VILNIUS UNIVERSITY

Jūratė SKERNIŠKYTĖ

Molecular mechanisms of Acinetobacter baumannii pathogenesis

SUMMARY OF DOCTORAL DISSERTATION

Natural sciences Biochemistry N 004

VILNIUS 2019

The dissertation was written between 2014 and 2018 in Vilnius University Life Sciences Center Institute of Biosciences.

Academic supervisor:

Prof. Dr. Edita Sužiedėlienė, Vilnius University, natural sciences, biochemistry – N 004.

This doctoral dissertation will be defended in a public meeting of the Dissertation Defense Panel:

Chairman – **Prof. Dr. Jaunius, Urbonavičius** (Vilnius Gediminas Technical University, natural sciences, biochemistry – N 004).

Members:

Prof. Dr. Rimantas, Daugelavičius (Vytautas Magnus University, natural sciences, biochemistry – N 004);

Prof. Dr. Nomeda, Kuisienė (Vilnius University, natural sciences, biology – N 010);

Dr. Rebeca, Martín-Rosique (French National Institute for Agricultural Research, natural sciences, biology – N 010);

Dr. Milda, Plečkaitytė (Vilnius University, natural sciences, biochemistry – N 004).

The dissertation shall be defended at a public meeting of the Dissertation Defense Panel at 10.00 am on 27 September 2019 in R108 auditorium of the Life Sciences Center (Vilnius University).

Address: Saulėtekio av. 7, LT- 10257 Vilnius, Lithuania

The text of this dissertation can be accessed at Vilnius University Library as well as on the website of Vilnius University: www.vu.lt/lt/naujienos/ivykiu-kalendorius

VILNIAUS UNIVERSITETAS

Jūratė SKERNIŠKYTĖ

Acinetobacter baumannii patogenezės molekuliniai mechanizmai

DAKTARO DISERTACIJOS SANTRAUKA

Gamtos mokslai Biochemija N 004

VILNIUS 2019

Disertacija rengta 2014–2018 metais Vilniaus universiteto Gyvybės mokslų centro Biomokslų institute

Mokslinė vadovė:

prof. dr. Edita Sužiedėlienė (Vilniaus universitetas, gamtos mokslai, biochemija –N 004).

Gynimo taryba:

Pirmininkas – **prof. dr. Jaunius Urbonavičius** (Vilniaus Gedimino technikos universitetas, gamtos mokslai, biochemija – N 004). Nariai:

prof. dr. Rimantas Daugelavičius (Vytauto Didžiojo universitetas, gamtos mokslai, biochemija – N 004);

prof. dr. Nomeda Kuisienė (Vilniaus universitetas, gamtos mokslai, biologija – N 010);

dr. Rebeca Martín-Rosique (Prancūzijos agrokultūros tyrimų nacionalinis institutas, gamtos mokslai, biologija – N 010);

dr. Milda Plečkaitytė (Vilniaus universitetas, gamtos mokslai, biochemija – N 004).

Disertacija ginama viešame Gynimo tarybos posėdyje 2019 m. rugsėjo mėn. 27 d. 10.00 val. Gyvybės mokslų centre (Vilniaus universitetas) R108 auditorijoje. Adresas: Saulėtekio al. 7, LT- 10257 Vilnius, Lietuva.

Disertaciją galima peržiūrėti Vilniaus universiteto bibliotekoje ir VU interneto svetainėje adresu: https://www.vu.lt/naujienos/ivykiu-kalendorius

INTRODUCTION

Gram-negative bacterium *Acinetobacter baumannii* is a difficult to treat infection agent, causing nosocomial infections worldwide (Holt *et al.*, 2016). Characteristic features of this opportunistic pathogen include multidrug-resistance (MDR) phenotype, ability to withstand unfavorable environmental conditions for long periods of time and a high propensity for spread resulting in the hospital outbreaks, especially in the intensive care units (Eijkelkamp *et al.*, 2014). *A. baumannii* demonstrates the highest resistance rates among hospital-associated MDR bacteria during the last ten years (Giammanco *et al.*, 2017). The worldwide spread of *A. baumannii* in clinical settings is characterized by the expansion of a several predominant clones (Karah *et al.*, 2011; Zarrilli *et al.*, 2013). Of them, the international clonal lineages I (IC I) and II (IC II) account for the most part of the *A. baumannii* infections (Zarrilli *et al.*, 2013; Dahdouh *et al.*, 2017).

A. baumannii demonstrates high genome plasticity (Imperi et al., 2011; Snitkin et al., 2011; Eijkelkamp et al., 2014). Strains belonging to distinct IC harbor unique sets of genes or their variants, that impact virulence-associated features of A. baumannii strains (Eijkelkamp et al., 2014). In order to persist in clinical settings A. baumannii must be equipped with a set of cell surface features enabling it to adhere to the abiotic surfaces found in medical devices as well as to survive under desiccation stress (Greene et al., 2016; Chiang et al., 2018).

A. baumannii has been considered as a top priority pathogen for which new drugs and therapeutic options are urgently needed (Isler et al., 2018). Among strategies considered, the vaccine-based approaches show the greatest potential (Dickey, 2017). The desirable antigens should be highly prevalent surface-exposed bacterial proteins and possess high degree of conservation among clinical strains. Therefore, long bacterial adhesins are of increasing interest

for the development of new vaccine candidates (Badmasti *et al.*, 2015; Sheel *et al.*, 2016).

This thesis includes investigation of virulent features and surface-related cellular components of clinical *A. baumannii* strains from Lithuanian hospitals, and studies on the characterization of new vaccine candidates against *A. baumannii*.

The aim of this thesis was to study the properties of clinical *A. baumannii* strains and the molecular components relevant to the virulence of bacteria.

Towards this goal, the following **tasks** were formulated:

- Identify the phenotypic properties of pandemic *A. baumannii* strains and reveal the links with the virulence;
- Determine the significance of *A. baumannii* surface components for the virulence-associated bacterial properties;
- Investigate *A. baumannii* surface-exposed Blp1 protein as potential vaccine candidate.

Scientific novelty

For the first time here we represent comprehensive investigation of the cell surface-related phenotypic properties of pandemic *A. baumannii* clinical strains isolated from Lithuanian hospitals. We have identified their relations with the virulence, since specific clone-associated features are largely obscure. We have found that the phenotypes of bacteria movement and pellicle formation are unique to *A. baumannii* strains belonging to IC I (international clone I). We also showed for the first time that pandemic strains differ in their profiles of the capsular polysaccharides.

In this work we have shown that *A. baumannii* strains belonging to IC II are distinguished by the cell surface hydrophilicity, which determines the different virulent properties of these strains. Hydrophilic strains exhibit more pronounced resistance to dryness, adhesion to eukaryotic cells, produce a thicker cell wall structure and are more virulent *in vivo*, but at the same time, form a thinner biofilm on the plastic surface compared to hydrophobic strains. We also found that the ability of *A. baumannii* strains to form the biofilm correlated with their prevalence in hospitals. We have identified DNA sequences of *A. baumannii* strains with hydrophobic and hydrophilic properties and have found the correlation between the hydrophobic properties of IC II strains and the carriage of pACICU2-type plasmid.

We have identified YgaU and GltI proteins as new A. baumannii virulence factors. We have determined the relationship of the allelic variants of ompA and blp1 gene on the clonality of the strains. For the first time we have shown that OmpA interaction with the peptidoglycan is an important factor in maintaining the integrity of bacterial cell wall and in the process of cell division. Moreover, the interaction of the OmpA protein with peptidoglycan affected multiple virulence-associated features of A. baumannii. We described the effect of Blp1 protein on adhesion of IC I and IC II strains to the plastic and eukaryotic cells. We demonstrated the importance of Blp1 protein during the infection in vivo.

Using the mice sepsis model during active and passive immunization, we described a fragment of C-terminus of Blp1 protein as a new vaccine candidate against infections caused by clinical *A. baumannii* strains. We have shown that the Blp1 fragment ensures more efficient effect compared to the OmpA protein in both serum-induced opsophagocytosis as well as in the evaluation of mouse survival during active immunization.

Major findings presented for the defense of this thesis:

- 1. Pandemic *A. baumannii* strains differ in their virulent properties;
- 2. The hydrophilicity of *A. baumannii* surface results in increased virulence of the bacteria, but is not a favorable property for the spread of clinical strains;
- 3. A. baumannii OmpA, Blp1, YgaU and GltI proteins are virulence factors ex vivo and in vivo;
- 4. The multifunctional role of OmpA in *A. baumannii* pathogenesis is determined by the interaction of periplasmic domain of the protein with peptidoglycan;
- 5. C-terminal fragment of *A. baumannii* Blp1 protein is an effective antigen for active immunization, while the Blp1-antiserum effectively protects against *A. baumannii* infection during the passive immunization.

The thesis contents

This thesis is written in Lithuanian and contains the following parts: Abbreviations, Introduction, Scientific Novelty, Literature Review, Materials and Methods, Results, Discussion, Conclusions, List of Publications within the area of the thesis (2 publications, 6 conference presentations), Acknowledgements, References (281 citations), Supplements (2 Figures). Thesis includes Figures (36), Tables (5). Total 128 pages.

METHODS AND MATERIALS

Table 1. Primers, plasmids and strains used in this study

Primer	Sequence (5'- 3')	Purpose	Source	
Fjgms	AGGACAGAAATGCCTCGAC	Amplification of aac(3)-I	This work	
Rjgms	ATCTCGGCTTGAACGAATT			
P-Ab-ITSF	CATTATCACGGTAATTAGTG	Detection of A. baumannii	Chiang e	
P-Ab-ITSB	AGAGCACTGTGCACTTAAG	species	al., 2011	
gnaaF	CNTAYTAYYTDACNCATAAAGC	Amplification of K locus	This work	
galuR	GTCAACNACBGTDACCATTTC			
wzy11F	AACGTTGGGACTATAGCAACAAAT	Identification of wzy11 gene and	This work	
wzy11R	CCTGTTTGATGGGGTGGTCT	KL2 type		
RH1704	CCCTACAAGGTCTTGCCAAT	Identification of OCL1	Kenyon e	
RH1705	CCTCAGCCCGTACTTACAAC		al., 2014	
Bav1	CATTACAATGCTTAAGCTA	Amplification of upstream	This work	
Bav2	CATATTAAACAATAATTTGCTTCCTTCAT	region of blp1		
D2	CGGTAGAAC	A1161	Th:	
Bav3 Bav4	GCAAATTATTGTTTAATATG	Amplification of downstream	This work	
Bav4	GTCGAGGCATTCTGTCCTGGTTTAGCAA	region of blp1		
Omm A 1	TAGAACGGAT GGAGCAGTTAGTCCTGATAG	A moralification of ventures	This work	
OmpA1 OmpA2	GAACTCAAATTATTGAGCTGCCTCCAGAG	Amplification of upstream region of ompA	THIS WOLK	
OllipA2	ATAACAATTG	region of ompA		
OmpA3	CAGCTCAATAATTTGAGTTC	Amplification of downstream	This work	
OmpA4	GTCGAGGCATTTCTGTCCTTGCTTCGTCA	region of ompA	Tins work	
o.np. r.	GTTTGAGGC	region of ompit		
OAsp268F	CACACAGCTAACACTGGTCCACGTAAG	Site-directed mutagenesis of	This work	
OAsp268R	GACCAGTGTTAGCTGTGTGACCTTCG	Asp268 to Ala in ompA gene	Tins work	
OmklF	CCTTAATATATGTATAAATAGAGC	Amplification of <i>ompA</i> gene	This work	
OmklR2	AGTCGGTACCAGATTATGAATCAGGAGA	with upstream region		
	TTTAC			
Aac3I_seqR	CGAAGTCGAGGCATTTCTGT	Confirmation of transformants	Laborator	
AcORI_seqR	AGGCTGTTGATAACTTTTGGAA		collection	
BldBamF	TTCTAGGATCCGAATATTGCTCCAGTAAT	Cloning of blp12652-3363 fragment	This work	
	T	into expression vector		
BlXhR	TTCTACTCGAGTTAAACAATAATTTGCTG			
	G			
OmBamF	TTCTAGGATCCGATGAAATTGAGTCGTAT	Cloning of ompA into	This work	
	T	expression vector		
OmXhR	TTCTACTCGAGTTATTGAGCTGCTGCAG			
Sel1	CTTGCTACACTCATGTTGA	Amplification of upstream	This work	
Sel2	CAGCTTGTTTATTCTTCTCAGCTTGAAAT	region of sel1		
Seiz	GGCAATTAGACTG			
Sel3	CTGAGAAGAATAAACAAGCTG	Amplification of downstream	This work	
Sel4	GTCGAGGCATTTCTGTCCTTAAACTGGTA	region of sell	THIS WOLK	
JCI-	ACACCTGAAC	region of seri		
Lys1	CTCTTTTACGCCGAATTCAG	Amplification of upstream	This work	
Lys2	CATTAAATTGAGGTGGCTGACATGAAAA	region of ygaU	····s work	
J	TTAACCATGCCGTTA	G		
Lys3	TCAGCCACCTCAATTTAATG	Amplification of downstream	This work	
Lys4	GTCGAGGCATTTCTGTCCTTGGAGTATTC	region of ygaU		
-	GTATTAGCTTC			
Peb1	GATAGTTTGGCAGATGAACTT	Amplification of upstream	This work	
Peb2	AGATCCAGTTAGATTCCTGCTTCATAAGA	region of gltI		
	ACTCCTTGATGATC			
Peb3	GCAGGAATCTAACTGGATCT	Amplification of downstream	This work	
Peb4	GTCGAGGCATTTCTGTCCTTGATTAAATA	region of gltI		
1004	GACAGGTGTAGAC			
Brk1	CGTTCAATCACTTGCTGA	Amplification of upstream	This work	
K1	CO.TOMITCHETTOCION	pinication of upsticain	ins work	

