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VERTEX REPRESENTATIONS FOR YANGIANS OF

KAC-MOODY ALGEBRAS

by Nicolas Guay, Vidas Regelskis & Curtis Wendlandt

Abstract. — Using vertex operators, we build representations of the Yangian of a simply laced
Kac-Moody algebra and of its double. As a corollary, we prove the Poincaré-Birkhoff-Witt
property for simply laced affine Yangians.

Résumé (Représentations vertex pour les Yangiens d’algèbres de Kac-Moody)
À l’aide d’opérateurs vertex, nous construisons des représentations du Yangien d’une al-

gèbre de Kac-Moody simplement lacée et de son double. Comme corollaire, nous démontrons
la propriété de Poincaré-Birkhoff-Witt pour les Yangiens affines simplement lacés.
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1. Introduction

Vertex operators originate from dual resonance models in theoretical physics. They
were used by I. Frenkel and V.Kac in their groundbreaking paper [FK81] to build an
explicit realization of the basic representation of a simply-laced affine Lie algebra.
Their work was later extended to non-simply laced affine Lie algebras [BTM87,
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666 N. Guay, V. Regelskis & C. Wendlandt

GNOS86], to quantum affine algebras [FJ88, Ber89, JM96, JKM99, Jin99, Jin00,
CJ01], to twisted quantum affine algebras and more general quantum Kac-Moody
algebras [Jin90, Jin98], to toroidal and quantum toroidal algebras [MRY90, Sai98],
and to Lie superalgebra (e.g. [KSU97]).

In this paper, we address the problem of developing an analogue of the work of
I. Frenkel and V.Kac for Yangians of simply laced Kac-Moody algebras. Yangians
form an important family of quantum algebras which originate from physics, but
were first properly defined in general by V.Drinfeld in [Dri86]. They can be obtained
from quantum loop algebras via a limit procedure [Gua07] and it turns out that
Yangians and quantum loop algebras become isomorphic after passing to certain
completions [GTL13]. The first goal of this paper is to construct representations
of Yangians, via their centrally extended doubles (see Definition 3.1), using vertex
operators which act on a tensor product of a Fock space with a twisted group algebra
(see Theorem 5.5). In the case of the Yangian associated to sln and gln, this was
done in [IK96, Ioh96, Kho97]. It should be noted that our construction is not a direct
consequence of the work of I. Frenkel and N. Jing [FJ88, Jin98] on vertex operator
representations of quantum affinizations associated to symmetric Kac-Moody alge-
bras. Indeed, our construction differs in at least one essential way from the one in
[FJ88, Jin98], namely that we use a different lattice to build the underlying Fock
space.

The second goal of this paper is to prove a version of the Poincaré-Birkhoff-Witt
theorem for affine Yangians of simply laced type (Theorem 6.9) using the vertex
representations of Theorem 5.5. For Yangians associated to simple Lie algebras, this
theorem was proved in general in [Lev93], and for classical Lie algebras, a version
of the PBW theorem stated in terms of the RTT-presentation of the Yangian can
be found in [Mol07] and [AMR06]; for affine Yangians, only the type A(1) has been
considered before [Gua07]. A separate proof of the PBW property for simply laced
affine Yangians has been announced in [YZ18b]. The argument in loc. cit., which is
of independent interest, uses the existence of a morphism from the Yangian of g to
the reduced Drinfeld double of the spherical subalgebra of a shuffle algebra associated
to g [YZ18a, Cor. 3.4].

Our paper is structured as follows. Section 2 presents the definition of the Yangian
Y (g) associated to a symmetrizable Kac-Moody algebra g and describes its classical
limit as the enveloping algebra of a certain Lie algebra s (Proposition 2.6) which
coincides with the current algebra g[t] when g is finite-dimensional. We also recall
results of [GNW18, §6] about a certain parameter dependent coproduct (Theorem
2.9) which will be needed in Section 6.2 in order to build a faithful representation of
Y (g). It is possible to repeatedly apply this coproduct, but since it is not coassociative,
one should proceed with care, as explained at the end of Section 2.

In Section 3, we give the definition of the centrally extended Yangian doubleDY c(g)

of g and study its basic properties. When g is a finite-dimensional simple Lie algebra,
a definition of DY c(g) was given over twenty year ago in [Kho97], where it was
conjecturally described as the Hopf algebra double of a central extension of Y (g).
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Vertex representations for Yangians of Kac-Moody algebras 667

Although this interpretation seems to be limited to that setting, a general definition
can be obtained by inserting an arbitrary Cartan matrix into the explicit definition
of DY c(g) provided in [Kho97, DK00]. This procedure leads to Definition 3.1.

After giving the definition of DY c(g) (Definition 3.1, Lemma 3.4), we relate its
classical limit to the enveloping algebra of a certain Lie algebra t (Proposition 3.6),
which in the finite-dimensional setting is just the affine Lie algebra g[t±1] ⊕ CK
associated to g. We conclude Section 3 with Proposition 3.8, which makes precise
how the Yangian maps into the centrally extended Yangian double.

The aforementioned Lie algebras s and t can also be described more explicitly
when g is an untwisted affine Lie algebra: in this case, they are isomorphic to the
universal central extensions of two loop algebras. This fact was proved in [MRY90]
and Section 4 serves to recall this description. In Proposition 4.7, we show that s

and t can be equivalently characterized as the universal central extensions of g′[t] and
g′[t±1], respectively, where g′ = [g, g] is the derived subalgebra of g. This description
of s and t is also valid when g is finite-dimensional. Our PBW theorem for Y (g)

(namely, Theorem 6.9) is stated as providing an isomorphism between the associated
graded ring of Y (g) (for a certain filtration) and the enveloping algebra of s, so the
results of Section 4 are relevant for our second main theorem.

The main section of this paper is Section 5. Assuming that g is a simply laced
Kac-Moody algebra, we construct a representation of the Yangian double DY c(g)

(and thus of the Yangian Y (g)) which is given by vertex operators and which factors
through the Yangian double at level one (see Theorem 5.5 and also Proposition 5.9 and
Corollary 5.10 for slightly different versions of that theorem). This representation can
be realized in a space built from the tensor product of a Fock space with the twisted
group algebra Cε[Q] of the root lattice Q: see Definition 5.3 and (5.4). Its construction
generalizes, and has been motivated by, the results of Iohara [Ioh96] for g = slN , as
well as the results of [Kho97] and [IK96] which were stated for g = sl2 and g = gl2,
respectively. By considering carefully a certain filtration, our construction leads to a
representation of the Lie algebra t (Corollary 5.11) which is related, but not always
isomorphic, to the representation of t obtained from the classical vertex representation
construction [FK81, MRY90]: this is made precise in Proposition 5.17.

The last section contains a proof of the PBW theorem for affine, simply laced Yan-
gians: see Theorem 6.9. We prove that the associated graded ring of the Yangian Y (g)

(for a certain filtration) is isomorphic to the enveloping algebra U(s) of s. As a con-
sequence, we obtain in Theorem 6.10 that the C[~]-algebra version of the Yangian
Y~(g) (see Definition 2.1) is a flat deformation of the enveloping algebra U(s) of s.
The main point of the proof of Theorem 6.9 is to show the injectivity of the natu-
ral epimorphism from U(s) to the associated graded ring given in Proposition 2.8:
this is accomplished by taking tensor products of the vertex representation of Y (g)

constructed in Section 5 (actually, it is necessary to consider a slightly larger Kac-
Moody algebra) and, by using a carefully chosen filtration, reducing the proof to the
question of the faithfulness of the corresponding vertex representation of s, which
was addressed previously in [MRY90]. In the appendix, we prove that the collection

J.É.P. — M., 2019, tome 6
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of tensor powers of any faithful representation for an arbitrary complex Lie algebra
separate points of its enveloping algebra. This will be applied to the Lie algebra s to
prove Theorem 6.9.

Acknowledgements. — The authors thank Yaping Yang and Gufang Zhao for sharing
a preliminary version of their proof of the Poincaré-Birkhoff-Witt theorem for simply-
laced affine Yangians using the shuffle algebra approach. They are very thankful to
one referee for a very careful reading of their manuscript.

2. The Yangian of g

In this section we recall the definition of the Yangian and give some of its basic
properties. Let g be a symmetrizable Kac-Moody algebra associated to an indecom-
posable Cartan matrix A = (aij)i,j∈I , where I is an indexing set for the simple roots
of g. We assume that A satisfies the condition

(2.1) min{|aij |, |aji|} 6 1 ∀ i, j ∈ I with i 6= j.

Though the constraint given by (2.1) will not play a role until Section 4, the results of
[Jin98, Nak01], together with Lemma 4.2 and Remark 5.15, suggest that the definition
of the Yangian (and its centrally extended double) must be modified in order to extend
the vertex representation construction of Section 5 beyond the simply-laced case. Let
( , ) be a fixed non-degenerate invariant symmetric bilinear form on g. We denote by
{αi}i∈I the set of simple positive roots. Set

dij = 1
2 (αi, αj) ∀ i, j ∈ I.

2.1. Definition of the Yangian

Definition 2.1. — The Yangian Y~(g) is the unital associative C[~]-algebra generated
by the elements x±ir, hir, for i ∈ I and r ∈ Z>0, subject to the relations

[hir, hjs] = 0,(2.2)
[hi0, x

±
js] = ±2dijx

±
js,(2.3)

[x+
ir, x

−
js] = δijhi,r+s,(2.4)

[hi,r+1, x
±
js]− [hir, x

±
j,s+1] = ±~dij

(
hirx

±
js + x±jshir

)
,(2.5)

[x±i,r+1, x
±
js]− [x±ir, x

±
j,s+1] = ±~dij

(
x±irx

±
js + x±jsx

±
ir

)
,(2.6) ∑

σ∈Sm

[x±irσ(1) , [x
±
irσ(2)

, · · · , [x±i,rσ(m)
, x±js] · · · ]] = 0 for i 6= j and m = 1− aij .(2.7)

In the last relation, Sm denotes the symmetric group.

Remark 2.2. — In the notation of [GNW18], the above algebra is equal to Y~(g′),
where g′ is the derived subalgebra [g, g]. For the definition of the full Yangian, see
[GNW18, Def. 2.1]. For A of finite or affine type, the condition (2.1) only excludes
type A(1)

1 . In the latter case, the appropriate definition of the Yangian is given in
[BT19, §1.2] and [Kod19, Def. 5.1].
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Note that Y~(g) is generated, as a C[~]-algebra, by x±ir, hir, for i ∈ I and 0 6 r 6 1:
see [GNW18, (2.10)]. We also observe that Y~(g) is equipped with a Z>0-grading
determined by

deg ~ = 1 and deg x±ir = deg hir = r ∀ i ∈ I, r > 0.

We now give an equivalent definition of Y~(g) in terms of generating series which
will prove useful in Section 3. The following result is a translation of [GTL16,
Prop. 2.3].

Proposition 2.3 ([GTL16, Prop. 2.3]). — Let x±i (z) =
∑
r>0 x

±
irz
−r−1 and hi(z) =∑

r>0 hirz
−r−1 for each i ∈ I. The defining relations of Y~(g) are equivalent to

hi(z)hj(w) = hj(w)hi(z),(2.8)
(z − w ∓ ~dij)hi(z)x±j (w)

= (z − w ± ~dij)x±j (w)hi(z)± 2dijx
±
j (w)− [hi(z), x

±
j0],

(2.9)

(z − w ∓ ~dij)x±i (z)x±j (w)

= (z − w ± ~dij)x±j (w)x±i (z) + [x±i0, x
±
j (w)]− [x±i (z), x±j0],

(2.10)

(z − w)[x+
i (z), x−j (w)] = δij(hi(w)− hi(z)),(2.11) ∑

σ∈Sm

[x±i (zσ(1)), [x
±
i (zσ(2)), · · · , [x±i (zσ(m)), x

±
j (w)] · · · ]] = 0,(2.12)

where in the last relation i 6= j and m = 1− aij.

Multiplying the relation (2.11) by z−1 and taking the residue at z = 0 yields

(2.13) [x+
i0, x

−
j (w)] = δijhi(w) ∀ i, j ∈ I.

Conversely, we have the following:

Proposition 2.4 ([AG19, Prop. 3.3(3)]). — The relation (2.11) is a consequence of
(2.8), (2.9) and (2.13).

For each ζ ∈ C, let Yζ(g) be the C-algebra generated by {x±ir, hir}i∈I,r>0 subject
to the defining relations of Definition 2.1 with ~ replaced by ζ. Equivalently,

Yζ(g) = Y~(g)/(~− ζ)Y~(g).

For the remainder of this paper our focus will primarily be on the Yangian Y (g) =

Y1(g). The emphasis on the single choice ζ = 1 is justified by the fact that the
assignment

(2.14) x±ir, hir ∈ Y (g) 7−→ ζ−rx±ir, ζ
−rhir ∈ Yζ(g)

extends to an isomorphism of algebras Y (g)→ Yζ(g) for each fixed ζ ∈ C×. Note that
Y (g) is no longer a Z>0-graded algebra, but rather a Z>0-filtered algebra with ascend-
ing filtration {F k}k>0 determined by assigning filtration degrees r to x±ir and hir for
each i ∈ I and r > 0.

J.É.P. — M., 2019, tome 6



670 N. Guay, V. Regelskis & C. Wendlandt

2.2. The classical limit

Definition 2.5. — Let s be the Lie algebra generated by {X±ir , Hir}i∈I,r>0 subject
to the defining relations

[Hir, Hjs] = 0,(2.15)
[Hir, X

±
js] = ±2dijX

±
j,r+s,(2.16)

[X+
ir , X

−
js] = δijHi,r+s,(2.17)

[X±i,r+1, X
±
js] = [X±ir , X

±
j,s+1],(2.18)

ad(X±i0)1−aij (X±jr) = 0 for i 6= j.(2.19)

Note that s is a Z>0-graded Lie algebra with degX±ir = degHir = r for all i ∈ I
and r > 0.

In addition, s is always an extension of the current algebra g′[t]. Indeed, if
{x±i , hi}i∈I denote the Chevalley generators of g′, normalized so that (x+

i , x
−
i ) = 1

and hi = [x+
i , x

−
i ], then the assignment

(2.20) X±ir 7−→ x±i ⊗ t
r, Hir 7−→ hi ⊗ tr ∀ i ∈ I and r > 0

determines a surjective Lie algebra morphism s� g′[t]. This is an isomorphism when g

is finite-dimensional, which can be proved using the arguments in [MRY90, §3], but
in general this is not the case. We will consider the situation where g is of affine type
in more detail in Section 4.

