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On the uniqueness of ARCH processes
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Abstract. In this note we prove the uniqueness of the solution to ARCH equations under conditions,which
are weaker than in some earlier results.
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1. The main result

Let (εk | k ∈ Z) be a family of iid nonnegative random variables,(ai | i � 1) a sequence
of nonnegative numbers anda0 > 0. Consider the following system of equations:

xk =
(
a0 +

∞∑
i=1

aixk−i

)
εk, k ∈ Z. (1.1)

Any strictly stationary nonnegative solution to (1.1),(xk), is called anARCH process.
A solution(xk) is callednon-anticipative if, for all k, xk is independent ofεl , l > k.

The most known example of ARCH processes is a sequence(r2
k ), where(rk) is a

so-calledGARCH(p,q) process, a stationary solution to the equations

rk = σkεk;

σ 2
k = δ +

p∑
i=1

βiσ
2
k−i +

q∑
j=1

αj r
2
k−j , (1.2)

where theεk are iid with zero mean,δ > 0, βi � 0, αj � 0 for all i, j . [4] showed that
(r2

k ) satisfies the associated ARCH equations (1.1) withεk = ε2
k , a0 = δ/(1 − β(1))

and with coefficientsai defined by the equalitya(t) = α(t)/(1 − β(t)); herea(t) =∑∞
i=1ai t

i , α(t) = ∑q

j=1 αj t
j andβ(t) = ∑p

i=1 βit
i .

This paper investigates the question, whether a solution to (1.1) is unique. The main
result is the following.

THEOREM 1.1. Suppose the following conditions are satisfied with some q > 1:

E log− ε0 < ∞, (1.3)
∑
i�1

aiq
i < ∞. (1.4)

Then system (1.1)can have only one strictly stationary solution.
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In the literature, there exist few results concerning uniqueness of ARCH processes.
[1] considered GARCH(p,q) processes and proved the uniqueness of theintegrable
non-anticipative solution to (1.2). [3] generalized his results to the general ARCH
processes. These results are not comparable with Theorem 1.1: the later does not cover
all ARCH processes because of condition (1.4); on the other hand, Theorem 1.1 does
not assume integrability of a solution.

[5] considered GARCH(1,1) processes and proved their uniqueness without inte-
grability assumption. [2] generalized his results to the GARCH(p,q) case. Theorem
1.1 generalizes the uniqueness part of Theorem 1.3 of [2], because the coefficients of
ARCH equations, associated with (1.2), decay geometrically fast (see [1]).

Finally, [4] proved the uniqueness of an ARCH process under the following as-
sumptions:

(i) ai decrease, starting from somei0;
(ii) for someq > 1,

∑
n�0

ηknq
n < ∞, (1.5)

where theηkn are defined by (2.6) below.
In [4], we showed that the convergence radius of the series

∑
n ηknt

n does not ex-
ceed that of the series

∑
n ant

n. Therefore condition (1.5) is stronger than (1.4). More-
over, Theorem 1.1 does not require monotonicity of coefficients. On the other hand, in
[4] we didn’t impose any integrability condition onεk such as (1.3).

2. The proof

To prove Theorem 1.1, we need two lemmas.

LEMMA 2.1. Let (ρn) be a stationary sequence of quasi-integrable random vari-
ables. Then there exists a random variable ξ with values in the extended real line, such
that almost surely

ρ1 + · · · + ρn

n
−−−→
n→∞ ξ. (2.1)

Proof. If E|ρ1| < ∞, the lemma follows from the ergodic theorem, see, for exam-
ple, Shiryaev [7, Chapter V, Theorem 3]. IfEρ+

1 < ∞, Eρ−
1 = ∞, it follows from the

subbaditive ergodic theorem, applied to the process

Xst = ρs+1 + · · · + ρt ,

see [6], Theorem 2. IfEρ+
1 = ∞, Eρ−

1 < ∞, the subadditive ergodic theorem should
be applied to the process(−Xst).

LEMMA 2.2. Suppose, condition (1.3) is satisfied and let (xk) be a stationary so-
lution to (1.1). If ai0 > 0 for some i0 � 1, then almost surely

logx−n

n
→ 0. (2.2)
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Proof. Let (xk) be a stationary solution to (1.1). By (1.3),ε0 > 0 almost surely. The
inequalityx0 � a0ε0 then implies thatx0 > 0 almost surely. By stationarity, allxk are
positive with probability 1.

