VILNIAUS PEDAGOGINIS UNIVERSITETAS Fizikos ir technologijos fakultetas

Teorinės fizikos ir informacinių technologijų katedra

Romualda Lazauskaitė

žvaigždžių fizikos Kompiuteriniai laboratoriniai Darbai

Vilnius, 2004

Apsvarstė ir rekomendavo spausdinti Teorinės fizikos ir informacinių technologijų katedra (2004 m. gegužės mėn. 27 d. Protokolas Nr. 6).

Recenzavo: doc. A. Ažusienis, habil. dr. A. Bartkevičius

. .

Turinys

Įvadas	5
1. Spektrinė klasifikacija	6
2. HR diagrama: darbas su <i>Hipparcos</i> katalogo duomenimis	. 15
3. Pagrindinės sekos žvaigždės vidinės sandaros modelis	. 19
4. Žvaigždžių evoliucija	. 25
5. Padrikojo spiečiaus amžiaus nustatymas	. 30
6. Kintamosios žvaigždės periodo nustatymas	. 37
7. Pulsaro periodo nustatymas	. 43
Interneto šaltiniai	. 49
Literatūra	. 50

.

••••••••••••••••••••••••••••••••••••••	FIZIKOS	KOMPIUTERINIAI	LABORATORINIAI	DARBAI

Įvadas

Šiuolaikinė astronomija glaudžiai susijusi su informacinėmis technologijomis. Įvairių objektų stebėjimų duomenys kaupiami, analizuojami panaudojant kompiuterinę techniką. Milžiniški duomenų archyvai kaupiami ir internete tampa prieinami tiek mokslininkams, tiek plačiajai visuomenei.

DARBAL .

Šioje knygutėje pateikiami kompiuteriniai laboratoriniai darbai, kuriuos atlieka VPU fizikos ir informacinių technologijų specialybės studentai, klausydami žvaigždžių fizikos kurso. Dalyje darbų naudojami interneto archyvų duomenys, kituose – laisvai platinamos kompiuterinės programėlės. Aprašytos ne visos programų galimybės. Skaitytojas pats gali išsamiau programėles panagrinėti ir sugalvoti naujų užduočių.

Šie darbai ar jų fragmentai, autorės nuomone, galėtų būti panaudojami ir vidurinėje mokykloje.

Knygutėje minimos programos veikia *Windows* arba *DOS* operacinėse sistemose. Taip pat reikalinga bet kuri interneto naršyklė ir skaičiuoklė, pavyzdžiui, *Excel*. Sąvokų apibrėžimus, formules galima rasti [1], [2] bei įvairiuose astronomijos vadovėliuose ir žinynuose anglų kalba.

Be abejo, tai ne visi kompiuteriniai laboratoriniai darbai. Yra ir kitų mokomųjų kompiuterinių programų, internetinių laboratorinių darbų versijų. Pavyzdžiui, su žvaigždžių spektrais galima susipažinti naudojant *Sloan* teleskopo archyvą bei mokamąsias priemones *Sloan* teleskopo tinklalapyje: <u>http://skyserver.fnal.gov/en/;</u> infraraudonojoje spektro dalyje – *Spitzer* kosminio teleskopo mokomąją medžiagą: <u>http://</u> <u>www.spitzer.caltech.edu/;</u> ultravioletinėje spektro dalyje dirba kosminis teleskopas *GALEX*: <u>http://www.galex.caltech.edu/</u> ir t. t.

Knygutėje minimas interneto nuorodas, programėles, užduotis galima rasti autorės interneto svetainėje: http://www.vpu.lt/astro/. Čia bus talpinamos ir naujos kompiuterinių astronomijos laboratorinių darbų versijos.

Būčiau dėkinga už pastabas, komentarus, pasiūlymus, kurių laukčiau elektroniniu paštu: roma.lazauskaite@vpu.lt.

1. Spektrinė klasifikacija

Nors daugumos žvaigždžių cheminė sudėtis yra panaši į Saulės cheminę sudėtį (74,7% vandenilio, 23,7% helio, 1,6% sunkesniųjų cheminių elementų), jų spektrų išvaizda gana skirtinga. Skirtumus daugiausia lemia skirtingos žvaigždžių efektinės temperatūros, mažesnės įtakos turi dujų slėgis žvaigždės atmosferoje. Žvaigždžių spektrinės klasės buvo sudarytos empiriškai, remiantis tik stebimais žvaigždžių spektrų skirtumais, dar nežinant šių skirtumų priežasčių. Klasifikacija paremta standartinių žvaigždžių spektrų požymių lyginimu.

