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Proliferation Tumour Marker 
Network (PTM-NET) for the 
identification of tumour region in 
Ki67 stained breast cancer whole 
slide images
Jesuchristopher Joseph1, Martine P. Roudier1, Priya Lakshmi Narayanan2, Renaldas Augulis3, 
Vidalba Rocher Ros1, Alison Pritchard1, Joe Gerrard1, Arvydas Laurinavicius3, 
Elizabeth A. Harrington1, J. Carl Barrett1 & William J. Howat1

Uncontrolled proliferation is a hallmark of cancer and can be assessed by labelling breast tissue using 
immunohistochemistry for Ki67, a protein associated with cell proliferation. Accurate measurement of 
Ki67-positive tumour nuclei is of critical importance, but requires annotation of the tumour regions by a 
pathologist. This manual annotation process is highly subjective, time-consuming and subject to inter- 
and intra-annotator experience. To address this challenge, we have developed Proliferation Tumour 
Marker Network (PTM-NET), a deep learning model that objectively annotates the tumour regions in 
Ki67-labelled breast cancer digital pathology images using a convolution neural network. Our custom 
designed deep learning model was trained on 45 immunohistochemical Ki67-labelled whole slide 
images to classify tumour and non-tumour regions and was validated on 45 whole slide images from 
two different sources that were stained using different protocols. Our results show a Dice coefficient of 
0.74, positive predictive value of 70% and negative predictive value of 88.3% against the manual ground 
truth annotation for the combined dataset. There were minimal differences between the images from 
different sources and the model was further tested in oestrogen receptor and progesterone receptor-
labelled images. Finally, using an extension of the model, we could identify possible hotspot regions of 
high proliferation within the tumour. In the future, this approach could be useful in identifying tumour 
regions in biopsy samples and tissue microarray images.

Breast cancer is a heterogeneous disease consisting of several molecular and genetic subtypes, each with char-
acteristic differences in clinical, biological and imaging patterns1. It ranks as the fifth cause of death from cancer 
and the most frequent cause of cancer death in women in less developed regions2. According to the World Health 
Organisation, invasive ductal carcinoma (IDC) is the most common type of breast cancer in both women and 
men, accounting for about 75% of all breast cancers. IDC is typically characterised by a group of malignant epi-
thelial tumours, with invasion of adjacent tissues that have a tendency to metastasize to distant sites and that do 
not exhibit sufficient characteristics of a specific histological type, such as lobular or tubular carcinoma.

Tumour proliferation rate is an important prognostic biomarker3 with high tumour spread rates leading to 
worse patient outcomes. The identification of tumour proliferation rests on the identification and enumeration of 
mitoses in haematoxylin and eosin (H&E) stained tissues, or the use of immunohistochemistry (IHC) to label a 
proliferation marker such as Ki67 for proliferating cells. The Ki67 labelling index provides strong prognostic and 
predictive information on response to chemotherapy4 although it is prone to intra- and inter-observer variation5. 
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To aid in the variation, digital image analysis (DIA) can be used to speed up the process and has been demon-
strated to have good correlation with pathology scores6, but is limited by the need to identify the tumour area, 
which requires detailed pathology annotation. While methods exist to do this without input from a pathologist, 
including using a pan-tumour marker, the accurate and automated segmentation of breast cancer into tumour 
and non-tumour regions is challenging. The automated segmentation of tumours using Ki67 labelling is particu-
larly problematic because Ki67 expression is not limited to the tumour and the tumour can contain Ki67-negative 
as well as Ki67-positive nuclei. Additionally, the segmentation of alternative IHC markers, for example oestrogen 
receptor (ER) and progesterone receptor (PR), requires re-training of the DIA.