The next proposition illustrates that Y~(g) is a graded deformation of the envelop-
ing algebra U(s).

Proposition 2.6. — The assignment
(2.21) X±ir 7−→ x±ir, Hir 7−→ hir ∀ i ∈ I and r > 0

extends to an isomorphism of graded C-algebras U(s)
∼−→ Y0(g).

Proof. — Since the defining relations of Y0(g) are of Lie type, it is isomorphic to
U(s′), where s′ is the Lie algebra generated by {x±ir, hir}i∈I,r>0 subject to the defining
relations (2.15), (2.17), (2.18), in addition to the three relations

[hi0, x
±
js] = ±2dijx

±
js, [hi,r+1, x

±
js] = [hir, x

±
j,s+1],(2.22) ∑

σ∈Sm

[x±irσ(1) , [x
±
irσ(2)

, · · · , [x±i,rσ(m)
, x±js] · · · ]] = 0 for i 6= j and m = 1− aij .(2.23)

(2.21) extends to an epimorphism of algebras U(s)� Y0(g) since (2.16) follows from
(2.22). To conclude that the assignment x±ir 7→ X±ir , hir 7→ Hir extends to a homo-
morphism Y0(g) → U(s) which is the inverse of the homomorphism U(s) → Y0(g)

defined by (2.21), it suffices to show that the relations of Definition 2.5 imply (2.22)
and (2.23).

Since (2.16) implies (2.22), we are left to deduce (2.23) from Definition 2.5. We will
prove the stronger result
(2.24)

[
X±i,r1 ,

[
X±i,r2 , . . . ,

[
X±i,rm , X

±
js

]
· · ·
]]

= 0

for all s, r1, . . . , rm > 0 and i 6= j ∈ I.

J.É.P. — M., 2019, tome 6
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From (2.18) and induction we obtain

(2.25) [X±i,r+k, X
±
js] = [X±ir , X

±
j,s+k] ∀ r, s, k > 0 and i, j ∈ I.

This implies that for any fixed n > 0 and k, s, r1, . . . , rn ∈ Z>0, we have

ad(X±i,r1+k) ad(X±i,r2) · · · ad(X±i,rn)(X±j,s) = ad(X±i,r1) ad(X±i,r2) · · · ad(X±i,rn)(X±j,s+k).

After combining this with (2.19), relation (2.24) becomes an immediate consequence.
�

Remark 2.7. — When g is finite-dimensional, it is known that Y~(g) is a flat defor-
mation of U(s). We will prove the analogous result for g of simply laced affine type
in Theorem 6.10.

Recall the filtration {F k}k>0 on Y (g) defined at the end of Section 2.1. Let x±ir
and hir denote the images of x±ir and hir in F r/F r−1 ⊂ grY (g), where F−1 = {0}.
The following result is immediate from the defining relations of Y (g).

Proposition 2.8. — The assignment

X±ir 7−→ x±ir, Hir 7−→ hir ∀ i ∈ I and r > 0

extends to an epimorphism of graded C-algebras φ : U(s)� grY (g).

The statement that φ is injective is equivalent to the Poincaré-Birkhoff-Witt the-
orem for the Yangian. For g of finite type this was proved in the early 1990’s by
Levendorskii [Lev93] (see also [FT19, App.B] and [GRW19, Prop. 2.2]), but in the
general setting this remains a conjecture. We will prove the injectivity of φ for g of
simply laced affine type in Section 6.

2.3. The coproduct ∆u. — The Yangian of a finite-dimensional simple Lie algebra
is well-known to admit the structure of a Hopf algebra. In particular, it is equipped
with a coassociative algebra homomorphism ∆ : Y (g)→ Y (g)⊗ Y (g), its coproduct.
When the underlying simple Lie algebra is replaced with a more general Kac-Moody
algebra, the formulas used to define ∆ are no longer well-defined. However, it was
shown in [GNW18] that, when g is affine, there is an algebra homomorphism

∆u : Y (g) −→ (Y (g)⊗ Y (g))((u))

which, in a strictly formal sense, has limit at u = 1 which is in agreement with ∆.
The definition of ∆u is contained in the following theorem. Set h̃i1 = hi1 − 1

2h
2
i0 for

all i ∈ I and �(a) = a⊗ 1 + 1⊗ a for all a ∈ Y (g).

Theorem 2.9 ([GNW18, Th. 6.2]). — Assume that the Cartan matrix A of g is of
affine type, but not of type A(1)

1 or A(2)
2 . Then there is an algebra homomorphism

∆u : Y (g) −→ (Y (g)⊗ Y (g))((u))

J.É.P. — M., 2019, tome 6



672 N. Guay, V. Regelskis & C. Wendlandt

uniquely determined by
∆u(x±i0) = x±i0 ⊗ 1 + 1⊗ x±i0u

±1, ∆u(hi0) = �(hi0),

∆u(h̃i1) = �(h̃i1)−
∑
α∈∆re

+

(α, αi)x
−
α ⊗ x+

αu
ht(α),(2.26)

for all i ∈ I, where ∆re
+ is the set of positive real roots, ht(

∑
i∈I niαi) =

∑
i∈I ni, and

x±α ∈ g±α are such that (x+
α , x

−
α ) = 1.

The morphism ∆u is not coassociative in the standard sense, but it satisfies the
“twisted” coassociativity relation

(2.27) (∆u ⊗ id) ◦∆uv = (id⊗∆v) ◦∆u.

By repeated application of ∆u, one can obtain an algebra homomorphism ∆k
u :

Y (g)→ (Y (g)⊗(k+1))((u)) for each k > 0. However, due to the presence of the param-
eter u and the twisted coassociativity property (2.27), this must be handled carefully.

Given an associative unital C-algebra A and k > 1, we denote by A ((uk, . . . , u1))

the localization of A [[uk, . . . , u1]] at the multiplicative set

S = {umkk · · ·u
m1
1 : ma > 0}.

Equivalently, A ((uk, . . . , u1)) can be realized as the subspace of A [[u±1
k , . . . , u±1

1 ]] con-
sisting of elements ∑

`1,...,`k∈Z
a`k,...,`1u

`k
k · · ·u

`1
1

for which there exists N > 0 such that, for any 1 6 m 6 k, a`k,...,`1 = 0 whenever
`m < −N , with product obtained by extending the usual multiplication of formal
series in A [[uk, . . . , u1]]. The key feature of this algebra we will exploit is that

(2.28) evu,k : f(uk, . . . , u1) 7−→ f(u, . . . , u) ∀ f(uk, . . . , u1) ∈ A ((uk, . . . , u1)).

determines an algebra homomorphism evu,k : A ((uk, . . . , u1))→ A ((u)).
Define A ((uk))((uk−1)) · · · ((u1)) inductively as

(
· · ·
(
A ((uk))

)
((uk−1)) · · ·

)
((u1)). To

define ∆k
u we will make use of auxiliary morphisms

∆u1,...uk : Y (g) −→ (Y (g)⊗(k+1))((uk))((uk−1)) · · · ((u1))

which are defined recursively as follows: id⊗(k−1) ⊗∆uk extends to a morphism

(Y (g)⊗k)((uk−1)) · · · ((u1)) −→ (Y (g)⊗(k+1))((uk))((uk−1)) · · · ((u1)),

and the composition of this morphism with ∆u1,...,uk−1
is precisely ∆u1,...,uk . Induc-

tively, we find that

∆u1,...,uk(hi0) =

k+1∑
a=1

(hi0)a, ∆u1,...,uk(x±i0) =

k+1∑
a=1

(x±i0)au
±1
1 · · ·u

±1
a−1,

∆u1,...,uk(h̃i1) =

k+1∑
a=1

(h̃i1)a −
∑
a<b

∑
α∈∆re

+

(α, αi)(x
−
α )a(x+

α )bu
ht(α)
a · · ·uht(α)

b−1 ,

(2.29)
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where (X)a = 1⊗(a−1) ⊗X ⊗ 1⊗(k+1−a), and the product u±1
1 · · ·u

±1
a−1 with a = 1 is

understood to equal 1. Consequently, Image(∆u1,...,uk) ⊂ Y (g)⊗(k+1)((uk, . . . u1)), and
we may therefore set

(2.30) ∆k
u = evu,k ◦∆u1,...,uk : Y (g) −→ Y (g)⊗(k+1)((u)) ∀ k > 1,

where evu,k is as in (2.28) with A = Y (g)⊗(k+1).
The explicit formulas (2.29) imply that ∆k

u is filtered in the sense that

(2.31) ∆k
u(F `) ⊂ (F `(Y (g)⊗(k+1)))((u)),

where F `(Y (g)⊗(k+1)) =
∑
a1+···+ak+1=` F a1 ⊗ · · · ⊗F ak+1

. By (2.29), the associated
graded morphism gr ∆k

u has image contained in grY (g)⊗(k+1)[u±1] for each k:

(2.32) gr ∆k
u : grY (g) −→ gr(Y (g)⊗(k+1))[u±1] = gr(Y (g))⊗(k+1)[u±1].

The family of filtered morphisms {∆k
u}k>1 will play a decisive role in the proof of

the Poincaré-Birkhoff-Witt theorem in Section 6, as will the analogous morphisms
{∆k

s,u}k>1 for the enveloping algebra U(s), which we define now.
Let ∆s denote the standard coproduct on U(s). The assignment X±ir 7→ u±1X±ir ,

Hir 7→ Hir for all i ∈ I and r > 0 extends to an algebra homomorphism su : U(s)→
U(s)[u±1], and we may set

∆s,u = (id⊗ su) ◦∆s : U(s) −→ (U(s)⊗ U(s))[u±1].

The morphisms ∆k
s,u : U(s) → U(s)⊗(k+1)[u±1] are now constructed in exactly the

same way as ∆k
u (see (2.30)). On generators, we have

∆k
s,u(Hir) =

k+1∑
a=1

(Hir)a, ∆k
s,u(X±ir) =

k+1∑
a=1

(X±ir)au
±(a−1).

In particular, we have the following commutative diagram:

(2.33)
U(s)

∆k
s,u

//

φ
��

U(s)⊗(k+1)[u±1]

φ⊗(k+1)

��

grY (g)
gr ∆k

u // grY (g)⊗(k+1)[u±1]

The map φ is the one given in Proposition 2.8.

3. The centrally extended Yangian double of g

In this section we introduce the centrally extended Yangian double associated to g

and study its basic algebraic properties.
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3.1. Definition of the Yangian double. — Let δ(w, z) denote the formal delta func-
tion

∑
r∈Z w

rz−r−1 ∈ C[[w±1, z±1]]. Equivalently,

(3.1) δ(w, z) =
z−1

1− z−1w
+

w−1

1− w−1z
, where x−1

1− x−1y
=
∑
k>0

ykx−k−1.

Definition 3.1. — The centrally extended Yangian doubleDY c
~ (g) is the C[~]-algebra

generated by the coefficients {hir, x±ir}i∈I,r∈Z of

x±i (z) =
∑
r∈Z

x±irz
−r−1, h+

i (z) = 1 + ~
∑
r∈Z>0

hirz
−r−1, h−i (z) = 1− ~

∑
r∈Z<0

hirz
−r−1,

for all i ∈ I, together with an element c, which are subject to the defining relations
1
~ [c, h±i (z)] = 0 = [x±i (z), c],(3.2)

1
~2 [h±i (z), h±j (w)] = 0,(3.3)

1
~2

((
(z − w)2 − (c−ij)

2
)
h+
i (z)h−j (w)−

(
(z − w)2 − (c+

ij)
2
)
h−j (w)h+

i (z)
)

= 0,(3.4)
1
~
((
z − w ∓ c−ij

)
h+
i (z)x±j (w)−

(
z − w ± c+

ij

)
x±j (w)h+

i (z)
)

= 0,(3.5)
1
~
(
(z − w ∓ ~dij)h−i (z)x±j (w)− (z − w ± ~dij)x±j (w)h−i (z)

)
= 0,(3.6)

(z − w ∓ ~dij)x±i (z)x±j (w) = (z − w ± ~dij)x±j (w)x±i (z),(3.7)

[x+
i (z), x−j (w)] =

δij
~
(
δ(w + ~c, z)h+

i

(
w + ~c

2

)
− δ(w, z)h−i (z)

)
,(3.8) ∑

σ∈Sm

[x±i (zσ(1)), [x
±
i (zσ(2)), · · · , [x±i (zσ(m)), x

±
j (w)] · · · ]] = 0,(3.9)

where c±ij = ~dij ± ~c
2 and in the last relation i 6= j and m = 1− aij .

For each κ ∈ C, we define the Yangian double at level κ to be the C[~]-algebra

DY κ~ (g) = DY c
~ (g)/(c− κ)DY c

~ (g).

Remark 3.2. — Even though the relations (3.2)-(3.6) and (3.8) involve negative pow-
ers of ~, this is not the case for the corresponding relations among the generators.
(See Lemma 3.4.) Not dividing by ~ could create ~-torsion elements.

Remark 3.3. — The practice of calling DY c
~ (g) the “Centrally extended Yangian

double” is explained by the following: when g is finite-dimensional, DY 0
~ (g) has been

conjectured to be equal, after completion, to the Hopf algebra double of Y~(g) [KT96],
whereas DY c

~ (g) has been conjecturally described, also after completion, as a quotient
of the Hopf algebra double of Y~(g)⊗C[c] by a derivation [Kho97]. These conjectures
have been proved for g = sl2: see [KT96, Prop. 2.1 (ii)] and [Kho97, Th. 3.1].

Although this interpretation of DY c
~ (g) does not extend beyond the finite case,

Definition 3.1 is a natural extension of the definitions found in the literature (see in
particular [DK00, §6] and [Ioh96, Cor. 3.4]).

J.É.P. — M., 2019, tome 6



Vertex representations for Yangians of Kac-Moody algebras 675

The following lemma is straightforward.

