K ·(aK+EK ·

CK
BK

)−µ)
2

2·β2·(DK−
C2

K
BK

)

]

(2π)K/2 · βK · ((−1)K+1 · |AK | · (DK · aK · BK − C2
K ))1/2

(16)

as its finite-dimensional densities of distribution of YK = (y1, y2, . . . , yK)T, yi =

Z(xi,ω), where BK = ET

K · A−1
K · EK , CK = 1 − ET

K · A−1
K · aK , DK = aT

K · A−1
K · aK ,

XK = (x1, x2, . . . , xK) is a sequence of mutually disjoint points xi ∈ Rd , and disjoint with

x0 ∈ Rd as well, 1 6 i 6K ,

AK =
[(

‖xi − xj‖
)δ]K

i,j=1
,

aK =
(

‖x1 − x0‖
δ,‖x2 − x0‖

δ, . . . ,‖xK − x0‖
δ
)T

,

EK = (1,1, . . . ,1)T, EK ∈ RK , K = 2,3, . . . , µ and β are parameters, β > 0.

Proof. One can notice the density (16) follows from (14), and, consequently, (15), taking
as the lower-right submatrix of kernel matrix (2), calculated with the centering vector
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s̃ = (1,0,0, . . . ,0). As noted above, density (14), and (15), (16) respectively, are defined
correctly due to Proposition 1. Indeed,

∫

Y∈RK px0,X(Y )dY = 1.
Next, the symmetry of distributions (14) and, consequently, that of (15) and (16), is

shown in the standard way for multinormal distributions using the symmetry of kernel
matrix (see Section 1.4.1, Abrahamsen, 1997).

Proving the compatibility, denote the covariance matrices respective to XK and XK+1

by FK and FK+1, that are lower-right submatrices in the respective kernel matrices. Now,
one can easily notice that, due to Corollary 2, FK is the upper-left submatrix in the de-
composition

FK+1 =

(

FK fK

f T

K νK

)

.

Thus, using the standard block matrix operations, one can make sure that:

px0,XK+1
(YK+1) = px0,XK (YK ) exp

[

−(yK+1 − Ex0,XK (Z(xK+1,ω)|YK .))2

2 · D2
x0,XK

(Z(xk+1,ω)|YK .)

]

×
(

2π · D2
x0,XK

(

Z(xk+1,ω)
∣

∣YK

))−1/2
,

where

Ex0,XK

(

Z(xK+1,ω)
∣

∣YK .
)

= µ + (YK − µ · EK )T · F−1
K · fK

and

D2
x0,XK

(

Z(xk+1,ω)
∣

∣YK .
)

= β2 ·
(

νK − f T
K · F−1

K · fK

)

are, respectively, a posteriori mean and variance of GRF at the point xk+1 under known
YK (Casella and Berger, 2002). Then the compatibility follows as well:

px0,XK (YK ) =

∫ ∞

−∞
px0,XK+1

(YK , y)dy.

However, according to Kolmogorov’s consistency theorem, GRF exists having (16) as its
finite-dimensional distributions (Khoshnevisan, 2002). �

Example. Assume that the observation set is displayed on a line: xk = a + tk · (b − a),
a, b ∈ R

d , t0 < t1 < · · · < tK . If δ = 1/2, then GRF is distributed on this line as a Wiener
process.

Actually, FEDM of the considered set on the line is as follows: A = |b − a| ·

[|ti − tj |]
K
i,j=1. One can easily see that, according to Corollary 2, the lower-right sub-

matrix of the kernel matrix, being the covariance matrix of the considered set, is the same
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as that of the well-known Wiener process:

F = β2 · |b − a| ·
[

ti + tj − 2t0 − |ti − tj |
]K

i,j=1

= 2β2 · |b − a| ·
[

min(ti − t0, tj − t0)
]K

i,j=1
.