Digital pathology (DP) is becoming a significant part of the pipeline in research and clinical laboratories7. 
High resolution images can be prepared for histology slides and computational tools using DIA are provided by 
several manufacturers, to aid in the reproducible quantification of cells and cellular expression8. Deep convolu-
tional neural networks (DCNNs) have recently achieved state-of-the-art performance in various applications 
such as image classification9 and object detection10. Unlike the traditional hand-crafted feature approaches, deep 
learning represents an end-to-end feature learning, using a large amount of training data to learn high-level struc-
tural features and thereby discriminate between the classes of interest. Deep learning has been used successfully 
to automatically segment the epithelial and stromal regions in breast tissue using histological images stained 
using H&E11. Geert Litjens et al. also demonstrated that deep learning segmentation in prostate cancer gland 
detection significantly overlapped with pathologist annotation12. Therefore, the deep learning approach can serve 
as a good feature extractor for better data representation13.

In this paper, we describe a fully automated invasive breast tumour region identification system using a deep 
learning approach, termed Proliferation Tumour Marker Network (PTM-NET). PTM-NET can accurately detect 
the tumour area in IHC-stained breast cancer samples without pre-processing procedures, such as image colour 
unmixing or colour normalisation. In addition, following tumour identification we demonstrate that PTM-NET 
can identify regions of high proliferation using an activation filter map. Finally, PTM-NET can also be used to 
identify breast tumour regions from ER- or PR-labelled IHC without any additional training or modifications to 
the algorithm.

Results
Subjects.  From the 102 samples used for analysis, the samples were split in a representative manner between 
training, testing and validation cohorts (Table 1). Following training, 12 images were used as test samples to 
examine and adjust the model using pathologist input to gain accuracy. Thereafter, the model was run directly on 
the validation samples.

PTM-NET quantitative metrics on Ki67-labelled invasive breast cancer images.  Following 
PTM-NET analysis of 30 Ki67-labelled images from the AstraZeneca (AZ) validation cohort and 15 Ki67-labelled 
images from the Vilnius University (VU) cohort, values for the true-positive rate (TPR), true-negative rate (TNR), 
false-positive rate (FPR), false-negative rate (FNR), positive predictive value (PPV) and negative predictive value 
(NPV) were calculated, along with the Dice coefficient (DC) (Fig. 1). This demonstrated that the combined pre-
dictive value of PTM-NET for predicting non-tumour regions was high with an NPV of 88.3%, comprising TNR 
of 0.88 and FPR of 0.12 (Table 2). Similarly, the prediction of tumour in Ki67-labelled images was good, with a 
PPV of 70%, comprising TPR of 0.7 and FNR of 0.3. The Dice coefficient was 0.74. This level of accuracy can be 
visualised in Fig. 2, where the ground truth annotation (Fig. 2a,b) is compared to the pseudo-colour probability 
map (Fig. 2c,d) and the true positive (TP), false positive (FP), true negative (TN), false negative (FN) visually 
identified in Fig. 2e,f. Higher magnifications of Fig. 2 images are shown in Fig. 3.

While the combined PPV, NPV and Dice coefficients were good, there were significant differences between the 
AZ and VU cohorts in the validation set, with a significance attached to the TNR, FPR and NPV (Table 2) with 
the VU values being significantly lower than the values for AZ.

There was a significant difference in accuracy of PTM-NET when combined dataset were separated by tumour 
grade, with a PPV of 71.7%, NPV of 86.8% and Dice coefficient of 0.76 for high grade tumours compared to a PPV 
of 66.4%, NPV of 91.4% and Dice coefficient of 0.7 for low grade (Grade 2 or less) tumours. When separating the 
combined dataset by the percentage of tumour present in the tissue sample, there was a significant difference only 
in NPV, with a PPV of 67.6%, NPV of 92.1% and Dice coefficient of 0.72 for tissue samples with less than 50% 
tumour, compared to a PPV of 71.3%, NPV of 86.3% and Dice coefficient of 0.76 for tissue samples with greater 
than 50% tumour (Supplementary Table 1).