Lemma 3.4. — For each i ∈ I, set h̃±i (z) = ± 1
~ (h±i (z) − 1). Then the relations of

Definition 3.1 are equivalent to

[c, h̃±i (z)] = 0 = [x±i (z), c],(3.10)

h̃±i (z) h̃±j (w) = h̃±j (w) h̃±i (z),(3.11) (
(z − w)2 − (c+

ij)
2
)
h̃−j (w) h̃+

i (z)−
(
(z − w)2 − (c−ij)

2
)
h̃+
i (z) h̃−j (w)

= −2dijc + 2~dij(h̃−j (w)− h̃+
i (z))c,

(3.12)

(
z − w ∓ c−ij

)
h̃+
i (z)x±j (w)−

(
z − w ± c+

ij

)
x±j (w) h̃+

i (z) = ±2dijx
±
j (w),(3.13)

(z − w ± ~dij)x±j (w) h̃−i (z)− (z − w ∓ ~dij) h̃−i (z)x±j (w) = ±2dijx
±
j (w),(3.14)

(z − w ∓ ~dij)x±i (z)x±j (w) = (z − w ± ~dij)x±j (w)x±i (z),(3.15)
[x+
i (z), x−j (w)] =δij

1
~ (δ(w + ~c, z)− δ(w, z))

+ δij

(
δ(w + ~c, z)h̃+

i (w + ~c
2 ) + δ(w, z)h̃−i (z)

)
,

(3.16)

∑
σ∈Sm

[x±i (zσ(1)), [x
±
i (zσ(2)), · · · , [x±i (zσ(m)), x

±
j (w)] · · · ]] = 0,(3.17)

where in the last relation i 6= j and m = 1− aij.

It is not difficult to deduce from these relations that DY c
~ (g) is a Z-graded algebra

with grading determined by

deg ~ = 1, deg c = 0 and deg x±ir = deg hir = r ∀ i ∈ I, r ∈ Z.

Next, for each ζ ∈ C we introduce a C-algebra

DY c
ζ (g) = DY c

~ (g)/(~− ζ)DY c
~ (g),

and we abbreviate DY c(g) = DY c
1 (g). Note that, analogously to Yζ(g), DY c

ζ (g) for
ζ ∈ C× is precisely the C-algebra generated by {x±ir, hir}i∈I,r∈Z and c subject to
the defining relations of Definition 3.1 with ~ replaced by ζ. For each ζ ∈ C×, the
assignment

x±ir 7−→ ζ−rx±ir, hir 7−→ ζ−rhir, c 7−→ c,

or equivalently x±i (z) 7→ ζx±i (ζz), h̃±i (z) 7→ ζh̃±i (ζz), c 7→ c, extends to an isomor-
phism of algebras between DY c(g) and DY c

ζ (g). With this in mind, we will henceforth
focus primarily on the C[~]-algebra DY c

~ (g) and the C-algebra DY c(g).
The degree assignments deg c = 0 and deg x±ir = deg hir = r determine a

Z-filtration (but not a gradation) on DY c(g). For each k ∈ Z, let FD
k denote the

subspace of DY c(g) spanned by monomials of degree 6 k, and let

grZDY (g) =
⊕
k∈Z

FD
k /F

D
k−1

denote the corresponding associated graded algebra.
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3.2. Classical limit

Definition 3.5. — Define t to be the Lie algebra generated by an element C together
with the coefficients {X±ir , Hir}i∈I,r∈Z of

X±i (z) =
∑
k∈Z

X±ikz
−k−1 and Hi(z) =

∑
k∈Z

Hikz
−k−1 ∀ i ∈ I,

which are subject to the defining relations

[C, Hi(z)] = 0 = [X±i (z),C],(3.18)
[Hi(z), Hj(w)] = −2dijδz(z, w)C,(3.19)

[Hi(z), X
±
j (w)] = ±2dijδ(z, w)X±j (w),(3.20)

[X+
i (z), X−j (w)] = δij (δ(z, w)Hi(z)− δz(z, w)C) ,(3.21)

(z − w)[X±i (z), X±j (w)] = 0,(3.22)
ad(X±i0)1−aij (X±j (z)) = 0,(3.23)

where δz(z, w) = d
dz δ(z, w) =

∑
r∈Z rz

r−1w−r−1.

Note that the degree assignment

degC = 0 and degX±ir = degHir = r ∀ i ∈ I, r ∈ Z

makes t into a Z-graded Lie algebra. Additionally, just as s is an extension of the
current algebra g′[t], the Lie algebra t is an extension of the loop algebra g′[t±1].
In the notation of (2.20), the assignment

C 7−→ 0, X±ir 7−→ x±i ⊗ t
r, Hir 7−→ hi ⊗ tr ∀ i ∈ I and r ∈ Z

defines a surjective Lie algebra morphism t� g′[t±1]. We will return to this observa-
tion in Section 4.

We now give the analogue of Proposition 2.6 for the Yangian double. Let h̃±i (z)

be as in Lemma 3.4 (now viewed in DY c
0 (g)[[z±1]]) and set h̃i(z) = h̃+

i (z) + h̃−i (z) =∑
r∈Z hirz

−r−1.

Proposition 3.6. — The assignment

(3.24) X±i (z) 7−→ x±i (z), Hi(z) 7−→ h̃i(z), C 7−→ c ∀ i ∈ I

extends to an isomorphism of graded C-algebras U(t)
∼→ DY c

0 (g).

Proof. — By definition, DY c
0 (g) is the C-algebra generated by the coefficients of

x±i (z), h̃i(z) and the central element c, which are subject to the relations of Defi-
nition 3.1 with ~ replaced by 0. Lemma 3.4 implies that, in addition to the centrality
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of c, these relations are

h̃±i (z) h̃±j (w) = h̃±j (w) h̃±i (z),(3.25)

(z − w)2[h̃−j (w), h̃+
i (z)] = −2dijc(3.26)

(z − w)[h̃+
i (z), x±j (w)] = ±2dijx

±
j (w),(3.27)

(z − w)[x±j (w), h̃−i (z)] = ±2dijx
±
j (w),(3.28)

(z − w) [x±i (z), x±j (w)] = 0,(3.29)

[x+
i (z), x−j (w)] =δij lim

~→0

1
~ (δ(w + ~c, z)− δ(w, z)) + δijδ(w, z)h̃i(w),(3.30) ∑

σ∈Sm

[x±i (zσ(1)), [x
±
i (zσ(2)), · · · , [x±i (zσ(m)), x

±
j (w)] · · · ]] = 0.(3.31)

It therefore suffices to show that these relations are equivalent to the defining relations
of Definition 3.5 (with (Hir, X

±
ir) replaced by (hir, x

±
ir) and C by c).

Step 1: ((3.25), (3.26)) ⇐⇒ (3.19)
Multiplying (3.26) by

∑
k>0(k + 1)wkz−k−2 =

(
z−1/(1− z−1w)

)2 yields the rela-
tion

[h̃−j (w), h̃+
i (z)] = −2dij

( z−1

1− z−1w

)2

c.

Combining this with (3.25) and using h̃i(z) = h̃+
i (z) + h̃−i (z), we obtain

[h̃j(w), h̃i(z)] = 2dij

(( w−1

1− w−1z

)2

−
( z−1

1− z−1w

)2
)
c = 2dijδz(z, w)c.

Switching i↔ j and z ↔ w yields (3.19).
Conversely, taking the z−r−1w−s−1 coefficient of (3.19) gives

(3.32) [hir, hjs] = 2rdijδr,−sc.

Multiplying both sides by z−r−1w−s−1 and taking the sum separately over r, s > 0

and r, s < 0 gives (3.25).
Switching i and j in (3.32), multiplying both sides by w−r−1z−s−1 and taking the

sum over (r, s) ∈ Z<0 × Z>0 yields

[h̃−j (w), h̃+
i (z)] = −2dij

( z−1

1− z−1w

)2

c.

Multiplying both sides by (z − w)2 gives (3.26).

Step 2: ((3.27), (3.28)) ⇐⇒ (3.20)
Multiplying (3.27) by

∑
k>0 w

kz−k−1 and (3.28) by
∑
k>0 z

kw−k−1 gives

[h̃+
i (z), x±j (w)] = ± 2dijz

−1

1− z−1w
x±j (w) and [h̃−i (z), x±j (w)] = ± 2dijw

−1

1− w−1z
x±j (w).

Adding these two relations together gives (3.20). Conversely, taking the z−r−1w−s−1

coefficient of (3.20) yields
[hir, x

±
js] = ±2dijx

±
j,r+s.

J.É.P. — M., 2019, tome 6



678 N. Guay, V. Regelskis & C. Wendlandt

Multiplying both sides of this equality by (z − w)z−r−1w−s−1 and taking the sum
r > 0 and s ∈ Z gives

(z − w)[h̃+
i (z), x±j (w)] = ±2dij

∑
r>0,s∈Z

x±j,r+s(z
−rw−s−1 − z−r−1w−s) = ±2dijx

±
j (w),

which is precisely (3.27). The proof that (3.20) implies (3.28) is similar.

Step 3: (3.30) ⇐⇒ (3.21), and (3.29) ⇐⇒ (3.22)
The equivalence of (3.29) with (3.22) is immediate. To prove the (3.30) ⇔ (3.21),

it suffices to show that

lim
~→0

1
~ (δ(w + ~c, z)− δ(w, z)) = δw(w, z)c = −δz(z, w)c,

which can be verified directly.

Step 4: (3.31) =⇒ (3.23), and ((3.20), (3.22), (3.23)) =⇒ (3.31)
The first implication is obvious. The second implication is proved in the same way

as its s-analogue in Proposition 2.6. �

Recall the filtration {FD
k }k∈Z on DY c(g) defined at the end of Section 3.1. Let

x±ir, hir denote the images of x±ir, hir in FD
r /F

D
r−1 and c denote the image of c in

FD
0 /F

D
−1.

Similar verifications to those carried out in the proof of the previous proposition
allow us to deduce the following analogue of Proposition 2.8.

Proposition 3.7. — The assignment

X±ir 7−→ x±ir, Hir 7−→ hir, C 7−→ c ∀ i ∈ I and r ∈ Z

extends to an epimorphism of graded C-algebras φD : U(t)� grZDY
c(g).

Like the epimorphism φ : U(s) � grY (g) of Proposition 2.8, we expect φD to be
an isomorphism for general g. However, the injectivity of φD will not be considered
in this paper.

3.3. From the Yangian to its double. — We conclude this section by offering a
more precise relation between Y~(g) and DY c

~ (g). Let x±i (z) =
∑
r>0 x

±
irz
−r−1 ∈

DY c
~ (g)[[z−1]] for each i ∈ I.

Proposition 3.8. — The assignment

(3.33) ι~ : x±i (z) 7−→ x±i
(
z ± ~c

2

)
, hi(z) 7−→ h̃+

i (z) ∀ i ∈ I

extends to a morphism of C[~]-algebras ι~ : Y~(g) 7→ DY c
~ (g). The composition of ι~

with the projection DY c
~ (g) � DY c(g) induces a morphism of C-algebras ι : Y (g) →

DY c(g).

Proof. — To distinguish between the generating series of Y~(g) and DY c
~ (g), we will

temporarily denote the series x±i (z) ∈ Y~(g)[[z−1]] from Proposition 2.3 by X ±
i (z). We

will prove that ι~ preserves the defining relations of Y~(g) provided by Proposition 2.3.
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It is immediate that the relations (3.3) and (3.9) imply that h̃+
i (z) and x̃±i (z) =

x±i
(
z ± ~c

2

)
satisfy the defining relations (2.8) and (2.12), respectively, of Y~(g) (with

hi(z) replaced by h̃+
i (z) and X ±

i (z) replaced by x̃±i (z)).
Multiplying (3.5) by z−1 and taking the residue at z = 0 gives [hi0, x

±
j (w)] =

±2dijx
±
j (w), and thus

(3.34) [hi0, x̃
±
j (w)] = ±2dijx̃

±
j (w).

Taking instead the z−r−1w−s−1 coefficient of (3.5), we obtain

[hi,r+1, x
±
js]− [hir, x

±
j,s+1] = ±(c−ijhirx

±
js + c+

ijx
±
jshir).

Multiplying both sides by z−r−1w−s−1, taking the sum over r, s > 0, we obtain

(z − w ∓ c−ij)h̃
+
i (z)x±j (w)− (z − w ± c+

ij)x
±
j (w)h̃+

i (z) = [hi0,x
±
j (w)]− [h̃+

i (z), x±j0].

Substituting in the relation (3.34) and applying w 7→ w ± ~c
2 yields (2.9).

The proof that (3.7) implies (2.10) with X ±
i (z) and X ±

j (w) replaced by x̃±i (z)

and x̃±j (w), respectively, is similar and will be omitted.
It thus remains to see that the assignment (3.33) preserves the relation (2.11). By

Proposition 2.4, it suffices to prove

(3.35) [x+
i0, x̃

−
j (w)] = δij h̃

+
i (w) ∀ i, j ∈ I.

Taking the residue of (3.16) at z = 0 gives

(3.36) [x+
i0, x

−
j (w)] = δij

(
h̃+
i (w + ~c

2 ) + h̃−i (w)
)
,

where we have used that δ(z, w)h̃−i (z) = δ(z, w)h̃−i (w). The relation (3.35) follows
directly from this identity.

The proof is concluded by noting that the second statement of the proposition is
an immediate consequence of the first. �

Observe that ι~ (resp. ι) is a graded (resp. filtered) homomorphism. We conjecture
that both ι~ and ι are injective.

4. The Lie algebras s and t as central extensions

In Sections 2 and 3 it was noted that the Lie algebras s and t (see Definitions 2.5
and 3.5) are always extensions of g′[t] and g′[t±1], respectively. In this section we
employ the results of [MRY90, Prop. 3.5] to deduce that, when g is of untwisted affine
type, s and t are in fact isomorphic to the universal central extensions of g′[t] and
g′[t±1], respectively.

Let g0 be the underlying finite-dimensional, simple Lie algebra of the untwisted
affine Lie algebra g. We specify the indexing set I to be {0, 1, . . . , `}, the extending
vertex of the Dynkin diagram of g being labeled by 0. Let A be a commutative,
associative C-algebra. Then g0 ⊗C A is a Lie algebra in a natural way. Denote by
Ω1(A ) the module of Kähler differentials of A , and let dA denote the subspace of
exact forms (see, for instance, [MRY90, §2]).
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Theorem 4.1 ([Kas84], Theorem 3.3). — The Lie algebra g0⊗C A admits a universal
central extension uce(g0 ⊗C A ) defined by

uce(g0 ⊗C A ) = (g0 ⊗C A )⊕ Ω1(A )/dA

as a vector space, with Lie bracket such that Ω1(A )/dA is central and

[X1 ⊗ a,X2 ⊗ b] = [X1, X2]⊗ ab+ (X1, X2) · b(da) ∀X1, X2 ∈ g0 and a, b ∈ A .