ŽVAIGŽDŽIU

Pagal spektro požymius visos žvaigždės skirstomos į spektrines klases, einant efektinės temperatūros žemėjimo linkme: O-B-A-F-G-K-M. Dar vėsesnės yra neseniai sudarytų L ir T spektrinių klasių žvaigždės. Visos šios klasės smulkiau skirstomos į 10 poklasių, pavyzdžiui, Saulės spektrinė klasė yra G2. Tos pačios spektrinės klasės žvaigždžių spektrinės linijos gali skirtis gyliu ir forma. Pagal šiuos skirtumus žvaigždės priskiriamos šioms šviesio klasėms: I, II, III, IV, V. Pavyzdžiui, Saulė yra V šviesio klasės žvaigždė.

Nustačius spektrines žvaigždžių klases, galima įvertinti jų efektines temperatūras, paviršiaus gravitacijos pagreičio logaritmus, nuotolius. Toliau šie duomenys gali būti naudojami Galaktikos struktūrai tirti.

Šiame laboratoriniame darbe gausime kelių žvaigždžių spektrus, juos klasifikuosime, susipažinsime su įvairių spektrinių klasių žvaigždžių charakteringais spektrų požymiais. Tai atliksime su viena iš projekto *CLEA* (*Contemporary Laboratory Experiences in Astronomy*) kompiuterinių programų *Stellar Spectra*, kurią galima parsisiųsti iš *CLEA* projekto svetainės:

http://www.gettysburg.edu/academics/physics/clea/CLEAhome.html.

Programos Stellar Spectra aprašymas

Paleiskime programą *Stellar Spectra*. Atsivėrusiame lange pasirinkime *File→Log In*. Toliau užpildykite lentelę (1.1 pav.):

CLEA Exerci	se - Stellar Spectra	_ 🗆 X
File Field T	elescope	Help
A	PRODUCTION OF	
	Student Accounting	
	Enter Student Name(s) (firstnamelastname)	
	Student # 1: Roma Lazauskaite	
	Student # 2:	
	Student # 3:	
	Student # 4:	
	Laboratory Table Number: 1 OK	
	Gettysburg, PA, 17325	

1.1 pav. Užpildome duomenis apie programos vartotoją.

Toliau yra dvi galimybės: gauti spektrą ir klasifikuoti užregistruotą spektrą (1.2 pav.).

1.2 pav. Renkamės vieną iš dviejų galimybių: gauti spektrą (Take Spectra) arba klasifikuoti spektrą (Classify Spectra).

Pirmiausia išmokime klasifikuoti spektrą. Renkamės meniu punktą *Classify Spectra* (1.3 pav.). Meniu eilutėje pažymėkite *Load*. Kabančiame meniu išsirinkite *Unknown Spektrum,* po to – *Program list*. Atsivėrusiame lange matote žvaigždžių sąrašą. Išsirinkite jus dominančią žvaigždę ir nuspauskite *Ok*.

1.3 pav. Pasirenkame žvaigždę, kurią klasifikuosime.

Atsiduriame klasifikavimo lange (1.4 pav.). Ekrane yra trys grafikai, komandiniai mygtukai ir meniu eilutė. Vidurinis grafikas vaizduoja nežinomos žvaigždės spektrą. Viršutiniame ir apatiniame grafikuose rodomi standartinių žvaigždžių, kurių spektrinės klasės žinomos, spektrai, su kuriais galite lyginti nežinomą žvaigždę.

Dabar viduriniame klasifikavimo lango grafike matote žvaigždės spektro registrogramą, kurią toliau vadinsime tiesiog spektru. Grafike pavaizduota spindesio spektrinio tankio priklausomybė nuo bangos ilgio. Bangos ilgio ribos yra nuo 3900 iki 4500 Å, o spindesio spektrinis tankis gali kisti nuo 0 (kai nieko neregistruojama) iki 1 (maksimalus, t. y. kai spindesio spektrinis tankis sunormuotas į vienetą). Linija – tai ištisinis žvaigždės spektras. Įdubimai linijoje žymi žvaigždės fotosferoje susidariusios sugerties linijas. Spektre galima išmatuoti bet kurį tašką, atitinkantį spindesio spektrinį tankį ir bangos ilgį. Tam reikia paspausti kairįjį pelės mygtuką ir atsiradusias besikertančias linijas nubrėžti prie dominančio taško. Apačioje langeliuose *Measured, Intensity* ir *Display* atitinkamai nurodoma bangos ilgis, spindesio spektrinis tankis ir grafiko numeris. Toliau lyginsime nežinomos žvaigždės spektrą su standartiniais pagrindinės sekos žvaigždžių spektrais. Meniu eilutėje pažymėkite *Load* ir kabančiame meniu išsirinkite *Atlas of Standart Spectra*. Atsidariusiame lange išsirinkite *Main Sequence* (pagrindinė seka).

