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VERTEX REPRESENTATIONS FOR YANGIANS OF
KAC-MOODY ALGEBRAS

BY Nricoras Guay, Vipas ReceLskrs & Curtis WENDLANDT

Asstract. — Using vertex operators, we build representations of the Yangian of a simply laced
Kac-Moody algebra and of its double. As a corollary, we prove the Poincaré-Birkhoff-Witt
property for simply laced affine Yangians.

Riésumi (Représentations vertex pour les Yangiens d’algébres de Kac-Moody)

A T’aide d’opérateurs vertex, nous construisons des représentations du Yangien d’une al-
geébre de Kac-Moody simplement lacée et de son double. Comme corollaire, nous démontrons
la propriété de Poincaré-Birkhoff-Witt pour les Yangiens affines simplement lacés.
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1. INnTRODUCTION

Vertex operators originate from dual resonance models in theoretical physics. They
were used by I. Frenkel and V. Kac in their groundbreaking paper [FK81] to build an
explicit realization of the basic representation of a simply-laced affine Lie algebra.
Their work was later extended to non-simply laced affine Lie algebras [BTMS7,
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666 N. Guay, V. ReceLskis & C. WENDLANDT

GNOS86], to quantum affine algebras [FJ88, Ber89, JM96, JKM99, Jin99, Jin0O0,
CJ01], to twisted quantum affine algebras and more general quantum Kac-Moody
algebras [Jin90, Jin98], to toroidal and quantum toroidal algebras [MRY90, Sai98],
and to Lie superalgebra (e.g. [KSU9T]).

In this paper, we address the problem of developing an analogue of the work of
I. Frenkel and V.Kac for Yangians of simply laced Kac-Moody algebras. Yangians
form an important family of quantum algebras which originate from physics, but
were first properly defined in general by V. Drinfeld in [Dri86]. They can be obtained
from quantum loop algebras via a limit procedure [Gua07] and it turns out that
Yangians and quantum loop algebras become isomorphic after passing to certain
completions [GTL13|. The first goal of this paper is to construct representations
of Yangians, via their centrally extended doubles (see Definition 3.1), using vertex
operators which act on a tensor product of a Fock space with a twisted group algebra
(see Theorem 5.5). In the case of the Yangian associated to sl,, and gl,, this was
done in [IK96, Ioh96, Kho97]. It should be noted that our construction is not a direct
consequence of the work of I. Frenkel and N.Jing [FJ88, Jin98] on vertex operator
representations of quantum affinizations associated to symmetric Kac-Moody alge-
bras. Indeed, our construction differs in at least one essential way from the one in
[FJ88, Jin98|, namely that we use a different lattice to build the underlying Fock
space.

The second goal of this paper is to prove a version of the Poincaré-Birkhoff-Witt
theorem for affine Yangians of simply laced type (Theorem 6.9) using the vertex
representations of Theorem 5.5. For Yangians associated to simple Lie algebras, this
theorem was proved in general in [Lev93], and for classical Lie algebras, a version
of the PBW theorem stated in terms of the RTT-presentation of the Yangian can
be found in [Mol07] and [AMRO6]; for affine Yangians, only the type A(Y) has been
considered before [Gua07]. A separate proof of the PBW property for simply laced
affine Yangians has been announced in [YZ18b]. The argument in loc. cit., which is
of independent interest, uses the existence of a morphism from the Yangian of g to
the reduced Drinfeld double of the spherical subalgebra of a shuffle algebra associated
to g [YZ18a, Cor. 3.4].

Our paper is structured as follows. Section 2 presents the definition of the Yangian
Y (g) associated to a symmetrizable Kac-Moody algebra g and describes its classical
limit as the enveloping algebra of a certain Lie algebra s (Proposition 2.6) which
coincides with the current algebra g[t] when g is finite-dimensional. We also recall
results of [GNW18, §6] about a certain parameter dependent coproduct (Theorem
2.9) which will be needed in Section 6.2 in order to build a faithful representation of
Y (g). It is possible to repeatedly apply this coproduct, but since it is not coassociative,
one should proceed with care, as explained at the end of Section 2.

In Section 3, we give the definition of the centrally extended Yangian double DY ¢(g)
of g and study its basic properties. When g is a finite-dimensional simple Lie algebra,
a definition of DY(g) was given over twenty year ago in [Kho97], where it was
conjecturally described as the Hopf algebra double of a central extension of Y(g).

JEP — M., 2019, lome 6



VERTEX REPRESENTATIONS FOR YANGIANS OF Kac-MooDY ALGEBRAS 667

Although this interpretation seems to be limited to that setting, a general definition
can be obtained by inserting an arbitrary Cartan matrix into the explicit definition
of DY“(g) provided in [Kho97, DKO00]. This procedure leads to Definition 3.1.

After giving the definition of DY (g) (Definition 3.1, Lemma 3.4), we relate its
classical limit to the enveloping algebra of a certain Lie algebra t (Proposition 3.6),
which in the finite-dimensional setting is just the affine Lie algebra g[t*'] ©@ CK
associated to g. We conclude Section 3 with Proposition 3.8, which makes precise
how the Yangian maps into the centrally extended Yangian double.

The aforementioned Lie algebras s and t can also be described more explicitly
when g is an untwisted affine Lie algebra: in this case, they are isomorphic to the
universal central extensions of two loop algebras. This fact was proved in [MRY90)
and Section 4 serves to recall this description. In Proposition 4.7, we show that s
and t can be equivalently characterized as the universal central extensions of g'[t] and
gt
of 5 and t is also valid when g is finite-dimensional. Our PBW theorem for Y (g)
(namely, Theorem 6.9) is stated as providing an isomorphism between the associated
graded ring of Y (g) (for a certain filtration) and the enveloping algebra of s, so the
results of Section 4 are relevant for our second main theorem.

, respectively, where g’ = [g, g] is the derived subalgebra of g. This description

The main section of this paper is Section 5. Assuming that g is a simply laced
Kac-Moody algebra, we construct a representation of the Yangian double DY*<(g)
(and thus of the Yangian Y (g)) which is given by vertex operators and which factors
through the Yangian double at level one (see Theorem 5.5 and also Proposition 5.9 and
Corollary 5.10 for slightly different versions of that theorem). This representation can
be realized in a space built from the tensor product of a Fock space with the twisted
group algebra C.[Q)] of the root lattice Q: see Definition 5.3 and (5.4). Its construction
generalizes, and has been motivated by, the results of Iohara [Ioh96] for g = sly, as
well as the results of [Kho97] and [IK96] which were stated for g = sl and g = gls,
respectively. By considering carefully a certain filtration, our construction leads to a
representation of the Lie algebra t (Corollary 5.11) which is related, but not always
isomorphic, to the representation of t obtained from the classical vertex representation
construction [FK81, MRY90]: this is made precise in Proposition 5.17.

The last section contains a proof of the PBW theorem for affine, simply laced Yan-
gians: see Theorem 6.9. We prove that the associated graded ring of the Yangian Y (g)
(for a certain filtration) is isomorphic to the enveloping algebra U(s) of s. As a con-
sequence, we obtain in Theorem 6.10 that the C[A]-algebra version of the Yangian
Yr(g) (see Definition 2.1) is a flat deformation of the enveloping algebra U(s) of s.
The main point of the proof of Theorem 6.9 is to show the injectivity of the natu-
ral epimorphism from U(s) to the associated graded ring given in Proposition 2.8:
this is accomplished by taking tensor products of the vertex representation of Y (g)
constructed in Section 5 (actually, it is necessary to consider a slightly larger Kac-
Moody algebra) and, by using a carefully chosen filtration, reducing the proof to the
question of the faithfulness of the corresponding vertex representation of s, which
was addressed previously in [MRY90]. In the appendix, we prove that the collection
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668 N. Guay, V. ReceLskis & C. WENDLANDT

of tensor powers of any faithful representation for an arbitrary complex Lie algebra
separate points of its enveloping algebra. This will be applied to the Lie algebra s to
prove Theorem 6.9.

Acknowledgements. The authors thank Yaping Yang and Gufang Zhao for sharing
a preliminary version of their proof of the Poincaré-Birkhoff-Witt theorem for simply-
laced affine Yangians using the shuffle algebra approach. They are very thankful to
one referee for a very careful reading of their manuscript.

2. Tur YANGIAN OF g

In this section we recall the definition of the Yangian and give some of its basic
properties. Let g be a symmetrizable Kac-Moody algebra associated to an indecom-
posable Cartan matrix A = (a;;)i jer, where I is an indexing set for the simple roots
of g. We assume that A satisfies the condition

Though the constraint given by (2.1) will not play a role until Section 4, the results of
[Jin98, Nak01], together with Lemma 4.2 and Remark 5.15, suggest that the definition
of the Yangian (and its centrally extended double) must be modified in order to extend
the vertex representation construction of Section 5 beyond the simply-laced case. Let

(, ) be a fixed non-degenerate invariant symmetric bilinear form on g. We denote by
{@; }ier the set of simple positive roots. Set

dij:%(ai,aj) VZ,jGI

2.1. DEFINITION OF THE YANGIAN

Derintrion 2.1, — The Yangian Y} (g) is the unital associative C[h]-algebra generated
by the elements z, h;,., for i € I and r € Zxg, subject to the relations

)

(2.2) [hir, hjs] =0,

(2.3) [hio, 23,] = +2d;27,,

(2.4) [:r:;,x;s] = 0ijhirts,

(2.5) hisrs1s @3] = [hir, 2] = £hdij (hirad, + 25 hir) |

(2.6) (051 05 = [0, 25 ) = Ehdij (505, + 25,05

(2.7) Z [mﬁﬁ(l), [xfia(?),- e [xffrﬂ(m),xﬁ] ---]]=0 fori#jandm=1-a.

gESm

In the last relation, .S, denotes the symmetric group.

Remark 2.2, — In the notation of [GNW18], the above algebra is equal to Yy(g'),
where g’ is the derived subalgebra [g, g]. For the definition of the full Yangian, see
[GNW18, Def.2.1]. For A of finite or affine type, the condition (2.1) only excludes
type Agl). In the latter case, the appropriate definition of the Yangian is given in
[BT19, §1.2] and [Kod19, Def. 5.1].

JEP — M., 2019, lome 6
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Note that Y;(g) is generated, as a C[A]-algebra, by zij;, hir,fori € Tand 0 < r < 1:

see [GNW18, (2.10)]. We also observe that Y5(g) is equipped with a Z>¢-grading
determined by

degh=1 and degxﬁ:degh”:r Viel, r>0.

We now give an equivalent definition of Yy (g) in terms of generating series which
will prove useful in Section 3. The following result is a translation of [GTL16,
Prop. 2.3].

Proposition 2.3 ([GTL16, Prop.2.3]). — Let z(2) = > >0 21 and hi(z) =
> >0 hirz="7L for each i € I. The defining relations of Yn(g) are equivalent to
(2.8) hi(2)h(w) = hj(w)hi(2),

(z—wF hdij)hi(z)xji(w)

29) =(z-—w=x hdij)xji(w)hi(z) + 2dijxjt(w) — [hi(2), x%],
(z—wTF hd”)xzi(z):cj[(w)

(210 — (2 — 0 i) (w)ok (2) + [ah, o ()] — [2£(), 25,

(2.11) (z = w)[z (2), 25 (w)] = 05 (hi(w) — hi(2)),

(2'12) Z [x;t(zd(l))7 [x?:(zcr@))? ] [m;t(zg(m)% x;t (wﬂ o ]] =0,

oESH

where in the last relation i # j and m =1 — a;j.

Multiplying the relation (2.11) by 2~! and taking the residue at z = 0 yields
(2.13) [z}, 2 (w)] = 6i5hi(w) Vi, j €l
Conversely, we have the following:

Prorosirion 2.4 ([AG19, Prop.3.3(3)]). — The relation (2.11) is a consequence of
(2.8), (2.9) and (2.13).