We will be interested in the choices A = C[t±1
1 , t2] and A = C[t±1

1 , t±1
2 ]. Set

g0[t±1
1 , t2] = g0 ⊗C C[t±1

1 , t2] and g0[t±1
1 , t±1

2 ] = g0 ⊗C C[t±1
1 , t±1

2 ].

As in [MRY90, (3.1)], we let t(A) denote the Lie algebra obtained from Definition 3.5
by replacing the defining relation (3.22) with

(4.1) [X±i (z), X±i (w)] = 0 ∀ i ∈ I.

It was proved in [MRY90] that, in fact, t(A) ∼= uce(g0[t±1
1 , t±1

2 ]). The following
lemma asserts that t(A) coincides with t, and hence that t can also be identified
with uce(g0[t±1

1 , t±1
2 ]), as will be stated more precisely in Proposition 4.4.

Lemma 4.2. — Assume that g is a symmetrizable Kac-Moody algebra with indecom-
posable Cartan matrix A = (aij)i,j∈I satisfying the condition (2.1). Then, in the
Lie algebra t, the relation (3.22) implies the relation (4.1). Conversely, the relations
(3.20), (3.21), (3.23) and (4.1) imply that (3.22) holds for all i, j ∈ I. In particular,
if g is of untwisted affine type (excluding A(1)

1 ), t ∼= t(A).

Proof. — We first prove the implication (3.22) =⇒ (4.1). The relation (3.22) with
i = j implies that there is Ai(w) ∈ t[[w±1]] such that

[X±i (z), X±i (w)] = δ(z, w)Ai(w).

Since the right-hand side is symmetric in w and z and the left-hand side is antisym-
metric, both sides must be zero, and hence (4.1) holds.

To prove that ((3.20), (3.21), (3.23), (4.1)) =⇒ (3.22), we make a few preliminary
observations. By taking the residue at w = 0 of (3.20) and then also of the relation
obtained from (3.20) by exchanging z and w, we arrive at the identity

(4.2) [Hi(z), X
±
j0] = ±2dijX

±
j (z) = [Hi0, X

±
j (z)] ∀ i, j ∈ I.

Similarly, from (3.21) we obtain

(4.3) [X∓i0, X
±
j (w)] = ∓δijHi(w) ∀ i, j ∈ I.

Now fix i, j ∈ I with i 6= j. If aij = 0, then (3.23) is the relation [X±i0, X
±
j (w)] = 0.

After applying ad(Hi(z)) to this equation and employing (4.2) and (3.20), it becomes

±2dii[X
±
i (z), X±j (w)]± 2dijδ(z, w)[X±i0, X

±
j (w)] = ±2dii[X

±
i (z), X±j (w)] = 0,

which gives (3.22).
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If aij 6= 0, then without loss of generality we may assume that aij = −1. The Serre
relation (3.23) then reads as [X±i0, [X

±
i0, X

±
j (w)]] = 0. Applying ad(Hi(z)) to both

sides of this equation, we find that

±4dii[X
±
i (z), [X±i0, X

±
j (w)]]± 2dijδ(z, w)[X±i0, [X

±
i0, X

±
j (w)]] = 0,

where we have used (3.20), (4.1) and (4.2). Hence, we have

[X±i (z), [X±i0, X
±
j (w)]] = 0.

Acting on this identity by ad(X∓i0) and employing (3.20) together with (4.2) and (4.3),
we deduce that

2(dii + dij)[X
±
i (z), X±j (w)] = −2dijδ(z, w)[X±i0, X

±
j (w)].

By assumption, −1 = aij = 2
dij
dii

, and hence dii 6= −dij . Multiplying the above
equation by (2dii + 2dij)

−1(z − w) therefore produces the relation (3.22). �

Remark 4.3. — The generators X±ir , Hir and C of t are related to the generators
xr(±αi), α∨i (r) and c of t(A) given in [MRY90, (3.1)] by

X±ir = ±d−1/2
ii xr(±αi), Hir = d−1

ii α
∨
i (r) and C = c.

In order to describe the isomorphism t ∼= uce(g0[t±1
1 , t±1

2 ]) and its s-analogue, we
will need a more explicit description of Ω1(A )/dA when A = C[t±1

1 , t±1
2 ] or C[t±1

1 , t2].
By [MRY90, §2], Ω1(C[t±1

1 , t±1
2 ])/d(C[t±1

1 , t±1
2 ]) has basis

Bt = {t−1
1 dt1, t

k
1t
`
2dt1, t

k
1t
−1
2 dt2 : k ∈ Z, ` ∈ Z×}.

Similarly, one finds that Ω1(C[t±1
1 , t2])/d(C[t±1

1 , t2]) has basis Bs ⊂ Bt given by

Bs = {t−1
1 dt1, t

k
1t
`
2dt1 : k ∈ Z, ` ∈ Z>0}.

Note that these observations, coupled with Theorem 4.1, imply that uce(g0[t±1
1 , t2]) ⊂

uce(g0[t±1
1 , t±1

2 ]) as a Lie subalgebra. Let {X±i , Hi}`i=1 be the Chevalley generators
for g0 normalized so that (X+

i , X
−
i ) = 1 and Hi = [X+

i , X
−
i ]. Let X±θ be root vectors

of g0 for the roots ±θ normalized so that (Xθ, X−θ) = 1, where θ is the highest root
of g0. Set Hθ = [X−θ, Xθ].

Proposition 4.4 (Prop. 3.5 of [MRY90]). — The assignment {X±ir , Hir,C}i∈I,r∈Z →
uce(g0[t±1

1 , t±1
2 ]) given by

C 7−→ t−1
1 dt1,

X±ir 7−→ X±i ⊗ t
r
1, i = 1, . . . , `,

X±0r 7−→ X∓θ ⊗ tr1t±1
2 ,

Hir 7−→ Hi ⊗ tr1, i = 1, . . . , `,

H0r 7−→ Hθ ⊗ tr1 + tr1t
−1
2 dt2,

extends to an isomorphism of Lie algebras t
∼→ uce(g0[t±1

1 , t±1
2 ]). Moreover, we have

s ∼= uce(g0[t±1
1 , t2]) with an isomorphism s

∼→ uce(g0[t±1
1 , t2]) given by the above as-

signment with r taking values in Z>0 and C omitted.
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Remark 4.5. — Although the second part of the above proposition (concerning s ∼=
uce(g0[t±1

1 , t2])) was not stated in [MRY90, Prop. 3.5], it can be proved in the same
way as the first part.

Corollary 4.6. — Assume that g is of untwisted affine type (excluding A(1)
1 ). Then

the natural morphism

s −→ t, X±ir 7−→ X±ir , Hir 7−→ Hir ∀ i ∈ I and r > 0

is an embedding of Lie algebras.

Due to the following proposition, it is also possible to interpret s and t as universal
central extensions of g′[t] and g′[t±1], respectively.

Proposition 4.7. — We have isomorphisms of Lie algebras

uce(g0[t±1
1 , t2]) ∼= uce(g′[t]) and uce(g0[t±1

1 , t±1
2 ]) ∼= uce(g′[t±1]).

Proof. — We begin by noting that, since g′[t] and g′[t±1] are perfect Lie algebras
because g′ is perfect, the universal central extensions uce(g′[t]) and uce(g′[t±1]) do in
fact exist (see [Neh03, Th. 1.14]).

Since g is an untwisted affine Lie algebra, g′ ∼= g0[t±1
1 ] ⊕ CK with Lie bracket

determined by [K, g′] = 0 and

[X1 ⊗ tr1, X2 ⊗ ts1] = [X1, X2]⊗ tr+s1 + rδr,−s(X1, X2)K

for all X1, X2 ∈ g0 and r, s ∈ Z. It follows that g′[t2] ∼= g0[t±1
1 , t2] ⊕ C[t2]K is a

central extension of g0[t±1
1 , t2] with natural projection π : g′[t2] � g0[t±1

1 , t2]. Let ψ
denote the projection uce(g′[t2]) � g′[t2]. Then, by [Neh03, Cor. 1.9], uce(g′[t2]) is a
universal central extension of g0[t±1

1 , t2] with projection π◦ψ : uce(g′[t2])� g0[t±1
1 , t2].

This proves that uce(g0[t±1
1 , t2]) ∼= uce(g′[t2]). Replacing t2 by t±1

2 , we obtain instead
uce(g0[t±1

1 , t±1
2 ]) ∼= uce(g′[t±1

2 ]). �

5. Level one vertex representations

We now fix g to be a simply laced Kac-Moody algebra, and we let Q =
⊕

i∈I Zαi
denote the root lattice associated to g. In addition, we normalize the invariant form
( , ) so that (αi, αi) = 2 for all i ∈ I.

In this section, we construct representations ofDY c
~ (g) andDY c(g) which are given

by vertex operators and which factor through DY 1
~ (g) and DY 1(g). The main results

pertaining to this construction are given in Sections 5.1 and 5.2.
The vertex operators which define these representations are themselves built from

operators arising from the action of a Heisenberg Lie algebra on its Fock space repre-
sentation. Accordingly, we begin by introducing the appropriate Heisenberg algebra,
its Fock space representation, as well as the auxiliary operators which play a central
role in our construction.
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Definition 5.1. — The Heisenberg algebra H is the Lie algebra with basis given by
the elements Hir,C for i ∈ I, r ∈ Z r {0} and with the bracket given by

[Hir,C ] = 0, ∀ i ∈ I, ∀ r ∈ Z r {0},
[Hir,Hj,−s] = rδrsδijC , ∀ i, j ∈ I, ∀ r, s ∈ Z r {0}.

Remark 5.2. — This is not the usual definition of the Heisenberg algebra associated
to Q (see Definition 5.13): rather, it is the Heisenberg algebra associated to the trivial
lattice Z|I|.

The polynomial ring C[Hi,−r]i∈I,r>0 can be equipped with the structure of an
H-module by defining

Hj,−s(f) = Hj,−sf, C (f) = f, Hjs(f) = s
∂

∂Hj,−s
(f)

for all f ∈ C[Hi,−r]i∈I,r>0, j ∈ I and s > 0, yielding the so-called Fock space repre-
sentation of H.

Next, fix a bimultiplicative function ε : Q × Q → Z/2Z = {±1} satisfying the
condition

(5.1) ε(α, α) = (−1)
1
2 (α,α) ∀α ∈ Q.

The bimultiplicativity of ε implies that ε(α, 0) = 1 for all α ∈ Q, while (5.1) implies
that

(5.2) ε(α, β) = (−1)(α,β)ε(β, α) ∀α, β ∈ Q.

Using ε(0, β) = 1 = ε(α, 0), one can also see that

(5.3) ε(±α,∓β) = ε(α, β) = ε(±α,±β) ∀α, β ∈ Q.

The bimultiplicativity of ε also implies that it is a 2-cocycle of Q with values in Z/2Z,
and thus it determines a central extension Q̃ = Z/2Z ×ε Q of Q by Z/2Z which is
equal to Z/2Z×Q as a set, and has product

(εa, α)(εb, β) = (ε(α, β)εaεb, α+ β) ∀α, β ∈ Q and εa, εb ∈ Z/2Z.

Definition 5.3. — Let I be the two-sided ideal of the group algebra C[Q̃] which is
spanned by e(εa,α)−εae(1,α) for all α ∈ Q and εa ∈ Z/2Z, where {e(εa,α) : (εa, α) ∈ Q̃}
is the standard basis of C[Q̃]. The twisted group algebra Cε[Q] is defined to be the
quotient C[Q̃]/I .

Since the C-linear projection C[Q̃]� C[Q], e(εa,α) 7→ εae
α induces an isomorphism

of vector spaces Cε[Q] → C[Q], Cε[Q] can be equivalently defined as the C-algebra
with basis {eα}α∈Q and multiplication given by

eα · eβ = ε(α, β)eα+β ∀α, β ∈ Q.
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Remark 5.4
(a) By [FLM88, Prop. 5.2.3], the condition (5.2) determines ε up to equivalence

of cocycles, and hence it determines the central extension Q̃ of Q by Z/2Z up to
isomorphism. In particular, this implies that any two bimultiplicative functions ε, ε′
satisfying (5.1) will determine the same twisted group algebra up to isomorphism.

(b) The existence of ε : Q×Q→ Z/2Z satisfying (5.1) can be established in various
ways: see for instance [Kac90, §7.8].

Viewing Cε[Q] as a left-module over itself, we can form the U(H)⊗ Cε[Q]-module

(5.4) V = C[Hi,−r]i∈I,r>0 ⊗ Cε[Q].

We also define an auxiliary family of operators {∂α}α∈Q ⊂ EndC V by

∂α(f ⊗ eβ) = (α, β)f ⊗ eβ ∀ f ∈ C[Hi,−r]i∈I,r>0 and α, β ∈ Q.

5.1. The DY c
~ (g)-module V [[~]]. — We first construct a vertex representation of

DY c
~ (g) on the topologically free C[[~]]-module V [[~]]. The actions of U(H) ⊗ Cε[Q]

and of ∂α on V defined above naturally extend to V [[~]].
For each i ∈ I, let N(i) denote the set of vertices to which i is connected, i.e., the

set of neighbors of the vertex i. Define A±i (z) and B±i (z), for each i ∈ I, by

A±i (z) = exp

(
±
∑
r>0

Hi,−r

r
(zr + (z ∓ ~)r)∓

∑
r>0

∑
j∈N(i)

Hj,−r

r

(
z ∓ ~

2

)r)
,

B±i (z) = exp

(
∓
∑
r>0

Hir

r
z−r
)
.

Inspired by [Ioh96], we define the vertex operators

X±i (z),H±i (z) ∈ (EndC[[~]] V [[~]])[[z±1]],

for each i ∈ I, by

X±i (z) = ±A±i (z)B±i (z)e±αiz∂±αi ,(5.5)

H+
i (z) = B+

i (z + ~
2 )B−i (z − ~

2 )

(
1 + ~

2 z
−1

1− ~
2 z
−1

)∂αi
,(5.6)

H−i (z) = A+
i (z)A−i (z).(5.7)

where, for each α ∈ Q, z∂α ∈ (EndC[[~]] V [[~]])[[z±1]] is defined on V by

z∂α(f ⊗ eβ) = z(α,β)f ⊗ eβ ∀β ∈ Q and f ∈ C[Hi,−r]i∈I,r>0.