Automated detection of high proliferation region within tumour.  The PTM-NET model was 
further developed to highlight areas of Ki67 proliferation “hotspots” - to guide pathology evaluation and 

Tumour Percentage Training Testing Validation Average

Tumour Percentage 45.0 ± 25.9 47.9 ± 21.9 55.4 ± 22.2 49.4 ± 23.3

Tumour Grade Training Testing Validation Total

Low Grade (I, II) 24 5 15 44

High Grade (III) 21 7 30 58

Total 45 12 45 102

Table 1.  Detail of sample numbers used for training, testing and validation the model and their respective 
tumour percentage (mean ± standard deviation).
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enumeration of the Ki67 labelling index. A representative example of an IDC with automated detection of high 
proliferation is shown in Fig. 4. The tumour regions were correctly identified by PTM-NET and the Ki67-labelled 
regions of proliferation were isolated and marked; overlays of low, medium and high proliferation are shown in 
(Fig. 4c–e) at a low magnification guiding to the correct region for final hot spot enumeration.

Application of PTM-NET on breast cancer tissue with ER and PR labelling.  The accuracy of 
Ki67-trained PTM-NET in the segmentation of tumour and non-tumour regions in breast cancer tissues labelled 
with two other nuclear markers clinically relevant to breast cancer treatment, namely ER and PR, was assessed. 
Despite not being trained on these individual markers, Fig. 5 demonstrates that the segmentation accuracy on the 
ER/PR labelled tissue was good with the heatmap overlay on the tumour regions and only minimal areas of FN 
being identified in the PR-positive sample (Fig. 5f). The performance of PTM-NET as measured with PPV, NPV 
and Dice coefficient is shown in Supplementary Table 2.

PTM-NET robustness in dealing with heterogeneous tissue images.  To estimate the robustness 
of the PTM-NET model in predicting the tumour region, N = 5 test samples with heterogeneous architecture, 
staining pattern and tissue with high infiltrating pattern, were tested using a very large network architecture, 
VGG-NET. This comparison between the four-layer PTM-NET to the 16-layer VGG-NET were performed 
to demonstrate that the pathology image segmentation on both a tissue and cellular level could be faithfully 
achieved using a shallow four-layer network, with fewer parameters to fine tuning the network from scratch than 
a deep network, such as VGG-NET, that requires more parameters.

Despite the larger number of layers used for the classification, VGG-NET did not outperform PTM-NET in 
tumour identification. VGG-NET gave a PPV of 58.7, NPV of 91.9 and Dice coefficient of 0.69, compared to a 
PPV of 72.1, NPV of 93.5 and Dice coefficient of 0.77 for PTM-NET classifier, Table 3.

Discussion
In recent years, deep learning has become the state of the art across many disciplines and is increasingly being 
employed in pathology. Within the all-encompassing term of deep learning in particular, the use of convolutional 
neural networks (CNNs) is increasing and has been employed in several applications in pathology, including the 
identification of invasive tumour14, tumour associated stroma15, the detection of epithelial nuclei16 and hotspots17 
within H&E-stained tissue. Whilst H&E provides broad uniformity and the hue and intensity can be digitally 
corrected18, IHC provides different intensities, hues and tissue distribution depending on the antibody used and 
thus tissue segmentation is difficult and broadly antibody-specific.

Ki67 is an important marker in diagnostic use and has been demonstrated to predict recurrence-free survival 
after short-term endocrine treatment19. In normal and tumour regions of breast cancer tissue, Ki67 expression is 
non-uniform, varying across a wide range from zero to high levels of expression. Therefore, it poses a particularly 
difficult challenge for the training of a tissue segmentation algorithm. To overcome this challenge, we created 
custom CNN architecture (PTM-NET), to generate a probability map for the tumour and non-tumour regions 
with the exclusion of infiltrating cells, that demonstrated high segmentation accuracy, with a mean Dice value of 

Figure 1.  The Dice coefficient, false negative rate (FNR), true positive rate (TPR), true negative rate (TNR) 
and false positive rate (FPR) for the AstraZeneca (AZ), Vilnius University (VU) and Combined (AZ + VU) 
validation cohorts.