For each ¢ € C, let Y:(g) be the C-algebra generated by {25, hi,}icrr>0 subject

r?

to the defining relations of Definition 2.1 with 7 replaced by (. Equivalently,

Ye(9) = Yu(9)/(h = ()Yn(9)-

For the remainder of this paper our focus will primarily be on the Yangian Y (g) =
Y1(g). The emphasis on the single choice ¢ = 1 is justified by the fact that the
assignment

(2.14) zE hip € Y (g) > ¢ "xE, ¢ hir € Ye(g)

extends to an isomorphism of algebras Y (g) — Y. (g) for each fixed ( € C*. Note that
Y (g) is no longer a Z>¢-graded algebra, but rather a Z>-filtered algebra with ascend-
ing filtration {Fk}r>0 determined by assigning filtration degrees r to a:i and h;,. for
each i€ I and r > 0.

JE.P.— M., 2019, tome 6



670 N. Guay, V. ReceLskis & C. WENDLANDT

2.2. Tue crassicaL LimIT

Derinimion 2.5. — Let s be the Lie algebra generated by {X
to the defining relations

iy Hir}icrr>0 subject

(2.15) [Hir, Hjs] =0,

(2.16) [Hir, X3] = +2di; X5,
(2.17) [Xir, X53] = 0ij Hirs,
(2.18) (XL X5 = (X5 X5 )
(2.19) ad(X )l — (X;f) =0 fori#j.

Note that s is a Z>¢-graded Lie algebra with deg Xif =degH; =7 foralliel
and r > 0.

In addition, s is always an extension of the current algebra g'[t]. Indeed, if
{zF, h;}ier denote the Chevalley generators of g’, normalized so that (z,z;) = 1
and h; = [z], 2], then the assignment
(2.20) XEr—aFf®t, Hyp+——het" Yiclandr>0

1, ? ’L

determines a surjective Lie algebra morphism s — g'[¢]. This is an isomorphism when g
is finite-dimensional, which can be proved using the arguments in [MRY90, §3], but
in general this is not the case. We will consider the situation where g is of affine type
in more detail in Section 4.

The next proposition illustrates that Y5 (g) is a graded deformation of the envelop-
ing algebra U(s).

Prorosition 2.6. The assignment
(2.21) XEv—af, Hy+——hy Vielandr>0

)

extends to an isomorphism of graded C-algebras U(s) — Yy(g).

Proof. — Since the defining relations of Yy(g) are of Lie type, it is isomorphic to
U(s'), where s’ is the Lie algebra generated by {25, hi, }icr >0 subject to the defining
relations (2.15), (2.17), (2.18), in addition to the three relations

+ +
(2.22) [hio, @ ]s] i2dw$gs7 (i1, xjs] = [hr, mj,erl]’
(2.23) Z [Iij;m)’ [xiirdm,- - [xi[ra(m),xi] ---]]=0 fori##jandm=1-a.
g€ESm

(2.21) extends to an epimorphism of algebras U(s) — Yo(g) since (2.16) follows from
(2.22). To conclude that the assignment z — X, h;. + H;, extends to a homo-
morphism Y;(g) — U(s) which is the inverse of the homomorphism U(s) — Yy(g)
defined by (2.21), it suffices to show that the relations of Definition 2.5 imply (2.22)
and (2.23).

Since (2.16) implies (2.22), we are left to deduce (2.23) from Definition 2.5. We will
prove the stronger result
(2.24) (XE XS, X X5 ]] =0

RSN 7,72 R R ]

for all s,71,...,7n =2 0and i #j € 1.

JEP — M., 2019, lome 6



VERTEX REPRESENTATIONS FOR YANGIANS OF Kac-MooDY ALGEBRAS 671

From (2.18) and induction we obtain

(2.25) (X X5a = (X0, X ] Vs, k>0andi,jel
This implies that for any fixed n > 0 and k,s,r1,...,7r, € Z>(, we have
a‘d(Xi%rl%»k) ad<Xij,:r2) U ad(Xiirn)(st) = a'd(Xij,:rl) ad<Xi%r‘2) e ad<Xij,:'r’n)(st+k)'

After combining this with (2.19), relation (2.24) becomes an immediate consequence.
O

Remark 2.7. When g is finite-dimensional, it is known that Y3 (g) is a flat defor-
mation of U(s). We will prove the analogous result for g of simply laced affine type
in Theorem 6.10.

Recall the filtration {F}}x>0 on Y (g) defined at the end of Section 2.1. Let T
and h;, denote the images of xf; and h;. in F,./F,._; C grY(g), where F_; = {0}.
The following result is immediate from the defining relations of Y (g).

Prorosition 2.8. — The assignment

+ =+
X‘r Lip

K3

H;y — hy VieTandr >0

extends to an epimorphism of graded C-algebras ¢ : U(s) — grY (g).

The statement that ¢ is injective is equivalent to the Poincaré-Birkhoff-Witt the-
orem for the Yangian. For g of finite type this was proved in the early 1990’s by
Levendorskii [Lev93] (see also [FT19, App.B] and [GRW19, Prop.2.2]), but in the
general setting this remains a conjecture. We will prove the injectivity of ¢ for g of
simply laced affine type in Section 6.

2.3. Tue corrobucr A,. — The Yangian of a finite-dimensional simple Lie algebra
is well-known to admit the structure of a Hopf algebra. In particular, it is equipped
with a coassociative algebra homomorphism A : Y (g) — Y (g) ® Y (g), its coproduct.
When the underlying simple Lie algebra is replaced with a more general Kac-Moody
algebra, the formulas used to define A are no longer well-defined. However, it was
shown in [GN'W18] that, when g is affine, there is an algebra homomorphism

Ay 1Y (g) — (Y(g) @ Y(g))(u)

which, in a strictly formal sense, has limit at « = 1 which is in agreement with A.
The definition of A, is contained in the following theorem. Set h;; = h;; — %hfo for
allie I and J(a) =a® 1+ 1®a for all a € Y(g).

Turorem 2.9 ([GNW18, Th.6.2]). Assume that the Cartan matricv A of g is of
affine type, but not of type Agl) or Ag). Then there is an algebra homomorphism

Ay Y(g) — (Y(g) @Y (9))(w)

JE.P. — M., 2019, tome 6



672 N. Guay, V. ReceLskis & C. WENDLANDT

uniquely determined by
Ayl =z @1+ 1@aiu®,  Au(hio) = O(hio),
(2.26) Ay(hi) =0(ha) = Y (@, a0)zg @ afu™),
aEA’?

for alli € I, where A'f is the set of positive real roots, ht(3
xF € giq are such that (zF,x7) = 1.

ier i) =D i, and

The morphism A, is not coassociative in the standard sense, but it satisfies the
“twisted” coassociativity relation

(2.27) (Ay ®id) 0 Ayy = (Id ® Ay) 0 Ay,

By repeated application of A,, one can obtain an algebra homomorphism AF :
Y (g) = (Y (g)®F+D)((u)) for each k > 0. However, due to the presence of the param-
eter u and the twisted coassociativity property (2.27), this must be handled carefully.

Given an associative unital C-algebra o/ and k > 1, we denote by & ((ug, ..., u1))
the localization of & [uy, ..., u1] at the multiplicative set

S ={uy™* - -ui" : my >0}

Equivalently, 7 ((ug, ..., u1)) can be realized as the subspace of dﬂuf% .., uitl] con-
sisting of elements
¢ ¢
Z Wpppeo by Uy - Uy
00,001, ET

for which there exists N > 0 such that, for any 1 < m < &, ay, ... ¢, = 0 whenever
Ly < —N, with product obtained by extending the usual multiplication of formal
series in & Jug, ..., u1]. The key feature of this algebra we will exploit is that

(2.28)  evyr: flug,...,ur) — flu,...,uw) YV flug,...,u1) € o (uk,...,u)).

determines an algebra homomorphism ev,,  : &7 (u, ..., u1)) = < (w)).

Define & ((uy,))(up—1)) - - (u1)) inductively as (- (@ (ur)) (wr—1)) -+ ) (w1)). To
define A¥ we will make use of auxiliary morphisms

Auyec 2 Y (9) — (Y (@) D) () (wi—) -+~ ()

which are defined recursively as follows: ig®*=b)

(Y (@)*) (u-1) -+ (w2)) — (Y (@)***) () (1) -~ (),

and the composition of this morphism with A, . ., , is precisely A, . u,. Induc-
tively, we find that

® A,, extends to a morphism

k+1 k+1
Aul,...,uk (hvo) = Z(hio)m Au1,...,uk (I%) = Z(x?(:))auitl e u;l:_lp
a=1 a=1
(2.29) o
Aul,...,uk (hil) = Z(hil)a - Z Z (Ot, ai)(l’;)a(xz)bugt(a) T U’Zi(f()’
a=1 a<b a€AY

JEP — M., 2019, lome 6



VERTEX REPRESENTATIONS FOR YANGIANS OF Kac-MooDY ALGEBRAS 673

where (X), = 121D @ X ® 12(¢+1-9) "and the product uf'---uF!, with a = 1 is

understood to equal 1. Consequently, Image(A,, . ., ) C Y (g)®* D (ug, ... u1)), and
we may therefore set

(2.30) AF =evyr oAy Y (9) — Y(@)®F D (u) VE>1,

k

where ev,, ; is as in (2.28) with & = Y (g)®*+1.
The explicit formulas (2.29) imply that AF is filtered in the sense that

(2.31) AL(Fe) C (Fo(Y (@) D)) ((w)),

where F(Y (g)®2k+1)) = > artotapsi—t Fay @@ Fq, . By (2.29), the associated
graded morphism gr A has image contained in gr Y (g)®*+1[u*1] for each k:

(2.32) gr AL grY(g) — gr(Y(9)** )] = gr(Y(g)) 2 * T [u).

The family of filtered morphisms {AF};~; will play a decisive role in the proof of
the Poincaré-Birkhoff-Witt theorem in Section 6, as will the analogous morphisms
{AF  }r>1 for the enveloping algebra U (s), which we define now.

Let A, denote the standard coproduct on U(s). The assignment X — u*™' XE,

H;. — H;, for all i € I and r > 0 extends to an algebra homomorphism s, : U(s) —
U(s)[u*!], and we may set

Agy = ({d®s,) 0 A, : Us) — (U(s) @ U(s))[u™"].

The morphisms A¥  : U(s) — U(s)®* 1 [u*!] are now constructed in exactly the
same way as AF (see (2.30)). On generators, we have

k+1 k+1
Alsc,u(Hir) = Z(Hir)av A];,u(Xl:tT) = Z(Xij;)aui(ail)-
a=1 a=1

In particular, we have the following commutative diagram:

k
Uls) U (s)®¢ D [u!]
(2.33) q{ J(ﬁ@(km
k
(g — L gy (et

The map ¢ is the one given in Proposition 2.8.

3. THE CENTRALLY EXTENDED YANGIAN DOUBLE OF

In this section we introduce the centrally extended Yangian double associated to g
and study its basic algebraic properties.

JE.P. — M., 2019, tome 6



674 N. Guay, V. Recerskis &« C. WeENDLANDT

3.1. DEFINITION OF THE YANGIAN DOUBLE. Let §(w, z) denote the formal delta func-
tion 3, ., w2771 € Clw*!, 2+!]. Equivalently,

-1 -1

P w
(3.1) 5w, z) = = + I where %y x~

Derinition 3.1. — The centrally extended Yangian double DYS(g) is the C[A]-algebra
generated by the coefficients {h;,, zr}zel rez of

in —r— 1 Z):1+hz hirZ_T_l, h;(g):l—hz hirz_r_17
reZ r€ZL>0 r€l<o

for all ¢+ € I, together with an element ¢, which are subject to the defining relations

(32) e hi ()] = 0 = [27(2), c],
(3.3) azlhi (2), by (w)] =0,
(34) 7= (2 = (c)®) b (2) by (w) = ((z = w)? = (cf)?) by (w) i (2)) =0,
(3.5) % ((z —wTFc ) hj(z) x;t(w) — (z —w =+ c:;) x;t(w) h:r(z)) =0,
(3.6) 3+ ((z = wF hdij) by (2) 27 (w) — (2 — w + hdy;) a5 (w) by (2)) =0,
(3.7) (z—w¥F hdij) : (z) xjt(w) (z —w + hd;;) xjt(w) xft(z),
(3.8) [z} (2), 27 T; 2y (6(w + hc, z)hf (w+ %) = §(w, 2)h; (2)) ,
(9 YWt <zg<1>> [ Cotay)s ol Gy 2 )] ] = 0,
0€ESm
where c = hd;; & hc and in the last relation ¢ # j and m = 1 — a;;.