Brk2		AAGTGGAATAGAGAGTTCTAAC region of brkB CATCTATC				
Brk3	CTCTCT	ATTCCACTTTCAACA	Amplification of downstream	This work		
Brk4	GTCGAG	GGCATTTCTGTCCTGGTGCTAAAT	region of brkB			
	GGAAG	AGC				
VP1	CTTCCT	GATTGGAATTCTGG	Amplification of upstream	This work		
VP2		CTGCCATTAACTGTAATTCAGACA	1			
V1 2		ATAGTCTGCCATTAACTGTAATTCAGACA region of pqiB TACTCATTGTTCT				
VP3		GTTAATGGCAGACTAT	am This work			
VP4		GGCATTTCTGTCCTTGAAACTCAA	IIII TIIIS WOLK			
VP4	CCAAC					
TH 11	CCAACA			C		
Plasmids		Characteristics		Source		
pUC19_sacB		pUC19 derivative with sacB gene	•	Laboratory		
		generation of markerless gene deletion n		collection		
pUC19_gm_AcORI (p)		pUC19 derivative with aac(3)-I gentamicin aminoglycoside		Laboratory		
		acetyltransferase cassette and ori site fro	collection			
		complementation experiments				
p <i>ompA</i>		pUC19_gm_AcORI derivative with om,	pA gene along with upstream	This work		
		region (putative promoter) from	Ab _{IC I} strain; for the			
		complementation experiments				
$pompA_{D268A}$		pUC19_gm_AcORI derivative with	ompA gene with D268A	This work		
F****F***D200A		substitution along with upstream region				
		Abic strain: for the complementation ex	periments			
pET-28b		Ab _{IC I} strain; for the complementation ex Protein expression vector	periments	Novagen		
pET-28b		Protein expression vector		Novagen This work		
pET-His-OmpA	22 2242	Protein expression vector OmpA expression plasmid, His-tag fused	d N-terminally to protein	This work		
	2-3363	Protein expression vector OmpA expression plasmid, His-tag fuse Blp12652-3363 expression plasmid, H	d N-terminally to protein			
pET-His-OmpA	2-3363	Protein expression vector OmpA expression plasmid, His-tag fused	d N-terminally to protein	This work		
pET-His-OmpA pET-His- Blp1 ₂₆₅	2-3363	Protein expression vector OmpA expression plasmid, His-tag fuse Blp12652-3363 expression plasmid, H protein	d N-terminally to protein	This work This work		
pET-His-OmpA pET-His- Blp1 ₂₆₅ Strains		Protein expression vector OmpA expression plasmid, His-tag fuse Blp12652-3363 expression plasmid, H protein Characteristics	d N-terminally to protein lis-tag fused N-terminally to	This work This work Source		
pET-His-OmpA pET-His- Blp1 ₂₆₅ Strains Escherichia coli (OP50	Protein expression vector OmpA expression plasmid, His-tag fusee Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e	d N-terminally to protein lis-tag fused N-terminally to	This work This work Source Brenner, 1974		
pET-His-OmpA pET-His- Blp1 ₂₆₅ Strains Escherichia coli (Acinetobacter		Protein expression vector OmpA expression plasmid, His-tag fuse Blp12652-3363 expression plasmid, H protein Characteristics	d N-terminally to protein lis-tag fused N-terminally to	This work This work Source		
pET-His-OmpA pET-His- Blp1 ₂₆₅ Strains Escherichia coli Acinetobacter ADP1	OP50 baylyi	Protein expression vector OmpA expression plasmid, His-tag fuses Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for <i>C. e</i> Wild type	d N-terminally to protein lis-tag fused N-terminally to	This work This work Source Brenner, 1974 ATCC 33305*		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b	OP50 baylyi	Protein expression vector OmpA expression plasmid, His-tag fusee Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e	d N-terminally to protein lis-tag fused N-terminally to	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al.,		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Ab _{IC 1}	OP50 baylyi	Protein expression vector OmpA expression plasmid, His-tag fuse Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s	d N-terminally to protein lis-tag fused N-terminally to legans	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Ab _{IC} ↓ AompA	OP50 baylyi	Protein expression vector OmpA expression plasmid, His-tag fuse Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma	d N-terminally to protein lis-tag fused N-terminally to elegans ttrain, gentamicin sensitive annii strain Ab _{IC1} ; markerless	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Abic: Abic:	OP50 baylyi vaumannii	Protein expression vector OmpA expression plasmid, His-tag fuser Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC I} \(\Delta\text{mpA}\) strain with pUC19_gm_Ac	d N-terminally to protein lis-tag fused N-terminally to vilegans train, gentamicin sensitive vannii strain Ab _{IC1} ; markerless cORI plasmid	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Ab _{IC} ↓ AompA	OP50 baylyi vaumannii	Protein expression vector OmpA expression plasmid, His-tag fuse Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma	d N-terminally to protein lis-tag fused N-terminally to vilegans train, gentamicin sensitive vannii strain Ab _{IC1} ; markerless cORI plasmid	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Abic: Abic:	OP50 baylyi vaumannii	Protein expression vector OmpA expression plasmid, His-tag fuser Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC I} \(\Delta\text{mpA}\) strain with pUC19_gm_Ac	d N-terminally to protein lis-tag fused N-terminally to elegans ttrain, gentamicin sensitive train, gentamici strain Ab _{ICI} ; markerless cORI plasmid pompA	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Abic: \(\Delta \text{AompA} \) Abic: \(\Delta \text{AompA} \):p Abic: \(\Delta \text{AompA} \):pon	OP50 baylyi aumannii mpA mpA _{IC II}	Protein expression vector OmpA expression plasmid, His-tag fusee Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC I} \(\Delta \text{ompA} \) strain with pUC19_gm_Ac Ab _{IC I} \(\Delta \text{ompA} \) strain complemented with	d N-terminally to protein tis-tag fused N-terminally to plegans train, gentamicin sensitive train, gentamicin sensitive train train Ab _{IC1} ; markerless CORI plasmid pompA	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Ab _{IC 1} /AompA Ab _{IC 1} /AompA::p Ab _{IC 2} /AompA::pon Ab _{IC 1} /AompA::pon	OP50 baylyi aumannii mpA mpA _{IC II}	Protein expression vector OmpA expression plasmid, His-tag fuse Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC 1} \DompA strain with pUC19_gm_Ac Ab _{IC 1} \DompA strain complemented with Ab _{IC 1} \DompA strain complemented with	d N-terminally to protein lis-tag fused N-terminally to lis-tag fused N-terminally to legans train, gentamicin sensitive lannii strain Ab _{IC I} ; markerless CORI plasmid pompA pompA _{IC II} pompA _{D268A}	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Abic: \(\text{AompA} \) Abic: \(\text{AompA} \): pon	OP50 baylyi aumannii mpA mpA _{IC II}	Protein expression vector OmpA expression plasmid, His-tag fuse Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC 1} \(\Delta\)ompA strain with pUC19_gm_AC Ab _{IC 1} \(\Delta\)ompA strain complemented with Ab _{IC 1} \(\Delta\)ompA strain complemented with Ab _{IC 1} \(\Delta\)ompA strain complemented with	d N-terminally to protein tis-tag fused N-terminally to elegans train, gentamicin sensitive train, gentamicin sensitive train, gentamicin sensitive train ab _{IC1} ; markerless cORI plasmid pompA pompA _{IC1I} pompA _{D268A} c-proAB) [F_ traD36 proAB+	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work This work		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Abic: \(\text{AompA} \) Abic: \(\text{AompA} \): pon	OP50 baylyi aumannii mpA mpA _{IC II}	Protein expression vector OmpA expression plasmid, His-tag fuse, Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e. Wild type Representative IC I clone strain; MDR sompA gene-negative mutant of A. bauma Ab _{IC 1} ΔompA strain with pUC19_gm_AC Ab _{IC 1} ΔompA strain complemented with Ab _{IC 1} ΔompA strain complemented with Ab _{IC 1} ΔompA strain complemented with addical glnV44 thi-1 relA1 gyrA96 Δ(lace)	d N-terminally to protein tis-tag fused N-terminally to elegans train, gentamicin sensitive train, gentamicin sensitive train, gentamicin sensitive train ab _{IC1} ; markerless cORI plasmid pompA pompA _{IC1I} pompA _{D268A} c-proAB) [F_ traD36 proAB+	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work This work This work Yanisch-Perron		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Abic: \(\text{AompA} \) Abic: \(\text{AompA} \): pon	OP50 baylyi aumannii npA npA _{IC II}	Protein expression vector OmpA expression plasmid, His-tag fuses Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC 1} ΔompA strain with pUC19_gm_Ac Ab _{IC 1} ΔompA strain complemented with Ab _{IC 1} ΔompA strain complemented with endA1 glnV44 thi-1 relA1 gyrA96 Δ(lac lacIq lacZΔM15] hsdR17(RK- mK+) λ-	d N-terminally to protein tis-tag fused N-terminally to elegans train, gentamicin sensitive train, gentamicin sensitive train, gentamicin sensitive train ab _{IC1} ; markerless cORI plasmid pompA pompA _{IC1I} pompA _{D268A} c-proAB) [F_ traD36 proAB+	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work This work This work Yanisch-Perron		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Ab _{IC1} /AompA Ab _{IC2} /AompA::pan Ab _{IC2} /AompA::pon Ab _{IC2} /AompA::pon E. coli JM107	OP50 baylyi aumannii npA npA _{IC II}	Protein expression vector OmpA expression plasmid, His-tag fuse, Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e. Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC 1} ΔompA strain with pUC19_gm_Ac Ab _{IC 1} ΔompA strain complemented with Ab _{IC 1} ΔompA strain complemented with endA1 glnV44 thi-1 relA1 gyrA96 Δ(lac lacIq lacZΔM15] hsdR17(RK- mK+) λ-ompTgaldcmlonhsdSB(rB-mB-) λ	d N-terminally to protein fis-tag fused N-terminally to listage fused N-terminally to protein fused N-terminally to listage fu	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli d Acinetobacter ADP1 Acinetobacter b Abic:	OP50 baylyi aumannii npA npA _{ICII} npA _{D268A}	Protein expression vector OmpA expression plasmid, His-tag fuse Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC 1} ΔompA strain with pUC19_gm_Ac Ab _{IC 1} ΔompA strain complemented with Ab _{IC 1} ΔompA strain complemented with endA1 glnV44 thi-1 relA1 gyrA96 Δ(lac lacIq lacZΔM15] hsdR17(RK- mK+) λ- ompTgaldcmlonhsdSB(rB-mB-) λ T7p07ind1 sam7nin5]) [malB+]K-12(λS)	d N-terminally to protein lis-tag fused N-terminally to lis-tag fused N-terminally to legans train, gentamicin sensitive lannii strain Ab _{IC1} ; markerless CORI plasmid pompA pompA _{D268A} c-proAB) [F_ traD36 proAB+ (DE3 [lacI lacUV5-	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work This work This work Yanisch-Perron et al., 1985 Studier and Moffatt, 1986		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli Acinetobacter ADP1 Acinetobacter b Abic i	OP50 baylyi aumannii npA npA _{IC II}	Protein expression vector OmpA expression plasmid, His-tag fuse, Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC1} ΔompA strain with pUC19_gm_Ac Ab _{IC1} ΔompA strain complemented with Ab _{IC1} ΔompA strain complemented with Ab _{IC1} ΔompA strain complemented with endA1 glnV44 thi-1 relA1 gyrA96 Δ(lac lacIq lacZΔM15] hsdR17(RK- mK+) λ- ompTgaldcmlonhsdSB(rB-mB-) λ T7p07ind1sam7nin5]) [malB+]K-12(λS B F ompT hsdS(rB-mB-) dcm ⁺ Tet' g	d N-terminally to protein lis-tag fused N-terminally to lis-tag fused N-terminally to legans train, gentamicin sensitive lannii strain Ab _{IC1} ; markerless CORI plasmid pompA pompA _{D268A} c-proAB) [F_ traD36 proAB+ (DE3 [lacI lacUV5-	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work This work This work Studier and Moffatt, 1986 Thermo Fisher		
PET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Acinetobacter b Ab _{IC1} Ab _{IC1} /AompA::pom Ab _{IC1} /AompA::pom Ab _{IC1} /AompA::pom E. coli JM107 E. coli BL21 (DE E. coli Arct (DE3)	OP50 baylyi aumannii npA npA _{ICII} npA _{D268A}	Protein expression vector OmpA expression plasmid, His-tag fuses Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC 1} ΔompA strain with pUC19_gm_Ac Ab _{IC 1} ΔompA strain complemented with Ab _{IC 1} ΔompA strain complemented with Ab _{IC 1} ΔompA strain complemented with endAl glnV44 thi-1 relA1 gyrA96 Δ(lac lacIq lacZΔM15] hsdR17(RK-mK+) λ- ompTgaldcmlonhsdSB(rB-mB-) λ T7p07ind1 sam7nin5]) [malB+]K-12(λS B F ompT hsdS(r _B m _B -) dcm* Tet' g cpn60 Gent']	d N-terminally to protein lis-tag fused N-terminally to beliegans train, gentamicin sensitive train, gentamicin sensitive train, gentamid pompA pompA pompA pompA pompA c-proAB) [F_ traD36 proAB+ (DE3	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work This work This work Studier and Moffatt, 1986 Thermo Fisher Scientific		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli (Acinetobacter ADP1 Abic: \(\triangle AmpA \) Abic: \(\triangle AmpA \): pon Abic: \(\triangle AmpA \): pon \(Abic: \(\triangle AmpA \): pon \(Abic: \(\triangle AmpA \): pon \(E. \) coli \(\triangle BL21 \) (DE \(E. \) coli \(\triangle Arct \) (DE3) \(Abic: \(\triangle Asil \)	OP50 baylyi aumannii npA npA _{ICII} npA _{D268A}	Protein expression vector OmpA expression plasmid, His-tag fuses Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e. Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC1} ΔompA strain complemented with Ab _{IC1} ΔompA strain complemented with endAl glnV44 thi-1 relA1 gyrA96 Δ(lat lacIq lacZΔM15] hsdR17(RK- mK+) λ- ompTgaldcmlonhsdSB(rB-mB-) λ T7pO7ind1 sam7nin5]) [malB+]K-12(λS B F ompT hsdS(rB-mB-) dcm+ Tet' g cpn60 Gent'] sel1 gene-negative mutant of A. bauma	d N-terminally to protein lis-tag fused N-terminally to delegans train, gentamicin sensitive train, gentamicin sensitive train, gentamicin sensitive train Ab _{IC1} ; markerless cORI plasmid pompA pompA _{IC1} pompA pompA _{D268A} c-proAB) [F_ traD36 proAB+ (DE3	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work This work Studier and Moffatt, 1986 Thermo Fisher Scientific This work		
Strains Escherichia coli dacinetobacter da DP1 Abic i dompa::pon Abici dompa::pon Abici dompa::pon Abici dompa::pon Abici dompa::pon Abici dompa::pon E. coli JM107 E. coli BL21 (DE E. coli Arct (DE3) Abici dasgal	OP50 baylyi aumannii npA npA _{ICII} npA _{D268A}	Protein expression vector OmpA expression plasmid, His-tag fuses Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC 1} ΔompA strain with pUC19_gm_Ac Ab _{IC 1} ΔompA strain complemented with Ab _{IC 1} ΔompA strain complemented with endAl glnV44 thi-1 relA1 gyrA96 Δ(lau lacIq lacZΔM15] hsdR17(RK- mK+) λ- ompTgaldcmlonhsdSB(rB-mB-) λ T7p07ind1sam7nin5]) [malB+]K-12(λS, B F ompT hsdS(r _B m _B -) dcm ⁺ Tet' g cpn60 Gent'] sell gene-negative mutant of A. bauma ygaU gene-negative mutant of A. bauma ygaU gene-negative mutant of A. bauma	d N-terminally to protein fis-tag fused N-terminally to list-tag fused N-terminally to delegans strain, gentamicin sensitive sannii strain Ab _{IC1} ; markerless coRI plasmid pompA pompA _{D268A} c-proAB) [F_ traD36 proAB+ (DE3	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work This work This work Studier and Moffatt, 1986 Thermo Fisher Scientific This work This work		
pET-His-OmpA pET-His- Blp1 ₂₆₈ Strains Escherichia coli d Acinetobacter b Abic i Ab	OP50 baylyi aumannii npA npA _{ICII} npA _{D268A}	Protein expression vector OmpA expression plasmid, His-tag fuse, Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e. Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC 1} ΔompA strain with pUC19_gm_AC Ab _{IC 1} ΔompA strain complemented with Ab _{IC 1} ΔompA strain complemented with endA1 glnV44 thi-1 relA1 gyrA96 Δ(lac lacIq lacZΔM15] hsdR17(RK- mK+) λ- ompTgaldcmlonhsdSB(rB-mB-) λ T7p07ind1 sam7nin5]) [malB+]K-12(λS B F ompT hsdS(r _B -m _B -) dcm ⁺ Tet' gcpn60 Gent'] sel1 gene-negative mutant of A. bauma ygaU gene-negative mutant of A. bauma glt1 gene-negative mutant of A. bauman	d N-terminally to protein fis-tag fused N-terminally to belegans train, gentamicin sensitive train, gentamicin sensitive train ab _{IC1} ; markerless cORI plasmid pompA pompA pompA _{D268A} c-proAB) [F_ traD36 proAB+ (DE3 [lacI lacUV5-) gal \(\lambda(DE3) \) endA Hte [cpn10 train ab _{IC1} ; markerless train \(\lambda _{IC1} ; markerless train \(This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work This work This work Studier and Moffatt, 1986 Thermo Fisher Scientific This work This work This work This work This work		
Strains Escherichia coli dacinetobacter da DP1 Abic i dompa::pon Abici dompa::pon Abici dompa::pon Abici dompa::pon Abici dompa::pon Abici dompa::pon E. coli JM107 E. coli BL21 (DE E. coli Arct (DE3) Abici dasgal	OP50 baylyi aumannii npA npA _{ICII} npA _{D268A}	Protein expression vector OmpA expression plasmid, His-tag fuses Blp12652-3363 expression plasmid, H protein Characteristics Wild type, bacterial food source for C. e Wild type Representative IC I clone strain; MDR s ompA gene-negative mutant of A. bauma Ab _{IC 1} ΔompA strain with pUC19_gm_Ac Ab _{IC 1} ΔompA strain complemented with Ab _{IC 1} ΔompA strain complemented with endAl glnV44 thi-1 relA1 gyrA96 Δ(lau lacIq lacZΔM15] hsdR17(RK- mK+) λ- ompTgaldcmlonhsdSB(rB-mB-) λ T7p07ind1sam7nin5]) [malB+]K-12(λS, B F ompT hsdS(r _B m _B -) dcm ⁺ Tet' g cpn60 Gent'] sell gene-negative mutant of A. bauma ygaU gene-negative mutant of A. bauma ygaU gene-negative mutant of A. bauma	d N-terminally to protein lis-tag fused N-terminally to bilegans train, gentamicin sensitive annii strain Ab _{IC1} ; markerless cORI plasmid pompA pompA _{D268A} c-proAB) [F_ traD36 proAB+ (DE3 [lacI lacUV5-)) gal \(\lambda(DE3) \) endA Hte [cpn10 annii strain Ab _{IC1} ; markerless	This work This work Source Brenner, 1974 ATCC 33305* Povilonis et al., 2013 This work This work This work This work This work This work Studier and Moffatt, 1986 Thermo Fisher Scientific This work This work		