Data set N TPR TNR FNR FPR PPV (%) NPV (%) Dice

Combined 45 0.7 ± 0.07 0.88 ± 0.07 0.3 ± 0.07 0.12 ± 0.08 70 ± 7.22 88.3 ± 7.71 0.74 ± 0.09

AZ 30 0.69 ± 0.07 0.93 ± 0.04 0.31 ± 0.06 0.07 ± 0.04 69.04 ± 6.5 92.65 ± 4.44 0.74 ± 0.08

VU 15 0.72 ± 0.08 0.80 ± 0.05* 0.29 ± 0.07 0.20 ± 0.05* 71.83 ± 8.35 79.71 ± 5.15* 0.75 ± 0.11

Table 2.  Performance of PTM-NET on the validation set AZ (N = 30), VU (N = 15) and Combined (AZ + VU; 
N = 45) cohorts. * denotes significant difference <0.01.
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0.74 compared to a set of ground truth images annotated by a pathologist. Where discrepancies occurred, these 
were isolated small groups of tumour cells (10–30 cells) separated from the larger tumour regions. Interestingly, 
the NPV for the VU dataset was significantly lower than the AZ dataset, probably reflecting the lower percentage 
(35%) of images within the training set. These images, while using the same clone of Ki67 antibody, differ in hue 
and intensity of the diaminobenzidine (DAB) and haematoxylin. Surprisingly, there was a significant difference 
in the prediction value when separated by tumour grade, with PTM-NET showing a greater predictive value in 
high grade samples and samples with high tumour content (>50%). As this cannot be due to training, since the 

Figure 2.  (a,b) Pathologist’s annotation (ground truth) on Ki67 whole-slide images; (c,d) the pseudo colour 
probability map generated by the PTM-NET classifier; and (e,f) validation results of the PTM-NET classifier in 
terms of true positive (TP, green), false negative (FN, pink), false positive (FP, yellow), and true negative (TN, 
blue) regions.
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training set was intentionally split equally between grades, this must reflect the difference in tissue architecture 
in high grade samples and reflects the fragmentary nature of the samples with smaller percentage tumour, where 
the model does not perform well. However, the NPV and PPV are still good in these samples, demonstrating the 
applicability of the model but where further modification could improve it.

PTM-NET represents a four-layer network with two fully connected networks and input image size of 
64 × 64 × 3, in contrast to Cruz-Roa et al. who used a three-layer network with one fully connected and an input 
image size of 101 × 101 × 3, generating a dice value of 0.6714. Whilst the increase in number of layers may be of 
importance, a direct comparison of the four-layer PTM-NET to the sixteen-layer VGG-NET, trained and tested 
on the same samples, showed that PTM-NET generated a higher tumour segmentation accuracy and significantly 
higher PPV, with no significant difference in segmentation of the non-tumour region. This is likely because histo-
pathology tumour images possess colour and textural properties that are captured only using a few convolution 
filters and the sixteen layers of VGG-NET may add little value and comes at the expense of additional computa-
tion and higher GPU requirements.

PTM-NET is also designed for the analysis of whole slide IHC images, which is relevant for the advance 
of digital pathology in clinical labs worldwide that analyse a wide variety of normal tissue types and lympho-
cytic infiltrates, and heterogeneity of tumour and their tumour regions. In a recent advance, Xie et al.20 achieved 
an impressive PPV of 98%, distinguishing malignant from benign tumour on H&E stained slides, using the 
Inception_V3 (INV3) and Inception_resnet_V2 (IRV2) models to perform both binary and multi-class classi-
fication of the BreaKHis breast cancer image data. However, since they used transfer learning on a large set of 
small 700 × 460 RGB micrographs from the database, preselected by a pathologist to have tumour present, this 
approach does not represent a real-world scenario. Additionally, PTM-NET is designed to use IHC images and is 
tested on slides prepared at two different sites, with increased complexity due to differences in hue and intensity 
of staining both the DAB and haematoxylin channels.