4. Kriging by FEDM

The stochastic model of kriging should incorporate uncertainty about quantities in unob-
served points and to quantify the uncertainty associated with the kriging estimator. Krig-
ing gives us a way of anticipating, with some probability, a result associated with values
of the parameters that have never been met before, or have been lost, to “store” the exist-
ing information (the experimental measurements), and propagate it to any situation where
no measurement has been made. As it is unknown which of all function variables will be
preponderant, consider them as equivalent, and thus calculate a distance between the mea-
surement points, which now are symmetric with respect to the miscellaneous variables.
Suppose that we have to predict the value of response surface y at some point x ∈ R

d ,
if the set X = (x1, x2, . . . , xK ) of observed mutually disjoint vectors xi ∈ R

d , 1 6 i 6 K ,
K > 1, d > 1, is fixed and the data of measurement Y = (y1, y2, . . . , yK)T of the response
surface at points of X be known. Let the data be modelled by the probabilistic Gaussian
model with constant mean (12) and the covariance matrix of type (13). Then, decompose
the covariance matrix β̂2 ·F of vector Y = (Y, y) in to the covariance matrix β̂2 ·F of the
vector Y , to vector β̂2 · f of covariances between vector Y and y , and to variance of y ,
denoted by ν:

β2 · F = β2 ·

(

F f

f ν

)

. (17)

According to the introduction of kriging (see Jones, 2001) it is defined by the kriging
predictor

y(x) = Y T · F−1 ·

(

f + E ·
(1 − ET · F−1 · f )

ET · F−1 · E

)

, (18)

a posteriori variance of the predictor

β2(x) = β̂2 ·

(

ν − f T · F−1 · f +
(1 − ET · F−1 · f )2

ET · F−1 · E

)

, (19)

and the MLE parameter of variance

β̂2 =
1

K
·

(

Y T · F−1 · Y −
(Y T · F−1 · E)

2

ET · F−1 · E

)

. (20)
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Let us consider the kriging method based on the probabilistic data model, derived in
the previous section.

Theorem 3. Assume the set X = (x1, x2, . . . , xK ) of mutually disjoint points xi, xj ∈ R
d ,

xi 6= xj , i 6= j , 1 6 i, j 6 K , be given, at which the values Y = (y1, y2, . . . , yK )T of some

GRF realization are known, namely, yi = Z(xi,ω). Let

A =
[(

(xi − xj )
T · (xi − xj )

)δ]K1

be FEDM of the vectors xi ∈ X, 0 6 δ < 1.

Then the kriging predictor at x ∈ Rd is as follows:

y(x) = Y T · A−1 ·

(

a + E ·
(1 − ET · A−1 · a)

ET · A−1 · E

)

, (21)

its variance

β2(x) = β̂2 ·

(

aT · A−1 · a −
(1 − ET · A−1 · a)2

ET · A−1 · E

)

, (22)

where MLE of the variance parameter

β̂2 =
(Y T · A−1 · E)2

ET · A−1 · E
− Y T · A−1 · Y. (23)

Proof is given in Appendix.
Thus, kriging predictor (21) turns out to a linear extrapolator y(x) = Y T · u(x), with

the extrapolation weights:

u(x) = A−1 ·

(

a + E ·
(1 − ET · A−1 · a)

ET · A−1 · E

)

, (24)

and variance (22) helps us the measure of accuracy of extrapolation.
The next property of the kriging extrapolator easily follows from (24).

Corollary 6. The weights in (24) satisfy the condition: ET · u(x) = 1.

Besides, it is easy to make sure that kriging predictor (13) coincides with the values
of response at measured points.

Remark 1. The kriging model has also been derived by Sakalauskas (2013) studying the
GRF with the positive defined covariance function of the shape

γ δ · β2

α
·

(

1 − α ·

(

r

γ

)δ

+ O

(

r

γ

)2·δ)

and tending the parameter γ to infinity.
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Remark 2. Note that the degree δ is a perfect parameter of GRF as well, which can
be estimated using the observation data. The least square estimate δ̂ is estimated by the
univariate minimization of variance parameter MLE (23):

δ̂ = arg min
06δ61

1

K
·

(

(Y T · A−1 · E)2

ET · A−1 · E
− Y T · A−1 · Y

)

. (25)

The properties of this estimate are explored by computer simulation in section 5.

5. Comparison of the Developed Kriging Extrapolator with the Shepard

Extrapolator

The well-known approach for data interpolation is presented by the Shepard method
(Shepard, 1968):

yShepard(x) = Y T · u(x),

where

u(x) =

{

w(x)

ET ·w(x)
, if |xi − x| 6= 0 ∀i,

yi, if |xi − x| = 0,
(26)

the weights are chosen in the following way:

w(x) =

(

1

|x1 − x|δ
,

1

|x2 − x|δ
, . . . ,

1

|xK − x|δ

)

. (27)

It is easy to see that the Shepard extrapolator also satisfies the condition ET ·u(x) = 1.
A set of analytic test functions was chosen aiming to compare the developed kriging

predictor with the Shepard extrapolator (Table 1).
At the beginning of the experiments, the behaviour of response of the system is gen-

erally unknown, so different analytic functions should be designed. In total six types of
functions are considered (Kwon and Choi, 2015). The first test function is a Branin func-
tion (fourth-order polynomials) and it shows a dominant second-order trend. This function
has an extremely complex and highly nonlinear behaviour. The second test function is a
Linear function composed of polynomials and trigonometric functions, and it shows a
strong first-order trend. The Rosenbrook function shows both the first and second-order
trends.