A. baumannii growth assays

Bacterial growth was evaluated in LB medium, 80% active fetal bovine serum (FBS) and 80% heat inactivated FBS (htFBS) as described by Skerniškytė *et al.* (2019). Growth was measured at 37°C with periodic shacking every 20 min by Tecan Infinite M200 Pro microplate reader.

Determination of cell surface hydrophobicity

Determination of cell surface hydrophobicity by Salt Aggregation Test (SAT) was carried out as described by Nwanyanwu and Abu (2013). Briefly, A. baumannii were grown on LB plates at 37°C overnight. Cells were suspended in ddH_2O until slight turbidity and mixed with the equal volume of ammonium sulfate solution to yield concentrations ranging from 0.0625 M to 2 M. Cell aggregation (climbing) was observed under the microscope at 50 × magnification. The cell surface hydrophobicity was expressed as a lowest salt concentration, which caused bacterial cell aggregation.

Generation of deletion mutants, complemented strains and site-directed mutagenesis

Markerless gene deletion was performed as previously described (Oh *et al.*, 2015). Plasmids used for mutant generation are listed in Table 1. Mutants were selected by PCR with specific primers and confirmed by sequencing. For the complementation, the sequence of genes with upstream region (with the potential native promoter sequences) was amplified using primers listed in Table 1 and cloned into pUC19_gm_AcORI plasmid. Site-directed mutagenesis of OmpA-like domain was performed using inverse PCR with primers OAsp268F/OAsp268R and p*ompA* plasmid as a template (Table 1). All generated plasmids were confirmed by sequencing. *ompA* gene deletion mutant was transformed with the resulting plasmids by electroporation and colonies were selected on LB agar with 30 μg/ml gentamicin.

Confocal Laser Scanning Microscopy (CLSM)

For evaluation of biofilms, 1000-fold dilutions of overnight *A. baumannii* cultures were used for seeding into LB media. Biofilms were grown for 2 and 24 h at 37°C without agitation. After growth in micro-titer plates, biofilms were stained for 2 h by the Filmtracer TM LIVE/DEAD® Biofilm Viability Kit (Thermo Fisher Scientific). The plate was then placed on the motorized stage of an inverted confocal microscope (TCS SP8 AOBS, Leica Microsystems) at the INRA-MIMA2 imaging platform (Jouy en Josas, France) as described by Poquet *et al.* (2018).

Transmission electron microscopy

TEM analysis was undertaken at Microscopy and Imaging Platform MIMA2 at Gabi UMR (Jouy en Josas, France). Bacteria were grown in LB medium at 37°C

overnight and cells were fixed within 0.1 M sodium cacodylate buffer (pH 7.2) with 2% of glutaraldehyde for 3 hours at room temperature. After treatment with 0.5% Oolong Tea Extract (OTE) in cacodylate buffer, post-fixation with 1% osmium tetroxide containing 1.5% potassium cyanoferrate, pellets were dehydrated in solutions of increasing ethanol concentrations and embedded in Epon. Ultrathin sections were collected on 200-mesh copper grids and counterstained with lead citrate. Grids were examined with a Hitachi HT7700 electron microscope operated at 80 kV (Elexience, France), and images were acquired with a charge-coupled device camera (AMT).

Cell culture assays

Mouse epithelial LL/2 (LLC1) cell lines were grown in Dulbecco's modified Eagle's medium (DMEM) (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco) at 37°C with 5% CO₂. Adhesion experiments were performed as described by Skerniškytė *et al.* (2019). Bacterial adherence (A%) to the LL/2 cells was expressed as a percentage of the CFU of adhered bacteria compared to the total number of CFUs of the initial inoculum.

For the opsonophagocytic killing assay, J774 macrophages were grown in DMEM supplemented with 10% FBS at 37°C with 5% CO₂. Macrophages were stimulated with 40 ng/ml *E. coli* LPS (Sigma-Aldrich) for 3 days. The macrophages $(1 \times 10^5 \text{ cells/well})$ and *A. baumannii* strains $(1 \times 10^4 \text{ CFU/well})$ were added into the wells along with the heat-treated mice serum (56 °C for 40 min for the inactivation of complement components) at the final dilution of 1:200. After 1 h of incubation the samples were serially diluted and seeded. Serum killing rates were counted by comparing the number of the reduced CFUs with those observed using naïve serum.

A cytotoxicity assay was performed by incubating LL/2 with recombinant Blp1 C-terminal fragment and OmpA protein in DMEM supplemented with 10% FBS at 37°C for 24 hours. Then, 20 μl of MTS solution was added to the wells and cells were incubated for 4 hours at 37 °C. After incubation OD₄₉₀ was determined. The proliferation rate was counted by comparing OD₄₉₀ values for antigen-treated and non-treated cells.

Caenorhabditis elegans fertility assay

A. baumannii strains were investigated using C. elegans fertility model as described by Skerniškytė et al. (2019). Overnight cultures of different A. baumannii strains were seeded on NGM medium. One L2 stage worm was placed over each A. baumannii strain. On the third day after infection worm progeny was determined by counting C. elegans worms.

