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1 Introduction and notation

In this paper we use the type-I seesaw mechanism [1–5] for suppressing the light-neutrino

masses. Let `L and `R be 3×1 column matrices that subsume the three left-handed and the

three right-handed, respectively, charged-lepton fields; let νL and νR analogously subsume

the three left-handed and the three right-handed neutrino fields. The lepton mass terms

are given by

Lmass = −`LM``R − νRMDνL −
1

2
νRMRCνR

T + H.c., (1.1)

where C is the charge-conjugation matrix in Dirac space. We have added to the Standard

Model three right-handed neutrinos with Majorana mass terms subsumed by the 3 × 3

symmetric matrix (in flavour space) MR. In all the models in this paper the charged-

lepton mass matrix M` is diagonal:

M` = diag (ae, aµ, aτ ) , (1.2)

where |aα| = mα for α = e, µ, τ . The neutrino Dirac mass matrix MD is also diagonal in

all our models:

MD = diag (be, bµ, bτ ) . (1.3)

The seesaw mechanism takes place when the matrix MR is invertible and its eigenvalues

are much larger than the |bα|. One then obtains an effective light-neutrino Majorana

mass matrix

Mν =M(1)
ν +M(2)

ν + · · · , (1.4)
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where [6]

M(1)
ν = −MT

DM
−1
R MD, (1.5a)

M(2)
ν = MT

DM
−1
R

MDM
†
DM

−1
R

∗
+M−1R

∗
M∗DM

T
D

2
M−1R MD. (1.5b)

We shall use the approximation Mν = M(1)
ν . Therefore, defining N ≡ M−1ν , one has in

our models

Nαβ = −
(MR)αβ
bαbβ

. (1.6)

Suppose the |bα| are at the Fermi mass scale mFermi and the eigenvalues of MR are at

the much larger mass scale mseesaw. Then, neglecting M(2)
ν as compared to M(1)

ν is an

approximation of order (mFermi /mseesaw )2. The diagonalization of Mν proceeds as

UTMνU = diag (m1, m2, m3) , (1.7)

or

N = U × diag

(
1

m1
,

1

m2
,

1

m3

)
× UT , (1.8)

where m1,2,3 are the light-neutrino masses; they are non-negative real. Since the charged-

lepton mass matrix is diagonal from the start, U in equation (1.7) is the lepton mixing

matrix. We use the parameterization in ref. [7]:

U =

 c12c13 s12c13e
iα21/2 ε∗eiα31/2

−s12c23 − c12s23ε (c12c23 − s12s23ε) eiα21/2 s23c13e
iα31/2

s12s23 − c12c23ε (−c12s23 − s12c23ε) eiα21/2 c23c13e
iα31/2

 , (1.9)

where ε ≡ s13 exp (iδ), cij = cos θij , and sij = sin θij for ij = 12, 23, 13. Three differ-

ent groups of phenomenologists [8–11] have derived, from the data provided by various

neutrino-oscillation experiments, values for the mixing angles θ12,23,13, for the phase δ, and

for the neutrino squared-mass differences.

In general the matrixMν determines nine observables: the three neutrino masses, the

three mixing angles, the Dirac phase δ, and the Majorana phases α21 and α31. If Mν

contains less than nine independent rephasing-invariant parameters — i.e., quantities that

are invariant under (Mν)αβ → (Mν)αβ exp [i (ξα + ξβ)], where the three phases ξe,µ,τ are

arbitrary — then there will be some relations (sometimes called ‘sum rules’) among the

nine observables. This happens in particular whenMν has two ‘texture zeroes’: if two out

of the six independent matrix elements ofMν vanish, then there are four sum rules among

the nine observables (because each vanishing matrix element is in general complex). Seven

viable two-texture-zero cases have been identified in ref. [12].1 Other viable cases — or

sometimes full models — in which there are four sum rules among the observables have

been discovered, for instance, in refs. [13] and [14].

In this paper we want to present new models with four sum rules that agree, at the

1σ level, with the phenomenological data in at least one of the three refs. [8–11]. We

1One of those seven cases (case C) is now excluded by the cosmological upper bound on m1 +m2 +m3.
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emphasize that ours are renormalizable models stabilized by well-defined symmetries; they

are not just “cases” or Ansätze. We shall present models that predict

model 1 : Nττ = 0 and Nee (Nµτ )2 = −Nµµ (Neτ )2 , (1.10a)

model 2 : Nµµ = 0 and Nee (Nµτ )2 = −Nττ (Neµ)2 , (1.10b)

model 3 : Neµ = 0 and Nee (Nµτ )2 = −Nµµ (Neτ )2 , (1.10c)

model 4 : Nµµ = 0 and Nee (Nµτ )2 = Nττ (Neµ)2 , (1.10d)

model 5 : Nµµ = 0 and
∣∣∣Nττ (Neµ)2

∣∣∣2 − ∣∣∣Nee (Nµτ )2
∣∣∣2 (1.10e)

= 2
(
|Neµ|2NµτNeτN ∗ττN ∗eµ − |Nµτ |

2NeeNµτN ∗eτN ∗eµ
)
,

model 6 : Nee = 0 and Nµµ (Neτ )2 = Nττ (Neµ)2 , (1.10f)

model 7 : Nee = 0 and
∣∣∣Nττ (Neµ)2

∣∣∣2 − ∣∣∣Nµµ (Neτ )2
∣∣∣2 (1.10g)

= 2
(
|Neµ|2NµτNeτN ∗ττN ∗eµ − |Neτ |

2NµµNeτN ∗µτN ∗eµ
)
.

Equations (1.10) may be cast in the simpler form

model 1 : Nττ = 0 and Aeµ =
1

2
; (1.11a)

model 2 : Nµµ = 0 and Aeτ =
1

2
; (1.11b)

model 3 : Neµ = 0 and Aττ = 1 ; (1.11c)

model 4 : Nµµ = 0 and Aee = Aττ ; (1.11d)

model 5 : Nµµ = 0 and Aee = A∗ττ ; (1.11e)

model 6 : Nee = 0 and Aµµ = Aττ ; (1.11f)

model 7 : Nee = 0 and Aµµ = A∗ττ , (1.11g)

where the matrix A is defined through [15]

Aαβ ≡ Nαβ
(
N−1

)
αβ

= (Mν)αβ
(
M−1ν

)
αβ

(1.12)

(no summation over α and β is understood). In our models, because of equation (1.6),

Aαβ = (MR)αβ
(
M−1R

)
αβ
. (1.13)

In section 2 we shall present models 1 and 3. In section 3 we shall present models 4

and 5. Since equations (1.10b) are the same as equations (1.10a) after a µ–τ interchange,

and since equations (1.10f) and (1.10g) are the same as equations (1.10d) and (1.10e),

respectively, after an e–µ interchange, our models 1, 4, and 5 can also be identified as

models 2, 6, and 7, respectively, if one labels the charged leptons in a different manner.