The identification of hotspots as well as the quantification of IHC Ki67-positivity are of critical importance 
for the prognosis and the treatment of breast cancer. Counting Ki67-positive cells in the hot spot, the region of 
highest concentration of Ki67-positive tumour cells, is a method increasingly used in pathology21 where the 
proliferation rate is visually estimated by the pathologist over a hotspot area that could contain between 500 
to 2000 cells22,23. This renders the identification and quantification of hotspot areas as well as the calculation 

Figure 3.  High magnification images of rectangle region marked in Fig. 2 (a,b) and (c,d) respectively.
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of the proliferation rate complicated and time consuming. The pathologist is required to zoom out to 1X mag-
nification (10 microns/pixel) depending on the size of the screen used and the size of the tissue sample; at this 
magnification many cell nuclei are smaller and will not be clearly visible. Several methods have been employed 
previously, including those described in a recent article by Narayanan et al.24 who used a fine-tuned VGG net-
work based on hyper column feature maps (DeepSDCS) at a cellular resolution to detect, simultaneously segment 
the cells and generate seed labels used in the classification of different cell types such as stromal, lymphocytes, 
Ki67-positive and negative cells. Such a method relies on the accuracy of cellular segmentation before classifying 
into Ki67-positive/negative and tumour-positive/negative. In contrast, PTM-NET uses the reverse logic and takes 
the information generated from the PTM-NET classifier to segment tumour in the first instance and then analyse 
the Ki67-fraction within the tumour region, both of which are equally valid. Alternatively, Saha et al.17 employed 
a cut-off value of 15% between regions of low and high proliferation and the analysis used regions of interest on 
the patch images, in contrast to the PTM-NET methodology with a cut-off value of 20% combined with validation 
on the whole slide image. Hence this approach can be ultimately employed to minimise multiple rounds of low to 
high power zoom on a tissue sample to find the best sampling region. When implemented, this should improve 
pathologist workflow and minimise potential error.

Finally, and another demonstration of the applicability of the PTM-NET, a selection of AZ tissue samples 
from the Ki67 study were stained for ER and PR. While the sample number stained and analysed was small, the 
segmented tissue samples were visually examined and showed a high level of accuracy for the detection of tumour 
and non-tumour cells. Under visual examination, the only regions of discrepancy where FP or FN regions could 
be identified, was due to such areas not being represented in the original Ki67 training set. This discrepancy could 
be easily rectified and suggests that a single well-trained algorithm could be used for all IHC in breast cancer 
when utilising a well-designed CNN model, such as PTM-NET.

Materials and Methods
Tissue cohorts.  Tissue blocks from 87 patients diagnosed with invasive ductal carcinoma (IDC) were 
acquired from commercial sources through the AstraZeneca (AZ) Biobank. From these, 45 blocks were used for 
training PTM-NET, 12 for the testing and subsequent re-training of the initial PTM-NET model and the remain-
ing 30 were used for the validation. Of these 45 blocks used for training, 29 were from AZ and remaining 16 from 
Vilnius University (VU). Of the 45 blocks used for the validation cohort, 30 were from AZ and 15 from VU.

AZ has a governance framework and processes in place to ensure that commercial sources have appropriate 
patient consent and ethical approval in place for collection of the samples for research purposes including use by 

Figure 4.  Representative example of a breast cancer whole slide image (a); tumour mark-up (green) and 
regions of high proliferation (red) (b); and (c–e) high-resolution images where low proliferation is highlighted 
in yellow square box, medium and high proliferation in orange and red square boxes, respectively, with 
reference to squares in (b).
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for-profit companies. The AZ biobank in the UK is licensed by the human tissue authority (Licence No. 12109) 
and has national research ethics service committee (NREC) approval as a research tissue bank (RTB) (REC No 
17/NW/0207) which covers the use of the samples for this project.