Cloning and proteins purification

The DNA of Blp1 C-terminal fragment spanning 2652-3363 amino acids of blp1 coding region and full coding region of ompA with 6×His tag sequences, attached to the N-terminus of the recombinant proteins were amplified using primer pair BldBamF/BlXhR and OmBamF/OmXhR, respectively. The resulting amplicon was cloned into a protein expression plasmid pET-28b. The resulting plasmids were sequenced and transformed into the expression host strain E. coli BL21 cells for OmpA expression and for Blp1₂₆₅₂₋₃₃₆₃ expression the host strain E. coli ArcticExpress was used. Culture was grown in Luria-Bertani (LB) broth containing 40 µg/ml of kanamycin to OD600 of 0.5. Protein expression was induced using 0.5 mM isopropyl β-d-thiogalactopyranoside (IPTG) at 28°C for OmpA expresson and at 14°C for Blp1_{2652,3363} expression for 16 h. Cells were harvested by centrifugation at 7000 rpm for 15 minutes and cell pellets were suspended in lysis buffer (20 mM NaH₂PO₄ pH 7.4, 500 mM NaCl, 20 mM imidazole) supplemented with protease inhibitor PMSF. Cells were disrupted by sonication and centrifuged 12000 rpm at 4°C, for 30 min to collect insoluble material. Proteins were purified from soluble fraction by affinity chromatography, using 1 ml HisTrapHPTM nickel-Sepharose column (GE Healthcare). Proteins were eluted by linear gradient using buffer containing 20 mM NaH₂PO₄ pH 7.4, 500 mM NaCl and 500 mM imidazole. The eluted fractions were desalted using Sephadex G-25 (GE Healthcare) column, exchanging to PBS buffer. Eluted proteins were analyzed by 12% SDS-PAGE gels, stained with Coomassie Brilliant Blue. The final recombinant protein product was frozen and stored at -80°C for further studies.

Murine models

Eight- to twelve-week-old female BALB/c mice were purchased from Institute of Biochemistry, Life Science Center (Vilnius University, Vilnius). The animals were maintained and used in accordance with the recommendations of the directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purpose. Study was performed under permission of Lithuanian State Food and Veterinary Service no. G2-72.

A sepsis model was established as described previously (Skerniškytė *et al.*, 2019). Briefly, *A. baumannii* cultures were prepared by mixing the bacterial suspension with 5% of porcine mucin (w/v; Sigma-Aldrich). BALB/c mice were injected intraperitoneally with 0.5 ml of the sample. The CFUs corresponding the bacterial loads were determined by plating sequential dilutions on LB plates.

For the immunization experiments, groups of BALB/c mice (n = 5) were immunized intramuscularly with 2 μ g of recombinant Blp1 protein fragment or OmpA protein. Immunization mixture was prepared by mixing the antigen with an equal volume of complete Freund's adjuvant on the day 0 and with incomplete Freund's adjuvant on the days 14 and 28. Control group was inoculated with PBS

combined with Freund's adjuvant. On the day 32, blood samples were collected and tested against immunogen using ELISA. Mice were challenged intraperitoneally on the day 42 with 1×10^8 CFU of $Ab_{IC\ I}$ bacteria. For the passive immunization, the 200 μL of antiserum was injected intraperitoneally into naïve mice (3 mice per group). Control group received the serum obtained from mice, immunized with PBS and Freund's adjuvant. After 6 hours, 5×10^7 CFU of $Ab_{IC\ I}$ bacteria were injected intraperitoneally and mice viability was monitored for 45 days.

Statistical analysis

All statistical comparisons were based on t-test or the one-way analysis of variance (ANOVA) with a Tukey HSD post hoc test.

RESULTS AND DISCUSSION

This dissertation is divided into three major parts. The first part represents a comprehensive characterization of virulence-related traits of clinical *A. baumannii* strains isolated from Lithuanian hospitals. All tested strains belonged to the most prevalent *A. baumannii* clonal lineages, namely international clone I (IC I) and international clone II (IC II). The second part describes the investigations of potential virulent factors of *A. baumannii*. Finally, in the last part, two major virulent surface-exposed proteins Blp1 and OmpA were characterized as vaccine candidates against clinical *A. baumannii* strains using murine infection model.

Virulence-related features of clinical A. baumannii strains

Thirty six *A. baumannii* clinical isolates, chosen for the present study, were representatives of 30 distinct PFGE types (pulsotypes) of IC I and IC II clonal lineages, and were obtained from Lithuanian hospitals during the period of June-November 2010 (Povilonis *et al.*, 2013). Twenty IC I isolates and sixteen IC II isolates were selected. Most of the isolates tested belonged to the prevalent pulsotypes (more than two strains in pulsotype), while some of the isolates were sporadic (two or one strain in the pulsotype). All isolates were multidrug-resistant (resistant to three or more antibiotic classes).

We were interested, whether representative strains of the two most common clonal lineages display specific pattern of surface-related features, which are thought to be important for *A. baumannii* growth and survival in clinical environment and within the host (Rumbo *et al.*, 2014; Weber *et al.*, 2015; Lee *et al.*, 2017). Therefore, we first tested swarming and twitching motilities of selected *A. baumannii* isolates. The swarming distance, expressed by the majority of strains (92%, 33/36), was low and yielded approximately 6 – 14 mm. Only three strains, all representatives of IC I lineage,

showed increased swarming motility yielding a value of > 26 mm. (Figure 1A). However, the majority of A. baumannii IC I lineage strains showed twitching motility in contrast to IC II strains, which lacked this property with the exception of a single strain (Figure 1A). The IV type pili have been proposed to be responsible for twitching motility in A. baumannii (Harding $et\ al.$, 2013), therefore we looked for the presence of pili-like structures on the cell surface. The transmission electron microscopy of representative motile IC I strain $Ab_{IC\ I}$ and non-motile IC II strain II-a showed marked differences in cell surface structures, the IC I strain displaying pili-like extended structures, which were absent in the IC II strain (Figure 1B).

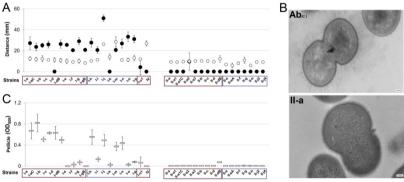


Fig. 1. Twitching and swarming motilities and pellicle formation of A. baumannii IC I and IC II lineage strains. A – twitching (\bullet) and swarming (o) motilities expressed as a distance in mm; B – TEM analysis of $Ab_{IC\ I}$ and II-a strains; C – total pellicle biomass (\Longrightarrow) was suspended in the aqueous solution and absorbance OD_{600} was measured. Data are given as mean \pm standard deviations from three independent experiments. Roman numerals I and II in the strains names indicate IC I and IC II, respectively. Red boxes indicate prevalent strains, while blue boxes present sporadic strains.

According to the recent observations, the bacterial motility contributes to the formation of pellicle, a biofilm at the air-liquid interface (Hölscher *et al.*, 2015; Giles *et al.*, 2015). Hence, we tested the ability of our set of *A. baumannii* strains to form pellicle by growing them in TSB medium. The vast majority of IC II lineage strains lacked the ability to form pellicle, whereas 85% (17/20) of IC I strains showed pellicle-forming phenotype (Figure 1C). The pellicle formation clearly was a trait of IC I lineage, though these

strains were highly various in terms of the abundance of pellicle biomass. However, there was no obvious correlation among pellicle formation and swarming or twitching motility in IC I group, as for example I-d strain lacking twitching motility phenotype, was able to form a pellicle and I-gB strain with no pellicle forming feature was able to demonstrate twitching motility. In accordance with other studies (Eijkelkamp et al., 2011), our results show that swarming hypermotility is a rare phenotype, as we have identified only three strains with this type of motility. Moreover, our results indicate that twitching motility and pellicle formation are features strongly associated with A. baumannii IC I lineage strains, however, these characteristics had no correlation with the prevalence of the strains. These data are in the line with the previous observations of Eijkelkamp et al. (2011) from the analysis of Australian A. baumannii clinical isolates, where all IC I clone and only few IC II clone members showed twitching motility.

Similarly to other Gram-negative pathogens, A. baumannii capsular polysaccharide (CPS) and lipopolysaccharide (LPS), the latter thought to be deficient in extracellular polysaccharide portion in most A. baumannii strains (Harding et al., 2015) and called lipooligosaccharide (LOS), are essential virulence factors protecting from the host complement system (Russo et al., 2010) and mediating inflammatory responses (Moffat et al., 2013). Figure 2 shows polysaccharide profiles of representative IC I (n=5) and IC II (n=11)isolates. Major differences can be observed in CPS profiles between representatives of two clonal lineages. The IC I strains express CPS of variable length, whereas the IC II strains with the few exceptions, produce only narrow distribution, high-molecular-weight CPS. Two IC II strains (II-h and II-dB) were found to be capsule-deficient at growth conditions used (Figure 2). Our data show that nearly all clinical A. baumannii strains produce capsule, although IC I and IC II strains display lineage-specific CPS profile. According to the previous reports, A. baumannii genomic K locus, responsible for the

CPS synthesis and export, is highly diverse (Hu *et al.*, 2013; Kenyon and Hall, 2013). Strikingly, all our examined capsule-producing IC I strains synthesized polysaccharides of variable-molecular-mass, whereas IC II strains yielded exclusively high-molecular-mass CPS.

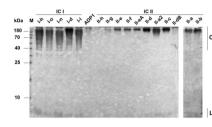


Fig. 2. Capsular polysaccharide (CPS) profiles of *A. baumannii* IC I and IC II lineage strains. 12% SDS-PAGE followed by Alcian Blue staining was undertaken to visualize CPS. *Acinetobacter baylyi* strain ADP1 was used as CPS-negative control. LOS denotes lipooligosaccharide. The positions of standard molecular mass

One of the most important characteristics of bacterial surface is cell hydrophobicity, whereas it plays a role in virulence-associated processes (Krasowska and Sigler, 2014). All our tested IC I strains were considered to have hydrophobic character based on the estimated Salt Aggregation Test (SAT) values, which ranged from 0.5 M to 1 M (Figure 3A). In contrast, more than a half (56%, 9/16) of IC II strains displayed low surface hydrophobicity compared with the IC I group (SAT values ≥2 M) (Figure 3A). Of hydrophilic IC II strains, II-a2, II-c, II-d and II-dB represented clonal isolates, with strains belonging to the pulsotypes retrieved repeatedly from the hospitals, whereas II-e, II-eA, II-f, II-g, II-h isolates were sporadic. We did not observe a correlation between hydrophobicity and sequence type (ST) by examining selected IC II isolates according Oxford multilocus sequence the typing (MLST) (https://pubmlst.org/abaumannii/). Thus, strains II-a and II-f. differing significantly in hydrophobic features, were both assigned to a common sequence type ST208, whereas strains II-a2 and II-h displaying hydrophilic character were assigned to different STs, ST 440 and ST348, respectively.

Since, it has been proposed that a degree of cell surface hydrophobicity could modulate adhesive properties of various commensal and pathogenic microorganisms (Krasowska and Sigler, 2014), we investigated how hydrophobic character of *A. baumannii* IC I and IC II strains impacts their ability to form biofilms and adhere to the abiotic and biotic surfaces. Interestingly, the trend of biofilm formation among IC I and IC II strains was different to that observed for pellicle phenotype (Figure 3B).

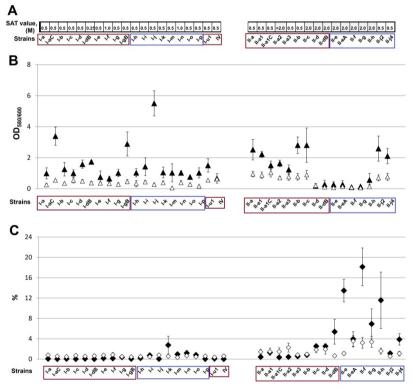
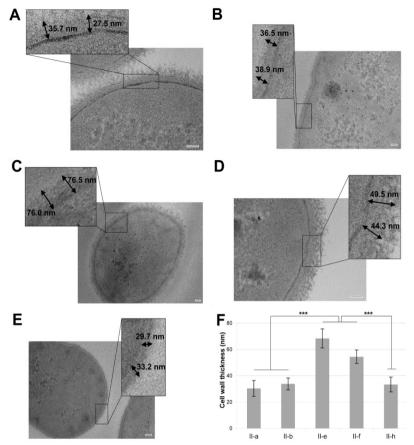



Fig. 3. The cell surface-associated features of *A. baumannii* IC I and IC II lineage strains. A – surface hydrophobicity, defined by the salt aggregation test (SAT) and expressed as a minimum ammonium sulfate concentration (M) required for bacterial aggregation; B – biofilm formation (\blacktriangle) and adherence to polystyrene (Δ) expressed as OD_{580/600}. Error bars represent standard deviations from three independent experiments; C –desiccation resistance (\bullet) and adhesion to lung epithelium cells LL/2 (\Diamond) expressed as percentages. Error bars represent standard errors from at least three independent experiments. Red boxes indicate prevalent strains, while blue boxes present sporadic strains.