For each x € C, we define the Yangian double at level k to be the C[h]-algebra
DY (g) = DYj(g)/(c — #) DY (g)-

Remark 3.2, — Even though the relations (3.2)-(3.6) and (3.8) involve negative pow-
ers of A, this is not the case for the corresponding relations among the generators.
(See Lemma 3.4.) Not dividing by % could create h-torsion elements.

Remark 3.3. The practice of calling DYS(g) the “Centrally extended Yangian
double” is explained by the following: when g is finite-dimensional, DYF?(g) has been
conjectured to be equal, after completion, to the Hopf algebra double of Y3 (g) [KT96],
whereas DYS(g) has been conjecturally described, also after completion, as a quotient
of the Hopf algebra double of Y;(g) ® C[c] by a derivation [Kho97]. These conjectures
have been proved for g = sly: see [KT96, Prop. 2.1 (ii)] and [Kho97, Th.3.1].

Although this interpretation of DY)(g) does not extend beyond the finite case,
Definition 3.1 is a natural extension of the definitions found in the literature (see in
particular [DK00, §6] and [Ioh96, Cor. 3.4]).
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The following lemma is straightforward.

Lemma 3.4. For each i € I, set ﬁf(z) = :I:%(hjt(z) —1). Then the relations of
Definition 3.1 are equivalent to

(3.10) [lei(z)] — 0= [zt (2),d],
(3:11) Tk (2) W (w) = Wt (w) Ei(z)7

z—w)? — ()2 h; (w) i (z) = ((z — w) 9 (w
(3.12) (( )" = (c) )hy( w) hif (2) = (( - (c;;) ) hif (= )

—2d, ;¢ + 2hd;; (h (w) — b (2))c,
(813)  (z—wF ) hf(2)at(w) - (z - wtcf) at(w) i (2) = £2dyaF (w),
(3.14) (2 —w £ hdij) Fw)hy (z2)—(z—wT id;;) h:(z) :c]i(w) = iQdijxj (w),
(3.15) (z —w F hdj) a7 (2) a5 (w) = (2 — w & hdy;) 27 (w) 2 (2),
[ (2), 25 (w)] =035 (O(w + he, 2) — d(w, 2))
+ 61 (6(11} + fic, 2)hi (w + 1) 4 §(w, 2)h; (z)) ,
+

(3.17) Yol o) [ (z02) o [27 (o) 25 (w)] -] = 0,

ogESm

(3.16)

where in the last relation i # j and m =1 — a;;.

It is not difficult to deduce from these relations that DYS(g) is a Z-graded algebra
with grading determined by

degh =1, degc=0 and degxf; =deghy =1 Viel, relZ.
Next, for each { € C we introduce a C-algebra

DY{(g) = DYy (9)/(h— () DY} (9),

and we abbreviate DY(g) = DY{°(g). Note that, analogously to Y¢(g), DY¢(g) for
¢ € C* is precisely the C-algebra generated by {xivhir}iel,rel and c subject to
the defining relations of Definition 3.1 with A replaced by (. For each ( € C*, the
assignment

x; Hcri Rir — C"hir, Cr—c,

or equivalently z(2) + Czi (Cz), h £(2) = Cﬁf(gz), ¢ — ¢, extends to an isomor-
phism of algebras between DY ¢(g) and DY£(g). With this in mind, we will henceforth
focus primarily on the C[h]-algebra DY}f(g) and the C-algebra DY ¢(g).

The degree assignments degc = 0 and degx?; = degh;- = r determine a
Z-filtration (but not a gradation) on DY(g). For each k € Z, let F¥ denote the
subspace of DY ¢(g) spanned by monomials of degree < k, and let

gz DY (9) = @ FY/Fy,
kez

denote the corresponding associated graded algebra.
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3.2. CLASSICAL LIMIT

Derinition 3.5. — Define t to be the Lie algebra generated by an element C' together
with the coefficients {Xiﬂ;, Hi }ierrez of

XF(z)=> Xjz""' and Hi(z) =) Hyz "' Viel,

%
kEZ keZ

which are subject to the defining relations

) [C. Hi(2)] = 0= [X(2). C],
) [Hi(z), Hj(w)] = —2d;;0. (2, w)C,
3.20) [Hi(2), X" (w)] = £2d;;6(2, w) X (w),
) (X7 (2), X (w)] = 655 (6(2, w) Hy(2) — 0.(2,w)C),
) (z — w)[X;"(2), X;"(w)] = 0,
) ad(X;5)' (X} (2)) =0,

where §,(z,w) = %5(2,10) =3, epra T

Note that the degree assignment
degC =0 and degXiir =degH;, =r VielrelZ

makes t into a Z-graded Lie algebra. Additionally, just as s is an extension of the
current algebra g'[t], the Lie algebra t is an extension of the loop algebra g’[t*!].
In the notation of (2.20), the assignment

C+——0, Xir—afot", Hyr—hot VYiclandreZ

t*1]. We will return to this observa-

defines a surjective Lie algebra morphism t — g'[
tion in Section 4.

We now give the analogue of Proposition 2.6 for the Yangian double. Let E;t(z)
be as in Lemma 3.4 (now viewed in DYE(g)[z1!]) and set hy(z) = ﬁj(z) + E; (2) =

o o,—r—1
2rez hirz™
Prorosition 3.6. — The assignment

(3.24) XF(2) — 2 (2), Hi(2) — hi(z), C—sc Viel

K2

extends to an isomorphism of graded C-algebras U(t) = DYS(g).

Proof. — By definition, DY(g) is the C-algebra generated by the coefficients of

+

x; (2), hi(z) and the central element ¢, which are subject to the relations of Defi-

nition 3.1 with & replaced by 0. Lemma 3.4 implies that, in addition to the centrality
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of c, these relations are

(3.25) hE(2) By (w) = hy (w) B (2),

(3.26) (z = w)?[h (w), b (2)] = —2d;;c

(3:27) (z = w)[hf (2), 2 (w)] = £2d575 (w),

(3.28) (z — w)[z} (w), by (2)] = +2d;;27 (w),

(3:29) (z = w) [27 (2), 2 (w)] = 0,

(330)  [of (=), (w)] =6y; lim § (8w + he, 2) = 8(w, 2)) + 8558 (w, )i (w),
(3.31) > (o) (55 (Za@)s - [ (Za(my) 27 (w)] -+ ]) = 0.

oESm
It therefore suffices to show that these relations are equivalent to the defining relations
of Definition 3.5 (with (Hy,, X) replaced by (hiy,2E) and C by c).
Step 1: ((3.25), (3.26)) < (3.19)

Multiplying (3.26) by >, (k + Dwkz=F2 = (271 /(1 - z‘lw))2 yields the rela-
tion

— =y 2

iy (), B ()] = —2du(1 — 1w) c

Combining this with (3.25) and using h;(z) = hi(z) 4+ h; (z), we obtain
2

~ ~ w™t 2 271
st = 205 (=) = (1=mmy) ) = 2o
Switching i <» j and z <> w yields (3.19).

Conversely, taking the z="~lw =51 coefficient of (3.19) gives

(332) [him hjs] = 2rdij5r,_sc.

r=ly=5~! and taking the sum separately over r,s > 0

Multiplying both sides by 2z~
and r,s < 0 gives (3.25).
Switching 7 and j in (3.32), multiplying both sides by w=""127*~! and taking the

sum over (r,s) € Z«o X Zxo yields

iy (), 5 ()] = ~2diy () e
Multiplying both sides by (z — w)? gives (3.26).
Step 2: ((3.27),(3.28)) < (3.20)
Multiplying (3.27) by Zk>0w 2z7F=1 and (3.28) by > k>0 2Fw=F=1 gives
2d;;wt

7 (w).

1—w1lz7
rflwfsfl

2052 ) and [y (2), o )] = £

[ (), 25 ()] = £

J

Adding these two relations together gives (3.20). Conversely, taking the 2z~
coefficient of (3.20) yields
[hﬂ"v JS] i2dljxj r+s°
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—r—1,,—5—

Multiplying both sides of this equality by (z — w)z w™*~! and taking the sum

r > 0 and s € Z gives

(z — w)[iNL:r(z),x]i(w)] = +2d;; Z xjfrﬂ(z*rwfsfl — 2z hwT) = :t2d¢jxji(w),
7>0,5€7

which is precisely (3.27). The proof that (3.20) implies (3.28) is similar.

Step 3: (3.30) < (3.21), and (3.29) <= (3.22)

The equivalence of (3.29) with (3.22) is immediate. To prove the (3.30) < (3.21),
it suffices to show that

lim + (6(w + he, 2) — 0(w, 2)) = 6 (w, 2)c = —6.(2,w)c,
h—0
which can be verified directly.

Step 4: (3.31) = (3.23), and ((3.20), (3.22), (3.23)) = (3.31)

The first implication is obvious. The second implication is proved in the same way
as its s-analogue in Proposition 2.6. g

Recall the filtration {F} }rez on DY(g) defined at the end of Section 3.1. Let
fif,ﬁir denote the images of a:iir,hw in F?/FP | and © denote the image of c in
FP/FP

o /L1

Similar verifications to those carried out in the proof of the previous proposition

allow us to deduce the following analogue of Proposition 2.8.

Prorosrtion 3.7. The assignment

+

X?ﬁ%f”, Hir'—>Eir, C+——¢c VielandreZ

extends to an epimorphism of graded C-algebras ¢p : U(t) — gr, DY (g).

Like the epimorphism ¢ : U(s) — gr Y (g) of Proposition 2.8, we expect ¢p to be
an isomorphism for general g. However, the injectivity of ¢p will not be considered
in this paper.

3.3. From tHE YaNGIAN TO ITS DOUBLE. — We conclude this section by offering a
more precise relation between Yj(g) and DYS(g). Let o (z) = > >0 =

DYF(g)[27!] for each i € I.

Prorosition 3.8. — The assignment
(3.33) th i (2) — a:li(z + ), hi(z) — i~zj(z) Viel
extends to a morphism of Clh]-algebras up, : Yi(g) — DY£(g). The composition of iy,

with the projection DYS(g) — DY (g) induces a morphism of C-algebras v : Y (g) —
DY¥(g).

Proof. — To distinguish between the generating series of Y3 (g) and DY (g), we will
temporarily denote the series 23 (2) € Y3 (g)[z~'] from Proposition 2.3 by 2;%(z). We
will prove that 5 preserves the defining relations of Y3 (g) provided by Proposition 2.3.
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It is immediate that the relations (3.3) and (3.9) imply that Ej'(z) and T (z) =
xt (z &+ L) satisfy the defining relations (2.8) and (2.12), respectively, of Yy (g) (with
hi(z) replaced by Ej(z) and 2;%(2) replaced by T (2)).

Multiplying (3.5) by 2z~ ! and taking the residue at z = 0 gives [hio,xji(w)} =
iQdijx]i(w), and thus

(3.34) [hio, &7 (w)] = £2d;;&; (w).
Taking instead the z~""1w =571 coefficient of (3.5), we obtain

[hi’»,qu, {E;ts] - [him xfsﬂ] = :t(C;h“n:E;tS + C;;l';tshw)

Multiplying both sides by z~"~'w™*~!, taking the sum over r,s > 0, we obtain

(z —wF ) (2)a] (w) — (z = w £ )& (w)h] (2) = [ho, @ (w)] = [bf (2), 255).

Substituting in the relation (3.34) and applying w — w + % yields (2.9).

The proof that (3.7) implies (2.10) with 2;*(z) and Q”Ji(w) replaced by Z:(z)
and E;t(w), respectively, is similar and will be omitted.

It thus remains to see that the assignment (3.33) preserves the relation (2.11). By
Proposition 2.4, it suffices to prove

(3.35) (23, %] (w)] = 6;;hf (w) Vi, j €I
Taking the residue of (3.16) at z = 0 gives
(3.36) (w27 ()] = b (BF (w + %) + B (w)).

where we have used that 6(z,w)h; (z) = d(z,w)h; (w). The relation (3.35) follows
directly from this identity.