– 3 –
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An analysis of the practical consequences of our sum rules is deferred to section 4; it turns

out that models 1–5 agree with the data at the 1σ level when the neutrino mass ordering

is normal (‘NO’), viz. m1 < m2 < m3, while models 6 and 7 agree with the data at the

1σ level when the neutrino mass ordering is inverted (‘IO’), viz. m3 < m1 < m2. A short

summary of our findings is attempted in section 5.

2 Models 1 and 3

The models in this section are inspired by those in ref. [16], viz. they are based on the idea

of a (leading-order) antisymmetry of MR under an e–µ interchange.

All the models in this paper have gauge group SU(2) × U(1). There are three left-

handed-lepton gauge-SU(2) doublets Dα = (ναL, αL)T , three right-handed charged-lepton

SU(2) singlets αR, and three right-handed-neutrino gauge singlets ναR. In all the models

in this paper we use two scalar gauge-SU(2) doublets φ1 and φ2.
2 Let va (a = 1, 2) denote

the vacuum expectation values (VEVs) of the neutral components φ0a of φa =
(
φ+a , φ

0
a

)T
.

We define φ̃a ≡ iτ2φ∗a =
(
φ0a
∗
, −φ−a

)
.

In the models in this section there is one complex scalar gauge singlet S. We introduce

the flavour-lepton-number symmetries Lα; the dimension-four terms in the Lagrangian

respect those symmetries but lower-dimension terms are allowed to break them. Thus, in

these models there is soft symmetry breaking (besides spontaneous symmetry breaking).3

The multiplets Dα, αR, and ναR have U(1) charge +1 under Lα and U(1) charges 0 under

the Lβ with β 6= α. We also enforce a Z4 symmetry that interchanges e and µ:4

De → iDµ, Dµ → iDe, Dτ → iDτ , (2.3a)

eR → iµR, µR → ieR, τR → iτR, (2.3b)

2The models in ref. [16] had three scalar doublets. In the models of this paper we need only two.
3Soft (super)symmetry breaking is widely used in model-buiding — notably, it is always used in super-

symmetric model building. Soft breaking consists in a symmetry holding in all the Lagrangian terms of

dimension higher than some value, but not holding for the Lagrangian terms of dimension smaller than, or

equal to, that value. In our case, the family-lepton-number symmetries hold for terms of dimension four but

are broken by terms of dimension three, viz. the terms in equation (2.6). In principle, a model with a softly

broken symmetry should eventually be justified through an ultraviolet completion, viz. a more complete

model, with extra fields active at higher energies, which effectively mimics at lower energy scales the model

with the softly-broken symmetry. Unfortunately, an ultraviolet completion may be difficult to construct

explicitely. In its absence, a softly broken (super)symmetry constitutes a non-trivial assumption. This may

be considered to be a weakness of models 1–3 in this paper.
4The full symmetry group of the model is G =

{[
U(1)Le ×U(1)Lµ

]
o Z4

}
× U(1)Lτ . Here, the Z4

subgroup of G is formed by the matrices(
1 0 0
0 1 0
0 0 1

)
,

(
0 i 0
i 0 0
0 0 1

)
,

(−1 0 0
0 −1 0
0 0 1

)
,

(
0 −i 0
−i 0 0
0 0 1

)
. (2.1)

The normal subgroup N = U(1)Le ×U(1)Lµ ×U(1)Lτ of G is formed by the matrices(
ei(pα+qβ) 0 0

0 ei(rα+sβ) 0
0 0 eitγ

)
, (2.2)

where p, q, r, s, and t are integers and α, β, and γ are the phases that generate U(1)Le , U(1)Lµ , and

U(1)Lτ , respectively. Every matrix g ∈ G may be written in a unique way as g = nh, where n ∈ N and

h ∈ Z4. The multiplication rule is (nh, n′h′) =
(
nhn′h−1, hh′

)
; notice that hn′h−1 ∈ N because N is a

normal subgroup, hence nhn′h−1 is also in N .

– 4 –
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νeR → iνµR, νµR → iνeR, ντR → iντR, (2.3c)

φ2 → −φ2, S → −S. (2.3d)

The Yukawa Lagrangian coupling the leptons to the scalar doublets is therefore

LYφ = −y1DττRφ1 − y2
(
DeeR +DµµR

)
φ1 (2.4a)

−y3
(
DeeR −DµµR

)
φ2 (2.4b)

−y4DτντRφ̃1 − y5
(
DeνeR +DµνµR

)
φ̃1 (2.4c)

−y6
(
DeνeR −DµνµR

)
φ̃2 + H.c. (2.4d)

Therefore, the charged-lepton mass matrix and the neutrino Dirac mass matrix are diagonal

as anticipated in equations (1.2) and (1.3), respectively, with5

aτ = y1v1, ae = y2v1 + y3v2, aµ = y2v1 − y3v2,
bτ = y∗4v1, be = y∗5v1 + y∗6v2, bµ = y∗5v1 − y∗6v2.

(2.5)

The doublet φ2 and its Yukawa couplings in lines (2.4b) and (2.4d) are needed so that

me 6= mµ and be 6= bµ.

There are right-handed-neutrino Majorana mass terms

LMν =
m∗

2

(
νTeRC

−1νeR − νTµRC−1νµR
)

+m′
∗
νTτRC

−1 (νeR − νµR) + H.c. (2.6)

The terms in LMν violate the family-lepton-number symmetries Lα; this is allowed because

those terms have mass dimension three. However, LMν is not allowed to break Z4, which

is broken spontaneously but not softly.

Model 1: in this model the singlet S has Le = Lµ = +1 and Lτ = 0. There is then a

coupling

LS = ysS νeR C νµR
T + H.c., (2.7)

where ys is a Yukawa coupling constant. The Majorana mass matrix of the right-handed

neutrinos is

MR =

 m ysw m′

ysw −m −m′

m′ −m′ 0

 , (2.8)

where w is the VEV of S.6 Using equation (1.6), it is now obvious that equa-

tions (1.10a) hold.