All IC I strains and some IC II strains formed biofilm, albeit at the varying levels, whereas a group of IC II strains that were genetically close according to the PFGE analysis (Povilonis *et al.*, 2013), namely, II-d, II-dB, II-e, II-eA, II-f, II-g and II-h, showed extremely weak biofilm-forming ability or entirely lacked this phenotype (Figure 3B). Biofilm non-forming phenotype of these isolates correlated with their low surface hydrophobicity according to the SAT assay.

The majority of IC I and a part of IC II strains poorly survived desiccation, yielding only 0.005 to 1.3 percent of survived cells (Figure 3C). However, a group of hydrophilic IC II strains was highly resistant to desiccation and displayed two to fourteen times higher resistance compared with the rest of the IC II strains (Figure 3C). The decreased surface hydrophobicity possibly might increase water retention in the bacterial cell wall and thus contribute to the desiccation resistance. Moreover, we observed that the hydrophilic IC II strains II-e and II-f, displaying the highest desiccation resistance among tested strains, had approximately two-fold thicker cell wall compared with the hydrophobic strains II-a and II-b and a capsule-deficient strain II-h according to the TEM analysis (Figures 4A-F).

The specific adherence of *A. baumannii* clinical strains to the mouse lung epithelial LL/2 cells was poor (Figure 3C). The IC I strains adhered at a rate of 0.3% to 0.8%, while the adhesion of IC II strains was more pronounced and yielded 0.5% to 3.5% rate. In the IC II group of hydrophilic strains, in particular II-a2, II-c, II-d, II-eA, II-f, II-g and II-h strains showed a clear trend of increased ability to adhere to the epithelial cells (Figure 3C).

Fig. 4. Cell wall thickness of *A. baumannii* strains with different surface hydrophobicity, assessed by the transmission electron microscopy. *A. baumannii* II-b (A), II-a (B), II-f (C), II-e (D) and II-h (E) strains were analysed. Scale bar is 50 nm. Double arrows in the larger scale insets show the calculated thickness of the cell walls. F - average of cell wall thickness of the strains. Error bars represent standard deviations from three measurements of three different cells, significance was assessed by ANOVA, (p<0.001).

Whereas our study confirms a link between *A. baumannii* hydrophobicity and biofilm formation as well as adherence to the abiotic surface, it demonstrates that hydrophobic phenotype renders *A. baumannii* to become more sensitive to desiccation and weakens its ability to adhere to the epithelial cells. Taken together, these results demonstrate that a high cell surface hydrophobicity of *A. baumannii* impacts important virulence traits. The aforementioned

results imply, that IC I and IC II strains might use different cell surface-related properties for an attachment to the host cells.

It is important to note, that *A. baumannii* strains with hydrophilic nature were mostly sporadic compared to the pandemic (prevalent) strains, which largely exhibited hydrophobic cell surface characteristics. This indicates that hydrophobic cell surface is a favorable property contributing to the prevalence of *A. baumannii* in the clinical environment. While hydrophobic surface enables bacteria to adhere to the plastic surface, e.g. medical devices, hydrophilic characteristics may increase the bacterial virulence inside the host, because hydrophilic strains exhibit increased adhesion to lung epithelium cells and contain thicker capsular layer, which could contribute to the bacterial resistance to antimicrobial activity inside the host.

Our observations with IC II strains also suggest that genetically related *A. baumannii* strains belonging to the same clonal lineage, display a marked variation in the surface-related properties. Therefore, we hypothesized that these phenotypic differences could have different impact on their virulence properties and decided to investigate them more thoroughly.

Therefore, we investigated virulence of *A. baumannii* using nematodes fertility assay and mouse sepsis infection model. First, to assess the virulence in *C. elegans*, we have selected a set of IC II strains, displaying different properties of surface hydrophobicity, resistance to desiccation and ability to adhere to the lung epithelial cells. The strains II-b and II-a are hydrophobic, show poor resistance to desiccation and have a weak capacity to adhere to the epithelial cells, whereas strains II-f, II-e and II-h are hydrophilic, highly resistant to desiccation and show cell adherence ability. All selected strains except II-h, express CPS under laboratory growth conditions (Figure 2). *C. elegans* fertility assay demonstrated that a total number of progeny after three days upon infection was approximately 2 times lower in nematodes infected with the hydrophobic strains II-f, II-e and II-h compared to those infected with the hydrophobic strains II-a and

II-b and the difference was statistically significant (p<0.01) (Figure 5). Notably, strain II-h, being capsule-deficient under laboratory conditions, showed similar virulence features in *C. elegans* compared with capsule-producing strains II-e and II-f.

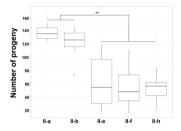
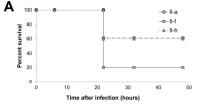
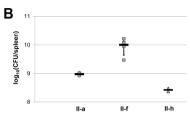




Fig. 5. C. elegans fertility assay. Box plot of the count of nematodes progeny after three days of incubation in the presence of A. baumannii IC II lineage strains exhibiting different cell surface hydrophobicity. Data are from three independent experiments, three to four plates were used in the each experiment. Black lines represent medians and whiskers — minimum to maximum values, significance was assessed by ANOVA (p<0.01).

Next, we used an experimental murine model to access the ability of selected IC II strains to establish a systemic infection. Representative IC II strain II-a with hydrophobic cell surface properties, II-f strain with hydrophilic character, and hydrophilic II-h strain, albeit displaying capsule-non-producing phenotype were used for infection. The mice survival rates were monitored for several days. The mice infected with II-f strain showed two-fold higher mortality rate compare to those infected with II-a and II-h strains (80% vs. 40%) (Figure 6A). Spleens from the mice, infected with the II-f strain and examined post-mortem had 10 times higher bacterial load compared with those from the mice infected with II-a strain, and over 30 times higher load compared with those infected with capsule-deficient II-h strain (Figure 6B). Furthermore, the higher yield of bacteria was detected in spleen from the mouse, which survived after 48 hours upon inoculation with II-f strain, while in the case of II-a strain the load of survived bacteria was mainly lower and only a few II-h colonies were observed after mice sacrifice and examination of spleens (Figure 6C).

Fig. 6. *A. baumannii* sepsis infection in BALB/c mice. Mice (n=5 per group) were intraperitoneally infected with 1.25×10^6 CFU of II-a, 5.5×10^6 CFU of II-f and 2.25×10^6 CFU of II-h *A. baumannii* IC II lineage strains. A – survival of mice; B – bacterial load, estimated in the spleen post-mortem; C – bacterial load in the spleen after 48 hours of infection. Survived mice

were sacrificed and spleens were tested for bacterial loads. Black lines in B and C represent an average, error bars represent standard deviations.

Therefore, the low cell surface hydrophobicity clearly impacts virulence of *A. baumannii*, although our study predicts that the capsule presence is critically needed to establish an infection in vertebrate host, but not in *C. elegans* model. This is in accordance with the observations made by Kempf *et al.* (2012) from the analysis of two *A. baumannii* strains recovered from the same patient, where a strain with hydrophobic features and biofilm forming ability did not show increased virulence compared to the strain with hydrophilic properties. Nevertheless, most of our tested *A. baumannii*, including outbreak strains formed biofilm, whereas IC II strains with hydrophilic character, increased desiccation resistance and adherence to the epithelium cells, were mostly sporadic. However, the listed features of hydrophilic *A. baumannii* strains might be superior at certain conditions such as long periods dryness or at the onset of host colonization and such strains might pose a high infection risk.

In order to understand the origin of differences in hydrophobicity, yielded by clinical *A. baumannii* strains, hydrophobic II-a and hydrophilic II-f strains were used for total DNA extraction and sequencing (Illumina, Thermo Fisher Scientific). Results

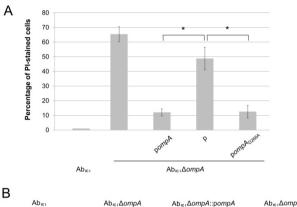
demonstrated that II-a and II-f genomes were very similar. We identified 12 single nucleotide polymorphisms (SNP) in genes, mostly related to metabolism. However, analysis of sequencing data has shown that II-f strain lacked pACICU2-type plasmid, which was present in II-a strain, while a set of other plasmids carried by both strains were the same. The PCR, targeting pACICU2-type plasmid, confirmed its presence in *A. baumannii* strains with hydrophobic cell surface properties, while all hydrophilic strains lacked this plasmid. These results indicate an association between pACICU2-type plasmid and *A. baumannii* cell surface hydrophobicity and virulence-related features.

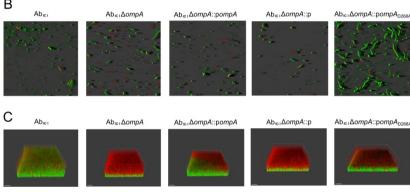
Characterization of virulence-related factors in A. baumannii

In order to identify new A. baumannii virulence factors and possible drug targets, next, by bioinformatic search we have identified A. baumannii homologues of surface-associated virulence factors, found in other bacterial pathogens. Genes, coding for selected proteins, were inactivated by markerless gene deletion method (Oh et al., 2013) in strain Ab_{IC I}, belonging to one of the most prevalent clonal lineages, IC I with a common sequence type ST231. Generated mutants were tested for their virulence-related features. BrkB, Sel1 and PqiB mutants showed no changes in virulence-related properties (Table 2). However, OmpA, Blp1, YgaU and GltI deletion mutants displayed reduced virulence using in vivo infection model. Moreover, bacterial motility was affected in OmpA and YgaU mutants. A. baumannii, deficient in ability to produce high molecular mass (~330 kDa) adhesin Blp1, showed reduced biofilm formation, adhesion to lung epithelium cells and virulence in vivo. OmpA deletion mutant demonstrated alterations in multiple virulence-related features.

OmpA is 38 kDa outer membrane protein, consisting of membranous β-barrel domain and periplasmic peptidoglycan

associated C-terminal domain (Jahangiri *et al.*, 2017; Iyer *et al.*, 2018). Park *et al.* (2012), by comparison of OmpA-like proteins from various human pathogens, have identified two absolutely conservative amino acids D271 and R286 in the C-terminal OmpA-like domain of *A. baumannii* OmpA. These residues have been shown to be critical for non-covalent association of OmpA to diaminopimelate amino acid, a component of *A. baumannii* peptidoglycan, as demonstrated by the isothermal titration calorimetry using purified recombinant OmpA proteins with D271A


Table 2. The impact of gene coding for putative virulence factors on *A. baumannii* phenotype. + effect observed, - no effect observed.


<i>A</i> .	Virukence factor in bacterial pathogen and its function	A. baumannii phenotypes					
baumannii homologue		Motility	Biofilm	Resistance to serum	Adhesion to cells	C. elegans infection	Balb/c mice infection
OmpA	E. coli OmpA; Resistance to serum and phagocytosis (Mittal et al., 2011)	+	+	+	+	+	+
Blp1	S. typhimurium BapA; Biofilm (Latasa et al., 2005)	-	+	-	+	+	+
YgaU	E. coli YgaU; Stress response (Bernal- Cabas et al., 2015)	+	-	-	-	-	+
GltI	C. jejuni PebA; Adhesion to cells (Leon- Kempis et al., 2006)	-	-	-	-	-	+
BrkB	B. pertussis BrkB; Resistance to serum (Shrivastava et al., 2009)	-	-	-	-	-	-
Sel1	L. pneumophila LpnE; Resistance to phagocytosis (Newton et al., 2007)	-	-	-	-	-	-
PqiB	V. cholerae VP1611; Adhesion to cells (Krachler and Orth, 2011)	-	-	-	-	-	-

and R286A substitutions, respectively (Park *et al.*, 2012). Therefore, we decided to investigate the role of association of OmpA protein to peptidoglycan on the virulence characteristics of *A. baumannii* clinical strain $Ab_{IC\ I}$. We have examined wild type strain its $\Delta ompA$ mutant and $ompA_{D268A}$ complemented strain, carrying substitution of one of the key residues (D271 corresponds D268 in OmpA variant from $Ab_{IC\ I}$ strain), required for OmpA interaction with the peptidoglycan.