The proof is concluded by noting that the second statement of the proposition is
an immediate consequence of the first. ]

Observe that ¢p, (resp. ¢) is a graded (resp. filtered) homomorphism. We conjecture
that both ¢ and ¢ are injective.

4. ThE LIE ALGEBRAS § AND t AS CENTRAL EXTENSIONS

In Sections 2 and 3 it was noted that the Lie algebras s and t (see Definitions 2.5
and 3.5) are always extensions of g'[t] and g'[t*!], respectively. In this section we
employ the results of [MRY90, Prop. 3.5] to deduce that, when g is of untwisted affine
type, s and t are in fact isomorphic to the universal central extensions of g'[t] and
¢'[tT1], respectively.

Let go be the underlying finite-dimensional, simple Lie algebra of the untwisted
affine Lie algebra g. We specify the indexing set I to be {0,1,...,¢}, the extending
vertex of the Dynkin diagram of g being labeled by 0. Let &/ be a commutative,
associative C-algebra. Then gy ®c & is a Lie algebra in a natural way. Denote by
Q) the module of Kihler differentials of <7, and let do/ denote the subspace of
exact forms (see, for instance, [MRY90, §2]).
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Tueorem 4.1 ([Kas84], Theorem 3.3). The Lie algebra go ®c & admits a universal
central extension uce(go Q¢ &) defined by

uce(go ®c ) = (go ®c &) ® V() /dot
as a vector space, with Lie bracket such that Q' (/) /d</ is central and
[X1®a,Xo®b) =[X1,Xo]®ab+ (X1,X3) -b(da) VXi,Xs €go and a,be .
We will be interested in the choices & = C[t{', 5] and & = C[t{',t5']. Set
golty to] = go @c CltF ' to] and  go[ti, 5] = g0 @c Clt, 157)-

As in [MRY90, (3.1)], we let t(A) denote the Lie algebra obtained from Definition 3.5
by replacing the defining relation (3.22) with

(4.1) [XE(2), XE(w)] =0 Viel.

It was proved in [MRY90] that, in fact, t(A) = uce(go[ti', t5']). The following
lemma asserts that t(A) coincides with t, and hence that t can also be identified
with uce(go[tlﬂ, tzﬂ]), as will be stated more precisely in Proposition 4.4.

Levmva 4.2 Assume that g is a symmetrizable Kac-Moody algebra with indecom-
posable Cartan matric A = (ai;); jer satisfying the condition (2.1). Then, in the
Lie algebra t, the relation (3.22) implies the relation (4.1). Conversely, the relations
(3.20), (3.21), (3.23) and (4.1) imply that (3.22) holds for all i,j € I. In particular,
if g is of untwisted affine type (excluding Agl)), t=t(A).
Proof. — We first prove the implication (3.22) = (4.1). The relation (3.22) with
i = j implies that there is A;(w) € tfw*!] such that
(X7 (2), X (w)] = 82, w) A (w).

Since the right-hand side is symmetric in w and z and the left-hand side is antisym-
metric, both sides must be zero, and hence (4.1) holds.

To prove that ((3.20), (3.21), (3.23), (4.1)) = (3.22), we make a few preliminary

observations. By taking the residue at w = 0 of (3.20) and then also of the relation
obtained from (3.20) by exchanging z and w, we arrive at the identity

(4.2) [Hi(2), X3o] = +2di; X5 (2) = [Hio, X5 (2)] Vi, j el
Similarly, from (3.21) we obtain
(4.3) (X35, X (w)] = F6;;Hi(w) Vi, jel

Now fix 4,j € I with i # j. If a;; = 0, then (3.23) is the relation [X%,in(w)} =0.
After applying ad(H;(z)) to this equation and employing (4.2) and (3.20), it becomes

+2d;; [Xf(z),Xf(w)] + 2d;;0(z, w)[Xl%,in(w)} = +2d; [Xzi(z),Xf(w)] =0,

which gives (3.22).
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If a;; # 0, then without loss of generality we may assume that a;; = —1. The Serre
relation (3.23) then reads as [X3, [XZ%?Xf(w)H = 0. Applying ad(H;(z)) to both
sides of this equation, we find that

Ad [ X (2), [ X5, X5 (w)]]  2di0(z, w) [ X35, [ X5, X5 (w)]] = 0,
where we have used (3.20), (4.1) and (4.2). Hence, we have
(X7 (2), [ XG0, X (w)]] = 0.
Acting on this identity by ad(X;;) and employing (3.20) together with (4.2) and (4.3),
we deduce that
2(dii + dij ) [ X[ (2), X (w)] = =2d,;6(z,w)[X 5, X3 (w)].

By assumption, —1 = a;; = 2‘;2' , and hence d;; # —d;;. Multiplying the above
equation by (2d;; + 2d;;) "' (2 — w) therefore produces the relation (3.22). O

Remark 4.3. The generators Xif, H;, and C of t are related to the generators
zr(£a;), @ (r) and e of t(A) given in [MRY90, (3.1)] by
Xt =4d; %2, (tey), Hyp=d;'aY(r) and C=ec.

In order to describe the isomorphism t = uce(go [tfl,tzﬂ]) and its s-analogue, we
will need a more explicit description of Q'(«7)/d./ when o7 = C[t{!,t£'] or C[t{!, to].
By [MRY90, §2], Q'(C[t5}, t51])/d(C[tF!, t51]) has basis

By = {ty  dty, ththdty thty tdty - k€ Z,0 € 7).
Similarly, one finds that QU (C[t{!, t2])/d(C[ti?, t5]) has basis Bs C By given by
B, = {t{'dty, ththdty = k € Z,{ € Zo}.

Note that these observations, coupled with Theorem 4.1, imply that uce(go[ti, t2]) C
uce(go[ti!,t3']) as a Lie subalgebra. Let { X, H;}{_, be the Chevalley generators
for go normalized so that (X", X;) = 1 and H; = [X;", X;|. Let X1 be root vectors
of go for the roots £6 normalized so that (Xy, X_g) = 1, where 6 is the highest root
of gg. Set Hy = [X,Q,Xg].

Prorostrion 4.4 (Prop. 3.5 of [MRY90]). — The assignment {XE, Hip, C}ictrez —
uce(go[ti!, t51]) given by
C — ] hdty,

Xy — XF ot i=1,...,

XE — Xzp @175,

H;, '—>Hz®tq, 1= 1,...,&

Ho, — Hy @t} + ]ty dto,
extends to an isomorphism of Lie algebras t = uce(go [tlﬂ,tQﬂ]). Moreover, we have
s 2 uce(go[ti!, ta]) with an isomorphism s = uce(go[t, ta]) given by the above as-
signment with r taking values in Zx>o and C' omitted.
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Remark 4.5. Although the second part of the above proposition (concerning s 2
uce(go[ti!, 2])) was not stated in [MRY90, Prop. 3.5, it can be proved in the same
way as the first part.

CoroLLary 4.6. — Assume that g is of untwisted affine type (excluding Agl)). Then
the natural morphism

s—t, XI—— X

)

H,+~—H;,, VYielandr>0

is an embedding of Lie algebras.

Due to the following proposition, it is also possible to interpret s and t as universal

central extensions of g'[t] and g'[t*?], respectively.

Prorosition 4.7. — We have isomorphisms of Lie algebras
uce(go[ty ta]) = uce(g't])  and uce(goty", t57]) 2= uee(g[t*']).

Proof. — We begin by noting that, since g'[t] and g'[t*!] are perfect Lie algebras
because g’ is perfect, the universal central extensions uce(g’[t]) and uce(g’[t*!]) do in
fact exist (see [Neh03, Th.1.14]).

Since g is an untwisted affine Lie algebra, g’ 2 go[ti'] @ CK with Lie bracket
determined by [K,g'] =0 and

(X1 @t], Xo®@t]] = [X1, Xo] @ 77 + 16, _s(X1, X2) K

for all X;,Xy € go and 7,5 € Z. It follows that g'[ta] = go[ti’,ta] @ C[ta] K is a
central extension of go[ti',y] with natural projection 7 : ¢'[ta] — go[ti', t2]. Let 1
denote the projection uce(g'[t2]) — g'[t2]. Then, by [Neh03, Cor.1.9], uce(g'[t2]) is a
universal central extension of go[tT!, o] with projection ot : uce(g'[ta]) — go[ti', ta).
This proves that uce(go[tE!, t2]) = uce(g/[t2]). Replacing o by t*, we obtain instead
uce(go[ti ", t51]) == uce(g'[t5']). O

5. LEVEL ONE VERTEX REPRESENTATIONS

We now fix g to be a simply laced Kac-Moody algebra, and we let Q = @, Za;
denote the root lattice associated to g. In addition, we normalize the invariant form
(, ) so that (ay, ;) =2 for all i € I.

In this section, we construct representations of DY (g) and DY ¢(g) which are given
by vertex operators and which factor through DY;!(g) and DY (g). The main results
pertaining to this construction are given in Sections 5.1 and 5.2.

The vertex operators which define these representations are themselves built from
operators arising from the action of a Heisenberg Lie algebra on its Fock space repre-
sentation. Accordingly, we begin by introducing the appropriate Heisenberg algebra,
its Fock space representation, as well as the auxiliary operators which play a central
role in our construction.
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Derinirion 5.1. The Heisenberg algebra §) is the Lie algebra with basis given by
the elements 7., % for i € I,r € Z ~ {0} and with the bracket given by

[#6,., €] =0, Viel, VreZ~ {0},
(G, I _s| =76,50i;€, Vi,j€I, ¥r,seZ~{0}.

Remark 5.2. This is not the usual definition of the Heisenberg algebra associated
to @ (see Definition 5.13): rather, it is the Heisenberg algebra associated to the trivial
lattice Z!!.

The polynomial ring C[.7% _,];cr >0 can be equipped with the structure of an
$H-module by defining

=557

H—s(f) = Hj—sf, C(f)=1F Hs(f) (f)

for all f € C[J _,icrr>0, j € I and s > 0, yielding the so-called Fock space repre-
sentation of §.

Next, fix a bimultiplicative function ¢ : Q X Q — Z/2Z = {£1} satisfying the
condition

(5.1) ela,a) = (=1)2®9)  va e Q.

The bimultiplicativity of ¢ implies that e(a,0) = 1 for all a € @, while (5.1) implies
that

(5.2) e(a, B) = (~1)@Pe(B,a) Va,feQ.
Using €(0, 8) = 1 = e(«, 0), one can also see that
(5.3) e(ta, F0) = e, B8) = e(ta,£8) Va,B € Q.

The bimultiplicativity of e also implies that it is a 2-cocycle of @ with values in Z/2Z,
and thus it determines a central extension Q = Z/2Z x. Q of Q by Z/27 which is
equal to Z/27Z x @ as a set, and has product

(€q, @) (ep, B) = (e(a, Beaer,a+ B) Va,B € Q and €,, €, € Z/27Z.

Derinition 5.3. — Let . be the two-sided ideal of the group algebra C[Q] which is
spanned by e(¢=®) —¢,e(1:®) for all @ € Q and e, € Z/2Z, where {e(<®) : (¢,,a) € Q}

is the standard basis of C[Q]. The twisted group algebra C.[Q)] is defined to be the
quotient C[Q]/.7.

Since the C-linear projection C[@] — C[Q], el“»®)  e,e® induces an isomorphism
of vector spaces C.[Q] — C[Q], C.[Q] can be equivalently defined as the C-algebra
with basis {e®}neq and multiplication given by

e e =e(a, e Va,BeQ.
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Remark 5.4
(a) By [FLMS88, Prop.5.2.3], the condition (5.2) determines € up to equivalence
of cocycles, and hence it determines the central extension @ of Q by Z/2Z up to
isomorphism. In particular, this implies that any two bimultiplicative functions e, ¢’
satisfying (5.1) will determine the same twisted group algebra up to isomorphism.
(b) The existence of € : Q@ x Q — Z/27Z satistying (5.1) can be established in various
ways: see for instance [Kac90, §7.8].