Each test function is shown in Table 1. The nonlinear Haupt function is composed of
trigonometric functions. The test function results indicate a second-order trend of both
independent variables x and y .

Each test function is plotted (see Figs. 1–6).
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Table 1
Types of test functions and test function domains.

Branin

z(x, y) = (y − 5x2

4π2 + 5x
π − 6)2 + 10(1 − 1

8π
)cosx + 10,

x ∈ [−5,10], y ∈ [0,15].

(28)

Rosenbrook

z(x, y) = 100(y − x2)2 + (1 − x)2,

x ∈ [−5,5], y ∈ [−5,5].

(29)

Rastrigin

z(x, y) = 20 + x2 + y2 − 10(cos(2πx) + cos(2πy)),

x ∈ [−5.12,5.12], y ∈ [−5.12,5.12].

(30)

Haupt

z(x, y) = x sin(4x) + 1.1y sin(2y),

x ∈ [0,4], y ∈ [0,4].

(31)

Himmenblau

z(x, y) = (x2 + y − 11)2 + (x + y2 − 7)2 + 0.1((x − 3)2 + (y − 2)2)

x ∈ [−5,10], y ∈ [−5,10].

(32)

Linear

z(x, y) = x2 + x2 cos(x) + y cos(y),

x ∈ [1,2], y ∈ [1.5,3].

(33)

Model parameters β2 and δ have been estimated by the maximum likelihood method
(23) and (25). The computer simulation experiment has been performed generating N =

200 samples of K = 20 randomly simulated points for each test function in its domain.
In the prediction problem, the value of the Euclidean fraction degree δ could be chosen

so as to get the best model results. An elegant alternative is to calculate the optimal δ value
according to (25).

Fig. 1. Branin function. Fig. 2. Rosenbrook function.
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Fig. 3. Rastrigin function. Fig. 4. Haupt function.

Fig. 5. Himmenblau function. Fig. 6. Linear function.

Table 2
Mean and standard deviation of variance parameter β2 and Euclidean fraction degree δ.

Test function Mean of β2 Std. dev. of β2 Mean of δ Std. dev. of δ

Branin 518.398 165.630 0.800 0.012
Linear 0.406 0.049 0.769 0.025
Rosenbrook 5.249 ·107 1.859 ·107 0.697 0.026
Haupt 4.254 1.113 0.240 0.074
Rastrigin 87.856 26.691 0.427 0.098
Himmenblau 4.003 ·105 1.357 ·105 0.785 0.015

Table 3
True error results.

Test function T E(y(x)) T E(yShepard (x))

Branin 21.919 59.479
Linear 0.123 0.877
Rosenbrook 8850 13310
Haupt 2.026 2.47
Rastrigin 12.432 13.425
Himmelblau 1061 2149

Mean and standard deviation of variance parameter β2 and Euclidean fraction degree
δ are given in Table 2, histograms are presented in Figs. 7–18 (K = 20, N = 200).
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Fig. 7. Branin. Variance parameter. Fig. 8. Branin. Optimal Euclidean fraction degree.

Fig. 9. Linear. Variance parameter. Fig. 10. Linear. Optimal Euclidean fraction degree.

Fig. 11. Rosenbrook. Variance parameter.
Fig. 12. Rosenbrook. Optimal Euclidean fraction de-
gree.

Fig. 13. Haupt. Variance parameter. Fig. 14. Haupt. Optimal Euclidean fraction degree.
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Fig. 15. Rastrigin. Variance parameter. Fig. 16. Rastrigin. Optimal Euclidean fraction degree.

Fig. 17. Himmenblau. Variance parameter.
Fig. 18. Himmenblau. Optimal Euclidean fraction de-
gree.

To compare the accuracy of the model the True Error Criterion is introduced (Kwon
and Choi, 2015). It is defined as follows:

TE(y(x)) =
∑∑

√

(

y(x) − z(x, y)
)2

, (34)

TE(yShepard(x)) =
∑∑

√

(

yShepard(x) − z(x, y)
)2

. (35)

The results are summarized in Table 3, and the best estimation of the true error are
marked in bold for each test function.