Equivalently, z∂α =
∑
k∈Z Pα,kz

k with Pα,k(f ⊗ eβ) = δk,(α,β)f ⊗ eβ .

Let us explain why
(

1+ ~
2 z

−1

1− ~
2 z

−1

)∂αi , and thusH+
i (z), belongs to (EndC[[~]] V [[~]])[[z−1]].

For each invertible series g(z) ∈ (C[~])[[z−1]], the operator g(z)∂α (defined on V by
g(z)∂α(f⊗eβ) = g(z)(α,β)f⊗eβ) can be viewed as an element of (EndC[[~]] V [[~]])[[z−1]].
To see this, first write∑

k∈Z
Pα,kg(z)k =

∑
k>0

Pα,kg(z)k +
∑
k>0

Pα,−k(g(z)−1)k.
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For each r > 0, the z−r coefficient of
∑
k>0 Pα,kg(z)k is an infinite sum of the form∑

k>0 ak(~)Pα,k with ak(~) ∈ C[~]. The sum
∑
k>0 ak(~)Pα,k is a well-defined element

of EndC[[~]] V [[~]] since, for any fixed β ∈ Q, Pα,k(eβ) = 0 for all but at most one value
of k. This implies that

∑
k>0 Pα,kg(z)k ∈ (EndC[[~]] V [[~]])[[z−1]]. The same reasoning

can be applied to
∑
k>0 Pα,−k(g(z)−1)k.

With the vertex operators {X±i (z),H±i (z)}i∈I at our disposal, we can now state
the main theorem of this section.

Theorem 5.5. — The assignment

(5.8) x±i (z) 7−→X±i (z), h±i (z) 7−→H±i (z) ∀ i ∈ I, c 7−→ 1

extends to a homomorphism of C[~]-algebras ρ~ : DY c
~ (g)→ EndC[[~]] V [[~]].

The next lemma will be employed to prove this theorem. Let

Γ±i (z) = exp

(
∓
∑
r>0

Hi,±r

r
z∓r
)
.

Lemma 5.6. — Let χi : I→{0, 1} denote the indicator function of N(i), i.e., χi(j)=1

if j ∈ N(i) and χi(j) = 0 otherwise. Then, for each pair of indices i, j ∈ I, we have

Γ−i (z)Γ+
i (w) = Γ+

i (w)Γ−i (z)
(

1− z

w

)−1

,(5.9)

[A±i (z), A±j (w)] = [A±i (z), A∓j (w)] = 0 = [B±i (z), B∓j (w)] = [B±i (z), B±j (w)],(5.10)

B±i (z)A±j (w) =
(1− z−1w)δij (1− z−1(w ∓ ~))δij

(1− z−1(w ∓ ~
2 ))χj(i)

A±j (w)B±i (z),(5.11)

B±i (z)A∓j (w) =

(
1− z−1(w ± ~

2 )
)χj(i)

(1− z−1w)δij (1− z−1(w ± ~))δij
A∓j (w)B±i (z).(5.12)

Proof. — Relations of the form (5.9) appear often in the literature: see for instance
the proof of Theorem 14.8 in [Kac90] and the proof of Proposition 2.9(a) in [FK81].
It follows from the fact that

exp(A) exp(B) = exp(B) exp(A) exp([A,B])

for any two operators A and B such that [A, [A,B]] = 0 = [B, [A,B]], together with
the relation[∑

r>0

Hi,−r

r
zr,
∑
s>0

Hj,s

s
w−s

]
= −δij

∑
s>0

1

s

( z
w

)s
= δij ln

(
1− z

w

)
.

The relation (5.10) is immediate from the definition of the operators A±i (z) and
B±i (z), while (5.11) is a straightforward application of (5.9). The relation (5.12) is a
consequence of (5.11) since B±i (z) = B∓i (z)−1. �

We will also need the following identity, which can be deduced immediately from
the definition of g(z)∂α :

g(z)∂αeβ = eβg(z)(α,β)g(z)∂α ∀α, β ∈ Q and g(z) = z or g(z) ∈ ((C[~])[[z−1]])×.
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Proof of Theorem 5.5. — The proof is achieved using standard vertex operator calcu-
lus. We will prove that the relations of Definition 3.1 are preserved by the assignment
(5.8). This is immediate for (3.2), and for (3.3) this is a consequence of the relation
(5.10) of Lemma 5.6 and that V [[~]] is torsion free. The other relations require more
elaborate use of Lemma 5.6 and we will treat them independently. Set

z± = z ± ~
2 .

The relation (3.4). — Let c±ij = ~
2 ((αi, αj) ± 1) denote the image of c±ij under (5.8).

Then

H+
i (z)H−j (w) = B+

i (z+)B−i (z−)A+
j (w)A−j (w)

(z+

z−

)∂αi
=

(
1− z−1

− w−
)χj(i)

(1− z−1
− w)δij (1− z−1

− (w − ~))δij
B+
i (z+)A+

j (w)B−i (z−)A−j (w)
(z+

z−

)∂αi
=

(
1− z−1

− w−
)χj(i)

(1− z−1
+ w)δij (1− z−1

+ (w − ~))δij

(1− z−1
− w)δij (1− z−1

− (w − ~))δij (1− z−1
+ w−)χj(i)

A+
j (w)B+

i (z+)

·B−i (z−)A−j (w)
(z+

z−

)∂αi
.

On the other hand, we have

H−j (w)H+
i (z) = A+

j (w)A−j (w)B+
i (z+)B−i (z−)

(z+

z−

)∂αi
=

(1− z−1
+ w)δij (1− z−1

+ (w + ~))δij

(1− z−1
+ w+)χj(i)

A+
j (w)B+

i (z+)A−j (w)B−i (z−)
(z+

z−

)∂αi
=

(1− z−1
+ w)δij (1− z−1

+ (w + ~))δij (1− z−1
− w+)χj(i)

(1− z−1
+ w+)χj(i)(1− z−1

− w)δij (1− z−1
− (w + ~))δij

A+
j (w)B+

i (z+)

·B−i (z−)A−j (w)
(z+

z−

)∂αi
.

Therefore, since V [[~]] is torsion free, the assignment (5.8) will preserve (3.4) provided

((z − w)2 − (c−ij)
2)

(
1− z−1

− w−
)χj(i)

(1− z−1
+ w)δij (1− z−1

+ (w − ~))δij

(1− z−1
− w)δij (1− z−1

− (w − ~))δij (1− z−1
+ w−)χj(i)

= ((z − w)2 − (c+ij)
2)

(1− z−1
+ w)δij (1− z−1

+ (w + ~))δij (1− z−1
− w+)χj(i)

(1− z−1
+ w+)χj(i)(1− z−1

− w)δij (1− z−1
− (w + ~))δij

.

for all i, j ∈ I. This can be checked directly using

(5.13) c±ij =


±~

2 if i 6= j, χj(i) = 0,

−~
2 ±

~
2 if i 6= j, χj(i) = 1,

~± ~
2 if i = j.
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The relation (3.5). — Making use of (5.1) together with Lemma 5.6, we deduce that

H+
i (z)X±j (w) = ±B+

i (z+)B−i (z−)A±j (w)B±j (w)
(z+

z−

)∂αi
e±αjw∂±αj

= ±
(1− z−1

− w∓)±χj(i)
( z+
z−

)±(αi,αj)

(1− z−1
− w)±δij (1− z−1

− (w ∓ ~))±δij
B+
i (z+)A±j (w)

·B−i (z−)B±j (w)e±αjw∂±αj
(z+

z−

)∂αi
=

(1− z−1
− w∓)±χj(i)(1− z−1

+ w)±δij (1− z−1
+ (w ∓ ~))±δij

(1− z−1
− w)±δij (1− z−1

− (w ∓ ~))±δij (1− z−1
+ w∓)±χj(i)

(z+

z−

)±(αi,αj)

·X±j (w)H+
i (z).

Therefore, the assignment (5.8) will preserve the relation (3.5) if the following identity
holds:

(z − w ± c+ij)

= (z − w ∓ c−ij)
(1− z−1

− w∓)±χj(i)(1− z−1
+ w)±δij (1− z−1

+ (w ∓ ~))±δij

(1− z−1
− w)±δij (1− z−1

− (w ∓ ~))±δij (1− z−1
+ w∓)±χj(i)

(z+

z−

)±(αi,αj)

.

This is easily verified using (5.13). If i 6= j and χj(i) = 0 then this is clear. If i 6= j

and χj(i) = 1, then the right-hand side equals

(z − w ± ~)
(1− z−1

− w∓

1− z−1
+ w∓

)±1(z−
z+

)±1

= (z − w ± ~)
(z − w − ~

2 ±
~
2

z − w + ~
2 ±

~
2

)±1

= z − w,

which is the left-hand side. If i = j, then c+ij = 3~
2 and c−ij = ~

2 , and the right-hand
side of the equality is

(z − w ∓ ~
2 )
( (z+ − w)(z+ − w ± ~)

(z− − w ± ~)(z− − w)

)±1

= z − w ± 3~
2 .

Note that in neglecting the factor of ~−1 which appears in (3.5), we have made use
of the fact that V [[~]] is torsion free.

The relation (3.6). — Applying again the relations of Lemma 5.6, we obtain

H−i (z)X±j (w) = ±A±j (w)A+
i (z)A−i (z)B±j (w)e±αjw∂±αj

= ± (1− w−1z)±δij (1− w−1(z + ~))±δij

(1− w−1z+)±χj(i)
A±j (w)A+

i (z)B±j (w)A−i (z)e±αjw∂±αj

=
(1− w−1(z + ~))±δij (1− w−1z−)±χj(i)

(1− w−1z+)±χj(i)(1− w−1(z − ~))±δij
X±j (w)H−i (z)

=
(1− w−1 (z ± ~dij)

1− w−1 (z ∓ ~dij)

)
X±j (w)H−i (z).

(The last equality is obtained by considering the three cases i = j and, when i 6= j,
χj(i) = 1 and χj(i) = 0.) Multiplying both sides by (w − z ± ~dij) and using the
fact that V [[~]] is torsion free, we find that the relation (3.6) is preserved by the
assignment (5.8).

J.É.P. — M., 2019, tome 6



688 N. Guay, V. Regelskis & C. Wendlandt

To prove that the remaining three relations of Definition 3.1 are satisfied by
{X±i (z),H±i (z)}i∈I , we introduce the following normal ordering: given a finite in-
teger n ∈ Z>0 together with collections ia ∈ I and εa ∈ {±} for each 1 6 a 6 n, set

:Xε1
i1

(z1) · · ·Xεn
in

(zn) :

=

( n∏
b=1

εb

)
Aε1i1 (z1) · · ·Aεnin (zn)Bε1i1 (z1) · · ·Bεnin (zn)eε1αi1+···+εnαin z

∂ε1αi1
1 · · · z

∂εnαin
n .

Note that with this definition, (5.10) implies that

:Xε1
i1

(z1) · · ·Xεn
in

(zn) : = :X
εσ(1)
iσ(1)

(zσ(1)) · · ·X
εσ(n)

iσ(n)
(zσ(n)) :

for each permutation σ ∈ Sn.
By (5.1) and Lemma 5.6, we have

(5.14) X±i (z)X∓j (w)

= ε(αi, αj)
(1− z−1w±)χj(i)

(1− z−1w)δij (1− z−1(w ± ~))δijz(αi,αj)
:X±i (z)X∓j (w) :,

(5.15) X±i (z)X±j (w) = ε(αi, αj)
(1− z−1w)δij (1− z−1(w ∓ ~))δij

(1− z−1w∓)χj(i)z−(αi,αj)
:X±i (z)X±j (w) :,

where we have used (5.3).

The relation (3.7). — By (5.15), the equality

(z − w ∓ ~dij)X±i (z)X±j (w) = (z − w ± ~dij)X±j (w)X±i (z) ∀ i, j ∈ I

will be satisfied provided the following identity holds:

(z − w ∓ ~dij)
(1− z−1w)δij (1− z−1(w ∓ ~))δij

(1− z−1w∓)χj(i)z−(αi,αj)

= (−1)(αi,αj)(z − w ± ~dij)
(1− w−1z)δij (1− w−1(z ∓ ~))δij

(1− w−1z∓)χj(i)w−(αi,αj)
.

Using that (αi, αj) = 2δij − χj(i), we may rewrite this as

(z − w ∓ δij~± ~·χj(i)
2 )

(z − w)δij (z − w ± ~)δij

(z − w ± ~
2 )χj(i)

= (−1)χj(i)(z − w ± δij~∓ ~·χj(i)
2 )

(w − z)δij (w − z ± ~)δij

(w − z ± ~
2 )χj(i)

.

If i 6= j, then either χj(i) = 1 and both sides are equal to 1, or χj(i) = 0 and both
sides equal (z − w). If instead i = j, then both sides are equal to the polynomial

(z − w ± ~)(z − w ∓ ~)(z − w).

To prove that the relations (3.8) and (3.9) are preserved by (5.8), we employ
the following well-known property of the formal delta function δ(z, w) which can
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be found in [Kac90, Lem. 7.7] and [LL04, Prop. 2.1.8 (b)]: given a vector space V and
f(z, w) ∈ V [[z±1, w±1]], we have

(5.16) f(z, w) · δ(z, w) = f(z, z) · δ(z, w),

provided both sides of this equality are well-defined elements of V [[z±1, w±1]].

The relation (3.8). — From (5.14) we obtain the equality of operators

(5.17) [X+
i (z),X−j (w)] = ε(αi, αj)Fi,j(z, w) :X+

i (z)X−j (w) :,

where Fi,j(z, w) is given by

(5.18) (1− z−1w+)χj(i)z−(αi,αj)

(1− z−1w)δij (1− z−1(w + ~))δij
− (−1)(αi,αj)(1− w−1z−)χi(j)w−(αi,αj)

(1− w−1z)δij (1− w−1(z − ~))δij
.

If i 6= j and χj(i) = 0, then it is clear that Fi,j(z, w) = 0. If i 6= j and χj(i) = 1, then
we again obtain

Fi,j(z, w) = (1− z−1w+)z + (1− w−1z−)w = 0.