Viewing C.[Q] as a left-module over itself, we can form the U($) ® C.[Q]-module
(5.4) V = ClH —rlier,r>0 ® Cc[Q)].
We also define an auxiliary family of operators {0, }acq C Endc ¥ by
Oa(f@e’)=(a,B)f @’ V[ eC[H licrro and o, B € Q.

5.1. Tue DY§(g)-mopuLe ¥ [h]. — We first construct a vertex representation of
DY (g) on the topologically free C[h]-module ¥'[h]. The actions of U(H) @ C.[Q]
and of J, on ¥ defined above naturally extend to ¥ [A].

For each ¢ € I, let N (i) denote the set of vertices to which i is connected, i.e., the
set of neighbors of the vertex i. Define AF(2) and B (z), for each i € I, by

A?[(Z)Zexp<izj{i T+ (2 FR)T :FZ Z Hj—r 721)7’)7

>0 r>0jEN(4)
Ky
Bi(z) = exp<2|2 E z T).
r
>0

Inspired by [Ioh96], we define the vertex operators
X (2), H (2) € (Endcyyy 7 [A]) [z,
for each ¢ € I, by

(5.5) XE(2) = + AF (2) B ()20,

1 8‘%‘
(56) =B B D)
(5.7) H; (2) = Af ()47 (2).

where, for each o € Q, 22> € (Endcpyy ¥ [A])[2%'] is defined on ¥ by
Po(foel)=2Pfoe? YBeQand feClA _ icrrso
Equivalently, 2% = Zkez aékz with P, ,(f ® ef) = Ok, (a,8)f @ el
Let us explain why ( 32 1) ai, and thus H; (2), belongs to (Endcgp v [R])[=71].
For each invertible series g( ) € (C[A])[z7'], the operator g(z)% (defined on ¥ by
g(2)% (foe?) = g(2) @) f®ef) can be viewed as an element of (Endcpry 7[R [z7].
To see this, first write

ZPa,kg(Z)k = Z Pa,kg<z)k + Z Pa,—k(g(z)il r

keZ k>0 k>0
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For each r > 0, the 27" coefficient of >, P, 1g(2)* is an infinite sum of the form
> k>0 @k (1) Pok with ay(h) € C[A]. The sum ), - ax () Po,k is a well-defined element
of Endg(r) ¥ [1] since, for any fixed 8 € Q, Pax(e”) = 0 for all but at most one value
of k. This implies that >, Pakg(2)* € (Endcpy ¥ [A])[z7']. The same reasoning
can be applied to >, Pa,—k(g(2) 7).

With the vertex operators { X7 (z), HE (2)}ier at our disposal, we can now state
the main theorem of this section.
Turorem 5.5. — The assignment
(5.8) 1t (z) — XE(2), hf(z)— HE(z) Viel, c—1
extends to a homomorphism of C[h]-algebras py : DY S (g) — Endcyyy 7' [1].

The next lemma will be employed to prove this theorem. Let
G +
IE(z) = LI L FT )
) exp(cho o)

Lemvia 5.6. — Let x; : I—{0,1} denote the indicator function of N (i), i.e., x:(j)=1
if j € N(i) and x;(j) = 0 otherwise. Then, for each pair of indices i,j € I, we have

(5.9) T ) =Ty () (1- 2)
(5.10) [AF(2), A7 (w)] = [AF(2), A ( )] = 0= [Bf(2), Bf (w)] = [Bf(2), B} (w)],
G1)  BEeARw) = LZT MU WEIY gy
J = ppe
B (1—2 (u) + g))
Proof. — Relations of the form (5.9) appear often in the literature: see for instance

the proof of Theorem 14.8 in [Kac90] and the proof of Proposition 2.9(a) in [FK81].
It follows from the fact that

exp(A) exp(B) = exp(B) exp(A) exp([4, B])

for any two operators A and B such that [A,[A4, B]] = 0 = [B, [A, B]], together with
the relation

{Z %;_T 2", Z =%§,st] = —0j; S>Oi (5)8 = 0y ln(l - %) .

>0 s>0

The relation (5.10) is immediate from the definition of the operators AF(z) and
Bii (z), while (5.11) is a straightforward application of (5.9). The relation (5.12) is a
consequence of (5.11) since B (z) = BF (2)~1. O

We will also need the following identity, which can be deduced immediately from
the definition of g(z)%

g(2)%e? = e g(2) P g(2)% Va,B € Qand g(z) =z or g(z) € (CIA])[z])*.
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Proofof Theorem 5.5. — The proof is achieved using standard vertex operator calcu-
lus. We will prove that the relations of Definition 3.1 are preserved by the assignment
(5.8). This is immediate for (3.2), and for (3.3) this is a consequence of the relation
(5.10) of Lemma 5.6 and that #'[A] is torsion free. The other relations require more
elaborate use of Lemma 5.6 and we will treat them independently. Set

zizzj:%.

The relation (3.4). — Let c?; = 2((ay, ;) £ 1) denote the image of cfj under (5.8).
Then

HY (2)H (w) = B () By (2) A (w) A7 (w) ()™

J Z_
(1 _ Zzlw_)Xj(i)

= () By (24)Af (w) By (2-) A (w) (ﬁ)am-

B e L ) s U)K PO
(1= T (1= (w — W) (1= 2w o 0 2

_ _ z Do
B (=) A7 (w) (1)
On the other hand, we have
— — _ z. 60%
Hj (w)H (=) = A} () A} (w)Bf (2)B; (2) (=)
_ (A =zw)u (1 - 2w h) + - - zy ) 9o
= a0 Af () Bf (24) A7 () B7 (2-)(ZF)
1— z7lw)%(1 — 271t A0 (1 — 2z~ T, )@
(1= 2w ) O(1 = 22 w)% (1 — 22 (w + h))% 24\ O
B (2-)A; w)(/@)

Therefore, since ¥'[h] is torsion free, the assignment (5.8) will preserve (3.4) provided

(L= 2w )Y (0 = ) (1 2 (w0 — )

(1= == tw)Ps (1= 22w = 7)o (1= 27 oo

= (e = w)? = () 2 w)® (1= 2y (w4 )™ (1= 22wy )0
VT = 2 o D (1= 2T ) (1 2T (w o+ )%

((z = w)* ~ (c;)?)

for all ¢,j € I. This can be checked directly using

:I:% ifi#j, x;(4) =0,
(5.13) i=Q -l figtgx6) =1,
Al ifi=j
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The relation (3.5). — Making use of (5.1) together with Lemma 5.6, we deduce that
_ z a; o o
H (2)XF(w) = £Bf (24) B (2-)AF (w) B (w) (5 ) 7 i
— NOAYE +(a,a)
(1—271w¢)ix7(l)(i) J
. - Bz ) AT (w
(1 — 2= w)®0 (1 — 2= w T h))Fou (24) 45 (w) o\ O,
~Bi_(z_)B;-—L(w)ei°‘jwai”J (i) '
z_

_ (= 2T hwg) PO — 2 ) (1 — 23 (w F R)) (z+)i(wj)
(1= 22 w) B0 (1 — 22 (w F R)) O (1 — 2w ) B \ 2o

+ +
Therefore, the assignment (5.8) will preserve the relation (3.5) if the following identity
holds:

(z—w:l:c:rj)

e VS ey S

= ) T (1 o (w W) R (1 2, ) E00) '

zZ_

This is easily verified using (5.13). If ¢ # j and x;(¢) = O then this is clear. If ¢ # j
and x;(¢) = 1, then the right-hand side equals

-1 h h
(12 ) (AR
-z wE Z4 z—w+§i§
which is the left-hand side. If ¢ = j, then c;; = ‘3—271 and ¢;; = %, and the right-hand

side of the equality is
(24 —w)(24 —w+h)

_ h
(z-w¥ 2)((,2_ —wxh)(z- —w)
Note that in neglecting the factor of A~! which appears in (3.5), we have made use
of the fact that #[A] is torsion free.

+1 an
) :z—w:I:T.

The relation (3.6). — Applying again the relations of Lemma 5.6, we obtain

H;(Z)X;t(w) = :I:Aji(w)A;"(z)Ai_(Z)B;E(w)eiajwai“f

(1 —w™t2)®0u (1 —w™ (2 + h))*ou
(1 — w_lz_,’_)in(i)

(1 —w (2 +Rh)Fi(1 —w e )Fx0)

- (1 — w1tz )P0 (1 —w-l(z — h))+o%i X;‘t(w)H;(Z)

1 7’1071 (Z:l:hdl]) 4+ _

B (1 —wl(zF hdij))Xj (w) H (2).
(The last equality is obtained by considering the three cases i = j and, when i # j,
x;j(i) = 1 and x;(i) = 0.) Multiplying both sides by (w — z £ hid;;) and using the
fact that ¥[h] is torsion free, we find that the relation (3.6) is preserved by the
assignment (5.8).

=+

Aji (w)AF (z)Bji (w) A7 (z)eTw*e;

K2
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To prove that the remaining three relations of Definition 3.1 are satisfied by
{X*(2), HE (2)}ier, we introduce the following normal ordering: given a finite in-
teger n € Z~ together with collections i, € I and €, € {+} for each 1 < a < n, set

Oer s
= (TL )45 G0 AT BE ) By )ectrememn sl

b=1

enag,,

Note that with this definition, (5.10) implies that
5X§11(Zl) . ..X;:(zn);:;X?wn(%(l)) . "XE‘%‘)(Za(n))i

to(1) lo(n)
for each permutation o € S,,.
By (5.1) and Lemma 5.6, we have
(5.14) XF(2)XT(w)
(1-— z_lwi)’“(i) ot

= e(ay, ) X7 (2) X7 (w):,

(1 — z71w)%5 (1 — 2= (w £ h))%s z(eiag) 777

1— 27 w)% (1 — 27w F h))%
5.15) X (2)XT(w) =e(ay, a; ( :
(5:.15) X3 (2) Xy (w) = e, a5)—7— Ty ) @na)

; XER)XE(w):,

J

where we have used (5.3).

The relation (3.7). — By (5.15), the equality
(z—wTF hd”)XfE(z)X;t(w) =(z-—wx hd”)X;t(w)Xzi(z) Vi jel
will be satisfied provided the following identity holds:

(1- zilw)‘sij 1—-zYwF ﬁ))&'j
(1 — 2ty )Xi () z—(@i05)

= (=1)(@429) (2 —w + hd;;)

(Z —wF ﬁdij)

(1 — w*lz)ﬁij (1 _ wil(z + h))éij
(1 — wLzg)Xi(Dqp—(aiag) -

Using that (o, ;) = 26;; — x;(4), we may rewrite this as

(z —w)% (2 — w £ h)%
(Z —w + %)X](Z)

(Z —w F 57,]71 + hxé(z))

(w — 2)% (w — z & k)%
(w —z+ g)X](Z)

= (_1)Xj(i)(z —w+8,hT h-xé-(i))

If i # j, then either x;(i) = 1 and both sides are equal to 1, or x;(i) = 0 and both
sides equal (z — w). If instead ¢ = j, then both sides are equal to the polynomial

(z—wxh)(z—wFh)(z—w).

To prove that the relations (3.8) and (3.9) are preserved by (5.8), we employ
the following well-known property of the formal delta function d(z,w) which can
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be found in [Kac90, Lem. 7.7] and [LLO04, Prop.2.1.8 (b)]: given a vector space V and
f(z,w) € V[z*!, wrl], we have
(516) f(Z,’LU)é(Z,U)) :f(z,z)é(z,w),

provided both sides of this equality are well-defined elements of V [z, w*!].