Figure 5.  Representative examples of whole slide breast cancer images stained with oestrogen receptor (ER) or 
progesterone receptor (PR) and analysed using PTM-NET trained on Ki67. (a,b) Shows the original ER+ (left) 
and PR+ (right) images; (c,d) shows, the pseudo colour image with ER and PR +ve (red) and ER and PR −ve 
(blue); and (e,f) shows the validation results of the PTM-NET classifier in terms of true positive (TP, green), 
false negative (FN, pink), false positive (FP, yellow), and true negative (TN, blue) regions.
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Immunohistochemical staining and image acquisition.  Four, 4μm consecutive sections were taken 
from the formalin-fixed paraffin-embedded (FFPE) blocks and stained for H&E, Ki67, ER and PR (Table 4). For 
H&E, sections were stained on a Gemini H&E stainer (Thermo Fisher, UK) using Gill’s Haematoxylin (Leica, 
UK), and dehydrated, cleared and mounted with DPX. For immunohistochemistry (IHC), all FFPE sections 
were deparaffinised and rehydrated through graded alcohols before epitope retrieval using a Milestone Rapid 
Tissue Processor unit (Milestone, US) at high pressure in an appropriate epitope retrieval buffer (Table 4). Slides 
were cooled and transferred to a Labvision Autostainer (Thermo Fisher, UK) for subsequent IHC. To label Ki67, 
slides were peroxidase blocked with 3% H2O2 in H2O 20 minutes, washed in TBS-Tween and incubated in Serum 
Free Protein Block (Agilent, X0909) for 20 minutes. Sections were then treated with anti-Ki67 for 60 minutes 
and mouse Dako Envision+/HRP solution (Agilent) for 30 minutes before developing with Di-AminoBenzidine 
(Agilent) for 10 mins and counterstaining with Carazzi’s Haematoxylin. For oestrogen receptor (ER) and proges-
terone receptor (PR), the DAKO ER/PR Pharm Dx kit (Agilent) was utilised and all reagents, including antibod-
ies were dispensed from the kit. All IHC was performed at room temperature. For Ki67-labelling performed at 
VU, the same antibody clone was used as for AZ, but stained using a Ventana BenchMark XT autostainers with 
on-board antigen retrieval and detected using the ultraView Universal DAB kit (Ventana, US)25.

Slides were digitized using a Leica Aperio AT2 whole slide scanner at 20x objective (Leica), with a scan reso-
lution of 0.5 µm per pixel.

Manual annotation of training and validation samples.  Using H&E slides as a reference, invasive 
tumour regions were annotated on the training and the validation cohort of samples by a pathologist on the 
Ki67-labelled images. This formed the basis of the “ground truth” for comparison of the accuracy of the algo-
rithm. The annotations were generated using Aperio ImageScope v11.1.2 on the down sampled image with the 
apparent magnification of x10 which contained sufficient contextual information to train the PTM-NET model. 
All selected training samples contained distinct examples of tumour, and non-tumour, and captured different 
expression of Ki67 within IDC (Supplementary Fig. 1).

Category N Dice PPV (%) NPV (%)

PTM-NET 5 0.77 ± 0.13 72.10 ± 9.68 93.51 ± 1.34

VGG-NET 5 0.69 ± 0.03 58.71 ± 5.04 91.86 ± 3.88

Table 3.  Comparison between PTM-NET and VGG-NET in tumour classification.

Antigen
Primary 
antibody Clone

Manufacturer/
Catalogue Number Epitope Retrieval Buffer

Epitope Retrieval 
Time/Temp

Primary Antibody 
Conc/Time

Ki67
(AZ) MIB-1 Agilent/M7240 Sodium Citrate, pH6 (Agilent) 5 mins/110 °C 1:100, 60 minutes

ER
(AZ) 1D5/ER2-123 Agilent/4071 ER/PR pharmDx Epitope 

Retrieval Solution (Agilent) 5 mins/120 °C Undiluted from 
kit/ 30 minutes

PR
(AZ) PgR1294 Agilent/4071 ER/PR pharmDx Epitope 

Retrieval Solution (Agilent) 5 mins/120 °C Undiluted from 
kit/30 minutes

Ki67 (VU) MIB-1 Agilent/M2740 CC1 (Tris EDTA) 64 mins/95 °C 1:200, 32 mins

Table 4.  Immunohistochemical details for Ki-67 (AstraZeneca (AZ) and Vilnius University (VU)); oestrogen 
receptor (ER) and progesterone receptor (PR) for AZ samples only.