Hence, we have shown that the assignment (5.8) preserves the relation (3.8) when
i 6= j. If i = j, we have

Fi,i(z, w) =
z−2

(1− z−1w)(1− z−1(w + ~))
− w−2

(1− w−1z)(1− w−1(z − ~))

=
z−1

1− z−1w

( z−1

1− z−1(w + ~)
+

(w + ~)−1

1− (w + ~)−1z

)
− z−1

1− z−1w

(w + ~)−1

1− (w + ~)−1z
− w−2

(1− w−1z)(1− w−1(z − ~))

=
z−1

1− z−1w
δ(w + ~, z)− w−1

1− w−1(z − ~)
δ(w, z),

where we have used the identities (3.1) and
(w + ~)−1

1− (w + ~)−1z
=

w−1

1− w−1(z − ~)
.

Substituting the above expression for Fi,i(z, w) into (5.17) and using that ε(αi, αi) =

−1, we obtain

(5.19) [X+
i (z),X−i (w)]

=
(
δ(w, z)

w−1

1− w−1(z − ~)
− δ(w + ~, z)

z−1

1− z−1w

)
:X+

i (z)X−i (w) : .

By (5.16),

δ(w + ~, z)
z−1

1− z−1w
:X+

i (z)X−i (w) :

= δ(w + ~, z)
(w + ~)−1

1− (w + ~)−1w
:X+

i (z)X−i (w) : |z 7→w+~

= − 1
~δ(w + ~, z)A+

i (w + ~)A−i (w)B+
i (w + ~)B−i (w)

(w + ~
w

)∂αi
= − 1

~δ(w + ~, z)H+
i (w + ~

2 ),
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since A+
i (w + ~) = A−i (w)−1 (see (5.6)). Similarly, (5.16) implies that

δ(w, z)
w−1

1− w−1(z − ~)
:X+

i (z)X−i (w) :

= 1
~δ(w, z) :X+

i (z)X−i (w) : |w→z
= − 1

~δ(w, z)A
+
i (z)A−i (z)B+

i (z)B−i (z) = − 1
~δ(w, z)H

−
i (z),

where we have used (5.7) and that B+
i (z) = B−i (z)−1. Substituting these identities

back into (5.19), we find that

[X+
i (z),X−i (w)] = 1

~
(
δ(w + ~, z)H+

i (w + ~
2 )− δ(w, z)H−i (z)

)
,

as desired.

The relation (3.9). — Observe first that if (αi, αj) = 0 then ε(αi, αj) = ε(αj , αi) and
(5.15) implies

[X±i (z),X±j (w)] = 0.

Hence we only need to verify that (3.9) holds when (αi, αj) = −1. By (5.15), we have

(5.20) [X±i (z2),X±j (w)]

= ε(αi, αj)
( z−1

2

1− z−1
2 w∓

+
w−1

1− w−1(z2)∓

)
:X±i (z2)X±j (w) :,

while repeated application of (5.11) gives

X±i (z1) :X±i (z2)X±j (w) :

= −ε(αi, αj)
z1(1− z−1

1 z2)(1− z−1
1 (z2 ∓ ~))

1− z−1
1 w∓

:X±i (z1)X±i (z2)X±j (w) :,

:X±i (z2)X±j (w) : X±i (z1)

= ε(αi, αj)
z2

2w
−1(1− z−1

2 z1)(1− z−1
2 (z1 ∓ ~))

1− w−1(z1)∓
:X±i (z1)X±i (z2)X±j (w) : .

Combining these last two identities with (5.20) gives[
X±i (z1), [X±i (z2),X±j (w)]

]
= −f(z1, z2, w) :X±i (z1)X±i (z2)X±j (w) :,

where

f(z1, z2, w) =
( z−1

2

1− z−1
2 w∓

+
w−1

1− w−1(z2)∓

)
·
(w−1(z2 − z1)(z2 − z1 ± ~)

1− w−1(z1)∓
+
z−1

1 (z1 − z2)(z1 − z2 ± ~)

1− z−1
1 w∓

)
.

Thus, the identity

(5.21) f(z1, z2, w) + f(z2, z1, w) = 0
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will imply
[
X±i (z1), [X±i (z2),X±j (w)]

]
+
[
X±i (z2), [X±i (z2),X±j (w)]

]
= 0. Since

z−1
2

1− z−1
2 w∓

+
w−1

1− w−1(z2)∓
= δ(z2, w∓)∓ ~w−2

(1− w−1(z2)∓)(1− w−1(z2)±)

z−1
1

1− z−1
1 w∓

= δ(z1, w∓)− w−1

1− w−1(z1)±
,and

the property (5.16) of the formal delta function implies that

f(z1, z2, w) =δ(z2, w∓)
(w−1(z2 − z1)(z2 − z1 ± ~)

1− w−1(z1)∓
+
z−1

1 (z1 − z2)(z1 − z2 ± ~)

1− z−1
1 w∓

)
∓ δ(z1, w∓)

~w−2(z1 − z2)(z1 − z2 ± ~)

(1− w−1(z2)∓)(1− w−1(z2)±)

∓ ~w−2

(1− w−1(z2)∓)(1− w−1(z2)±)

·
(w−1(z2 − z1)(z2 − z1 ± ~)

1− w−1(z1)∓
− w−1(z1 − z2)(z1 − z2 ± ~)

1− w−1(z1)±

)
=± ~δ(z2, w∓)∓ ~δ(z1, w∓)

+
~2w−4(z2 − z1)(z2 + z1 − 2w)

(1− w−1(z2)∓)(1− w−1(z2)±)(1− w−1(z1)∓)(1− w−1(z1)±)
.

As this expression is antisymmetric in z1 and z2, we may conclude that (5.21) holds,
and thus that the vertex operators {X±i (z)}i∈I satisfy the Serre relations (3.9). �

Remark 5.7. — Taking the coefficient of z−2w0 in the relation (3.8) with i = j yields

[x+
i1, x

−
i,−1] = c + hi0.

Combining this with the relation [x+
i0, x

−
i (w)] = h̃+

i (w+ ~c
2 ) + h̃−i (w) (see (3.36)), we

deduce that DY c
~ (g) is generated by {x±ir}i∈I,r∈Z. Moreover, in the Yangian double

DY κ~ (g) at level κ ∈ C×, the series h±i (z) are uniquely determined by the relations

κ−1(z − w)[x+
i (z), x−i (w)] = δ(w + ~κ, z)h+

i

(
w + ~κ

2

)
,(5.22)

κ−1(z − w − ~κ)[x+
i (z), x−i (w)] = δ(w, z)h−i (z).(5.23)

In particular, the representation ρ~ of Theorem 5.5 is entirely determined by x±i (z) 7→
X±i (z) for all i ∈ I, and the formulas (5.6) and (5.7) for H±i (z) may be deduced from
(5.22) and (5.23), as was essentially done below (5.19).

5.2. The DY c(g)-module Ṽ . — As the coefficients of the vertex operators X±i (z)

and H±i (z) are elements of EndC[[~]] V [[~]], it is not clear that they can be specialized
at ~ = ζ ∈ C× to produce a DY c

ζ (g) representation. In this subsection we exploit the
existence of a (Z × Q)-grading on V to show that this can indeed be accomplished
after modifying the representation space appropriately.

The (Z×Q)-grading on V = C[Hi,−r]i∈I,r>0 ⊗ Cε[Q] is given by

deg Hi,−r = (−r, 0), deg eα =
(
− 1

2 (α, α), α
)
∀ i ∈ I, r > 0 and α ∈ Q.
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Note that this choice of grading is different from the more familiar grading on
Fock spaces obtained by setting deg Hi,−r = (r, 0) and deg eα =

(
1
2 (α, α), α

)
.

Let Vn,β denote the subspace of V spanned by elements of degree (n, β), so
V =

⊕
(n,β)∈Z×Q Vn,β . We note the following useful observation:

Lemma 5.8. — Setting P = {(n, β) ∈ Z×Q : n 6 − 1
2 (β, β)}, we have

V =
⊕

(n,β)∈P

Vn,β .

Equivalently, Vn,β = {0} for all n > − 1
2 (β, β).

Next, for each β ∈ Q we set n(β) = − 1
2 (β, β), so that

Vβ =
⊕
n∈Z

Vn,β =
⊕

n6n(β)

Vn,β ∀β ∈ Q.

Let Ṽβ =
∏
n6n(β) Vn,β be the completion of Vβ with respect to this grading, and set

Ṽ =
⊕
β∈Q

Ṽβ .

As V0 =
⊕

n60 Vn,0 is precisely the Fock space F = C[Hi,−r]i∈I,r>0, we have the
equivalent characterizations Ṽβ ∼= F̃ ⊗ Ceβ and Ṽ ∼= F̃ ⊗ Cε[Q], where F̃ = Ṽ0.

Now set
F~ = (C[~])[Hi,−r]i∈I,r>0

∼= C[~]⊗F .

The (Z×Q)-grading on V extends to a grading on V~ = F~ ⊗ Cε[Q] after imposing
deg ~ = (0, 0). We use the same notation as above to denote its graded pieces and
Z-completion:

V~ =
⊕

(n,β)∈P

(V~)n,β =
⊕
β∈Q

(V~)β with (V~)β =
⊕

n6n(β)

(V~)n,β ,

Ṽ~ =
⊕
β∈Q

(̃V~)β
∼= F̃~ ⊗ Cε[Q],

where (̃V~)β =
∏
n6n(β)(V~)β and F̃~ = (̃V~)0.

Recall that X±i (z) =
∑
k∈Z X

±
i [k]z−k−1 are the vertex operators which determine

the action of DY c
~ (g) on V [[~]] (see (5.5)).

Proposition 5.9. — For each k ∈ Z and i ∈ I, X±i [k] admits an expansion

(5.24) X±i [k] =
∑
a>0

X±i [k, a]~a,

with X±i [k, a] ∈ EndC V of degree (k − a,±αi). Consequently, X±i (z) belongs to
(EndC[~] Ṽ~)[[z, z−1]] and the assignment

(5.25) x±i (z) 7−→X±i (z) ∀ i ∈ I,

also determines an algebra morphism ρ̃~ : DY c
~ (g)→ EndC[~] Ṽ~.
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Proof. — The first part of the proposition is proved directly by expanding X±i (z) as
a formal series in ~. To see that X±i [k] ∈ EndC[~] Ṽ~ for each k ∈ Z, it suffices to
prove that X±i [k]Ṽβ ⊂ Ṽβ±αi for each β ∈ Q. This is a straightforward consequence
of Lemma 5.8 and (5.24).

One may prove the analogous statements for H±i (z) in the same way, but as noted
in Remark 5.7 the coefficients of x±i (z) generate DY c

~ (g) (with H±i (z) uniquely de-
termined by (5.22) and (5.23)), and hence this is not necessary and we may conclude
that (5.25) determines an algebra morphism ρ̃~ : DY c

~ (g)→ EndC[~] Ṽ~. �

Proposition 5.9 implies that X±i (z) can be evaluated at ~ = ζ ∈ C to produce a
well-defined element

X±i (z, ζ) = X±i (z)~ 7→ζ ∈ (EndC Ṽ )[[z, z−1]].

We will write X±,ζi [k] for the evaluation of X±i [k] at ~ = ζ, so that X±i (z, ζ) =∑
k∈Z X

±,ζ
i [k]z−k−1.

Let Endm V denote the subspace of EndC V spanned by operators of degreem ∈ Z.
(Here we consider only the Z-grading on V =

⊕
n∈Z Vn induced by its (Z × Q)-

grading.) Consider the direct product
∏
m∈Z Endm V . The subspace

ẼndCV =

{∑
m∈Z

Am : Am = 0 ∀m� 0

}
⊂
∏
m∈Z

Endm V

is an algebra with multiplication that respects the grading.

Corollary 5.10. — For each ζ ∈ C, ρ̃~ induces a homomorphism of C-algebras

ρζ : DY c
ζ (g) −→ EndC Ṽ , x±i (z) 7−→X±i (z, ζ) ∀ i ∈ I.

Moreover, for each k ∈ Z we have

(5.26) X±,ζi [k] ∈
(∏
m6k

Endm V

)
∩ EndC Ṽ ⊂ ẼndCV ,

and hence ρζ may be viewed as a morphism ρζ : DY c
ζ (g)→ ẼndCV .

Henceforth, we will adapt the viewpoint that ρζ has codomain ẼndCV , and we will
focus almost exclusively on the case where ζ = 1, in which case we shall write ρ = ρ1.

By composing ρ with ι : Y (g) → DY c(g) from Proposition 3.8, we obtain an
algebra morphism

(5.27) % = ρ ◦ ι : Y (g) −→ ẼndCV .

The algebra ẼndCV admits a Z-filtration {F k(V )}k∈Z given by

F k(V ) =
∏
m6k

Endm V ,

and we have

grZ ẼndCV =
⊕
m∈Z

Fm(V )/Fm−1(V ) ∼=
⊕
m∈Z

Endm V ⊂ EndC V .
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Set X̊±i (z) =
∑
k∈Z X

±
i [k, 0]z−k−1 ∈ (EndC V )[[z±1]], where X±i [k, 0] is as in (5.24).

Explicitly,

(5.28) X̊±i (z) = ± exp

(
±
∑
r>0

H̃i,−r

r
zr
)

exp

(
∓
∑
r>0

Hir

r
z−r
)
e±αiz∂±αi

with H̃i,−r =
∑
j∈I(αi, αj)Hj,−r for each i ∈ I and r > 0. Since ι is a filtered

morphism, the relation (5.26) of Corollary 5.10 together with the expansion (5.24)
implies the following.

Corollary 5.11. — ρ and % are Z-filtered morphisms, and the composition of gr ρ :

grZDY
c(g) → EndC V with the morphism φD : U(t) → grZDY

c(g) of Proposition
3.7 is the representation

(5.29) ρ0 : U(t) −→ EndC V , X±i (z) 7−→ X̊±i (z) ∀ i ∈ I.

Remark 5.12. — Here it is understood that the Z>0-filtration {F k}k>0 on Y (g) is
extended to a Z-filtration by setting F k = {0} for all k < 0. The representation of t
given by (5.29) can be obtained directly from ρ~ (see (5.8)) by specializing ~ 7→ 0,
or from ρζ (see Corollary 5.10) by taking ζ = 0. However, the Z-filtration on ẼndCV

will play a crucial role in Section 6.

5.3. The t-modules V and VA. — By Corollary 5.11, V admits the structure of a
t-module with action encoded by the vertex operators X̊±i (z) defined in (5.28). When
the Cartan matrix A is not invertible, this representation differs from that obtained
from the classical construction of vertex representations [FK81, MRY90]. In this sub-
section we explain the relation between the two constructions.