Because the family-lepton-number symmetries are softly broken, terms proportional to

S2, φ†1φ2S, and φ†1φ2S
∗ (and their Hermitian conjugates) are present in the scalar potential

even while S carries family lepton numbers. Those terms eliminate the Goldstone boson

that would appear if the (continuous) family-lepton-number symmetries were broken solely

through w 6= 0.

5Since |ae| = me � |aµ| = mµ, a finetuning is necessary to make y3v2 ≈ −y2v1. This finetuning may be

justified through an additional symmetry [17]. We shall not pursue that idea here.
6We assume that ysw, m, and m′ are all of the same order of magnitude mseesaw.
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Model 3: in this model the singlet S has Le = Lµ = 0 and Lτ = +2. There is a coupling

LS =
ysS

2
ντR C ντR

T + H.c. (2.9)

Then,

MR =

 m 0 m′

0 −m −m′

m′ −m′ ysw

 . (2.10)

The matrix N then satisfies equations (1.10c).

3 Models 4 and 5

The models in this section use two complex scalar gauge singlets S1 and S2 and one real

singlet S3; thus, their scalar sector is larger than the one of the models of the previous

section. In this section we do not employ soft symmetry breaking. We use a symmetry

Z
(1)
4 × Z

(2)
4 , where

Z
(1)
4 :


(eR, νeR, De)→ i (eR, νeR, De) ,

(τR, ντR, Dτ )→ −i (τR, ντR, Dτ ) ,

S1 → iS1, S2 → −iS2, S3 → −S3,
(3.1a)

Z
(2)
4 :

{
(µR, νµR, Dµ)→ i (µR, νµR, Dµ) ,

S1 → iS1, S2 → iS2.
(3.1b)

This symmetry allows for the Yukawa Lagrangian

LY = −
(
y1DµµR + y2DeeR + y3DττR

)
φ1

−
(
y4DµµR + y5DeeR + y6DττR

)
φ2

−
(
y7DµνµR + y8DeνeR + y9DτντR

)
φ̃1

−
(
y10DµνµR + y11DeνeR + y12DτντR

)
φ̃2

−νµRC
(
y13νeR

TS1 + y14ντR
TS2

)
−y15

2
νeRCνeR

TS3 −
y16
2
ντRCντR

TS3 + H.c. (3.2)

The charged-lepton mass matrix and the neutrino Dirac mass matrix are given by equa-

tions (1.2) and (1.3), respectively, with

aµ = y1v1 + y4v2, ae = y2v1 + y5v2, aτ = y3v1 + y6v2,

bµ = y∗7v1 + y∗10v2, be = y∗8v1 + y∗11v2, bτ = y∗9v1 + y∗12v2.
(3.3)

The symmetry (3.1) also allows a bare Majorana mass term

−mνeRCντR
T + H.c. (3.4)

The Majorana mass matrix of the right-handed neutrinos is then

MR =

 y15w3 y13w1 m

y13w1 0 y14w2

m y14w2 y16w3

 , (3.5)

– 6 –
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where wk = 〈0 |Sk| 0〉 for k = 1, 2, 3. Note that w3 is real because S3 is a real scalar field.

The matrix element (MR)22 is zero because of the symmetry Z
(2)
4 . We assume |y13w1|,

|y14w2|, |y15w3|, |y16w3|, and m to be all at the same order of magnitude mseesaw.

3.1 Model 4

In model 4 there is an additional Z2 symmetry

Z2 : eR ↔ τR, νeR ↔ ντR, De ↔ Dτ , S1 ↔ S2, φ2 → −φ2. (3.6)

This symmetry does not constrain the bare mass term (3.4); in the Yukawa Lagrangian (3.2)

it makes

y3 = y2, y4 = 0, y6 = −y5, (3.7a)

y9 = y8, y10 = 0, y12 = −y11, (3.7b)

y14 = y13, y16 = y15, (3.7c)

so that

mµ = |y1v1| , me = |y2v1 + y5v2| , mτ = |y2v1 − y5v2| (3.8)

recquires a finetuning to make y5v2 ≈ −y2v1. Because of equations (3.7c), we now have

MR =

 y15w3 y13w1 m

y13w1 0 y13w2

m y13w2 y15w3

 (3.9)

instead of equation (3.5). Then assuming w2
1 = w2

2, one recovers equation (1.10d) as desired.

The symmetries Z
(1)
4 of equation (3.1a) and Z2 of equation (3.6) together generate the

non-Abelian group D8 (the dihedral group with eight elements). The symmetry Z
(2)
4 of

equation (3.1b) commutes with both Z
(1)
4 and Z2, i.e. it commutes with D8. The group D8

has five irreducible representations: the 2 and the 1pq, where both p and q may be either

+1 or −1. The Clebsch-Gordan series are

2⊗ 2 = 1++ ⊕ 1−− ⊕ 1+− ⊕ 1−+, 2⊗ 1pq = 2, 1pq ⊗ 1p′q′ = 1pp′,qq′ . (3.10)

Under D8,

µR, νµR, Dµ, φ1 are 1++, (3.11a)

φ2 is 1+−, (3.11b)

S3 is 1−+, (3.11c)(
eR
τR

)
,

(
νeR
ντR

)
,

(
De

Dτ

)
,

(
S1
S2

)
are 2. (3.11d)

– 7 –
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In order to justify the assumption w2
1 = w2

2, one must look at the potential of the

scalar singlets, which is

VS = µ1

(
|S1|2 + |S2|2

)
+ µ2S

2
3 + λ1

(
|S1|2 + |S2|2

)2
+ λ2S

4
3 + λ3

(
|S1|2 + |S2|2

)
S2
3

+4λ4 |S1S2|2 + m̄S3 (S∗1S2 + S∗2S1) + 2λ5

[
(S∗1S2)

2 + (S∗2S1)
2
]

+
[
λ6
(
S4
1 + S4

2

)
+ 2λ7 (S1S2)

2 + H.c.
]
, (3.12)

where λ6 and λ7 are complex and all the other couplings are real. We write

w1 = w cos
θ

2
eiχ/4 e−iψ/2, (3.13a)

w2 = w sin
θ

2
eiχ/4 eiψ/2, (3.13b)

where w is positive and 0 ≤ θ ≤ π. Defining V0 ≡ 〈0 |VS | 0〉, we then have

V0 = µ1w
2 + µ2w

2
3 + λ1w

4 + λ2w
4
3 + λ3w

2w2
3 (3.14a)