We analyzed the biofilm forming capacity of Ab_{IC I} and Ab_{IC} $_{\rm I}\Delta ompA$ mutant, complemented with a control plasmid and with plasmids pompA or pompA_{D268A}. The strains were tested for their initial attachment to the plastic by incubating in LB medium at 37°C for 2 hours. The biofilm analysis was undertaken by confocal laser scanning microscopy (CLSM). As can be seen in Figures 7A-B, two hours after seeding, most of the Ab_{IC I} cells, attached to the plastic were viable, as judged from the dominance of SYTO9 stained cells (green color). The ompA gene knockout in Ab_{IC I} resulted in approximately 65% increase in the amount of propidium iodide (PI; red color) stained cells, which in addition tend to form prolonged bacterial chains, most likely due to the impairment of cell division, demonstrated in other bacteria with impaired peptidoglycan maintenance (Arrigucci and Pozzi, 2017; Pazos et al., 2018). The Ab_{IC I}ΔompA complementation with pompA plasmid resulted in a significantly lowered number of PI-stained cells and an absence of prolonged bacterial cells chains (Figure 7A), whereas in the Ab_{IC 1}\(\Delta\)ompA cells with control plasmid this phenotype was clearly visible (Figure 7B). The introduction of plasmid-borne ompA allele with D268A substitution into Ab_{IC I}\DompA strain efficiently reduced the number of PI-stained cells, although was not able to eliminate the phenotype of prolonged cell chains (Figure 7B).

After 24 hours of incubation *A. baumannii* mature biofilm structures were examined (Figure 7C). The PI-stained cells were found to be distributed mostly on the top of biofilm formed by $Ab_{IC\ I}$ strain. In contrast, the biofilm of $Ab_{IC\ I}\Delta ompA$ mutant contained substantial amount of PI-stained cells and prolonged cell chains were also evident. Both of these phenotypes were largely eliminated by the introduction of pompA plasmid. Similarly, the $Ab_{IC\ I}\Delta ompA$ strain complementation with the plasmid carrying ompAD268A allele also resulted in reduced amount of PI-stained cells in a mature biofilm, however, did not eliminate the phenotype of prolonged cell chains (Figure 7C).

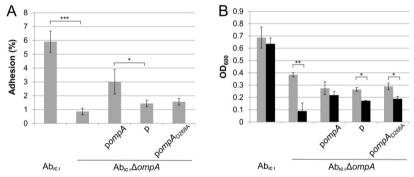


Fig. 7. CLSM analysis of *A. baumannii* biofilm formation. A – number of propidium iodidestained bacteria after 2 hours of incubation, compared to the total amount of cells expressed as a percentage; error bars represent standard deviations from six measurements of six different CLSM pictures, significance was assessed by t-test, (*P<0.05). B – visualization of initial attachment to the plastic of *A. baumannii* strains, assessed after 2 hours of incubation; bacteria were stained with SYTO9 (green) and propidium iodide (red). C – mature biofilm formation after 24 hours of incubation.

It has been previously shown that *A. baumannii* OmpA is required for bacterial attachment to the epithelial cells (Gaddy *et al.*, 2009). Therefore, we were interested, whether C-terminal domain of OmpA plays any role in the expression of this virulence trait. For this purpose, the $Ab_{IC\,I}$ strain and its $\Delta ompA$ mutant complemented either with an empty plasmid or with plasmid carrying the *ompA*D268A allele were tested for the ability to adhere to the mice lung epithelium cells LL/2. As can be seen in Figure 8A, the $\Delta ompA$ mutant showed approximately 6-fold decrease in adhesion compared to the parent

strain thereby confirming the role of OmpA in supporting the adhesive properties of *A. baumannii*. The *ompA* allele restored the phenotype of $\Delta ompA$ mutant, although not fully. Notably, the *ompA*D268A allele was nearly deficient in complementation ability being comparable to that of empty plasmid (Figure 8A).

The ability to avoid host defense systems such as complement is a crucial feature in establishing the infection by A. baumannii (Russo $et\ al.$, 2010). OmpA protein is viewed as one of the most important virulence factors involved in mediating A. baumannii resistance to human serum components, since OmpA ability to bind and inactivate complement factor H has been demonstrated (Kim $et\ al.$, 2009). Therefore, we tested the capability of $Ab_{IC\ I}$ strain and its $\Delta ompA$ mutant complemented with ompAD268A allele and with the control plasmid to avoid serum-mediated killing. For this purpose bacteria

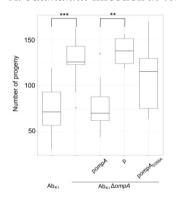


Fig. 8. *A. baumannii* adhesion to LL/2 cells and resistance to serum. A – bacterial adhesion to the LL/2 cells was expressed as a percentage of the CFUs of adhered bacteria compared to the total number of CFUs of the initial inoculum; error bars represent standard errors from at least three independent experiments. B – effect of *ompA* gene to resistance to serum-mediated killing in *A. baumannii* strains; strains were grown in LB media supplemented with 80% of heat-inactivated (grey bars) or active (black bars) FBS for 13 hours and OD₆₀₀ was measured; error bars represent standard deviations of three independent experiments. Significance was assessed by t-test (***P<0.001; **P<0.05).

were grown in LB media supplemented with 80% of active or heat-inactivated FBS. Δ*ompA* mutant exhibited significantly reduced growth in active serum-supplemented media compared to that with the heat-inactivated serum (Figure 8B). The complementation with *ompA* restored serum resistance, whereas the presence of

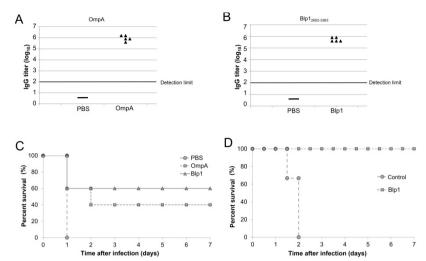
ompAD268A variant was not able to eliminate serum sensitivity of $\Delta ompA$ strain, indicating that OmpA protein interaction to peptidoglycan contributes to A. baumannii resistance to serum complement components.

For the validation of the effect of D268A substitution in OmpA on *A. baumannii* virulence *in vivo* we have accessed nematodes fertility by counting worm progeny after three days upon *A. baumannii* infection. We have observed that *ompA* deletion impaired virulence of Ab_{IC I} strain, which was fully complemented by the *ompA* gene supplied *in trans* (Figure 9). However, the *ompA* allele with D268A substitution did not rescue the phenotype indicating the importance of association of OmpA to peptidoglycan on *A. baumannii* infection *in vivo*.

Fig. 9. *A. baumannii* virulence in nematode infection model. *C. elegans* fertility was evaluated after 3 days of nematodes growth in the presence of *A. baumannii* bacteria; box plot represents the count of nematodes progeny after incubation; data were obtained from three independent experiments, three plates were used in the each experiment; black lines represent medians and whiskers – minimum to maximum values; significance was assessed by ANOVA (***P<0.001; **P<0.01).

Blp1 protein as vaccine candidate

One of the most promising strategies against MDR A. baumannii infections is a development of vaccines (Ahmad et al., 2016; Dickey et al., 2017). The surface or capsular polysaccharides were researched as potent immunization agents (Russo et al., 2013), however, their high diversity of polysaccharides (Hu et al., 2013) among A. baumannii clinical strains limits development of universal vaccine. The inactivated whole A. baumannii cells and outer membrane vesicles (OMVs) also demonstrated the induction of


immune-response using murine models (Huang *et al.*, 2014; KuoLee *et al.*, 2014). Compared to the complex antigen mixtures, the pure proteins as vaccine antigens are more desirable due to the safety issues. Indeed, several *A. baumannii* outer membrane proteins have been used for vaccine research, mostly the abundant outer membrane proteins (Zhang *et al.*, 2016; Singh *et al.*, 2016). However, the vast majority of clinical *A. baumannii* strains possess a thick outer layer of polysaccharides (capsule), which efficiently protects pathogens from the host immunity (Russo *et al.*, 2010; Skerniškytė *et al.*, 2019) by shielding antigens, present on the cell surface of the pathogen. Therefore, the surface-exposed proteins, penetrating the capsule layer, might show superiority as candidates for vaccine development (Badmasti *et al.*, 2015).

Our observation that *A. baumannii* Blp1 proteins, encoded by *blp1* gene variants, share conservative C-terminal 160 amino acid fragment, allowed proposing it as a suitable antigen candidate for investigation of immune-stimulatory properties of a long (~330 kDa) *A. baumannii* adhesin Blp1. To increase the number of antigenic moieties displayed at the likely surface-exposed C-terminus of Blp1, 712 amino acids of C-terminal Blp1 from Ab_{IC I} (residues 2652-3363) with a N-terminus His-Tag was purified by affinity chromatography as described in Materials and Methods section. As a control purified OmpA protein was used, since its immunogenic properties was described earlier in mice infection model (Lin *et al.*, 2013).

First, the cytotoxicity of purified recombinant Blp1 fragment and OmpA protein has been evaluated using mouse lung epithelium LL/2 cells. The purified antigens demonstrated a mild suppressing effect on the growth of LL/2 cells *in vitro* in the concentration range from 2.5 to 10 µg/ml of Blp1 and OmpA allowing the maintenance of approximately 90%–83% and 95%–91% viability of the cells for 24 hours, respectively. Mild cytotoxicity of purified antigens towards lung epithelium cells suggests that they represent safe candidate antigens for vaccination.

For the active immunization, the 2 µg of the recombinant Blp1 fragment and OmpA protein were injected into BALB/c mice (n=5 per group) intramuscularly at the frequency of every two weeks, three times in total. At the fourth day after the last immunization, the blood samples were taken and obtained antisera were used for the determination of Blp1 or OmpA-specific-IgG titer by ELISA. The obtained results showed the induction of specific IgG response in the animal group immunized with antigens compared to the control group (Figures 10A-B). Then, at the day 42nd, the intraperitoneal challenge with A. baumannii Ab_{IC I} strain (10⁸ CFU per mouse) has been undertaken and the mice survival rates were monitored for seven days. The animal group, which received Blp1 specific antigen, demonstrated the 60% survival rate, OmpA-immunized group demonstrated 40% survival rate, whereas no survival in the control group was recorded (Figure 10C). Since Blp1 fragment demonstrated better survival chances, it was used for further investigation.

For the passive immunization, the antisera, obtained from the mice immunized with Blp1 specific antigen and from the control group, treated with PBS, were used. Antisera were injected intraperitoneally into the naïve mice (n=3 per group). Six hours later, animals were challenged with *A. baumannii* by inoculating 5×10^7 CFUs of Ab_{IC I} strain. The survival was monitored for 45 days. As can be seen in the results presented in Figure 10D, a group, which received antiserum against Blp1 specific antigen, yielded 100% survival rate, whereas group of mice, that received serum from the control group, resulted in 0% survival indicating an efficient protective immunity to *A. baumannii* infection, exerted by Blp1 specific antiserum.

Fig. 10. The effects of OmpA protein and Blp1 C-terminal fragment as an immunization agent. Titers of OmpA (A) and Blp1(B) -specific IgG in mice were detected by ELISA (n=5 mice per group); naïve sera obtained from mice, that received adjuvant with PBS were used as a control; horizontal line represents detection limit of the assay. C - mice survival rates after active vaccination using *A. baumannii* sepsis model; mice (n=5 mice per group) were challenged with 10^8 CFUs of $Ab_{IC\,1}$ and were monitored for seven days; D - passive vaccination effect on the mice survival using *A. baumannii* sepsis model; control group received the serum obtained from mice, immunized with PBS and Freund's adjuvant; mice (n=3 mice per group) were challenged with 5×10^7 CFU of $Ab_{IC\,1}$ and were monitored for 45 days.

To identify the main mechanism responsible for antimicrobial activity of obtained Blp1-antiserum, the A. baumannii Ab_{IC I} (international clone I, ST231) and Ab_{IC II} (international clone II, ST208) strains were incubated for one hour with heat-treated (to inactivate complement components) Blp1-specific and naïve serum in the presence or absence of J744 macrophages. The presence of macrophages increased killing against both Ab_{IC I} and Ab_{IC II} strains by approximately 20%, when inactivated Blp1-antiserum, but not naïve serum was present (Figure 11). In the absence of macrophages, killing efficiency of A. baumannii was negligible regardless the inactivated antisera. Therefore, an opsonophagocytic killing of A. baumannii using heat-inactivated Blp1-antiserum indicates its macrophage-mediated, complement-depended, antimicrobial activity.

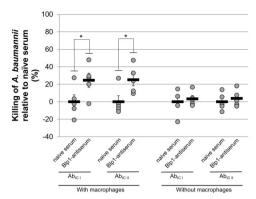


Fig. 11. Blp1-antiserum-depended opsonophagocytic killing A. baumannii IC I and IC II strains. The bactericidal killing activities of Blp1-antiserum and naïve serum were analyzed on A. baumannii Ab_{IC I} and Ab_{IC II} strains in the presence and absence of J774 macrophages; each dot represents one mouse, black lines indicate medians and whiskers represent standard significance was assessed by t-test, (*P<0.05).