Ekrane atsivers standartiniai pagrindinės sekos žvaigždžių spektrai (1.4 pav.). Susirasti panašų į nežinomos žvaigždės spektrą galima naudojant valdymo mygtukus *Up* ir *Down*. Jeigu norite, kad surastą spektrą įdėtų į viršutinį klasifikavimo lango grafiką, jį du kartus pažymėkite pele.

1.4 pav. Klasifikuojamos ir palyginimo žvaigždžių spektrai. Ordinačių ašyje atidėtas spindesio spektrinis tankis santykiniais vienetais, abscisių ašyje – bangos ilgis angstremais.

Klasifikavimo lange išsirinkti iš atlaso reikiamą spektrą galima mygtukais *Up* ir *Down*. Apatiniame grafike galima matyti nežinomo ir viršutinio spektrų skirtumą. Tam reikia paspausti mygtuką *Difference* (1.5 pav.).

1.5 pav. Klasifikuojamos ir palyginimo žvaigždžių spektrų lyginimas. Apatiniame lange atidėti klasifikuojamos ir palyginimo žvaigždžių spindesių spektrinių tankių skirtumai.

Savo klasifikacijos rezultatus galite įrašyti į rinkmeną. Pažymėkite meniu eilutėje *Classification Results* ir išsirinkite *Record*. Atsidariusiame lange įrašykite trumpas pastabas. Jeigu norite jas peržiūrėti, pažymėkite meniu eilutę *Results* ir išsirinkite *Review*. Išvadas galima atspausdinti išsirinkus komandą *Print* arba išsaugoti rinkmenoje, išsirinkus komandą *Save to file* iš meniu eilutės *Results*.

Jeigu spektre norite atpažinti sugerties liniją, galite atsiversti spektro linijų sąrašą (1.6 pav.). Pažymėkite meniu eilutėje *Load* ir išsirinkite *Spectral line table*. Ekrane pasirodys langas, kuriame galima išsirinkti spektro liniją. Pele išsirinkite liniją, ir klasifikavimo lange ji bus pavaizduota visuose brėžiniuose.

Taip galima išmatuoti pasirinktos linijos ekvivalentinį plotį. Tam dešiniuoju pelės klavišu pažymime tolydinio spektro apie liniją padėtis, renkamės viršutinio meniu punktą *Line Equivalent With*, ir programa automatiškai apskaičiuoja linijos ekvivalentinį plotį (*Equivalent With*) angstremais (1.7 pav.).

1.6 pav. Spektro linijų identifikavimas. Pažymėta vandenilio linija Hε.

1.7 pav. Spektro linijos ekvivalentinio pločio matavimas.

Dabar gaukime žvaigždės spektrą. Jeigu jūs esate klasifikavimo lange, meniu eilutėje pažymėkite *Back*. Tada ten pat pažymėkite *Run* ir išsirinkite *Take spectra*.

•••••• • •••••• • • ••••• • • • • • •	ždžių fizikos kompiuteriniai laboratoriniai darbai
---------------------------------------	--

🚰 CLEA Exercise - Stellar	Spectra	
<u>File</u> Fjeld <u>I</u> elescope		<u>H</u> elp
TELESCOPE	0.4m (16") Telescope	SPECTROMETER
Dome Closed		Take Reading O
Tracking OFF		
Slew Rate 4		
O N		
0 E \W 0		
S		
Right Ascension 6h 12m 00.00s		
Declination		
32d 30 00.0		
Change View		
not Available	January 5, 2004	
Col Consellington	Local Time: 18:08	
- act coordinates		
0		

1.8 pav. Teleskopo valdymo langas.

Jūs esate observatorijoje (1.8 pav.). Ekrano viduryje matote kupolą. Šiuo metu jis uždarytas. Nuspauskite mygtuką *Dome,* ir kupolas atsidarys. Visiškai jam atsidarius pasirodo žvaigždės.

.

Nuspaudę mygtuką *Tracking*, įjungiate arba išjungiate laikrodinį teleskopo mechanizmą (1.9 pav.). Mygtukais *N*, *S*, *E*, *W* teleskopas nukreipiamas norima kryptimi. Mygtuku *Slew rate* galite nustatyti teleskopo judėjimo greitį. Mygtuku *Change View* pasirenkamas ieškiklis (*Finder*) arba spektrografas (*Instrument*). Mygtuku *Set coordinates* atidaromas dialogo langas, kuriame galima nurodyti žvaigždės, kurią norite stebėti, koordinates (1.10 pav.).