+λ4w
4 sin2 θ + m̄w3w

2 sin θ cosψ + λ5w
4 sin2 θ cos (2ψ) (3.14b)

+w4 cosχ
[(

1 + cos2 θ
)

cos (2ψ)<λ6 + 2 cos θ sin (2ψ)=λ6 + sin2 θ<λ7
]

(3.14c)

+w4 sinχ
[
2 cos θ sin (2ψ)<λ6 −

(
1 + cos2 θ

)
cos (2ψ)=λ6 − sin2 θ=λ7

]
. (3.14d)

This may be minimized relative to the phase χ, yielding

V0 = lines (3.14a) and (3.14b)

−lw4
{[

4 cos2 θ + sin4 θ cos2 (2ψ)
]

cos2 α+ sin4 θ sin2 α

+
(
1 + cos2 θ

)
sin2 θ cos (2ψ) sin (2α) cosλ

+2 cos θ sin2 θ sin (2ψ) sin (2α) sinλ
}1/2

, (3.15)

where the square root is non-negative and we have defined l > 0, α ∈ [0, π/2], and the

phase λ through

|λ6| = l cosα, (3.16a)

|λ7| = l sinα, (3.16b)

2λ6λ
∗
7 = l2 sin (2α) eiλ. (3.16c)

In order to justify w2
1 = w2

2, we want the minimum of V0 in equation (3.15) to lie either

at θ = π/2 or θ = 3π/2, together with either ψ = 0 or ψ = π, without necessitating the

parameters of the potential to obey any constraining equation. We have therefore looked

for the minimum of the function

f (θ, ψ) = A sin2 θ +B sin θ cosψ + C sin2 θ cos (2ψ)

−
{[

4 cos2 θ + sin4 θ cos2 (2ψ)
]

cos2 α+ sin4 θ sin2 α

+
(
1 + cos2 θ

)
sin2 θ cos (2ψ) sin (2α) cosλ

−2 cos θ sin2 θ sin (2ψ) sin (2α) sinλ
}1/2

(3.17)

– 8 –
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for various values of the parameters A ≡ λ4/l, B ≡ m̄w3/l, C ≡ λ5/l, α ≡ arctan |λ7/λ6|,
and λ ≡ arg (λ6λ

∗
7). We have discovered that, for instance in the continuous domain

−0.25 < A < −0.10, −7 < B < −3, −6 < C < −2, 0.2 < α < 0.6, and π < λ < 2π the

minimum of f (θ, ψ) always lies at the desired point θ = π/2, ψ = 0. Thus, w1 = w2 is a

possible absolute minimum of the potential and does not require its parameters to obey

any constraint equation.

At low energy, the minimum with w2
1 = w2

2 will be perturbed by the term in the

potential φ†1φ2

(
|S1|2 − |S2|2

)
, which is invariant under D8 × Z(2)

4 . However, that term is

of order (mFermi /mseesaw )2 � 1 relative to the potential in equation (3.12). We neglect

that term just as we neglectM(2)
ν when compared toM(1)

ν in equation (1.5); we consistently

work in the approximation (mFermi /mseesaw )2 → 0.

Terms in the scalar potential like φ†1φ1 (S3)
2 and φ†1φ2

(
|S1|2 − |S2|2

)2
tend to draw

mFermi (the mass scale of the VEVs v1 and v2) to the vicinity of mseesaw (the mass scale

of w and w3). This problem arises in any model with two very distinct mass scales in the

scalar sector; we have no cure to offer to it.

3.2 Model 5

Instead of the Z2 symmetry (3.6), in model 5 we employ the CP symmetry7

µR (x)→ iγ0CµR
T (x̄) , eR (x)→ iγ0CτR

T (x̄) , τR (x)→ iγ0CeR
T (x̄) ,

νµR (x)→ iγ0CνµR
T (x̄) , νeR (x)→ iγ0CντR

T (x̄) , ντR (x)→ iγ0CνeR
T (x̄) ,

Dµ (x)→ iγ0CDµ
T

(x̄) , De (x)→ iγ0CDτ
T

(x̄) , Dτ (x)→ iγ0CDe
T

(x̄) ,

φ1 (x)→ φ∗1 (x̄) , φ2 (x)→ −φ∗2 (x̄) ,

S1 (x)↔ S∗2 (x̄) , S3 (x)→ S3 (x̄) ,

(3.18)

where x = (t, ~r) and x̄ = (t, −~r). This CP symmetry is compatible with the symmetries

Z
(1)
4 and Z

(2)
4 in equations (3.1). Indeed, it may easily be verified that the CP transforma-

tion (3.18) followed by the Z
(1)
4 transformation and followed by the transformation (CP )−1

is identical to Z
(1)
4 ; while the successive application of CP , Z

(2)
4 , and (CP )−1 is equivalent

to the successive application of Z
(2)
4 three times.8 This demonstrates the compatibility [18].

In the Lagrangian (3.2), the CP symmetry (3.18) enforces

y∗1 = y1, y∗3 = y2, y∗4 = −y4, y∗6 = −y5, (3.19a)

y∗7 = y7, y∗9 = y8, y∗10 = −y10, y∗12 = −y11, (3.19b)

y∗14 = y13, y∗16 = y15, (3.19c)

hence

mµ = |y1v1 + y4v2| , me = |y2v1 + y5v2| , mτ = |y∗2v1 − y∗5v2| . (3.20)

7The CP symmetry must be extended to the quark sector. It must be spontaneously broken, since we

know that CP is not a symmetry of Nature. The detailed treatment of those important issues is beyond

the scope of this paper.
8Note that (CP )−1 = CP for bosons but (CP )−1 = −CP for fermions.
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Moreover, in equation (3.4) m becomes real. Because of equation (3.19c) one has

MR =

 y15w3 y13w1 m

y13w1 0 y∗13w2

m y∗13w2 y
∗
15w3

 , (3.21)

with real m. If one assumes |w1| = |w2|,9 then one recovers equations (1.11e).