In conclusion, using both active and passive immunization approaches we demonstrated, that Blp1-specific antigen is a suitable vaccine candidate against *A. baumannii* infection. The Blp1-antiserum induced an opsonophagocytic killing of two common *A. baumannii* strains ST231 (IC I) and ST208 (IC II), indicating the stimulation of an effective immune response against clonally disseminated MDR *A. baumannii*.

CONCLUSIONS

- 1. Pandemic A. baumannii strains have different virulent properties;
- 2. Cell surface hydrophilicity is associated with the increased *A. baumannii* virulence, but is not a favorable property for the spread of clinical strains;
- 3. A. baumannii OmpA, Blp1, YgaU and GltI proteins are virulence factors ex vivo and in vivo;
- 4. The interaction of OmpA periplasmic domain with peptidoglycan determines the multifunctional role of the protein in *A. baumannii* pathogenesis;
- 5. C-terminal fragment of *A. baumannii* Blp1 protein is an effective antigen for active immunization, while the Blp1-antiserum protects against *A. baumannii* infection when passive immunization is applied.

List of publications

Skerniškytė J, Karazijaitė E, Deschamps J, Krasauskas R, Briandet R Sužiedėlienė E. (2019). The Mutation of Conservative Asp268 Residue in the Peptidoglycan-Associated Domain of the OmpA Protein Affects Multiple *Acinetobacter baumannii* Virulence Characteristics. Molecules. 24:1972;

Skerniškytė J, Krasauskas R, Péchoux C, Kulakauskas S, Armalytė J, Sužiedėlienė E. (2019). Surface-Related Features and Virulence Among *Acinetobacter baumannii* Clinical Isolates Belonging to International Clones I and II. Front Microbiol. 9:3116.

Conference presentations

Poster presentation: **Skerniškytė J**, Krasauskas R, Sužiedėlienė E. "Characterization of Blp1 adhesin as vaccine candidate against multidrug-resistant *Acinetobacter baumannii*", 12th Symposium on the Biology of Acinetobacter (Acinetobacter2019), 4-6 September, 2019, Frankfurt, Germany;

Poster presentation: Karazijaitė E, **Skerniškytė J**, Sužiedėlienė E. "Isolation and Characterization of Outer Membrane Vesicles from Opportunistic Pathogen *Acinetobacter baumannii*", The Coins 2019, 26-28 February, 2019, Vilnius, Lithuania;

Oral and poster presentation: **Skerniškytė J**, Sužiedėlienė E. "Blp1 protein as new vaccine candidate against infections caused by multidrug-resistant *Acinetobacter baumannii*". 26th Young Research Fellows Meeting (French Medical Chemistry Society), 20-22 February, 2019, Paris, France:

Oral presentation: **Skerniškytė J**, Karazijaitė E, Krasauskas R, Armalytė J, Sužiedėlienė E. "Potencialių virulentinių genų svarba klinikinių *Acinetobacter baumannii* padermių patogenezei", 10th Young Scientists Conference "Bioateitis: gamtos ir gyvybės mokslų perspektyvos", 07 December, 2017, Vilnius, Lithuania;

Poster presentation: **Skerniškytė J**, Karazijaitė E, Deschamps J, Briandet R, Péchoux C, Kulakauskas S, Krasauskas R, Armalytė J, Sužiedėlienė E. "The impact of putative virulence genes on pathogenicity displayed by clinical *Acinetobacter baumannii* strains", 7th Congress of European Microbiologists (FEMS 2017), 9-13 July, 2017, Valencia, Spain;

Poster presentation: **Skerniškytė J**, Krasauskas K, Armalytė J, Sužiedėlienė E. "Distribution of putative virulence factors in *Acinetobacter baumannii* clinical strains isolated from Lithuanian hospitals and their impact on pathogenesis", XIV International Conference of the Lithuanian Biochemical Society, June 28-30, 2016, Druskininkai, Lithuania.

Financial support

Part of the research presented in the dissertation was financed by the Research Council of Lithuania under the project 09.3.3.-LMT-K-712-10-0095.

Ersamus+ has funded a 3-month internship at the Micalis Institute in France.

Federation of European Microbiological Societies (FEMS) has partly funded participation in: the 7th Congress of European Microbiologists (FEMS 2017) and the 12th Symposium on the biology of Acinetobacter (Acinetobacter 2019).

SANTRAUKA

Šiuo metu ligoninėse plinta daugiavaisčiu atsparumu pasižymintys A. baumannii izoliatai, kurių sukeltas infekcijas išgydyti yra labai sunku dėl naudojamų antibiotikų neveiksnumo. Šio tyrimo metu apibūdinome klinikinius A. baumannii izoliatus pagal ivairius fenotipus, susijusius su bakterijų virulentiškumu. Nustatėme, kad izoliatai, priklausantys skirtingiems pandeminiams klonams, skiriasi savo judėjimo, pelikulės formavimo bei sintetinamos kapsulės egzopolisacharidų profiliais. Parodėme, kad bakterijos paviršiaus hidrofobiškumas nulemia daugelį su virulentiškumu susijusių A. baumannii savybių, o gebėjimas adhezuotis prie plastiko dėl ląstelės paviršiaus hidrofobiškumo yra vyraujanti pandeminių izoliatu savybė. Antrojoje darbo dalyje apibūdinome A. baumannii paviršiaus baltymus OmpA, Blp1, YgaU ir GltI kaip svarbius virulentiškumo veiksnius tiek ex vivo, tiek in vivo. Parodėme, kad membraninio baltymo OmpA saveikos su peptidoglikanu praradimas lemia Α. baumannii virulentiškumo sumažėjima. Taip abipūdinome Blp1 baltymo C-galinį fragmenta kaip naują vakcinos kandidatą prieš klinikinės kilmės A. baumannii infekcijas taikant tiek aktyvia, tiek pasyvia vakcinacijas peliu infekcijos modelyje.

CURRICULUM VITAE

Name Jūratė Skerniškytė

Address Life Sciences Centre, Vilnius University, Saulėtekio av. 7,

10257, Vilnius, Lithuania

Telephone +3705 239 8230

E-mail: jurate.skerniskyte@gf.vu.lt

Education

2014-2018 PhD student, Biochemistry, Vilnius University, Lithuania

2012-2014 MS, Biochemistry, Vilnius University, Lithuania 2008-2012 BS, Biochemistry, Vilnius University, Lithuania

Professional experience

2018-present Junior assistant, Institute of Biosciences, Life Sciences Centre,

Vilnius University, Lithuania

2017-present Junior scientist, Institute of Biosciences, Life Sciences Centre,

Vilnius University, Lithuania

2016-2017 Biologist researcher, Sector of Microtechnologies, Institute of

Biotechnology, Life Sciences Centre, Vilnius University,

Lithuania

2016 Internship/Foreign student, Micalis Institute, INRA,

AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France

2013-2016 Senior specialist, Molecular biology laboratory, Department of

Biochemistry and Molecular Biology, Faculty of Natural

Sciences, Vilnius University, Lithuania

2013 Internship/Graduate Assistant, Division of Developmental

Biology, Cincinnati Children's Hospital Medical Center,

Cincinnati, Ohio, USA

List of publications

Skerniškytė J, Karazijaitė E, Deschamps J, Krasauskas R, Briandet R, Sužiedėlienė E. (2019). The Mutation of Conservative Asp268 Residue in the Peptidoglycan-Associated Domain of the OmpA Protein Affects Multiple *Acinetobacter baumannii* Virulence Characteristics. Molecules. 24(10):1972;

Armalyte J, **Skerniškyte J**, Bakiene E, Krasauskas R, Šiugždiniene R, Kareiviene V, Kerziene S, Klimiene I, Sužiedeliene E, Ružauskas M. (2019). Microbial Diversity and Antimicrobial Resistance Profile in Microbiota From Soils of Conventional and Organic Farming Systems. Front. Microbiol. 10:892;

Miškinytė M, Juškaitė R, **Skerniškytė J**, Voldemarienė V, Valuckas KP, Kučinskienė ZA, Sužiedėlis K, Sužiedėlienė E. (2019). High incidence of plasmid-mediated quinolone resistance (PMQR) genes among antibiotic-resistant Gram-negative bacteria from patients of the Lithuanian National Cancer Center. Infect Dis (Lond). 51(6):471-474;

Skerniškytė J, Krasauskas R, Péchoux C, Kulakauskas S, Armalytė J, Sužiedėlienė E. (2019). Surface-Related Features and Virulence Among *Acinetobacter baumannii* Clinical Isolates Belonging to International Clones I and II. Front Microbiol. 9:3116;

Ruzauskas M, Klimiene I, Armalyte J, Bartkiene E, R. Siugzdiene R, **Skerniskyte J**, Krasauskas R, Suziedeliene E. (2018). Composition and antimicrobial resistance profile of Gram-negative microbiota prevalent in aquacultured fish. J Food Saf. e12447;

Skerniškytė J, Armalytė J, Kvietkauskaitė R, Šeputienė V, Povilonis J, Sužiedėlienė E. (2016). Detection of *Salmonella* spp., *Yersinia enterocolitica*, *Listeria monocytogenes* and *Campylobacter* spp. by real-time multiplex PCR using amplicon DNA melting analysis and probe-based assay. Int J Food Sci Technol, 51: 519–529;

Glenn NO, Schumacher JA, Kim HJ, Zhao EJ, **Skerniskyte J**, Sumanas S. (2014). Distinct regulation of the anterior and posterior myeloperoxidase expression by Etv2 and Gata1 during primitive Granulopoiesis in zebrafish. Dev Biol. pii:S0012-1606(14)00307-8.

ACKNOWLEDGEMENTS

I am grateful to my supervisor Prof. Dr. Edita Sužiedėlienė for the valuable discussions and remarks, patience and sincere concern as well as all help with this research.

I thank my colleagues Dr. Julija Armalytė and Renatas Krasauskas for the practical advices and inspiring discussions. Many thanks to Renatas Krasauskas for his help in analyzing genome sequencing results, also help with bacterial movement and pellicle formation experiments and at various other moments of laboratory life. I am also grateful to Emilija Karazijaitė, Gabija Lauciūtė and Gabija Goptaitytė for their help.

I thank the whole team of the Department of Biochemistry and Molecular Biology for their invaluable support.

I sincerely thank Prof. Dr. Nomeda Kuisienė and Dr. Milda Plečkaitytė for the careful reading of the thesis, valuable insights and comments.

I want to thank Prof. Dr. Kęstutis Sužiedėlis, Prof. Dr. Aurelija Žvirblienė and Dr. Aušra Sasnauskienė for the consultations on eukaryotic cell cultivation. I am grateful to Dr. Martina Rudgalvytė for the advices on nematode cultivation. Thank you very much to Dr. Virginija Bukelskienė and Ieva Rinkūnaitė for the consultations and help on the experiments with mice. Thanks to Prof. Dr. Rolandas Meškys for the *E. coli* strain. Thank you to Dr. Audrius Gegeckas for *Bacillus* spp. strain. I would like to thank the Department of Eukaryote Gene Engineering at the Institute of Biotechnology and Dr. Justas Lazutka for the ability to use transmission electron microscopy. I thank to Proteomics Center (VU Institute of Biochemistry) for proteomic analysis.

I sincerely thank Thermo Fisher Scientific for the sequencing of A. baumannii genomes.

I would like to thank the wonderful team of Micalis Institute, especially dr. Saulius Kulakauskas for all help.

Thank you very much to Milda Zilnytė and Indrė Dalgėdienė for their invaluable discussions.

Finally, I would like to thank my whole family for all their care and special thanks to Vytautas Petkevičius, whose permanent support provided the strength through this entire journey.