1.10 pav. Žvaigždės koordinačių nurodymas ir spektrografo plyšio vaizdas.

Su ieškikliu suraskite žvaigždę. Po to perjunkite ieškiklį į spektrografo langą ir tiksliai nukreipkite jį į žvaigždę, t. y. žvaigždė turi būti plyšio viduryje.

Taip sureguliavę teleskopą galite pradėti kaupti fotonus, kuriuos skleidžia žvaigždė. Tam reikia nuspausti mygtuką *Take reading*. Fotonai bus pradėti kaupti nuspaudus meniu eilutėje *Start/resume count*. Nustoti kaupti fotonus galima meniu eilutėje pasirinkus *Stop count*. Spektrometras registruoja spindesio spektrinio tankio priklausomybę nuo bangos ilgio. Taip gaunamas žvaigždės spektras. Gautą spektrą galima išsaugoti (1.11 pav.). Tam meniu eilutėje pasirinkite *Save*. Dialogo lange įrašykite žvaigždės numerį ir nuspauskite *Ok*.

Pasirinkę meniu eilutėje *Return,* grįžkite į "observatoriją". Pasirinkus *Field…* atsidaro dialogo langas, jame galite išsirinkti dangaus plotą, kuriame stebėsite žvaigždes.

Gautą spektrą galite panaudoti spektrinei žvaigždės klasei nustatyti, kartu galima apskaičiuoti atstumą iki žvaigždės, įvertinti jos efektinę temperatūrą, paviršiaus pagreičio logaritmą.

1.11 pav. Žvaigždės spindesio spektrinio tankio priklausomybė nuo bangos ilgio. Išmatuoto spektro išsaugojimas.

Norėdami klasifikuoti tik ką išmatuotą žvaigždę, meniu eilutėje pažymėkite *Run*, po to išsirinkite *Classify spectra*. Jūs atsiduriate jau pažįstamame klasifikavimo lange. Dabar reikia "išsikviesti" gautą žvaigždės spektrą. Meniu eilutėje pažymėkite *Load* ir išsirinkite *Unknown spectrum*. Tada pažymėkite *Saved spectra (*.csp)*. Ekrane rodomas jūsų gautų spektrų sąrašas. Išsirinkite vieną spektrą ir nuspauskite *Ok*. Spektras yra rodomas viduriniame grafike.

Gavę rezultatus, išeikite iš klasifikavimo lango į pagrindinį, meniu eilutėje pažymėdami *Back*.

Jeigu norite baigti darbą, meniu eilutėje pasirinkite *Quit* ir patvirtinkite, kad darbą baigėte.

Klausimai ir užduotys

- 1. Suklasifikuokite keliolikos žvaigždžių spektrus. Išsiaiškinkite, kokios jų linijos yra ryškiausios.
- Pagal spektrinę žvaigždės klasę nustatykite žvaigždžių efektinę temperatūrą lg Te ir absoliutinį ryškį M_v. Apskaičiuokite žvaigždžių nuotolius. Laikykite, kad tarpžvaigždinė erdvė yra skaidri ir tarpžvaigždinė ekstinkcija A_v lygi nuliui.
- 3. Nubrėžkite klasifikuotų žvaigždžių HR diagramą M_{ν} lg Te.
- 4. Suskaičiuokite, kiek tarp klasifikuotų žvaigždžių yra nykštukių, milžinių, submilžinių ir supermilžinių.

2. HR diagrama: darbas su Hipparcos katalogo duomenimis

Hercšprungo ir Raselo diagrama (HR diagrama) yra viena pagrindinių astrofizikos diagramų, leidžiančių spresti apie tiriamų žvaigždžių įvairovę ir jų fizikines savybes. Ji yra naudojama nustatant žvaigždžių amžių, tiriant žvaigždžių spiečius, galaktikas.

Šiame darbe susipažinsime su Strasbūro duomenų centro katalogų sistema *VizieR*, nubrėšime žvaigždžių, atrinktų iš Hipparcos katalogo pagal nuotolius ir paralaksų matavimų paklaidas, HR diagramas.

Darbo eiga

Darbe naudosimės Strasbūro duomenų centro VizieR sistema http://vizier.u-strasbg.fr/. Ji padeda atrinkti reikiamus katalogus ir duomenis juose. VizieR tinklalapio katalogo paieškos langelyje jrašykime HIP – Hipparcos katalogo santrumpą (2.1 pav.).