The relation (3.8). — From (5.14) we obtain the equality of operators

(5.17) [Xj'(z),Xj_(w)] =¢e(oy, o) F; i (z,w) Xj'(z)X]_(w)7
where F; ;(z,w) is given by
(1 — 2ty )Xi (1) g = (@i05) (—1)(@25) (1 — =1z )X (g —(@i05)
(1 =z w)% (1 — z=Y(w + h))%: (1 —w=12)% (1 —w=(z — h))%:
If i # j and x;(¢) = 0, then it is clear that F; j(z,w) = 0. If i # j and x; (i) = 1, then
we again obtain

(5.18)

Fi, (va) = (]. — Z_ler)Z + (1 —_ w_lzi)w = 0

Hence, we have shown that the assignment (5.8) preserves the relation (3.8) when
i # 7. If i = j, we have

272 w2
Fiiz,w) = 1-—zw) (1 —2zYw+h) (QA—w'2)(1—-wl(z—-h))
27t 271 (w+ h)~1
- l—z—lw(l—z—l(w—i—h) 1—(w—|—h)—1z)
27t (w+h)~1 w2
l—z7lwl—(w+h)"1z (Q1-wlz)(1-w1(z—-h)
—1 —1
= d(w+h,2) - #Ma(w, 2),
where we have used the identities (3.1) and
(w+h)~* w™t

1—(w+h)~1z - 1—w(z—h)
Substituting the above expression for F; ;(z,w) into (5.17) and using that e(a;, ;) =
—1, we obtain

(5.19) [X{(2), X7 (w)]

= (0. 2) Tt — Sl o) ) X)X )
By (5.16),
S+ b2 X)X (0):
= 3w+ 2 XX @) L
= o+ B 2)AT (kWA (0)B] (w -+ BB () ()™

=—36(w+h2)H (w+ 1),
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since Af (w + h) = A7 (w)™! (see (5.6)). Similarly, (5.16) implies that
-1
w

ow,2) 1—w(z—h)

X (2) X (w):
— 15w, 2) XX () e

= —70(w, 2) AT (2)A7 (2) B (2) B (2) = —30(w, 2) H; (2),
where we have used (5.7) and that B; () = B; (2)~!. Substituting these identities
back into (5.19), we find that

(X7 (2), X7 (w)] = 3 (6w +h, ) H (w+ §) — d(w, 2) H; (),
as desired.
The relation (3.9). — Observe first that if (a;, ;) = 0 then e(oy, ;) = e(a;, ;) and
(5.15) implies

(X7 (2), X (w)] = 0.
Hence we only need to verify that (3.9) holds when («;, ;) = —1. By (5.15), we have
(5:20) [X7(2), X (w)]
= 5(0@, Oéj) (

—1 -1
2 w

1-— z;lw$ 1 —w(z)s

) X E(20) X E(w)

while repeated application of (5.11) gives
X7 (1) : X7 (22) X (w):

) 21(1— 2 '29) (1 — 2, (22 T h))

T X T (21) X T (22) X5 (),
— 2] wg

J

= *5(0[2', o

X (22) X (w): X (21)
22w (1 - z;lzl)(l — z;l(zl Fh))
L—wt(z1)5

= e(a;, o ) X,?:(Zl)X?:<Zg)X;t(’w) .

Combining these last two identities with (5.20) gives

[ X7 (1), [XT (22), X5 ()] = —f (21, 22,w0) : X (20) X7 (22) X5 (w)

where
—1 —1

f(z1,22,w) = ( 22_ + < )

1—z'we  1—wl(z)z

) (w_1(22 —21)(22 — 21+ h) L 27Nz — 20)(21 — 20 £ h))
1—w(z1)s 1— 2z 'we .
Thus, the identity

(5.21) f(z1,20,w) + f(22,21,w) =0
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will imply [X7(21), [ X (22), X5 (w)]] + [ X (22), [ X (22), X7 (w)]] = 0. Since

2z w? (o) T hw =2
1z wy  1—wl(20)z DU (- w (z) 1) (1 — wl(22)1)
—1 —1
z w
and — 2 —(z , W) — —————————,
1—zf1w¢ ( ! ¢) 1—w™(z1)+

the property (5.16) of the formal delta function implies that

w Mz —21) (20 — 212 h) 27 (21 — 22)(21 — 20 £ )
1—w(z)s + 1— 2t )
hw=2(z; — 22)(21 — 22 £ R)
(T—w(z2)5)(1 —w™'(22)+)
hw =2
(1 —w™(z2)5)(1 —w™'(22)4)
. (w_l(ZQ—zl)(zQ—zlzth) w_1(21—22)(z1—22:th))

F(1, 20, w) =0z, w)

+ 5(21,’(01)

:F

1—w(z)s 1—w1(z1)+
==+ hd(z2, wx) F (21, we)
RPw™4 (20 — 21) (22 + 21 — 2w)
(1 —w™(z2)5)(1 —w™(z22)£) (1 —w™ (z1)£) (1 —w™ (z1)£)
As this expression is antisymmetric in z; and 2, we may conclude that (5.21) holds,
and thus that the vertex operators { X (2)}ses satisfy the Serre relations (3.9). [

_|_

Remark 5.7. — Taking the coefficient of z~2w" in the relation (3.8) with i = j yields
[:L‘:rl, l‘;_l] =c+ h;o.

Combining this with the relation [z}, z; (w)] = ET (w+ )+ ﬁ; (w) (see (3.36)), we
deduce that DY$(g) is generated by {z};cs ez Moreover, in the Yangian double
DY;*(g) at level k € C, the series h(z) are uniquely determined by the relations

(5.22) K7z = w)[af (2), 27 ()] = S(w + hi, 2)hf (w+ 1)

(5.23) &z —w— )l (), oy (w)] = 8w, 2)h7 (2).

In particular, the representation pp, of Theorem 5.5 is entirely determined by = (2)
X*(z) for all i € I, and the formulas (5.6) and (5.7) for H (z) may be deduced from
(5.22) and (5.23), as was essentially done below (5.19).

5.2. Tue DY<(g)-mobuLe ¥. — As the coefficients of the vertex operators XE(2)
and H Zi (z) are elements of Endcpsp #/[R], it is not clear that they can be specialized
at h = ¢ € C* to produce a DYCC(g) representation. In this subsection we exploit the
existence of a (Z x @)-grading on ¥ to show that this can indeed be accomplished
after modifying the representation space appropriately.

The (Z x Q)-grading on ¥ = C[H; _,]ic1,r>0 ® Cc[Q)] is given by

deg ;. = (—1,0), dege® = (—%(a,a),a) Viel,r>0anda€QqQ.

JEP. — M., 2019, tome 6



692 N. Guay, V. ReceLskis & C. WENDLANDT

Note that this choice of grading is different from the more familiar grading on

Fock spaces obtained by setting deg.74 _, = (r,0) and dege® = (%(a,a),a).

Let ¥, 3 denote the subspace of ¥ spanned by elements of degree (n,f), so
V =@ n,p)ezxq ¥n.8- We note the following useful observation:

Levma 5.8. — Setting 2 ={(n,f) €ZxQ : n < —%(6,6)}, we have

V= @ Vs
(n,B)e?

Equivalently, ¥, g = {0} for alln > —%(ﬂ, B).
Next, for each 8 € Q we set n(8) = f%(/@, B), so that
Vo=@ Thp= @D Top VBEQ.

ne”Z n<n(B)

Let “/75 = Hngn(ﬂ) V5, be the completion of ¥ with respect to this grading, and set
V=@ V.

As ¥ = @n@ Y0 is precisely the Fock space F = C[J4 _,]icrr>0, We have the
equivalent characterizations "/75 ~ Z®Cef and ¥ 2 .Z @ C. [Q], where F =Y.
Now set
Fn = (C[A))[H;—r]icr,r>0 2 C[A] ® Z.
The (Z x Q)-grading on ¥ extends to a grading on ¥, = Z#, ® C.[Q)] after imposing

degh = (0,0). We use the same notation as above to denote its graded pieces and
Z-completion:

= @ hnp= @ s with (Va)g= D@ Fh)ns,
(n,B)e? BER n<n(pB)
Y= @ (V) = Fae C:q),
BEQ
where (74) 5 = [Lcn(s) (Yh)s and Fp = (V4.
Recall that X (z) = D okez X E[k]z=%1 are the vertex operators which determine
the action of DYf(g) on ¥ [h] (see (5.5)).

Prorosition 5.9. — For each k € Z and i € I, X;t [k] admits an expansion
(5.24) X[k = X7 [k alh,
a>0

with XF[k,a] € Endc ¥ of degree (k — a,+a;). Consequently, X (z) belongs to
(Endcpy #4)[[2, 2] and the assignment
(5.25) tE(z)— XE(2) Viel,

%

also determines an algebra morphism pp : DY (g) — Endcps Y.
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Proof. The first part of the proposition is proved directly by expanding X li(z) as
a formal series in h. To see that X;t [k] € Endgp ¥ for each k € Z, it suffices to
prove that X [k]”/% - %iai for each 8 € @. This is a straightforward consequence
of Lemma 5.8 and (5.24).

One may prove the analogous statements for H Zi (z) in the same way, but as noted
in Remark 5.7 the coefficients of 7 (2) generate DY(g) (with H (2) uniquely de-
termined by (5.22) and (5.23)), and hence this is not necessary and we may conclude
that (5.25) determines an algebra morphism pp, : DY;S(g) — Endcp V. O

Proposition 5.9 implies that X;t(z) can be evaluated at h = ¢ € C to produce a
well-defined element
XE(2,0) = XE(2)noe € (Ende ¥)[z,271].
We will write X¢[k] for the evaluation of XF[k] at h = ¢, so that X3 (z,¢) =
> kez X[kl
Let End,, ¥ denote the subspace of End¢ ¥ spanned by operators of degree m € Z.

(Here we consider only the Z-grading on ¥ = P, ., ¥, induced by its (Z x Q)-

grading.) Consider the direct product ], ., End,, #". The subspace

EEiC“I/—{ZAm t Am =0 Vm>>O}C I Endn 7
mEZ meZ
is an algebra with multiplication that respects the grading.

Cororrary 5.10. — For each ¢ € C, py, induces a homomorphism of C-algebras

pc: DYE(g) — Endc ¥, af(z)— XF(2,() Viel

Moreover, for each k € 7 we have
(5.26) Xk e ( I End.. 7/) NEndc ¥ C Endc¥/,
m<k

and hence pc may be viewed as a morphism p¢ : DYCC(g) — ﬂic“f/,

Henceforth, we will adapt the viewpoint that p¢ has codomain E?l?i@”f/, and we will
focus almost exclusively on the case where ( = 1, in which case we shall write p = p;.

By composing p with ¢ : Y(g) — DY(g) from Proposition 3.8, we obtain an
algebra morphism
(5.27) o=por:Y(g) — Endc?.
The algebra Endc? admits a Z-filtration {F(¥)}rez given by

Fy(7) = ][] End,, 7,
m<k

and we have

gr, Endc? = @ Fpu(¥)/Fpo1(¥) = @ End,, ¥ C Endc V.

meZ me7Z

JE.P.— M., 2019, tome 6



694 N. Guay, V. Recerskis &« C. WeENDLANDT

Set X7 (2) = Y pep X5k, 0]z7*1 € (Endc #)[¢*'], where X[k, 0] is as in (5.24).
Explicitly,

i Ao A
F2) = Zomr or Hir )\ fai Oia,
(5.28) X (2) :I:exp(:lzz . z)exp(q:z 7 )e z
r>0 r>0
with %_T = > jer(i,a5) 4 . for each i € I and r > 0. Since ¢ is a filtered
morphism, the relation (5.26) of Corollary 5.10 together with the expansion (5.24)
implies the following.

Cororrary 5.11. p and o are Z-filtered morphisms, and the composition of grp :
gry, DY<(g) — Endc ¥ with the morphism ¢p : U(t) — gry, DY<(g) of Proposition
3.7 is the representation

(5.29) po:U(t) — Endc ¥, X*(z)— XF(z) Viel

Revark 5.12. Here it is understood that the Zso-filtration {F}r>0 on Y (g) is
extended to a Z-filtration by setting F'y, = {0} for all k¥ < 0. The representation of t
given by (5.29) can be obtained directly from pp (see (5.8)) by specializing 7i — 0,
or from p¢ (see Corollary 5.10) by taking ¢ = 0. However, the Z-filtration on E?l?icf
will play a crucial role in Section 6.

5.3. Tue t-mopuLes ¥ anxp ¥4. — By Corollary 5.11, ¥ admits the structure of a
t-module with action encoded by the vertex operators X (z) defined in (5.28). When
the Cartan matrix A is not invertible, this representation differs from that obtained
from the classical construction of vertex representations [FK81, MRY90]. In this sub-
section we explain the relation between the two constructions.