REFERENCES

- Ahmad TA, Tawfik DM, Sheweita SA, Haroun M, El-Sayed LH. (2016). Development of immunization trials against *Acinetobacter baumannii*. Trials in Vaccinology, 5:53-60.
- Arrigucci R, Pozzi G. (2017). Identification of the chain-dispersing peptidoglycan hydrolase LytB of Streptococcus gordonii. PloS one. 12(4), e0176117.
- Badmasti F, Ajdary S, Bouzari S, Fooladi AA, Shahcheraghi F, Siadat SD. (2015). Immunological evaluation of OMV(PagL)+Bap(1-487aa) and AbOmpA(8-346aa)+Bap(1-487aa) as vaccine candidates against *Acinetobacter baumannii* sepsis infection. Mol Immunol. 67(2 Pt B):552-8.
- Bernal-Cabas M, Ayala JA, Raivio TL. (2015). The Cpx envelope stress response modifies
 peptidoglycan cross-linking via the L,D-transpeptidase LdtD and the novel protein YgaU.
 J Bacteriol. 197(3):603-14.
- 5. Brenner S. (1974). The genetics of Caenorhabditis elegans. Genetic. 77: 71–94;
- Chiang SR, Jung F, Tang HJ, Chen CH, Chen CC, Chou HY, Chuang YC. (2018). Desiccation and ethanol resistances of multidrug resistant *Acinetobacter baumannii* embedded in biofilm: The favorable antiseptic efficacy of combination chlorhexidine gluconate and ethanol. J Microbiol Immunol Infect. 51(6):770-777.
- Chiang, M.C., Kuo, S.C., Chen, Y.C., Lee, Y.T., Chen, T.L., Fung, C.P. (2011). Polymerase chain reaction assay for the detection of *Acinetobacter baumannii* in endotracheal aspirates from patients in the intensive care unit. J Microbiol Immunol Infect. 44(2):106-10.
- 8. Dahdouh E, Gómez-Gil R, Pacho S, Mingorance J, Daoud Z, Suárez M. (2017). Clonality, virulence determinants, and profiles of resistance of clinical *Acinetobacter baumannii* isolates obtained from a Spanish hospital. PLoS ONE. 12(4):e0176824.
- 9. Dickey SW, Cheung GYC, Otto M. (2017). Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. 16(7):457-471.
- Eijkelkamp BA, Stroeher UH, Hassan KA, Papadimitrious MS, Paulsen IT, Brown MH. (2011). Adherence and motility characteristics of clinical *Acinetobacter baumannii* isolates. FEMS Microbiol Lett. 323(1):44-51.
- Eijkelkamp BA, Stroeher UH, Hassan KA, Paulsen IT, Brown MH. (2014). Comparative analysis of surface-exposed virulence factors of *Acinetobacter baumannii*. BMC Genomics. 15:1020.
- 12. Gaddy JA, Tomaras AP, Actis LA. (2009). The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun. 77(8):3150-60.
- 13. Giammanco A, Calà C, Fasciana T, Dowzicky MJ. (2017). Global Assessment of the Activity of Tigecycline against Multidrug-Resistant Gram-Negative Pathogens between 2004 and 2014 as Part of the Tigecycline Evaluation and Surveillance Trial. mSphere. 2(1). pii: e00310-16.
- 14. Giles SK, Stroeher UH, Eijkelkamp BA, Brown MH. (2015). Identification of genes essential for pellicle formation in *Acinetobacter baumannii*. BMC Microbiol. 15:116.
- Greene C, Wu J, Rickard AH, Xi C. (2016). Evaluation of the ability of *Acinetobacter baumannii* to form biofilms on six different biomedical relevant surfaces. Lett Appl Microbiol. 63(4):233-9.
- 16. Harding CM, Nasr MA, Kinsella RL, Scott NE, Foster LJ, Weber BS et al. (2015). Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins. Mol Microbiol. 96(5):1023-41.
- 17. Harding CM, Tracy EN, Carruthers MD, Rather PN, Actis LA, Munson RS Jr. (2013). *Acinetobacter baumannii* strain M2 produces type IV pili which play a role in natural

- transformation and twitching motility but not surface-associated motility. MBio. 4(4). pii: e00360-13.
- Hölscher T, Bartels B, Lin YC, Gallegos-Monterrosa R, Price-Whelan A, Kolter R et al. (2015). Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development. J Mol Biol. 427(23):3695-3708.
- 19. Holt K, Kenyon JJ, Hamidian M, Scultz MB, Pickard DJ, Dougan G et al. (2016). Five decades of genome evolution in the globally distributed, extensively antibiotic-resistant *Acinetobacter baumannii* global clone 1. Open Microbiology. 2(2):e000052.
- 20. Hu D, Liu B, Dijkshoorn L, Wang L, Reeves PR. (2013). Diversity in the major polysaccharide antigen of *Acinetobacter baumannii* assessed by DNA sequencing, and development of a molecular serotyping scheme. PLoS One. 8(7):e70329.
- 21. Huang W, Yao Y, Long Q, Yang X, Sun W, Liu C et al. (2014). Immunization against multidrug-resistant *Acinetobacter baumannii* effectively protects mice in both pneumonia and sepsis models. PLoS One 9(6):e100727.
- Iyer R, Moussa SH, Durand-Réville TF, Tommasi R, Miller A. (2018). Acinetobacter baumannii OmpA Is a Selective Antibiotic Permeant Porin. ACS Infect Dis. 4(3):373-381.
- 23. Imperi F, Antunes LC, Blom J, Villa L, Iacono M, Visca P et al. (2011). The genomics of *Acinetobacter baumannii*: insights into genome plasticity, antimicrobial resistance and pathogenicity. IUBMB Life. 63(12):1068-74.
- 24. Isler B, Doi Y, Bonomo RA, Paterson DL. (2018). New Treatment Options against Carbapenem-Resistant *Acinetobacter baumannii* Infections. Antimicrob Agents Chemother. 63(1). pii: e01110-18.
- 25. Yanisch-Perron C, Vieira J, Messing J. (1992). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103-19. Erratum in: Gene. 114(1):81-3.
- Jahangiri A, Rasooli I, Owlia P, Fooladi, AA, Salimian J. (2017). In silico design of an immunogen against Acinetobacter baumannii based on a novel model for native structure of Outer membrane protein A. Microb Pathog. 105:201-210.
- 27. Karah N. (2011). Identification, molecular epidemiology, and antibiotic resistance characterization of *Acinetobacter* spp. clinical isolates. Doctoral thesis.
- 28. Kempf M, Eveillard M, Deshayes C, Ghamrawi S, Lefrancois S, Bastiat G et al. (2012). Cell surface properties of two differently virulent strains of *Acinetobacter baumannii* isolated from a patient. Can. J. Micorbiol. 58:311-317.
- Kenyon JJ, Hall RM. (2013). Variation in the Complex Carbohydrate Biosynthesis Loci of Acinetobacter baumannii genomes. PLoS One. (4):e62160.
- Kenyon JJ, Nigro SJ, Hall RM. (2014). Variation in the OC Locus of Acinetobacter baumannii Genomes Predicts Extensive Structural Diversity in the Lipooligosaccharide. PLoS ONE. 9(9):e107833.
- 31. Kim SW, Moon DC, Jin JS, Lee JH, Shin JH, Kim Jm et al. (2009). Serum resistance of *Acinetobacter baumannii* through the binding of factor H to outer membrane proteins. FEMS Microbiol. Lett. 301:224–231.
- 32. Krachler AM, Orth K. (2011). Functional characterization of the interaction between bacterial adhesin multivalent adhesion molecule 7 (MAM7) protein and its host cell ligands. J Biol Chem. 286(45):38939-47.
- 33. Krasowska A, Sigler K. (2014). How microorganisms use hydrophobicity and what does this mean for human needs? Frontiers in Cellular and Infection Microbiology. 4:112.
- 34. KuoLee R, Harris G, Yan H, Xu HH, Conlan WJ, Patel GB et al. (2015). Intranasal immunization protects against *Acinetobacter baumannii*-associated pneumonia in mice. Vaccine. 33(1):260-7.
- 35. Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penadés JR, Lasa I. (2005). BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol. 58(5):1322-39.

- 36. Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB et al. (2017). Biology of *Acinetobacter baumannii*: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol. 7:55.
- 37. Leon-Kempis Mdel R, Guccione E, Mulholland F, Williamson MP, Kelly DJ. (2006). The *Campylobacter jejuni* PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol. Microbiol. 60(5):1262-1275.
- Lin L, Tan B, Pantapalangkoor P, Ho T, Hujer AM, Taracila MA, Bonomo RA, Spellberg B. (2013). Acinetobacter baumannii rOmpA vaccine dose alters immune polarization and immunodominant epitopes. Vaccine. 31:313–318.
- Mittal R, Krishnan S, Gonzalez-Gomez I, Prasadarao NV. (2011). Deciphering the roles of outer membrane protein A extracellular loops in the pathogenesis of *Escherichia coli* K1 meningitis. J Biol Chem. 286(3):2183-93.
- 40. Moffatt JH, Harper M, Mansell A, Crane B, Fitzsimons TC, Nation RL et al. (2013). Lipopolysaccharide-Deficient Acinetobacter baumannii Shows Altered Signaling through Host Toll-Like Receptors and Increased Susceptibility to the Host Antimicrobial Peptide LL-37. Infection and Immunity. 81(3):684–689
- 41. Newton HJ, Sansom FM, Dao J, McAlister AD, Sloan J, Cianciotto NP, Hartland EL. (2007). Sel1 repeat protein LpnE is a *Legionella pneumophila* virulence determinant that influences vacuolar trafficking. Infect Immun. 75(12):5575-85.
- 42. Nwanyanwu CE, Abu GO. (2013). Influence of growth media on hydrophobicity of phenol utilizing bacteria found in petroleum refinery effluent. Int. Res. J. Biological Sci. 2(10):6-11.
- Oh MH, Lee JC, Kim J, Choi CH, Han K. (2015). Simple Method for Markerless Gene Deletion in Multidrug-Resistant *Acinetobacter baumannii*. Appl Environ Microbiol. 81(10):3357-68.
- 44. Park JS, Lee WC, Yeo KJ, Ryu KS, Kumarasiri M, Hesek D et al. (2012). Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the Gram-negative bacterial outer membrane. FASEB J. 26(1):219-28.
- Pazos M, Peters K, Casanova M, Palacios P, VanNieuwenhze M, Breukink E, et al. (2018).
 Z-ring membrane anchors associate with cell wall synthases to initiate bacterial cell division. Nat Commun. 9(1), 5090.
- 46. Poquet I, Saujet L, Canette A, Monot M, Mihajlovic J, Ghigo JM, et al. (2018). *Clostridium difficile* biofilm: remodeling metabolism and cell surface to build a sparse and heterogeneously aggregated architecture. Front Microbiol. 9:2084.
- 47. Povilonis J, Seputiene V, Krasauskas R, Juskaite R, Miskinyte M, Suziedelis K et al. (2013). Spread of carbapenem-resistant *Acinetobacter baumannii* carrying a plasmid with two genes encoding OXA-72 carbapenemase in Lithuanian hospitals. J Antimicrob Chemother. 68(5):1000-6.
- 48. Rumbo C, Tomás M, Fernández ME, Soares NC, Carvajal M, Santillana E, et al. (2014). The *Acinetobacter baumannii* Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect Immun. 82(11):4666-80.
- 49. Russo TA, Beanan JM, Olson R, MacDonald U, Cox AD, St Michael F et al. (2013). The K1 capsular polysaccharide from *Acinetobacter baumannii* is a potential therapeutic target via passive immunization. Infect Immun. 81(3):915-22.
- 50. Russo TA, Luke NR, Beanan JM, Olson R, Sauberan SL, MacDonald U et al. (2010). The K1 capsular polysaccharide of *Acinetobacter baumannii* strain 307-0294 is a major virulence factor. Infect Immun. 78(9):3993-4000.
- Sheel M, Moreland NJ, Fraser JD, Carapetis J. (2016). Development of Group A streptococcal vaccines: an unmet global health need. Expert Rev Vaccines. 15(2):227-38.
- Shrivastava R, Miller JF. (2009). Virulence factor secretion and translocation by *Bordetella* species. Current opinion in microbiology. 12(1):88-93.

- 53. Singh R, Garg N, Shukla G, Capalash N, Sharma P. (2016). Immunoprotective Efficacy of Acinetobacter baumannii Outer Membrane Protein, FilF, Predicted In silico as a Potential Vaccine Candidate. Front Microbiol. 7:158.
- 54. Skerniškytė J, Krasauskas R, Péchoux C, Kulakauskas S, Armalytė J, Sužiedėlienė E. (2019). Surface-Related Features and Virulence Among Acinetobacter baumannii Clinical Isolates Belonging to International Clones I and II. Front Microbiol. 9:3116.
- 55. Snitkin ES, Zelazny AM, Montero CI, Stock F, Mijares L; NISC Comparative Sequence Program, Murray PR, Segre JA. (2011). Genome-wide recombination drives diversification of epidemic strains of *Acinetobacter baumannii*. Proc Natl Acad Sci U S A. 108(33):13758-63.
- 56. Studier FW, Moffatt BA. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189:113–130.
- 57. Weber BS, Ly PM, Irwin JN, Pukatzki S, Feldman MF. (2015). A multidrug resistance plasmid contains the molecular switch for type VI secretion in *Acinetobacter baumannii*. Proceedings of the National Academy of Sciences of the United States of America, 112(30):9442-7.
- Zarrilli R, Pournaras S, Giannouli M, Tsakris A. (2013). Global evolution of multidrugresistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents. 41(1):11-9.
- 59. Zhang X, Yang T, Cao J, Sun J, Dai W, Zhang L. (2016). Mucosal immunization with purified OmpA elicited protective immunity against infections caused by multidrugresistant *Acinetobacter baumannii*. Microb Pathog. 96:20-5.

NOTES

NOTES

Vilnius University press
Saulėtekio al. 9, LT-10222 Vilnius
Email: info@leidykla.vu.lt,
www.leidykla.vu.lt
Edition 15 copies