For j � 1 define

ρj = log
x−j i0

x−(j−1)i0

. (2.3)

Clearly,(ρj ) is a stationary sequence. Moreover, from

x0 � ε0ai0x−i0

and (2.3) we get

ρ1 � loga−1
i0

− logε0;
therefore, by (1.3),

Eρ+
1 < ∞.

Lemma 2.1 now yields the existence of a random variableξ , such that almost surely

ρ1 + · · · + ρj

j
−−−→
j→∞ ξ.

But ρ1 + · · · + ρj = logx−j i0 − logx0, therefore almost surely

logx−j i0

j
−−−→
j→∞ ξ. (2.4)

On the other hand,j−1 logx−j i0 is distributed identically withj−1 logx0, which
tends to 0 almost surely. Therefore

logx−j i0

j

P→ 0. (2.5)

By (2.4)–(2.5),ξ = 0, i.e., almost surely

logx−j i0

j
−−−→
j→∞ 0.

By stationarity, for eachd = 0, . . . , i0 − 1,

logx−j i0−d

j
−−−→
j→∞ 0,

which implies that almost surely

logx−j i0−d

j i0 + d
−−−→
j→∞ 0.

We see thatn−1 logx−n tends to 0, asn tends to∞ along each of the subsequence
n = j i0 + d . Therefore, (2.2) holds.
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Proof of Theorem 1.1. Denote

ykn = a0εk(ηk0 + ηk1 + · · · + ηkn), yk = a0εk

∑
n�0

ηkn,

zkn =
∑

i�n+1

(ηk0ai + ηk1ai−1 + · · · + ηknai−n)xk−i ,

where

ηkn =
∑

i1+···+il=n

ai1 · · ·ail εk−i1 · · · εk−i1−···−il . (2.6)

In [4] we showed that, for allk andn,

xk = ykn + εkzkn. (2.7)

Moreover,ykn → yk, asn → ∞.
All random variables in (2.7) are nonnegative; thereforexk � ykn for all n and hence

yk � xk < ∞, i.e., almost surely
∑
n�0

ηkn < ∞. (2.8)

It is easy to check that the sequence(yk) is a stationary solution to (1.1). Therefore it

remains to prove thatxk = yk almost surely. To do this, it suffices to show thatzkn
P→ 0,

asn → ∞ (here
P→ stands for the convergence in probability).

If all ai equal 0, thenzkn = 0 for all n and there is nothing to prove. Therefore
suppose thatai0 > 0 for somei0 � 1. Let q > 1 be any number, for which condition
(1.4) is satisfied. By Lemma 2.2, almost surely

logx−n

n
→ 0< logq,

hence there exists a randomn0, such that, for alln � n0, x−n � qn. Hence, a random
variableC, defined by

C = sup
j�1

q−jx−j ,

is almost surely finite.
For all k ∈ Z, denote

Ck = sup
j�1

q−jxk−j .

By stationarity, allCk are distributed identically withC. Furthermore, for allk and
j � 1,

xk−j � Ckq
j . (2.9)
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Now, by definition ofzkn and (2.9),

zkn =
∑

i�n+1

n∑
j=0

ηkjai−j xk−i =
n∑

j=0

ηkj

∑
i�n+1

ai−j xk−i

� Ck−n

n∑
j=0

ηkj

∑
i�n+1

ai−jq
i−n = Ck−n

n∑
j=0

ηkjq
j−n

∑
i�n

ai−jq
i−j

� Ck−n

∑
i�1

aiq
i

n∑
j=0

ηkjq
j−n.

It is well known, that ifbn andcn are nonnegative numbers,
∑

n bn < ∞ andcn → 0,
then

∑n
j=0 bjcn−j → 0. Therefore, by (2.8), almost surely

n∑
j=0

ηkjq
j−n −−−→

n→∞ 0.

This yieldszkn
P→ 0, because the sequenceCk−n is bounded in probability, asn → ∞.
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REZIUMĖ

V. Kazakevičius, R. Leipus. Apie ARCH proces ↪u vienat
↪
i

Šiame darbe↪irodome ARCH lygči ↪u sprendinio vienat↪i esant išpildytoms s↪alygoms, kurios yra silpnesn˙es

negu kai kuriuose ankstesniuose darbuose.