Figure 6.  Architecture of the 4-layer PTM-NET.
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Proliferation tumour marker network (PTM-NET).  PTM-NET is a custom designed deep learning 
model whose architecture is designed based on a convolution neural network (CNN) of four layers as shown in 
Fig. 6. The first layer comprises a convolution layer with 32 filters, kernel size of 5 × 5 and stride of 1. The second 
layer has a convolution layer with 64 filters, kernel size of 5 × 5 and stride of 1 leading to a max-pooling layer of 
kernel size 2 × 2. The third layer consists of two fully connected layers with 1024 and 512 neurons, respectively, 
and the final layer is a softmax classifier consisting of two labels as possible output, one for tumour and the other 
for non-tumour.

The mean normalised input RGB (red, green and blue, three channel) image patches of size W × H 
(W = width; H = Height) was convolved to convolution layers with N (N = Numkernels; Convolution1 = 32, 
Convolution2 = 64) filter banks with kernel size of M × M (ex: 5 × 5; 2 × 2) to generate the network activation 
map. For each input image patch, after the convolution process, the feature map will be equal to the number of 
filter banks. Dependant on the size of the input image, kernel size and the stride, the size of the output feature map 
can be estimated using:

×
+ × −

×
+ × −NumKernels W 2 pad M

stride
H 2 pad M

stride

To train the CNN model, image patches of size 64 × 64 pixel (W × H) were generated using a sliding win-
dow technique within the annotated region. The patches were extracted with a pixel resolution of approximately 
0.5 µm per pixel at 20x objective. The training patches were categorised as tumour (positive examples) and 
non-tumour (negative examples) and labelled according to the supervised training. The convolution process was 
followed by a max pooling operation which reduces the feature map size by half as the kernel size was 2 × 2. In 
addition to performing down sampling of the feature map, max pooling provides the feature map resistance to the 
translation-invariant. The ReLU activation used in the study is of the form f (x) = max (0, x)26.

Dropout is usually performed on the full connection layer which excludes the non-active neurons during each 
training iteration27. Using this procedure significantly improved the training time and reduced the computational 
time required when training a model for classification purposes. A stochastic gradient descent algorithm was 
used to update the network weights to minimise the loss function. The softmax has the property of a smooth 

Figure 7.  Pipeline for training the PTM-NET model to classify tumour and non-tumour (a) pathologist 
annotation, (b) training samples, (c) PTM-NET model for training and testing and (d) pseudo-colour 
probability map as tumour (red) and non-tumour (blue).
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gradient so that the back-propagated error is not subject to discontinuities, allowing for easier training. The 
trained SMC classifier yielded an output based on equation (1).
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∑

= …
=
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j K( ) for 1, ,
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z

k
K z
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were σ is logistic function, zj is a net input and K is probability values.
The PTM-NET classifier was trained using images from the AZ and VU datasets that had been annotated into 

tumour and non-tumour regions by a pathologist. From this, 222,716 patches were extracted, of which 117,218 
were from the tumour class and 105,498 were from the non-tumour class (Fig. 7). Data augmentation was used in 
this study. The weights and bias of the CNN were randomly initialized. The CNN parameters were updated and 
optimized during the training process using the stochastic gradient descent algorithm. The learning rate was set 
at 0.001 with the momentum of 0.9. The classifier was trained for 15 epochs with a batch size of 25 and a dropout 
layer was inserted after the second FC layer to avoid over-fitting. After rigorous experimentation, it was discov-
ered that dropout ratio of 0.5 provided the best result. ReLU was employed after each convolutional layer to speed 
up the computing time. The Deep learning pipeline was developed using an Intel® Core™ i7-8850H @ 2.60 GHz, 
Windows 10, 64GB memory workstation using Tensor flow and Keras library.