With the CP symmetry (3.18) instead of the Z2 symmetry (3.6), the potential of the

scalar singlets is

VS =µ1

(
|S1|2 + |S2|2

)
+ µ2S

2
3 + λ1

(
|S1|2 + |S2|2

)2
+ λ2S

4
3 + λ3

(
|S1|2 + |S2|2

)
S2
3

+ 4λ4 |S1S2|2 +
[
m̄S3S

∗
1S2 + 2λ5 (S∗1S2)

2 + λ6

(
S4
1 + S∗2

4
)

+ H.c.
]

+ 2λ7

[
(S1S2)

2 + H.c.
]
, (3.22)

with complex m̄, λ5, and λ6 but real λ7. Hence,

V0 =µ1w
2 + µ2w

2
3 + λ1w

4 + λ2w
4
3 + λ3w

2w2
3

+ w3w
2 sin θ (<m̄ cosψ + =m̄ sinψ)

+ w4 sin2 θ [λ4 + <λ5 cos (2ψ) + =λ5 sin (2ψ)]

+ w4
(
1 + cos2 θ

)
cosχ [sin (2ψ)=λ6 + cos (2ψ)<λ6]

+ 2w4 cos θ sinχ [sin (2ψ)<λ6 − cos (2ψ)=λ6]
+ λ7w

4 sin2 θ cosχ. (3.23)

This is minimized relative to the vacuum phase χ, producing

V0 = µ1w
2 + µ2w

2
3 + λ1w

4 + λ2w
4
3 + λ3w

2w2
3

+w3w
2 sin θ (<m̄ cosψ + =m̄ sinψ)

+w4 sin2 θ [λ4 + <λ5 cos (2ψ) + =λ5 sin (2ψ)]

−w4
{

4 |λ6|2 cos2 θ + [<λ6 cos (2ψ) + =λ6 sin (2ψ)]2 sin4 θ + λ27 sin4 θ

+2λ7 sin2 θ
(
1 + cos2 θ

)
[<λ6 cos (2ψ) + =λ6 sin (2ψ)]

}1/2
. (3.24)

We require |w1| = |w2|, i.e. either θ = π/2 or θ = 3π/2 at the minimum of V0 in equa-

tion (3.24). We have examined the function

g (θ) = A sin2 θ +B sin θ −
√

cos2 θ + (C2 +D2) sin4 θ + 2CD sin2 θ (1 + cos2 θ) (3.25)

for various values of the input parameters A, B, C, and D and we have found that, for

instance when10 −9 < A < −3, −4 < B < −2, −0.2 < C < −0.1, and 0.5 < D < 1.2

the minimum of g (θ) always is at the desired value θ = π/2. Thus, there is a non-

zero-dimension domain of the parameters of the potential for which its minimum is the

desired one.
9One does not need to assume w1 = w∗2 ; indeed, |w1| = |w2| suffices.

10We only give explicitly a continuous range of the parameters of the potential for which the wished-for

minimum obtains; but, of course, there is a much vaster range of parameters where the same minimim also

occurs.
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4 Confrontation with the phenomenological data

4.1 Introduction

We have tested the four sets of conditions (α 6= β 6= γ 6= α)

(a)
(
M−1ν

)
αα

= 0 and Aβγ = 1/2, (4.1a)

(b) Aαα = 1 and
(
M−1ν

)
βγ

= 0, (4.1b)

(c)
(
M−1ν

)
αα

= 0 and Aββ = Aγγ , (4.1c)

(d)
(
M−1ν

)
αα

= 0 and Aββ = A∗γγ (4.1d)

against the phenomenological data [8–11], both for the three choices of α (e, µ, or τ)

and for the two choices of neutrino mass ordering (NO or IO). Thus, we have tested 12

different models and, for each of them, two mass orderings. We have found that, out of the

24 possibilities, seven models and mass orderings are viable — in the sense that we shall

explain below — viz. models 1–5 for NO and models 6 and 7 for IO, cf. the listing (1.11).

In this section we study in some detail the predictions of each of those models for the

Dirac phase δ and for the neutrino mass observables, viz. the mass of the lightest neutrino

mminimum (mminimum = m1 for NO and mminimum = m3 for IO), the total mass of the

light neutrinos ∑
mν ≡ m1 +m2 +m3, (4.2)

the mass relevant for neutrinoless double-beta decay

mββ ≡
∣∣∣m1c

2
12c

2
13 +m2s

2
12c

2
13e

iα21 +m3s
2
13e

i(α31−2δ)
∣∣∣ , (4.3)

and the mass relevant for standard β decay

mtritium =
√
m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13. (4.4)

We recall the cosmological bound [19, 20]∑
mν < 0.12 eV, (4.5)

which turns out to be relevant in constraining models 4 and 5, but not the other five models.

We have used as input the nine observables δ, α21, α31, s
2
12, s

2
13, s

2
23, mminimum,

∆m2
solar ≡ m2

2 −m2
1, and ∆m2

atmospheric. (Following ref. [10, 11], we define ∆m2
atmospheric =

m2
3 −m2

1 > 0 for NO and ∆m2
atmospheric = m2

3 −m2
2 < 0 for IO.) For each set of input ob-

servables, we have computed firstly the matrix N by using equation (1.8) and secondly the

A-matrix elements Aαβ = Nαβ
(
N−1

)
αβ

. We have numerically generated thousands of sets

of input observables that reproduce each of our constraint equations (4.1) with extremely

great accuracy.11

11Our method differs from the one suggested in a recent paper [21], where the constraint equations are

enforced only up to some allowed deviation. We use Lagrange multipliers just as ref. [21] did, but in our case

their values are much smaller than in ref. [21] and therefore the model’s constraints are enforced to much

greater precision. Explicitly, the constraints
(
M−1

ν

)
αβ

= 0 become in our fits
∣∣∣(M−1

ν

)
αβ

∣∣∣ . 10−9 eV−1,

where ‘.’ stands for “smaller than and sometimes even some orders of magnitude smaller than”; the

constraints involving the matrix A are realized with errors . 10−9.
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We have firstly tested our models in the following way. We have searched for sets of

input observables such that all six observables s212, s
2
13, s

2
23, δ, ∆m2

solar, and ∆m2
atmospheric

are inside their respective 1σ Confidence Level (CL) intervals for any one of the three

phenomenological fits [8–11]. If we were able to satisfy the constraints of one of our

models and mass orderings through observables fully inside the 1σ ranges of one of the

phenomenological fits, then we have classified that model and mass ordering as viable. To

be explicit, we have found that both models 1 and 3 for NO and models 6 and 7 for IO

can be met through input observables inside the 1σ intervals of either ref. [8], ref. [9], or

ref. [10, 11]; while models 2, 4, and 5 with NO can be satisfied within the 1σ domains of

both ref. [8] and ref. [9]. All other models and mass orderings cannot be reproduced with

1σ CL input through any of the three phenomenological fits; therefore we have discarded

them.