True error comparisons results are as follows K = 20, N = 200.
Therefore, the kriging predictor, being a posterior expected value of Gaussian random

field, presents itself as an efficient extrapolator of scattered data, and, in turn, the variance
of kriging predictor is an efficient measure of prediction or extrapolation error.

6. Optimization of the Filler Effectiveness of Surface Wastewater Treatment Using

Mathematical Modelling

Inadequate treatment of surface wastewater may considerably impair the quality of water.
With increasing urbanization, intensification of car traffic and increasing area of imper-
vious surfaces, the pollution of surface water and a negative impact on the aquatic en-
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vironment are rising as well. One of surface wastewater treatment technologies, capable
of reducing suspended solids, heavy metals and other pollutants, is surface wastewater
treatment filters (Meškauskaitė and Marčiulaitienė, 2016; Meškauskaitė, 2017). The ef-
fectiveness of filters, filled with construction waste and biocarbon, was analysed using
the kriging method with distance matrices. The developed method allows modelling filter
characteristics with different filler ratios, based on the previous experimental studies of
filters.

Let x = (x1, x2, x3, x4)
T be a vector of filler ratios. Denote different filter characteris-

tics: Y
j

i , 1 6 i 6 m, 1 6 j 6 K , where K = 4 is the number of experiments, m – is the
number of filter characteristics, that describe capability to treat different wastes, depend-
ing on filler ratios of the filter.

Filter fillers:
1 – Quartz sand;
2 – Shredded autoclaved aerated concrete (66.7%) and stone wool (33.3%);
3 – Shredded autoclaved aerated concrete (33.3%) and biocarbon (66.7%);
4 – Shredded autoclaved aerated concrete (33.3%), biocarbon (33.3%) and

stone wool (33.3%).
These filters with different fillers are designed for treatment of the main pollutants of

surface wastewater: zinc (Zn), copper (Cu). Then the experiment matrix of filler propor-
tions was chosen as follows:

X =

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0

0 0.667 0 0.333

0 0 0.333 0.667

0 0.333 0.333 0.333

∣

∣

∣

∣

∣

∣

∣

∣

.

After the experiment, the filtration characteristics have been presented by the measure-

ment matrix Y = (Y 1, Y 2)
T

(see Table 4).
Filters data extrapolation, based on experiments by the kriging method with distance

matrices (20), (21), has been perfomed, where FEDM

A =
[(

(xi,1 − xj,1)
2 + (xi,2 − xj,2)

2 + (xi,3 − xj,3)
2 + (xi,4 − xj,4)

2
)1/2]K

i,j=1

Table 4
Filtration characteristics measurements.

Filters Zn Cu

Y 1 Y 2

1 94.7 58.5
2 57.2 15.2
3 77.1 20.5
4 81.1 28.8
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Fig. 19. Cleaning capacity in %. Copper (Cu). Quartz
sand = 0.

Fig. 20. Cleaning capacity in %. Copper (Cu).
Quartz sand = 0.5.

Fig. 21. Cleaning capacity in %. Zinc (Zn). Quartz
sand = 0.

Fig. 22. Cleaning capacity in %. Zinc (Zn). Quartz
sand = 0.5.

and the vector of distances from the selected extrapolation point x to the experimental

points for i = 1,2,3,4 is

τi(x) =
(

(Xi,1 − x1)
2 + (Xi,2 − x2)

2 + (Xi,3 − x3)
2 + (Xi,4 − x4)

2
)1/2

.

Visualization of the cleaning efficiency (in %) for the fillers proportion (BC=1–QS–
SHAAC–SW) using the kriging approach proposed, is given in Figs. 19–22.
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7. Conclusions

Thus, the approach to multidimensional data modelling has been created using geomet-
rical properties of FEDM, studied in the paper. It has been shown that the factorization
of kernel matrix of FEDM enables us to create the embedded set being a nonsingular
simplex. Using the properties of FEDM the Gaussian random field (GRF) is constructed
doing it without positive definite correlation functions usually applied for such a purpose.
Created GRF can be considered as a multidimensional analogue of the Wiener process, for
instance, line realizations of this GRF are namely Wiener processes. Next, the multidimen-
sional data kriging method is constructed that distinguishes by properties of homogeneity
and isotropy. The developed model allows us to represent the information, obtained from
any number of measurements of the objective function by a computational code or physical
experiment. The resulting model is rather simple and depends on a small set of parame-
ters (mean, variance, and parameter δ of FEDM), that are efficiently estimated by the ML
method. The results of scattered data processing by the approach, considered for analyti-
cally computed surfaces and mathematical modelling of a wastewater filter design process,
illustrate the applicability of GRF with FEDM as models for scattered multidimensional
data kriging.