To test the trained PTM-NET to identify the tumour regions on whole slide images, overlapping 64 × 64 image 
tiles were segmented from twelve whole slide images and the model was applied to predict the probability map. 
To speed up the process of probability prediction any non-tissue regions were avoided using a suitable threshold 

Figure 8.  Overall workflow of PTM-NET for (a) identification of the tumour region and (b) identification of 
high density Ki67 +ve tumour cells.
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operation. Areas of high probability (p > 0.75) of tumour were marked in red and low probability in orange 
(0.65 < p < 0.75) or yellow (0.55 < p < 0.65). The non-tumour regions were marked in blue as shown in Fig. 2. 
A pathologist reviewed the tumour probability map generated by the PTM-NET on the test set and marked the 
FP and FN regions in the probability map. These false regions were added to the training samples to retrain the 
model to learn the features from these tissue regions.

As part of the PTM-NET model, inflammatory infiltrate was specifically excluded. For this, an infiltrate model 
was trained with annotated down-sampled images from three representative breast cancer samples, classifying 
into positive probability of lymphocytic infiltrate and zero probability. The output from this model identifying the 
infiltrate region is shown in the Supplementary Fig. 2.

Validation metrics.  We validated the accuracy of the PTM-NET classifier in whole slide images by compar-
ing the predictions of tumour regions made by the PTM-NET in the validation data set against the corresponding 
ground-truth regions annotated by a pathologist on the same 45 images, included slides from both the AZ and 
VU cohorts. A quantitative evaluation was performed by measuring the Dice coefficient, positive predictive value 
(PPV), negative predictive value (PPV), true positive rate (TPR), true negative rate (TNR), false positive rate 
(FPR) and false negative rate for (FNR) across all 45 validation slides. In addition, the mean and standard devia-
tion performance measures were calculated for each validation data cohort.

VGG-NET comparison.  A transfer learning approach was adopted to train the VGG-NET28 (VGG16) used 
in this study. Top layer weights were initialized from the ImageNet9. Two fully connected layers followed by a soft-
max layer were added to the top layer with random weights initialization to achieve binary classification. To train 
the VGG-NET to perform tumour classification, the total samples were divided into seventy percent training 
and thirty percent testing data. Dice, PPV and NPV were estimated to determine the performance of the trained 
model versus the ground truth manual annotation.

Whole slide breast tumour detection and high proliferation identification system.  The overall 
workflow of the breast tumour detection and high proliferation identification system is shown in Fig. 8. Briefly, 
tissue regions were identified by measurement of the patch mean intensity (MI) of a 64 × 64 pixel size, were 
cropped from the whole slide image using a sliding window technique. Regions exhibiting an MI of <235 were 
considered as tissue and the remaining classified as background. These tissue regions were then fed into the 
PTM-NET and INFI-NET classifiers to identify tumour and lymphocytic infiltrate in the tissue regions.

From these restricted tumour regions, DAB-stained cells were extracted using threshold and morphological 
operations from the activation map as a binary image and overlaid on the original image for visual control. The 
subsequent binary mask of the DAB cells was used to generate the centroid (blue) for every identified cell and 
cluster centres (red) were identified using a subtractive clustering method. A circle was drawn with a diameter of 
100 pixels for every cluster centre and used to estimate the Ki67 ratio (DAB area to the total area) within the circle 
to estimate if there was a region of high proliferation. Finally, on the original image, the regions where the Ki67 
ratio was greater than 20 percent were annotated in red circle.

Accuracy of PTM-NET to other nuclear markers.  We validated the accuracy of the PTM-NET classifier 
in both ER and PR-labelled breast cancer samples, choosing three ER or PR-labelled whole slide images from the 
validation cohort and comparing the ground-truth annotation of the Ki-67 regions to the PTM-NET evaluation 
of the ER or PR-labelled images.
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