After this choice of viable models, we have proceeded to analyze each model in more

detail. We have followed in this endeavour ref. [21] and we have used exclusively the

phenomenological fit of ref. [10, 11].12 In ref. [10, 11], the χ2 profiles of s223 and δ are not

symmetrical relative to the best-fit values; moreover, those two observables are correlated

with each other much more strongly than (with) the other four oscillation observables. It

makes therefore sense to treat s223 and δ differently from the remaining input.

The input values of the observables never coincide exactly with the best-fit values; in

order to measure the agreement with phenomenology of each of our ‘points’, i.e. sets of

input observables, we have used a function χ2 = χ2
(1) + χ2

(2) + χ2
(3). Here,

•

χ2
(3) =

{
0 for NO

4.71254 for IO
(4.6)

accounts for the fact that the overall quality of the phenomenological fit is poorer

for IO than for NO. The number 4.71254 is the minimum value of the quantities

∆χ2 (X) (where X is successively s212, s
2
13, ∆m2

solar, and ∆m2
atmospheric) depicted in

the blue curves of figure 1 of ref. [10, 11]. Because of χ2
(3), most fits with IO are of

much worse absolute quality than fits with NO, in particular our models 6 and 7 fit

the data much worse than models 1–5.

•

χ2
(1) ≡ ∆χ2

(
s212
)

+ ∆χ2
(
s213
)

+ ∆χ2
(
∆m2

solar

)
+ ∆χ2

(
∆m2

atmospheric

)
− 4χ2

(3) (4.7)

is computed from the relevant four panels13 of figure 1 of ref. [10, 11]. In those four

panels, each ∆χ2 (X) has been minimized relative to all the observables except X. In

practice, we let s212, s
2
13, ∆m2

solar, and ∆m2
atmospheric vary in their allowed 3σ ranges,

i.e. we allow ∆χ2 (X) ≤ 9 for each X.

12We have used the fit that does not include the Super-Kamiokande atmospheric data, i.e. the fit in the

upper part of table 1 of ref. [10, 11].
13∆χ2

(
s212

)
is displayed in the top-left panel, ∆χ2

(
s213

)
is in the bottom-left panel, ∆χ2

(
∆m2

solar

)
is in

the top-right panel, and ∆χ2
(
∆m2

atmospheric

)
is shown in the middle-right panel of figure 1 of ref. [10, 11].
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• We have computed χ2
(2) ≡ ∆χ2

(
s223, δ

)
− χ2

(3) by making a two-dimensional interpo-

lation of the values of ∆χ2
(
s223, δ

)
that were explicitly given for discrete values of

s223 and δ in ref. [10, 11].

For a more efficient sampling of the space of input parameters, we have used global min-

imization algorithms and we have performed the minimization of χ2 for each input point.

Specifically, we have minimized χ2
(1) for various fixed s223 and δ. (This minimization, just

as all others, is performed while keeping the conditions of each respective model obeyed

to an extremely high accuracy, see footnote 11.) In this way, at each point in the s223–δ

plane we have the minimum relative to all the other oscillation parameters. In order to

find the exact value of χ2
minimum, we have added ∆χ2

(
s223
)

and ∆χ2 (δ) to χ2
(1), because

it is much easier to include one-dimensional interpolations of ∆χ2
(
s223
)

and of ∆χ2 (δ) in

a FORTRAN code than to include a two-dimensional interpolation of ∆χ2
(
s223, δ

)
. Later,

we have recalculated all the discovered input parameters by using Mathematica with a

two-dimensional interpolation of ∆χ2
(
s223, δ

)
.

4.2 Models 1–5

Now look at figure 1. Each row of that figure corresponds to the model that is defined

by the conditions that are written in the top-left corner of the left panel of the row, viz.

to models 1, 2, 3, and 4, respectively. All these models are for a normal ordering of the

neutrino masses, thus mminimum = m1. In figure 1, just as in figures 3 and 4, we do not

display any panels corresponding to model 5, because the predictions of models 4 and 5

are almost identical to each other.

In the left panels of figure 1 one sees, in different shades of blue, the 1σ, 2σ, and 3σ CL

regions in the s223–δ plane that are allowed by the phenomenological data of ref. [10, 11].

The stars mark the best-fit value of
(
s223, δ

)
. The blue regions in the left panels are identical

in all four rows of figure 1. The red regions in those panels are specific to each model; they

consist of points that

(a) perfectly obey each model’s constraints,

(b) satisfy the cosmological bound (4.5),

(c) and have χ2
(1) − χ

2
(1),minimum ≤ 11.83, where χ2

(1),minimum is the smallest value of χ2
(1)

in each region of red points; χ2
(1)−χ

2
(1),minimum ≤ 11.83 corresponds to the 3σ CL for

a Gaussian distribution with two degrees of freedom (in this case, s223 and δ).

Comparing the red regions in the top-two left panels of figure 1 one observes the effects

of µ–τ interchange; the red bands in the second panel are identical to the ones in the first

panel after the transformation s223 → 1− s223, δ → 180◦ + δ. In model 4 (the same is valid

for model 5) there is a strong correlation between s223 and
∑
mν , which is depicted in the

left panel of figure 2. Because of that correlation and of the upper bound (4.5), s223 cannot

be lower than 0.548, as depicted through the pink-shaded area in the bottom-left panel of

figure 1. If it were not for the bound (4.5), s223 would be able to be much lower, as shown

by the dashed red lines in that panel. Another interesting feature of model 4 is a large

– 13 –
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Figure 1. Left panels: the predictions of each model with normal ordering (NO) of the neutrino

masses, and the phenomenologically allowed areas for NO, are displayed in pink and blue colours,

respectively. In the fourth row, the conditions of model 4 are obeyed in the whole area surrounded

by the red line (which might be further extended to lower values of sin2 θ23), but
∑
mν obeys

the cosmological bound (4.5) only in the pink area. Right panels: in different shades of blue, the

1σ, 2σ, and 3σ regions defined by the simultaneous compliance with the model conditions and the

phenomenological data. In the fourth row, only the region satisfying the cosmological bound has

been depicted. The stars mark the best-fit points. Dashed lines at δ = π and s223 = 1/2 have been

drawn just for orientation. More details are given in subsection 4.2.