We begin by recalling the classical setting. By (3.19), the Lie subalgebra of t gen-
erated by the coefficients of the series {Hi(z)}i∈I is a homomorphic image of the
following Heisenberg algebra.

Definition 5.13. — The Heisenberg Lie algebra HA associated to the Cartan ma-
trix A (equivalently, to the root lattice Q) is the Lie algebra over C with basis
{Hir}i∈I,r∈Z ∪ {C} subject to the defining Lie bracket relations

[Hir,C] = 0 and [Hir, Hj,−s] = r(αi, αj)δrsC ∀ i, j ∈ I and r, s ∈ Z.

For each fixed λ ∈ Q, there is a natural action of HA on the polynomial algebra
C[Hi,−r]i∈I,r>0 given by

Hj,−s(f) = Hj,−sf, C(f) = f, Hj0(f) = (αj , λ)f, Hjs(f) = ∂js(f)

for all f ∈ C[Hi,−r]i∈I,r>0, j ∈ I and s > 0, where ∂js is the derivation defined
uniquely by

∂js(Hi,−r) = s(αi, αj)δsr ∀ s > 0 and i ∈ I.
We denote C[Hi,−r]i∈I,r>0, equipped with this HA-module structure, by Fλ

A.
Now define the vector space VA by

VA = C[Hi,−r]i∈I,r>0 ⊗ Cε[Q].

J.É.P. — M., 2019, tome 6



Vertex representations for Yangians of Kac-Moody algebras 695

After identifying C[Hi,−r]i∈I,r>0 ⊗ Ceλ with Fλ
A, the space VA becomes an HA-

module isomorphic to
⊕

λ∈Q Fλ
A. To extend this to a t-module structure, define for

each α =
∑
i∈I niαi ∈ Q operators {Hα,r}r∈Z on VA by Hα,r =

∑
i∈I niHi,r. We

then set
Γ±α (z) = exp

(
∓
∑
r>0

Hα,±r

r
z∓r
)
∀α ∈ Q,

and introduce vertex operators Hα(z),Xα(z) ∈ (EndC VA)[[z±1]] by

Hα(z) =
∑
r∈Z

Hα,rz
−r−1 and Xα(z) = Γ−α (z)Γ+

α (z)eαz∂α ∀α ∈ Q.

Proposition 5.14. — Set X±i (z) = ±X±αi(z) and Hi(z) = Hαi(z) for all i ∈ I. Then
the assignment

(5.30) X±i (z) 7−→ X±i (z), Hi(z) 7−→ Hi(z) ∀ i ∈ I, C 7−→ 1

extends to a homomorphism of algebras ρA : U(t) 7→ EndC VA.

Proof. — Although, to the best of our knowledge, the statement of the proposition has
only been written down explicitly for A of finite and of affine type [FK81, MRY90],
the argument used to prove the above proposition for t associated to the Cartan
matrix of an arbitrary simply laced Kac-Moody algebra is the same, and analogous to
the proof Theorem 5.5. We refer the reader to [Kac90, Th. 14.8], [MRY90, Prop. 4.3]
and [LL04, §6.5] for complete details. The result may also be deduced from [Jin98,
Th. 3.1]. �

Remark 5.15. — Suppose now that A is the Cartan matrix of an arbitrary symmetric
Kac-Moody algebra (not constrained by the condition (2.1)), and let tA be the Lie
algebra defined identically to t (see Definition 3.5), but with (3.22) replaced by

(z − w)−aij [X±i (z), X±j (w)] = 0 ∀ i, j ∈ I.

Then the assignment (5.30) determines an algebra homomorphism U(tA)→ EndC VA.
The added difficulty in proving this statement is verifying that (5.30) preserves the
Serre relation (3.23) when aij < −1. This can again be deduced from [Jin98], although
it may also be proved directly using elementary properties of the formal delta function
δ(z, w) and its partial derivatives.

We now turn to relating VA with the t-module V from Corollary 5.11. Recall from
Definition 5.1 that H is the Heisenberg Lie algebra associated to the trivial lattice
Z|I|. For each k ∈ Z6=0, set

H
(k)
A =

⊕
i∈I

CHik and H(k) =
⊕
i∈I

CHik.

Similarly, we set H
(0)
A =

⊕
i∈I CHi0 ⊕ C · C and H(0) = C · C . Let H′A be the Lie

subalgebra of HA defined by

H′A =
⊕
k 6=0

H
(k)
A ⊕ C ·C =

⊕
k∈Z

H
′(k)
A , where H

′(k)
A = H

(k)
A ∩ H′A.
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In addition, we denote
⊕

k>0 H
′(k)
A by H+

A and
⊕

k<0 H
′(k)
A by H−A, and define H±

analogously. The following lemma is straightforward.

Lemma 5.16. —

(1) The assignment

ϕA : C 7−→ C , Hir 7−→ H̃ir =

{∑
j∈I(αi, αj)Hjr if r < 0,

Hir if r > 0,

extends to a morphism of graded Lie algebras ϕA : H′A → H.
(2) For each r < 0, ϕA|H(r)

A

: H
(r)
A → H(r) has matrix equal to A with respect to

the bases {Hir}i∈I ⊂ H
(r)
A and {Hir}i∈I ⊂ H

(r)
A . Consequently,

ϕA|H−
A

: H−A −→ H−

is an isomorphism if and only if A is invertible, and the same is true for ϕA.

By the lemma, ϕA|H−
A

: H−A → H− induces an algebra morphism

ΦA : U(H−A) −→ U(H−)

which is invertible precisely when A is. After identifying U(H−A) and U(H−) with
the Fock space representations C[Hi,−r]i∈I,r>0 and C[Hi,−r]i∈I,r>0 of H′A and H,
respectively, and equipping C[Hi,−r]i∈I,r>0 with the structure of a H′A-module via
ϕA, ΦA becomes a morphism of H′A-modules. This discussion leads us to the following
result.

Proposition 5.17. — The C-algebra morphism

ΦA ⊗ id : C[Hi,−r]i∈I,r>0 ⊗ Cε[Q] −→ C[Hi,−r]i∈I,r>0 ⊗ Cε[Q]

is a morphism of t-modules VA → V . It is an isomorphism precisely when A is
invertible.

Proof. — Lemma 5.16 and the discussion following it prove that ΦA ⊗ id will be
invertible exactly when A is. By comparing the definitions of the vertex operators
X̊±i (z) and X±i (z) (see (5.28) and Proposition 5.14), we find that ΦA ⊗ id will be a
morphism of t-modules provided ΦA is a morphism of H′A-modules in the sense de-
scribed before the statement of the proposition. As this has already been established,
the proposition is proved. �

6. The Poincaré-Birkhoff-Witt theorem

We now fix g to be a Kac-Moody algebra associated to an indecomposable Cartan
matrix A which is of affine type, and whose associated Dynkin diagram is simply
laced with ` + 1 vertices. As in Section 4, we set I = {0, 1, . . . , `} with {1, . . . , `}
labeling the Dynkin diagram of the underlying finite-dimensional rank ` simple Lie
algebra g0.
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In this section we will prove that the epimorphism φ : U(s) � grY (g) of Propo-
sition 2.8 is an isomorphism: see Theorem 6.9. By Propositions 4.4 and 4.7, this will
imply that grY (g) ∼= U(uce(g′[t])). As a corollary, we prove in Theorem 6.10 that
Y~(g) is a flat deformation of U(s) ∼= U(uce(g′[t])) (see Remark 2.7).

6.1. A faithful representation of s. — Our first step in proving the injectivity of φ
is to use the results of Section 5 to produce a representation of Y (g) which specializes
to a faithful representation of s ∼= uce(g′[t]). To accomplish this, we first enlarge A to
an invertible Cartan matrix.

Set I̊ = I ∪ {−1}, and extend A to a Cartan matrix Å = (aij)i,j∈I̊ by imposing

a−1,i = ai,−1 = 2δ−1,i − δi,0 ∀ i ∈ I̊ .

Definition 6.1. — Define g̊ to be the simply-laced Kac-Moody algebra with Cartan
matrix Å.

We fix an invariant symmetric non-degenerate bilinear form 〈 , 〉 on g̊ extending
( , ), and assume that it is normalized so that 〈αi, αi〉 = 2 for all −1 6 i 6 `. In
particular aij = 〈αi, αj〉 for all −1 6 i, j 6 `. Let Q̊ =

⊕
−16i6` Zαi = Zα−1 ⊕ Q

denote the root lattice of g̊. The following lemma can be easily deduced.

Lemma 6.2. — The Cartan matrix Å is invertible. In particular, 〈 , 〉|Q̊×Q̊ is non-
degenerate.

Henceforth, we will use the notation V̊ to denote the space (5.4) corresponding to
the above data:

V̊ = C[Hi,−r]i∈I̊,r>0 ⊗ Cε[Q̊].

By Corollaries 5.10 and 5.11, we have a Z-filtered morphism of C-algebras

ρ̊ : DY c(̊g) −→ ẼndCV̊ , x±i (z) 7−→X±i (z, 1) ∀ i ∈ I̊ .

Observe that the assignment

ι̊ : x±i (z) 7−→ x±i (z), h±i (z) 7−→ h±i (z), c 7−→ c ∀ i ∈ I

extends to a filtered algebra homomorphism ι̊ : DY c(g)→ DY c(̊g). We set
•
ρ = ρ̊ ◦ ι̊ : DY c(g) −→ ẼndCV̊ .

Define a representation •
ρ0 of t on V̊ by setting

(6.1) •
ρ0 = gr(ρ̊ ◦ ι̊) ◦ φD : U(t) −→

⊕
m∈Z

Endm V̊ ⊂ EndC V̊ ,

where φD is as in Proposition 3.7.

Lemma 6.3. — The t-module V̊ , equipped with action given by •
ρ0 above, is a faithful

module.
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Proof. — Let t̊ be the Lie algebra from Definition 3.5 corresponding to Å. By (5.17)
and Lemma 6.2, the morphism ΦÅ⊗ id : VÅ → V̊ is an isomorphism of t̊-modules. By
pulling back via the natural morphism t→ t̊, we obtain an isomorphism of t-modules,
and the induced t-module structure on V̊ is precisely that given by •

ρ0. That this
is a faithful t-module now follows from the fact that VÅ is precisely V (Q̊,H′

Å
) from

[MRY90], and by [MRY90, Prop. 4.3], this is a faithful t-module. �

Now set •
% =

•
ρ ◦ ι : Y (g) → ẼndCV̊ , where ι : Y (g) → DY c(g) is as in Proposi-

tion 3.8, and define

(6.2) •
%0 = gr

•
% ◦ φ : U(s) −→

⊕
m∈Z

Endm V̊ ⊂ EndC V̊ ,

where φ : U(s)→ grY (g) is as in Proposition 2.8.

Corollary 6.4. — The s-module V̊ , equipped with action given by •
%0 above, is a

faithful module.

Proof. — The representation •
%0 is equal to the restriction of •

ρ0 to U(s) via the em-
bedding of Corollary 4.6, so the result follows immediately. �

We will use this faithful module, together with the coproduct ∆s,u from Section 2.3,
to construct an embedding of U(s) into a large algebra built by gluing together en-
domorphism rings associated to V̊ . We begin with the following general result.

Let a be an arbitrary complex Lie algebra and let ∆a and εa be the coproduct and
counit, respectively, of the enveloping algebra U(a).

Theorem 6.5. — Let V be a faithful representation of a with π : U(a)→ EndC V the
corresponding homomorphism. For each k > 0, set πk = ρ⊗ka ◦∆

(k−1)
a , with π0 = εa.

The universal property of
∏
m>0 EndC(V ⊗m) dictates that there is a unique morphism

Φ : U(a) −→
∏
m>0

EndC(V ⊗m), prm ◦ Φ = πm ∀m > 0,

where prm :
∏
m>0 End(V ⊗m) → End(V ⊗m) is the natural projection. Then Φ is

injective.

Proof. — The proof can be found in the appendix: see Theorem A.1. �

(See Lemma 3.5 and its proof in [AMR06] for a similar result.) Now, we would like
to imitate Theorem 6.5 with ∆

(k−1)
a replaced by ∆k−1

s,u . Let V be a faithful s-module
with corresponding homomorphism ρs : U(s)→ EndC V , and for each k > 1, set

ρks,u = ρ⊗ks ◦∆k−1
s,u : U(s) −→ EndC(V ⊗k)[u±1].

We also set ρ0
s,u = εs : U(s)→ C ⊂ C[u±1]. Then there is a unique morphism

(6.3) Φu : U(s) −→
∏
m>0

EndC(V ⊗m)[u±1], prm ◦ Φu = ρms,u ∀m > 0,

where prm :
∏
m>0 EndC(V ⊗m)[u±1]→ EndC(V ⊗m)[u±1] is the natural projection.

J.É.P. — M., 2019, tome 6



Vertex representations for Yangians of Kac-Moody algebras 699

Proposition 6.6. — The morphism Φu is injective.

Proof. — The evaluation u 7→ 1 induces a morphism

ev :
∏
m>0

EndC(V ⊗m)[u±1] −→
∏
m>0

EndC(V ⊗m).

The composition ev ◦ Φu : U(s) →
∏
m>0 EndC(V ⊗m) agrees with the morphism Φ

associated to V from Theorem 6.5, and hence is injective. This implies that Φu is also
injective. �

Applying Proposition 6.6 with V the faithful s-module V̊ from Corollary 6.4, we
obtain the following corollary.

Corollary 6.7. — The morphism of C-algebras Φu : U(s)→
∏
m>0 EndC(V̊ ⊗m)[u±1],

defined by (6.3) with ρs =
•
%0, is injective.

6.2. Statement and proof of the main result. — We now construct the Yangian
version Ψu of the embedding Φu from Corollary 6.7, using the morphism •

% : Y (g)→
ẼndCV̊ . The injectivity of Ψu is closely tied to the Poincaré-Birkhoff-Witt theorem
for Y (g), as we shall explain shortly.

For each k > 1, •
%⊗k extends to a homomorphism Y (g)⊗k((u)) → (ẼndCV̊ )⊗k((u)).

Composing with ∆k−1
u from (2.30), we obtain a morphism

•
%ku : Y (g) −→ (ẼndCV̊ )⊗k((u)).