We begin by recalling the classical setting. By (3.19), the Lie subalgebra of t gen-
erated by the coefficients of the series {H;(z)}ier is a homomorphic image of the
following Heisenberg algebra.

Derinition 5.13. — The Heisenberg Lie algebra $) 4 associated to the Cartan ma-
trix A (equivalently, to the root lattice Q) is the Lie algebra over C with basis
{Hir }ierrez U {C} subject to the defining Lie bracket relations

[Hir,Cl=0 and [H;, Hj_]=7r(0,0;)0,sC Vi,jelandr,seLZ
For each fixed A € @Q, there is a natural action of )4 on the polynomial algebra
(C[Hi,—r]iel,r>0 given by
Hj7fs(f):Hj7fsfa C(f):fa H] (f):(aj7)\)f? HJ (f):ajs(f)
for all f € C[H; —rlict,r>0, j € I and s > 0, where 0;, is the derivation defined
uniquely by
0js(Hi,—y) = s, )05y Vs>0andiel.
We denote C[H; _,]icr.r>0, equipped with this $ a-module structure, by .Z3.
Now define the vector space ¥4 by

VA = C[Hi,—r]iél,r>0 ® C. [Q]
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After identifying C[H; _,]icrr>0 ® Ce® with #3, the space ¥4 becomes an §) -
module isomorphic to P,cq 7 A+ To extend this to a t-module structure, define for
each o = 3, nja; € Q operators {Hy rbrez on V4 by Hoyp = >, niH; . We
then set

icl

H, 1
I\i — o,IT %
a(z) =exp <3F ;>o — ) a€Q,
and introduce vertex operators H,(2), X, (z) € (Endc 7a)[2%!] by

H,(2) = ZHQ,T,Z*T*l and X,(2) =T (2)T}(2)e“2% VaeQ.
rEZ
Prorosirion 5.14. Set XE(2) = X4, (2) and Hy(2) = Hq, (2) for alli € I. Then
the assignment

(5.30) XF(2) — XF(2), Hi(2) —> Hi(2) Viel, Cr—1
extends to a homomorphism of algebras pa : U(t) — Endc ¥Ya.

Proof. Although, to the best of our knowledge, the statement of the proposition has
only been written down explicitly for A of finite and of affine type [FK81, MRY90],
the argument used to prove the above proposition for t associated to the Cartan
matrix of an arbitrary simply laced Kac-Moody algebra is the same, and analogous to
the proof Theorem 5.5. We refer the reader to [Kac90, Th. 14.8], [MRY90, Prop. 4.3]
and [LL04, §6.5] for complete details. The result may also be deduced from [Jin98,
Th. 3.1]. |

Remark 5.15. — Suppose now that A is the Cartan matrix of an arbitrary symmetric
Kac-Moody algebra (not constrained by the condition (2.1)), and let ta be the Lie
algebra defined identically to t (see Definition 3.5), but with (3.22) replaced by

(2 —w) "9 [X;7(2), X; (w)] =0 Vi, jel

Then the assignment (5.30) determines an algebra homomorphism U(ta) — Endc ¥a.
The added difficulty in proving this statement is verifying that (5.30) preserves the
Serre relation (3.23) when a;; < —1. This can again be deduced from [Jin98], although
it may also be proved directly using elementary properties of the formal delta function
0(z,w) and its partial derivatives.

We now turn to relating ¥4 with the t-module ¥ from Corollary 5.11. Recall from
Definition 5.1 that $) is the Heisenberg Lie algebra associated to the trivial lattice
ZM\. For each k € Zy, set

A% = @CHy and H* = @ CH.
il iel
Similarly, we set .V)Eg) = ®i61 CH;y® C-C and H© = C-¥. Let $’y be the Lie
subalgebra of $) 4 defined by

= @9 eC-C=@oL, where 51 =55 N9,
k#0 keZ
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In addition, we denote @k>0 fJ;(‘k) by Y); and @, fJ;(‘k) by £, and define H*
analogously. The following lemma is straightforward.

Levma 5.16. —

(1) The assignment

Ejel(ai,ozj)%’jr if <0,

(PA:C’—>%’ Hir’—>ﬁi'r:
L if >0,

extends to a morphism of graded Lie algebras pa : $'y — 9.
(2) For each r <0, ¢algm : .V)E:) — H) has matriz equal to A with respect to
A

the bases {H ;. }icr C 5’35,:) and { I, }icr C S’JX), Consequently,
@A‘ﬁ; : ﬁ:& — 9"

is an isomorphism if and only if A is invertible, and the same is true for 4.
By the lemma, @A\f); :H 4 — H induces an algebra morphism

Dy U(S’JZ) — U(.Vji)

which is invertible precisely when A is. After identifying U($),) and U($~) with
the Fock space representations C[H; _,]icrr>0 and C[J _,]icr >0 of £, and 9,
respectively, and equipping C[% _,]icr,r>0 with the structure of a $’y-module via
va, 4 becomes a morphism of $/,-modules. This discussion leads us to the following
result.

Prorosition 5.17. — The C-algebra morphism
Q4 ®id: ClH; _rlierr>0 @ C.[Q] — C[ _,]icr.r>0 ® C[Q)]

18 a morphism of t-modules ¥4 — V. It is an isomorphism precisely when A is
invertible.

Proof. Lemma 5.16 and the discussion following it prove that ® 4 ® id will be
invertible exactly when A is. By comparing the definitions of the vertex operators
Xf(z) and XF(2) (see (5.28) and Proposition 5.14), we find that ® 4 ® id will be a
morphism of t-modules provided ®4 is a morphism of $),-modules in the sense de-
scribed before the statement of the proposition. As this has already been established,
the proposition is proved. O

. Tue PoiNcArRE-Birkiiorr-WITT THEOREM
6. Tur P B W

We now fix g to be a Kac-Moody algebra associated to an indecomposable Cartan
matrix A which is of affine type, and whose associated Dynkin diagram is simply
laced with ¢ 4+ 1 vertices. As in Section 4, we set I = {0,1,...,¢} with {1,...,¢}
labeling the Dynkin diagram of the underlying finite-dimensional rank ¢ simple Lie
algebra gg.
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In this section we will prove that the epimorphism ¢ : U(s) — grY(g) of Propo-
sition 2.8 is an isomorphism: see Theorem 6.9. By Propositions 4.4 and 4.7, this will
imply that grY(g) = U(uce(g'[t])). As a corollary, we prove in Theorem 6.10 that
Y (g) is a flat deformation of U(s) = U(uce(g'[t])) (see Remark 2.7).

6.1. A FAITHFUL REPRESENTATION OF 6. — Our first step in proving the injectivity of ¢
is to use the results of Section 5 to produce a representation of Y (g) which specializes
to a faithful representation of s 2 uce(g'[t]). To accomplish this, we first enlarge A to
an invertible Cartan matrix.
Set I = IU{—1}, and extend A to a Cartan matrix A = (aij); jei by imposing
a_1,4 = Qa3 -1 = 25_171' - 51'70 Vie f

DeriNirion 6.1. Define g to be the simply-laced Kac-Moody algebra with Cartan
matrix A.

We fix an invariant symmetric non-degenerate bilinear form (, ) on g extending
(, ), and assume that it is normalized so that {(a;,a;) = 2 for all —1 < i < £. In
particular a;; = (a;, ;) for all —1 < ¢, < L. Let Q = @_1@.@ Zo; = Zo_1 @ Q
denote the root lattice of g. The following lemma can be easily deduced.

Lemya 6.2 The Cartan matriz A is invertible. In particular, {, Noxg is non-
degenerate.

Henceforth, we will use the notation ¥ to denote the space (5.4) corresponding to
the above data:

V= (C['%Eix_’“]ief,r>0 ® C.[Q).
By Corollaries 5.10 and 5.11, we have a Z-filtered morphism of C-algebras

p:DY(§) — Endc¥, xF(z)— X7 (2,1) Viel

?

Observe that the assignment

i:aE(2) — 2 (2), b (2) — hE(2), cr—c Viel

extends to a filtered algebra homomorphism ¢ : DY“(g) — DY (§). We set
p=poi:DY(g) — Endc¥ .
Define a representation pg of t on 4 by setting

(6.1) po =gr(poi)odp:U{t) — € End,, ¥ C End¢ ¥,

mEZ

where ¢p is as in Proposition 3.7.

Lemva 6.3. — The t-module 7;, equipped with action given by po above, is a faithful
module.
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Proof. — Let t be the Lie algebra from Definition 3.5 corresponding to A. By (5.17)
and Lemma 6.2, the morphism ® 4 ®id : ¥, — ¥ is an isomorphism of -modules. By
pulling back via the natural morphism t — §, we obtain an isomorphism of t-modules,
and the induced t-module structure on ¥ is precisely that given by pg. That this
is a faithful t-module now follows from the fact that ¥/, is precisely V(Q,f)izl) from
[MRY90], and by [MRY90, Prop. 4.3], this is a faithful t-module. a

Now set 9 = por:Y(g) — Endc?, where ¢ : Y(g) — DY*<(g) is as in Proposi-
tion 3.8, and define
(6.2) oo=groo¢:U(s) — € End,, ¥ C Endc ¥,
meEZ
where ¢ : U(s) — grY (g) is as in Proposition 2.8.

CoroLrary 6.4. — The s-module ¥, equipped with action given by o9 above, is a
faithful module.

Proof. — The representation gg is equal to the restriction of py to U(s) via the em-
bedding of Corollary 4.6, so the result follows immediately. O

We will use this faithful module, together with the coproduct A, ,, from Section 2.3,
to construct an embedding of U(s) into a large algebra built by gluing together en-
domorphism rings associated to V. We begin with the following general result.

Let a be an arbitrary complex Lie algebra and let A, and e, be the coproduct and
counit, respectively, of the enveloping algebra U(a).

Taeorem 6.5. Let V' be a faithful representation of a with w: U(a) — Endc V the
corresponding homomorphism. For each k > 0, set mp = p&* o AE{H), with Ty = &4.
The universal property of Hm>0 Endc(V®™) dictates that there is a unique morphism

O:U(a) — H Endc(V®™), pr,o®=m, VYm>0,
m=0
where pr,, : [[,,50End(VE™) — End(VE™) is the natural projection. Then ® is
injective.
Proof. — The proof can be found in the appendix: see Theorem A.1. O
(See Lemma 3.5 and its proof in [AMROG6] for a similar result.) Now, we would like

to imitate Theorem 6.5 with AL replaced by AFLL Let V be a faithful s-module
with corresponding homomorphism p; : U(s) — Endc V, and for each k > 1, set

ok = pE% 0 AFLL: U(s) — Ende(VEH)[ut)
We also set pgyu = ¢, : U(s) — C C C[u™!]. Then there is a unique morphism

(6.3) b, :U(s) — H Endc(VE™)[u*!], pr,, o®, = Pew Ym =0,

m>=0

where pr,,, : [],,50 Endc(VE™)[ut!] — Ende(V®™)[ut!] is the natural projection.
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Prorosition 6.6. The morphism ®,, is injective.
Proof. — The evaluation u +— 1 induces a morphism
ev: H Endc(VE™)[utl] — H Endc(V®™).
m=0 m=0

The composition ev o @, : U(s) — [],,5, Endc(V®™) agrees with the morphism ®
associated to V from Theorem 6.5, and hence is injective. This implies that ®,, is also
injective. ]

Applying Proposition 6.6 with V' the faithful s-module ¥ from Corollary 6.4, we
obtain the following corollary.

CoroLrary 6.7. The morphism of C-algebras ®,, : U(s) —]1,,5¢ Endc (¥ ©™)[u],
defined by (6.3) with ps = 0o, is injective.

6.2. STATEMENT AND PROOF OF THE MAIN RESULT. — We now construct the Yangian
version ¥,, of the embedding ®,, from Corollary 6.7, using the morphism ¢ : Y (g) —
Err\l/d@”f/o. The injectivity of U, is closely tied to the Poincaré-Birkhoff-Witt theorem
for Y(g), as we shall explain shortly.