– 14 –



J
H
E
P
0
7
(
2
0
1
9
)
1
5
7

100 150 200 250 300

0.45

0.50

0.55

0.60

0.65

m [meV]

si
n

2
2

3

E
xc

lu
d

e
d

b
y

P
la

n
c
k

2
0

1
8

0.28 0.30 0.32 0.34

0.45

0.50

0.55

0.60

0.65

sin2
12

Excluded by Planck 2018

Figure 2. The correlation among sin2 θ23, sin2 θ12, and
∑
mν in model 4. The pink-shaded areas

in this figure are equivalent to the pink-shaded area in the bottom-left panel of figure 1. A dashed

line marks the minimum value 0.548 of sin2 θ23.

forbidden zone in the s212–s
2
23 plane; that zone, with low s212 and high s223, can be observed

in the right panel of figure 2.

In the right panels of figure 1 one sees, for each model 1–4, the points that have

χ2−χ2
minimum smaller than 2.3 (1σ or 68.27% CL), 6.18 (2σ or 95.45% CL), and 11.83 (3σ or

99.73% CL). In drawing the right panels we have used the full function χ2 = χ2
(1)+χ

2
(2)+χ

2
(3)

instead of just χ2
(1) like in the left panels — this is the reason why the areas in the right

panels of figure 1 are not equal to the intersection of the pink and blue areas in the left

panels; the pink areas in the left panels were drawn by using only χ2
(1) in equation (4.7),

while the areas in the right panels were drawn by using χ2
(1) + ∆χ2

(
s223, δ

)
. It should be

stressed that, even though all four right panels of figure 1 have a light-blue-coloured zone

corresponding to χ2 − χ2
minimum < 2.3, that does not mean that all four models 1–4 fit the

data equally well, because χ2
minimum is different for the four models. The values of χ2

minimum

are given in the last row of table 1; they make clear that models 1 and 3 agree with the

data almost perfectly, while model 2 is not quite as good and model 4 (and also model 5) is

even worse. For instance, all the points with χ2−χ2
minimum < 2.3 for model 1 have χ2 < 2.7

and are therefore better than even the best point of model 4.

One sees in figure 1 that both models 1 and 3 display two different ‘solutions’, one of

them with δ ∼ −120◦ and the other one with δ ≈ 120◦. Under complex conjugation of the

lepton mixing matrix, i.e. under δ → −δ, α21 → −α21, and α31 → −α31 the conditions

defining each model remain invariant, but the phenomenological bounds on δ do not; this

is the reason why, for instance for model 1, there are two solutions with symmetric values

of the phases — but one of those solutions has much higher values of χ2 − χ2
minimum. For

model 3 all the points of the second solution have χ2 − χ2
minimum > 9 and therefore that

solution does not appear in table 1.

Comparing the left and right panels of figure 1, one sees that all models 1–3 severely

constrain the phase δ, but they do not constrain s223 by themselves alone. Model 4 has

s223 correlated with
∑
mν and, even when

∑
mν becomes very large (i.e. when the light

neutrinos are almost degenerate), s223 & 0.418 is constrained; after the addition of the

cosmological bound (4.5) the constraint becomes much stronger. Model 4 also restricts

s212, see the right panel of figure 2.
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Figure 3. The same regions as in the right panels of figure 1 are now depicted in the δ–α21 plane

(left panels), δ–α31 plane (central panels), and δ–m1 plane (right panels) for models 1, 2, 3, and 4,

respectively, from top to bottom. For model 4, only the points obeying the cosmological bound are

displayed.
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model 1 (1st sol.) 1 (2nd sol.) 2 3 4

m1 (meV) 9.9 – 13.1 11.7 – 12.1 8.6 – 13.0 23.9 – 29.5 20.6 – 30.4∑
mν (meV) 74.0 – 81.2 77.7 – 78.7 71.4 – 80.9 104.7 – 118.6 97.2 – 120.0

mββ (meV) 5.4 – 8.0 6.0 – 6.4 6.5 – 8.0 22.0 – 28.0 6.8 – 11.6

mtritium (meV) 13.3 – 15.9 14.7 – 15.0 12.3 – 15.8 25.5 – 30.8 22.5 – 31.6

10× s223 4.17 – 6.25 5.88 – 6.03 4.17 – 6.26 4.17 – 6.25 5.49 – 6.14

δ (◦) 216 – 268 125 – 132 263 – 309 242 – 246 149 – 224

α21 (◦) 204 – 250 143 – 148 103 – 144 327 – 339 163 – 203

α31 (◦) 39 – 94 300 – 308 260 – 303 341 – 350 −37 – 51

χ2
minimum 0.39 8.99 1.68 0.67 3.58

Table 1. The 3σ bounds for various observables in the models with normal neutrino mass ordering.

These bounds correspond to χ2 − χ2
minimum ≤ 9, which is equivalent to 3σ CL for one degree of

freedom; they take into account the cosmological bound
∑
mν < 0.12 eV [19, 20]. For model 5 the

values are the same as for model 4, with the exceptions 10 × s223 (5.48 to 6.14), δ (154◦ to 213◦),

α31 (−36◦ to 46◦), and χ2
minimum (3.82).

Next look at figure 3. There, one sees the same regions as in the right panels of

figure 1, but now displaying the Majorana phases α21 and α31, and also the smallest

neutrino mass m1, against δ. Only points that comply with the cosmological bound on∑
mν are displayed; this is not an effective constraint for models 1–3, but it severely

constrains model 4 (and model 5).

In figure 4 one observes the predictions of each model 1–4 for the mass parameters∑
mν and mββ . The pink areas in figure 4 are the same for all models and they are

allowed by the phenomenological constraints only; the areas in various shades of blue are

allowed at the 1σ, 2σ, and 3σ CL by the phenomenological constraints together with each

model’s conditions. One sees that each model strongly constrains the mass parameters,

restricting them to a much smaller range than the one allowed by phenomenology only. It

was already clear from the right panels of figure 3 that models 1 and 2 work for much lower

values of the neutrino masses than models 3 and 4; m1 ∼ 10 meV for models 1 and 2 while

m1 ∼ 25 meV for models 3 and 4. This same fact is observed in figure 4, where
∑
mν —

but not mββ , which includes some interference effects — is much higher in models 3 and 4

than in models 1 and 2. Notice that a large otherwise-allowed range of model 4 has been

eliminated by the cosmological bound on
∑
mν ; the same may soon happen to model 3,

which predicts
∑
mν & 105 meV.