As in the U(s)-case, we set •
%0
u to be the counit.

For each a ∈ Z, set

Enda(V̊ ⊗k) =
⊕

a1+···+ak=a

(
Enda1 V̊ ⊗ · · · ⊗ Endak V̊

)
⊂ EndC(V̊ ⊗k).

We let ẼndC(V̊ ⊗k) denote the subspace of
∏
a∈Z Enda(V̊ ⊗k) consisting of summations∑

a∈ZAa with Aa = 0 for all a� 0. This is an algebra with multiplication extending
that of

⊕
a∈Z Enda(V̊ ⊗k). Setting

F `

(
ẼndC(V̊ ⊗k)

)
=
∏
a6`

Enda(V̊ ⊗k) ∀ ` ∈ Z

equips ẼndC(V̊ ⊗k) with the structure of a Z-filtered algebra. Recall that {F `}`>0

denotes the Z>0-filtration on Y (g) defined above Proposition 2.8, which is extended
to a Z-filtration by setting F−` = 0 for ` > 0.

Lemma 6.8. — The image of •
%ku embeds into ẼndC(V̊ ⊗k)((u)). Moreover,

•
%ku(F `) ⊂ F `

(
ẼndC(V̊ ⊗k)

)
((u)) ∀ ` ∈ Z.

Proof. — By (2.31), ∆k−1
u (F `) ⊂ F `(Y (g)⊗k)((u)), where

F `(Y (g)⊗k) =
∑

a1+···+ak=`

F a1 ⊗ · · · ⊗ F ak .
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Since •
% is also filtered (see Corollary 5.11), we have •

%ku(F `) ⊂ F̃ `

(
ẼndC(V̊ ⊗k)

)
, with

F̃ `

(
ẼndC(V̊ ⊗k)

)
=

∑
a1+···+ak=`

F a1

(
ẼndC(V̊ )

)
⊗ · · · ⊗ F ak

(
ẼndC(V̊ )

)
.

As Fm

(
ẼndC(V̊ )

)
=
∏
a6m Enda(V̊ ), we see that

⊗k
b=1 F ab

(
ẼndC(V̊ )

)
naturally

embeds into the space F `

(
ẼndC(V̊ ⊗k)

)
=
∏
a6` Enda(V̊ ⊗k), provided

∑k
b=1 ab = `.

This proves the assertion. �

Consider the algebra

Endu(V̊ ⊗k) =
⋃
`∈Z

(
F `

(
ẼndC(V̊ ⊗k)

)
((u))

)
⊂ EndC(V̊ ⊗k)((u)).

It is Z-filtered with F `(Endu(V̊ ⊗k)) = F `

(
ẼndC(V̊ ⊗k)

)
((u)) and

grZ Endu(V̊ ⊗k) =
⊕̀
∈Z

End`(V̊
⊗k)((u)) ⊂ EndC(V̊ ⊗k)((u)).

Lemma 6.8 implies that •
%ku can be viewed as a Z-filtered morphism

•
%ku : Y (g) −→ Endu(V̊ ⊗k).

After forming the direct product of algebras
∏
m>0 Endu(V̊ ⊗m), we obtain an algebra

morphism

(6.4) Ψu : Y (g) −→
∏
m>0

Endu(V̊ ⊗m), prm ◦Ψu =
•
%mu ∀m > 0,

where prm :
∏
m>0 Endu(V̊ ⊗m)→ Endu(V̊ ⊗m) is the m-th projection morphism. We

are now ready to state and prove the main result of this section:

Theorem 6.9. — The morphism Ψu defined in (6.4) is an embedding of algebras, and
the epimorphism

φ : U(s) ∼= U(uce(g′[t]))� grY (g), X±ir 7−→ x±ir, Hir 7−→ hir

of Proposition 2.8 is an isomorphism of algebras.

Proof. — As, for each k > 0, •
%ku is a filtered morphism Y (g)→ Endu(V̊ ⊗k), we may

form the associated graded morphisms

gr
•
%ku : grY (g) −→ EndC(V̊ ⊗k)((u)).

By (2.32), the image of gr
•
%ku in fact lies in EndC(V̊ ⊗k)[u±1]. We therefore obtain an

algebra morphism

Ψu : grY (g) −→
∏
m>0

EndC(V̊ ⊗m)[u±1],
•
prm ◦Ψu = gr

•
%mu ∀m > 0,

where now •
prm is the m-th projection morphism for

∏
m>0 EndC(V̊ ⊗m)[u±1].

By definition, •
%0 = gr

•
%◦φ (see (6.2)), and hence the commutativity of the diagram

(2.33) implies that

(6.5) Ψu ◦ φ = Φu,
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where Φu : U(s) →
∏
m>0 EndC(V̊ ⊗m)[u±1] is the embedding of Corollary 6.7. This

implies that φ is also injective, and hence an isomorphism of algebras.
The relation (6.5), together with the just proved fact that φ is an isomorphism,

also implies that Ψu is an embedding, from which it follows that Ψu is injective using
a standard argument. Indeed, given a nonzero element X ∈ Y (g), we may take ` > 0

minimal such that X ∈ F `. Let X ∈ grY (g) denote the image of X in F `/F `−1,
which is nonzero by assumption. If Ψu(X) = 0, then gr

•
%mu (X) = 0 for all m > 0 and

hence Ψu(X) = 0, which is impossible. �

Recall that if A is a Z>0-filtered algebra with ascending filtration {F k(A)}k>0,
then the Rees algebra associated to A is

R~(A) =
⊕
k>0

~kF k(A) ⊂ A[~].

The Rees algebra R~(A) satisfies R~(A)/(~ − 1)R~(A) ∼= A and R~(A)/~R~(A) ∼=
grA. The next theorem employs the Rees algebra construction to characterize Y~(g)

in terms of Y (g).

Theorem 6.10. — The assignment x±ir 7→ ~rx±ir, hir 7→ ~rhir extends to an isomor-
phism of C[~]-algebras

Ψ~ : Y~(g) −→ R~(Y (g)) ⊂ Y (g)[~].

Consequently, Y~(g) is a flat deformation of the algebra U(s) ∼= U(uce(g′[t])).

Proof. — That the assignment x±ir, hir 7→ ~rx±ir, ~rhir extends to a homomorphism
Ψ~ of C[~]-algebras is verified directly (cf. (2.14)). Since {~rx±ir, ~rhir}i∈I,r>0 generate
R~(Y (g)) as a C[~]-algebra, Ψ~ is surjective.

The composition $ of the isomorphism R~(Y (g))/~R~(Y (g)) → grY (g) with the
quotient homomorphism R~(Y (g))→ R~(Y (g))/~R~(Y (g)) satisfies

~kx±ik 7−→ x±ik, ~khir 7−→ hik ∀ i ∈ I and k > 0.

Moreover, $◦Ψ~ sends the ideal ~Y~(g) to zero and thus factors through the quotient
Y~(g)/~Y~(g) to give Ψ0 : Y0(g) → grY (g). After using Proposition 2.6 and Theo-
rem 6.9 to identify both the domain and codomain of Ψ0 with U(s), Ψ0 becomes the
identity map.

Now suppose that there is a nonzero X ∈ KerΨ~. Let m be the maximal non-
negative integer such that X = ~mY for some Y ∈ Y~(g) (that m is finite follows
from the fact that Y~(g) is Z>0-graded with deg ~ = 1). Since Ψ~ is a C[~]-algebra
morphism and R~(Y (g)) is torsion free, Y ∈ KerΨ~. By maximality ofm, the image Y
of Y in Y0(g) is nonzero. Since Ψ0 : Y0(g) → grY (g) is an isomorphism, Ψ0(Y ) 6= 0.
This is a contradiction as Ψ0(Y ) = Ψ~(Y ) = 0. Therefore Ψ~ is injective, and thus
an isomorphism.

To prove that Y~(g) is a flat deformation of U(s), it remains to see that it is flat
(or equivalently, torsion free) as a C[~]-module. This is a consequence of the fact that
it embeds into the torsion free space Y (g)[~], and hence is itself torsion free. �
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Appendix

Let π : U(g) → End(V ) be a faithful representation of an arbitrary complex Lie
algebra g. Let ∆ and ε denote the standard coproduct and counit of U(g), respectively.

For each k > 0, set

πk = π⊗k ◦∆(k−1) : U(g) −→ End(V )⊗k ⊂ End(V ⊗k),

where ∆(k) : U(g)→ U(g)⊗(k+1) is defined recursively by ∆(0) = id and

∆(k) = (id⊗(k−1) ⊗∆) ◦∆(k−1).

By coassociativity, how this is defined is not important. By convention, π0 is the
counit ε. We then define

Ψ : U(g) −→
∏
k∈N

End(V ⊗k), prn ◦Ψ = πn ∀n ∈ N.

Here N is the set of non-negative integers and prn :
∏
k∈N End(V ⊗k)→ End(V ⊗n) is

the n-th projection homomorphism.

Theorem A.1. — Ψ is an injective homomorphism of algebras.

We first prove the theorem in §A.1 given the following assumption:

(A) idV /∈ π(g).

In particular, this holds when g has a trivial center. We will then explain in §A.2 how
to generalize to the case where idV ∈ π(g).

Let us set gπ = π(g); by the faithfulness of π, this is a Lie subalgebra of gl(V )

isomorphic to g. We also let {F k}k∈N be the standard filtration on U(g) (so that
gr(U(g)) ∼= S(g)).

A.1. Proof of Theorem A.1 given (A). — Since U(g) =
⋃
k∈N F k, it suffices to show

that Ψ|F k is injective for each k ∈ N. We will in fact prove the stronger assertion of
the following lemma:

Lemma A.2. — For each k ∈ N, πk|F k : F k → End(V )⊗k is injective.

Proof. — The case k = 0 is trivial, so let us fix k > 1. It suffices to prove that

(A.1) Ker(πk) ∩ (F ` r F `−1) = ∅ ∀ 1 6 ` 6 k.

Fix any such ` and define S`(gπ)k by

S`(gπ)k = ι`,k(S`(gπ)),

where ι`,k is the embedding

ι`,k : g⊗`π −→ g⊗`π ⊗ (C · idV )⊗(k−`) ⊂ End(V )⊗k, X 7−→ X ⊗ id
⊗(k−`)
V .

Let E`,k ⊂ End(V )⊗k be given by

E`,k = SpanC{y1 ⊗ · · · ⊗ yk : yi ∈ End(V ), ya = idV for some 1 6 a 6 `}.
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This space satisfies E`,k ∩ ι`,k(g⊗`) = {0} and thus E`,k ∩ S`(gπ)k = {0}, as can be
seen by extending any basis of gπ to a basis of End(V ) containing idV and applying
the assumption (A). We may therefore choose a linear projection

P`,k : End(V )⊗k � S`(gπ)k with P`,k|E`,k = 0.

Consider the composite

ω`,k = P`,k ◦ πk|F ` : F ` −→ S`(gπ)k.

Claim. — ω`,k(F `−1) = 0.

Consider a product x1 · · ·xm with xi ∈ g and m 6 `− 1. Since

∆(k−1)(xi) =

k∑
a=1

(xi)a, where (x)a = 1⊗(a−1) ⊗ x⊗ 1⊗(k−a),

we have

(A.2) πk(x1 · · ·xm) =

k∑
a1,...,am=1

(π(x1))a1 · · · (π(xm))am ∈ E`,k.

Applying P`,k then gives ω`,k(x1 · · ·xm) = 0, from which the claim follows.
Consequently, ω`,k induces a linear map

$`,k : F `/F `−1 −→ S`(gπ)k.

To complete the proof of (A.1), it is enough to show that $`,k is injective. In fact, it
is an isomorphism.

Claim. — $`,k is an isomorphism.

This is essentially just the PBW theorem for U(g). Using the formula (A.2) with
m = `, we find that

πk(x1 · · ·x`) ≡
∑

16ai6`
ai 6=aj ∀ i 6=j

(π(x1))a1 · · · (π(x`))a` mod E`,k

≡
∑
σ∈S`

π(xσ(1))⊗ · · · ⊗ π(xσ(`)) mod E`,k

It follows that
$`,k(x1 · · ·x`) =

∑
σ∈S`

π(xσ(1))⊗ · · · ⊗ π(xσ(`)).

By the PBW theorem for U(g), we already know F `/F `−1
∼= S`(g) and, after viewing

S`(g) as the subspace of g⊗` consisting of symmetric tensors (as we have been doing
above), the standard identification is given by the symmetrizing map

x1 · · ·x` 7−→
1

`!

∑
σ∈S`

xσ(1) ⊗ · · · ⊗ xσ(`).

After identifying g with gπ and renormalizing, this is precisely $`,k. Hence $`,k is an
isomorphism. �
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A.2. Proof of Theorem A.1 in general. — We now consider the case where idV ∈
π(g). In this case g has a non-trivial central element 1 such that

π(1) = idV .

Choose a subspace a of g complementary to C1 (not necessarily a Lie subalgebra
of g). Let us fix an ordered basis {xλ}λ∈Λ of a, and let U denote the subspace of U(g)

spanned by ordered monomials in this basis. In particular, we have the vector space
decomposition

U(g) ∼= C[1]⊗U .

The standard filtration F k on U(g) induces a filtration {F a
k}k∈N on U given by

F a
k = F k ∩U . Let πa

k = πk|U .

Claim. — πa
k|F a

k
: F a

k → End(V )⊗k is injective for each k ∈ N.

The claim does not automatically follow from Lemma A.2 since a may not be a
Lie subalgebra of g and hence πa

k is no longer a Lie algebra representation. However,
the proof of Lemma A.2 does still go through in our present setting; one just needs
to know that the symmetrization map still provides an isomorphism

F a
k/F

a
k−1

∼−→ Sk(a) ∀ k > 1,

which is a consequence of the Poincaré-Birkhoff-Witt theorem for g.
Now let X ∈ U(g) be an arbitrary element. Choose ` ∈ N such that X ∈ F `. Then

X = P (1), where P (1) is a polynomial in 1 with coefficients in U of degree at most `.
Since πk(1) = k · idV ⊗k for each k, we have

πk(X) = πa
k(P (k)) ∀ k ∈ N.

It follows that if Ψ(X) = 0, then P (k) ∈ Ker(πa
k) for all k ∈ N. Moreover, by

assumption, P (k) belongs to F a
` for each k. By the above claim, this means that

P (k) = 0 for all k > `. This is only possible if X = P (1) = 0. �
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