Appendix

Proof of Theorem 1. It is proved in Pozniak and Sakalauskas (2017), Theorem 2, that,
under the conditions of Theorem, FEDM is nonsingular, i.e. |A| 6= 0, and thus its inverse
exists, and its minors are nonzero. Taking into account (8), (10), it can be easily derived
that:

ET · q = 1. (36)

By virtue of the latter formula:

ST · q =
(

I − s · ET
)

· q = q − s = s′ · A−1 ·

(

a + E ·
1 − ET · A−1 · a

ET · A−1 · E

)

. (37)

Then, using (3), (4), (7)–(10), (36), (37), after simple manipulations, we construct:

F · q · qT

D
=

(s′ · E · aT · ST + s′ · S · a · ET − S · A · ST) · q · qT

D

=
(s′2 · E · aT · A−1 · (a + E · 1−ET ·A−1·a

ET ·A−1·E
) − s′ · S · E · 1−ET·A−1·a

ET ·A−1·E
) · qT

D

= E · qT = E · sT + s′ · E · aT · A−1 + s′ · E · ETA−1 ·
1 − ET · A−1 · a

ET · A−1 · E
.

(38)
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On the other hand, the obvious equality

ET ·

(

A−1 · E · ET · A−1

ET · A−1 · E
− A−1

)

= 0, (39)

(4) and (37) yield the conclusion:

F ·

(

A−1 · E · ET · A−1

ET · A−1 · E
− A−1

)

=
(

s′ · E · aT − (I − E · sT) · A
)

·

(

A−1 · E · ET · A−1

ET · A−1 · E
− A−1

)

= s′E ·

(

aTA−1 · E · ET · A−1

ET · A−1 · E
− aTA−1

)

−
(

I − E · sT
)

·

(

E · ET · A−1

ET · A−1 · E
− I

)

= I − E · sT +
s′ · (aTA−1 · E − 1) · E · ET · A−1

ET · A−1 · E
− s′E · aTA−1. (40)

Thus, combining (38) and (39) one can make sure that F · M = I .
Using (3), (4), (10), the easily verified equality S−1 · E = E/s′ and Sylvester’s deter-

minant identity (Lay, 2005) the relation between determinants is derived:

|F | =
∣

∣s′ · E · aT · ST + s′ · S · a · ET − S · A · ST
∣

∣

=
∣

∣S · A · ST
∣

∣ ·
∣

∣

(

E ·
(

aT · A−1 · S−1
)

+ (S · a) ·
(

ET · (ST)−1 · A−1 · S−1
))

· s′ − I
∣

∣

= s′2 · | − A| ·
∣

∣

(

E ·
(

aT · A−1 · S
)

+ (S · a) ·
(

ET ·
(

ST
)−1

· A−1 · S−1
))

· s′ − I
∣

∣

= (s′)2 · | − A| ·

∣

∣

∣

∣

∣

∣

aT · A−1 · E − 1 −aT · A−1 · a · s′

−
ET · A−1 · E

s′
aT · A−1 · E − 1

∣

∣

∣

∣

∣

∣

= −(s′)2 · | − A| ·
((

aT · A−1 · a
)

·
(

ET · A−1 · E
)

−
(

1 − aT · A−1 · E
)2)

.

Hence, the theorem is proved. �

Proof of Corollary 5. Indeed, due to (7) and (36) one can easily notice that

F−1 · E =
q

D
,

and consequently:

ET · F−1 · E =
1

D
.
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Proof of Theorem 3. According to the block matrix inverse theorem (Lay, 2005), F is the
upper left submatrix of the matrix

F̄−1 −
(F̄−1

K+1)
T · F̄−1

K+1

F̄−1
K+1,K+1

,

(see (17)), bordered by zeros, namely:

F̄−1 −
(F̄−1

K+1)
T · F̄−1

K+1

F̄−1
K+1,K+1

=

(

F 0

0T 0

)

, (41)

where the K + 1-th column of the inverse matrix F̄−1 is denoted by F̄−1
K+1, and its lower-

right element by F̄−1
K+1,K+1. Note that the K + 1-th column of matrix F̄ is decomposed