We have summarized in table 1 the predictions of each of the models with NO. In that

table we only display points with χ2 − χ2
minimum ≤ 9, therefore the ranges are somewhat

narrower than the ones observed in the figures, where the 3σ regions have χ2−χ2
minimum ≤

11.83. For the same reason, the second solution for model 3 does not appear in table 1.

The observables s212, s
2
13, ∆m2

solar, and ∆m2
atmospheric are not constrained by models 1–

5, with the exception s212 ∈ [0.320, 0.350] in models 4 and 5; this is not, however, because
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Figure 4. In the four rows one sees the predictions of models 1, 2, 3, and 4, respectively, for the

sum of the light-neutrino masses and for the mass parameter responsible for neutrinoless 2β decay.

Pink areas are allowed by phenomenology alone; blue areas include the conditions of each model.

The right panels are zooms of the marked areas in the left panels.
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Figure 5. The correlation among s212, s223, and the cosmological mass in a model uniting models 4

and 5 together. In the top row, the dashed line represents the cosmological bound (4.5). In the

bottom row, the depicted areas all respect that bound.

of the models themselves, but rather because of the cosmological bound, that leads those

models to necessitate both a rather high s223 and a rather high s212.

4.3 Junction of models 4 and 5

Models 4 and 5 have almost the same predictions and, as a matter of fact, we may join

them in only one model, defined by

(
M−1ν

)
µµ

= 0 and Aee = Aττ = A∗ττ . (4.8)

This model agrees with experiment and has χ2
minimum = 4.22, which is not much worse than

either model 4 or model 5 separately. The CP-violating phases are eliminated: δ = α21 = π

and α31 = 0, rendering this model CP-conserving in the leptonic sector. The predictions

for the mass observables and for s223 are exactly the same as the ones displayed in table 1

for model 4.

The plus of this model is that it provides a clear-cut correlation among s212, s
2
23, and∑

mν . That correlation is displayed in figure 5. On the other hand, this model requires

both s212 and s223 to be quite above their best-fit values; that is the reason why χ2
minimum is

rather high for this model.
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Figure 6. Left panels: the predictions of each model with inverted ordering (IO) of the neutrino

masses, and the phenomenologically allowed areas for IO, are displayed in pink and blue colours,

respectively. The panels in the top row respect model 6 and the ones in the bottom row are for

model 7. Right panels: in different shades of blue, the 1σ, 2σ, and 3σ regions defined by the

simultaneous compliance with the each model’s conditions and the phenomenological data. The

stars mark the best-fit points. Dashed horizontal lines at various values of δ, and a vertical dashed

line at s223 = 1/2, have been drawn for orientation. More details are given in the text.

4.4 Models 6 and 7

Figure 6 is analogous to figure 1. It features model 6 in its top row and model 7 in its

bottom row. In the pink bands of the left panels one clearly sees the effect of the µ–

τ interchange symmetry in the models’ defining conditions: those bands are symmetric

under s223 → 1 − s223, δ → 180◦ + δ. In the right panels one sees that both model 6

and model 7 have two different solutions. Those two solutions are more clearly visible in

figure 7, wherein the first row displays both solutions of model 6 simultaneously and each

of the two lower rows is devoted to one of the solutions of model 7. One of the two solutions

of model 6 has much higher χ2
minimum than the other one. The two solutions of model 7

are quite distinct, with the preferred one having α21 ≈ 0 and mminimum ≈ 1.15 meV, while

the other one has α21 ∼ 180◦ and mminimum twice as large. Also note, in the top central

panel, that in model 6 there is an almost perfect linear relation between α31 and δ; that

relation may be expressed by the (approximate) equation α31 = 178.007◦ + 1.98254 δ.

In figure 8 one sees the predictions of the two IO models for the mass parameters. One

observes once again the great difference between the two solutions of model 7, with one of

them producing a much lower mββ than the other one. It is interesting to observe that

both models admit mββ ∼ 49 meV, which is much higher than in the models with NO.
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Figure 7. The same regions as in the right panels of figure 6 are now depicted in the δ–α21

plane (left panels), δ–α31 plane (central panels), and δ–m3 plane (right panels). The top row is for

model 6; the central and bottom rows are for each of the two solutions of model 7.

5 Summary and conclusions

In this paper we have shown that four new types of constraints on the lepton mass ma-

trices, given in equations (4.1), can be derived through adequate symmetries imposed on

renormalizable models furnished with three right-handed neutrinos and a type-I seesaw

mechanism. Each of those constraints leads to predictive power for the CP-violating phase

δ and for various neutrino-mass quantities. That predictive power has been studied in some

detail in section 4 of the paper, especially taking into account the correlations between δ

and the mixing anle θ23 displayed by the phenomenological data of ref. [10, 11]. We have

found that a total of seven models are able to fit the data at the 1σ level for at least one

of the three phenomenological papers [8–11]. The predictions of each of our models have

been given in tables 1 and 2.
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Figure 8. The predictions of models 6 (top row) and 7 (the other two rows) for the sum of the

light-neutrino masses and for the mass parameter responsible for neutrinoless 2β decay. The pink

areas are the ones allowed by phenomenology alone, for an inverted ordering of the neutrino masses;

the blue areas include the constraints of each model. The right panels are zooms of the marked

areas in the left panels.
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model 6 (1st solution) 6 (2nd solution) 7 (1st solution) 7 (2nd solution)

m3 (meV) 1.05 – 1.25 1.11 – 1.18 1.05 – 1.25 1.99 – 3.39∑
mν (meV) 98.7 – 102.7 99.9 – 101.4 98.6 – 102.6 101.2 – 103.8

mββ (meV) 47.5 – 49.4 48.1 – 48.8 47.5 – 49.4 16.0 – 27.5

mtritium (meV) 48.1 – 50.0 48.7 – 49.4 48.1 – 50.0 48.6 – 49.7

10× s223 5.27 – 6.27 4.29 – 4.61 4.23 – 6.27 4.87 – 5.18

δ (◦) 279 – 326 233 – 251 259.0 – 270.6 234 – 323

α21 (◦) 355.2 – 359.4 1.2 – 2.5 −4.9 – 2.9 148 – 233

α31 (◦) 17 – 113 287 – 323 −3.4 – 1.9 −52 – 80

χ2
minimum 4.76 12.38 5.11 11.02

Table 2. The 3σ bounds for various observables in the models with inverted neutrino mass ordering.

These bounds correspond to χ2−χ2
minimum ≤ 9. We have included the value χ2

(3) = 4.71254, obtained

by the NuFIT collaboration, in the computation of χ2
minimum, therefore all the χ2

minimum are higher

than the corresponding values for models with NO in table 1.
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