For each k > 1, 9®* extends to a homomorphism Y (g)®*(u)) — (Endc )@ (u).
Composing with A*=! from (2.30), we obtain a morphism

0% Y (g) — (Endc ) ((u)).

As in the U (s)-case, we set ¢Y to be the counit.
For each a € 7Z, set

End,(¥%*) = @ (End,, ¥ ®---®End,, ¥) C Endc(¥®F).

a1 +--+ap=a

We let E?l?ic(%®k) denote the subspace of [ ], End, (7 ®*) consisting of summations

Y acz Aa with A, = 0 for all a > 0. This is an algebra with multiplication extending
that of P, End, (7 ®*). Setting
Fy(Endc (7)) = [] Endo(#®F) vieZ

a<t

equips E?fd@(”/ﬂ ®F) with the structure of a Z-filtered algebra. Recall that {F}s>o
denotes the Zx-filtration on Y'(g) defined above Proposition 2.8, which is extended
to a Z-filtration by setting F'_, = 0 for ¢ > 0.

Lemmva 6.8. — The image of ¢F embeds into ﬁi@(”f}@“)((u)), Moreover,
o8 (Fy) € Fy(Ende(V®%))(w) VEE L.
Proof. — By (2.31), AF=Y(F}) C Fy(Y(g)®%)((w)), where

FZ(Y(9)®k): Z Fa1®"'®Fak'
a1+-Fap=~
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Since ¢ is also filtered (see Corollary 5.11), we have ¢f (Fy) C Fy (mc(7}®k)), with
Fy(Endc(7®) = Y Fo (Ende(¥)) ® - ® F,, (Ende(¥)).
a1+--+ap=~L
As F,, (ﬂic(”V)) = [lo<m End,(7), we see that ®§=1 F,, (ﬂl@(”f/)) naturally
embeds into the space Fy (EHLC("/?W)) =L« End, (7 ®*), provided Zlg:l ap = L.

This proves the assertion. O

Consider the algebra
Endy(7%) = U (Fe(Bnde(/*))(w) € Ende(# %) (w).

LEL
It is Z-filtered with Fy(End, (¥ ®%)) = Fy(Endc(¥®%))(w)) and
gr; End, (7F) = @ End, (7 %) () C Endc(¥®%)((w).

Lemma 6.8 implies that Qﬁ can be viewed as a Z-filtered morphism
0" 1 Y (g) — End, (V).
After forming the direct product of algebras [],, End, (#®™), we obtain an algebra
morphism
(6.4) U, :Y(g) — [] Endu(¥®™), pr, oW, =d Ym0,
m=0
where pr,, : [],,,50 End, (¥ ®™) — End, (¥®™) is the m-th projection morphism. We
are now ready to state and prove the main result of this section:
Turorem 6.9. — The morphism V., defined in (6.4) is an embedding of algebras, and
the epimorphism
61U 2 Uluce(@lt) » grV(@),  XErTh,  Hipr Ry

of Proposition 2.8 is an isomorphism of algebras.
Proof. — As, for each k > 0, ¢* is a filtered morphism Y (g) — Endu(”I}@k), we may
form the associated graded morphisms

gr ot : grV(g) — Ende (%) (w)).
By (2.32), the image of gr ¢F in fact lies in Ende (¥ ®%)[u*1]. We therefore obtain an
algebra morphism

U, grY(g) — H Endc (V™) [u*"], pr,, 0¥, =gro™ VYm0,
m2>=0

where now pr,, is the m-th projection morphism for [, -, Endc (7 ™) [u*1].
By definition, g9 = gr go¢ (see (6.2)), and hence the commutativity of the diagram
(2.33) implies that

(6.5) T, 00 =0,
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where @, : U(s) = [1,,50 Endg (7 ®™)[u*!] is the embedding of Corollary 6.7. This
implies that ¢ is also injective, and hence an isomorphism of algebras.

The relation (6.5), together with the just proved fact that ¢ is an isomorphism,
also implies that ¥,, is an embedding, from which it follows that ¥, is injective using
a standard argument. Indeed, given a nonzero element X € Y (g), we may take £ > 0
minimal such that X € Fy,. Let X € grY(g) denote the image of X in F;/F,_q,

which is nonzero by assumption. If ¥,,(X) = 0, then gr ¢7"(X) = 0 for all m > 0 and
hence ¥, (X) = 0, which is impossible. O

Recall that if A is a Zso-filtered algebra with ascending filtration {Fx(A)}r>o,
then the Rees algebra associated to A is
Ri(A) = @ W*F(A) c An).
k>0
The Rees algebra Rp(A) satisfies Ry(A)/(h — 1)Rr(A) =2 A and Ry(A)/ARL(A) =
gr A. The next theorem employs the Rees algebra construction to characterize Y3 (g)
in terms of Y (g).

+

Turorem 6.10. — The assignment I;‘; — B2, hiy — B hy extends to an isomor-

phism of C[h]-algebras
Un: Yi(g) — Ru(Y(g)) C Y(g)[A].
Consequently, Y (g) is a flat deformation of the algebra U(s) = U (uce(g'[t])).

Proof. — That the assignment E hi — BTzE

ol i Ry extends to a homomorphism

U}, of C[h]-algebras is verified directly (cf. (2.14)). Since {hrxii,,, R"hir Yier r>0 generate
R (Y (g)) as a C[h]-algebra, ¥y, is surjective.

The composition w of the isomorphism Ry (Y (g))/ARr(Y (g)) — grY (g) with the

quotient homomorphism R;(Y (g)) = Rx(Y (g))/hRr(Y (g)) satisfies
Wk — T, BPhg —s hy, VieTand k> 0.

Moreover, w o ¥y, sends the ideal 7Yy (g) to zero and thus factors through the quotient
Yi(9)/hYr(g) to give ¥y : Yo(g) — grY(g). After using Proposition 2.6 and Theo-
rem 6.9 to identify both the domain and codomain of ¥y with U(s), ¥y becomes the
identity map.

Now suppose that there is a nonzero X € KerWUy. Let m be the maximal non-
negative integer such that X = A™Y for some Y € Yj;(g) (that m is finite follows
from the fact that Yy(g) is Z>o-graded with degh = 1). Since ¥y, is a C[h-algebra
morphism and Ry (Y (g)) is torsion free, Y € Ker¥. By maximality of m, the image Y’
of Y in Yy(g) is nonzero. Since ¥y : Yy(g) — grY(g) is an isomorphism, ¥,(Y) # 0.
This is a contradiction as Uo(Y) = W, (Y) = 0. Therefore ¥, is injective, and thus
an isomorphism.

To prove that Y;(g) is a flat deformation of U(s), it remains to see that it is flat
(or equivalently, torsion free) as a C[#i]-module. This is a consequence of the fact that
it embeds into the torsion free space Y (g)[#], and hence is itself torsion free. O
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APPENDIX

Let w : U(g) — End(V) be a faithful representation of an arbitrary complex Lie
algebra g. Let A and ¢ denote the standard coproduct and counit of U(g), respectively.
For each k > 0, set

T = 1% o AV U(g) — End(V)®* ¢ End(V®F),
where A : U(g) — U(g)®*+1) is defined recursively by A = id and
AR = (1[d®*D g A) o AK—D,

By coassociativity, how this is defined is not important. By convention, my is the
counit €. We then define

U:U(g) — [ End(V®*), pr,o¥=m, VYneN
keN

Here N is the set of non-negative integers and pr,, : [],cy End(V®*) — End(V®") is
the n-th projection homomorphism.

Turorem A.1. — W is an injective homomorphism of algebras.

We first prove the theorem in §A.1 given the following assumption:
(A) idy ¢ 7(g).

In particular, this holds when g has a trivial center. We will then explain in §A.2 how
to generalize to the case where idy € 7(g).

Let us set g = m(g); by the faithfulness of 7, this is a Lie subalgebra of gl(V)
isomorphic to g. We also let {F}ren be the standard filtration on U(g) (so that

gr(U(g)) = S(9)).

A.1. Proor or THEOREM A.1 GIVEN (A). Since U(g) = Upen F, it suffices to show
that ¥|p, is injective for each k € N. We will in fact prove the stronger assertion of
the following lemma:

Lemma A2, For each k € N, m4|p, : Fi, — End(V)®* is injective.
Proof. — The case k = 0 is trivial, so let us fix k£ > 1. It suffices to prove that
(A.1) Ker(mp)N(Fe~Fy_1) =@ V1<{<k.
Fix any such ¢ and define S*(g.)s by
S () = Lex(S(gr)),

where ¢¢j, is the embedding
v 02— g20 @ (C-idy)®* ) C End(V)®*, X v X @idp* 7.
Let &1 C End(V)®* be given by
&1 = Spanc{y1 @ --- @ yx : y; € End(V), y, =idy for some 1 < a < £}
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This space satisfies &, N 101 (g%%) = {0} and thus &1 N S%(gx)r = {0}, as can be
seen by extending any basis of g, to a basis of End(V) containing idy and applying
the assumption (A). We may therefore choose a linear projection

Prj : End(V)®* — S%gr)r with  Pygls,, = 0.
Consider the composite
wep =Poromilp, : F¢ — Sz(g,r)k.
Cram. — wyp(Fo—1) = 0.

Consider a product z7 - - - x,, with z; € g and m < £ — 1. Since

k
A(kfl)(mi) = Z(a:i)a, where (z), = 180D g 7 1®(k*a),
a=1
we have
k
(A.2) (o an) = Y T@))a e (7 (@n))an € Gk

A1ye.yQm=1
Applying Py j, then gives wy (21 - @) = 0, from which the claim follows.
Consequently, wg j, induces a linear map
Wk - Fg/Fg_l — Se(gﬂ-)k.

To complete the proof of (A.1), it is enough to show that wy j is injective. In fact, it
is an isomorphism.

CrAiM. Wy 15 an isomorphism.

This is essentially just the PBW theorem for U(g). Using the formula (A.2) with
m = /£, we find that

Y (@(@1))a o (w(ze)a, mod
1<ai<2
aita; Vit

Z T(Te(1)) ® - @ T(Te(r) mod Epp
oESy

It follows that
Tok(T1 - Te) = Y T(To(1) @+ @ T(o(r))-
g€Sy
By the PBW theorem for U(g), we already know F¢/F,_; = S*(g) and, after viewing
S*(g) as the subspace of g®¢ consisting of symmetric tensors (as we have been doing
above), the standard identification is given by the symmetrizing map

1
Ty Tg > 7 Z Ta1) @+ @ Xg(p)-
oeSy

After identifying g with g, and renormalizing, this is precisely @y ;. Hence wy , is an
isomorphism. O
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A.2. Proor or Tueorem A.1 IN GENERAL. We now consider the case where idy €
7(g). In this case g has a non-trivial central element 1 such that
ﬂ'(]l) = idv.

Choose a subspace a of g complementary to C1 (not necessarily a Lie subalgebra
of g). Let us fix an ordered basis {z}xea of a, and let U denote the subspace of U(g)
spanned by ordered monomials in this basis. In particular, we have the vector space
decomposition
U(g)=C[l]eU.
The standard filtration Fy on U(g) induces a filtration {F} }reny on U given by
FZ =F.NU. Let 7Tg=7'rk|U.

Cram. — wf|ps : Fi — End(V)®* is injective for each k € N.

The claim does not automatically follow from Lemma A.2 since a may not be a
Lie subalgebra of g and hence 7} is no longer a Lie algebra representation. However,
the proof of Lemma A.2 does still go through in our present setting; one just needs
to know that the symmetrization map still provides an isomorphism

RFR 5 S%a) VE>1,

which is a consequence of the Poincaré-Birkhoff-Witt theorem for g.

Now let X € U(g) be an arbitrary element. Choose ¢ € N such that X € Fy. Then
X = P(1), where P(1) is a polynomial in 1 with coefficients in U of degree at most £.
Since m (1) = k - idyex for each k, we have

me(X) = 7(P(k)) VkeN.

It follows that if ¥(X) = 0, then P(k) € Ker(nf) for all k& € N. Moreover, by
assumption, P(k) belongs to Fj for each k. By the above claim, this means that
P(k) =0 for all k > £. This is only possible if X = P(1) = 0. O
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