F̄K+1 = (f, ν) as well. Now, rewrite (18) in the following manner by means of the prop-
erties of matrix operations with the elements of decompositions done:

Y T · F−1 · (f + E ·
(1 − ET · F−1 · f )

ET · F−1 · E
)

= Ȳ T ·

(

(F̄−1 −
(F̄−1

K+1)
T · F̄−1

K+1

F̄−1
K+1,K+1

) · F̄K+1

+ Ē ·

(1 − ĒT · (F̄−1 −
(F̄−1

K+1)
T·F̄−1

K+1

F̄−1
K+1,K+1

) · F̄K+1)

ĒT · (F̄−1 −
(F̄−1

K+1)
T·F̄−1

K+1

F̂−1
K+1,K+1

) · Ê

)

= Ȳ T ·

(

F̄−1 · F̄K+1 +

F̄−1·Ē·ĒT·F̄−1
K+1

F̄−1
K+1,K+1

− F̄−1
K+1

F̄−1
K+1,K+1 −

(ĒT·F̄−1
K+1)

2

ĒT ·F̄−1·Ē

)

, (42)

where Ē is a vector of K + 1 units.
Next, let us consider F̄ being the upper-left submatrix of some kernel matrix of ex-

tended FEDM

Ā =

(

A a

aT 0

)

.

Then, by virtue of Corollary 5 applied to extended matrices F̄ and Ā, the right side of
(42) is equal to

Y T ·

(

Ā−1 · ĀK+1 +

Ā−1·Ē·ĒT·Ā−1
K+1

F̄−1
K+1,K+1

− Ā−1
K+1

Ā−1
K+1,K+1 −

(ĒT·Ā−1
K+1)

2

ĒT·Ā−1·Ē

)

. (43)
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Repeating the considerations of transformation of (18) to (43), applied now back to
(43), one can derive (21). Similarly, one can rearrange (19), then apply Corollary 5 and
derive (22):

(

ν − f T · F−1 · f +
(1 − ET · F−1 · f )2

ET · F−1 · E

)

=
1

F̄−1
K+1,K+1 −

(ĒT·F̄−1
K+1)

2

ĒT ·F̄−1·Ē

=
1

(ĒT·Ā−1
K+1)

2

ĒT·Ā−1·Ē
− Ā−1

K+1,K+1

= aT · A−1 · a −
(1 − ET · A−1 · a)2

ET · A−1 · E
.

Proving (23) after cumbersome but elementary manipulations we derive:

F−1 −
F−1 · E · ET · F−1

ET · F−1 · E

= F̄−1 −
(F̄−1

K+1)
T · F̄−1

K+1

F̄−1
K+1,K+1

−

(F̄−1 −
(F̄−1

K+1)
T·F̄−1

K+1

F̄−1
K+1,K+1

) · Ē · ĒT · (F̄−1 −
(F̄−1

K+1)
T·F̄−1

K+1

F̄−1
K+1,K+1

)

ĒT · (F−1 −
F−1T

K ·F−1
K

F−1
K,K

) · Ē

= F̄−1 −
F̄−1 · Ē · ÊT · F̄−1

ĒT · F̄−1 · Ē

−
(F̄−1

K+1 −
ĒT·F̄−1

K+1

ĒT·F̄−1·Ē
· F̄−1 · Ē) · ((F̄−1

K+1)
T −

ĒT·F̄−1
K+1

ĒT·F̄−1·Ē
· ĒT · F̄−1)

F−1
K,K −

(ETF̄−1
K+1)

2

ĒT ·F̄−1·Ē

. (44)

However, according to Corollary 5, matrix (44) is equal to

−Ā−1 +
Ā−1 · Ē · ĒT · Ā−1

ĒT · Ā−1 · Ē

+
(Ā−1

K+1 −
ĒT ·Ā−1

K+1

ĒT·Ā−1·Ē
· Ā−1 · Ē) · ((Ā−1

K+1)
T −

ĒT ·A−1
K+1

ĒT·Ā−1·Ē
· ĒT · Ā−1)

Ā−1
K,K −

(ET·Ā−1
K+1)

2

ĒT ·Ā−1·Ē

.

By analogous considerations used to get (44), one can show that the equality, similar to
that in Corollary 5, takes the place of submatrices of extended kernel matrices and FEDM
as well:

F−1 −
F−1 · E · ET · F−1

ET · F−1 · E
= −A−1 +

A−1 · E · ET · A−1

ET · A−1 · E
.

Thus, (23) is a direct consequence of the latter relation. �
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