2.1 pav. VizieR tinklalapio pagrindinis langas <u>http://vizier.u-strasbg.fr/cgi-bin/VizieR</u>.

Pasirinkime pagrindinį *Hipparcos* katalogą, būtent *I/239/hip_main* (2.2 pav.):

🧧 Catalog	ue Selection Page - Microsoft Int	ernet Explorer	×
File Edit	View Favorites Tools Help		1
G Back	• 🕤 • 💽 🔁 🏠 🔎	Search 🤺 Favorites 🌒 Media 🥝 🍰 😓 🔯 - 📙	
Address	http://vizier.u-strasbg.fr/cgi-bin/Vizi	sR-2 💽 Go 🛛 Links 🎽 Norton AntiVirus 😓	•
			-
C	כש	Catalogue Selection Page	
ANTRONOS	CATTLED DENVES SQUE DESTRATION	Catalogue Selection 1 age	
<u>CDS</u>	Simbad · VizieR · Aladi	<u>n · Catalogues · Nomenclature</u> · <u>Biblio</u> · <u>StarPages · AstroWeb</u>	
	UCAC2 Catalog · 💥	DENIS 2nd Release · 2MASS All-Sky Release	
Tokyo	Japan · TUCAA, India ·	CADC. Canada · Cambridge, UK · CFA/Harvard, USA · UKIRT-Hawaii, USA ·	
INASA	AN, Russia · Bejing Obs.	<u>, China</u>	
	I/239	The Hipparcos and Tycho Catalogues (ESA 1997) (ReadMe) [Similar Catalogues]	
1	l/239/hip_main	^(c) The Hipparcos Main Catalogue (118218 rows)	
Г	1/239/h_dm_com	^(c) Double and Multiples: Component solutions -COMP (24588 rows)	
	1/239/hip_dm_o	Double and Multiples: Orbital solutions (235 rows)	
	l/239/hip_va_1	Variability Annex: Periodic variables (2712 rows)	
	1/239/hip_va_2	Variability Annex: Unsolved variables (5542 rows)	
	l/239/solar_ha	^(c) Solar System Annex: Astrometric catalogue (5609 rows)	
Г	l/239/solar_hp	Solar System Annex: Photometric catalogue (2639 rows)	
Г	I/239/solar_t	^(c) Solar System Annex: Tycho astrometry/photometry (291 rows)	
Г	I/239/hd_notes	Hipparcos notes: Double and multiple systems (2622 rows)	
	I/239/hg_notes	Hipparcos notes: General notes (3898 rows)	
	1/239/hp notes	Hinnarcos notes: Photometric notes (2111 rows)	-
2 Done		Internet 💕	1

2.2 pav. Hipparcos katalogai. Varnele pažymėtas pagrindinis katalogas.

Kitame lange (2.3 pav.) pamatysime katalogo formą, kuria remdamiesi galėsime atsirinkti tik mums reikalingus katalogo duomenis. Langeliuose pažymėkime *HIP*(*Hipparcos* katalogo numeris), *Vmag* (V ryškis), *Plx* (paralaksas, 10⁻³ arcsec, t. y. milikampinėmis sekundėmis), *BV* (spalvos rodiklis), *e_Plx* (standartinė paralakso paklaida, 10⁻³ arcsec). Pavyzdyje atrenkamos artimesnės negu 33 pc žvaigždės, t. y. Plx > = 30 mas. Atsiunčiamų žvaigždžių taip pat yra ribotai. Pagal nutylėjimą daugiausia įrašų (*Maximum Entries per table*) yra 50. Šį dydį galime pakeisti į didžiausią skaičių 9999. Taip pat galima pasirinkti, kokiu formatu bus pateikti duomenys. Pavyzdyje duomenys atsiunčiami tekstine rinkmena, kurioje jie atskirti tabuliavimo klavišu *Tab*.

 • 	- 関	2 🏠 🔎	*		File Edit	View Favorites Ti	» Address (
1	Maxim	um Entries pe	r table:		Out	put layout:	Output Order:	
		9999 💌			Tab-Separated-Values • • + C -			
Query	by Po	sition on th	e Sky ((Adapt Forn	to use a	List of target.	<u>s)</u>	
Target M	Jame (1	resolved by S	IMBAD)) or Position:	Target	dimension:	Duburit Ourito	
 Desition	in e	Sevagesimal	J2000		© Padius	arcmin 🗾	Submit Guery	
Outpu	t prefe	rences for 1	Position	cillar -	· I/a/mus	OI SO DOA SIZO		
- I I	1.0.	r x,y Pe	osition	Galactic	J2000	B1950	n and n m and the distance to the Terret	
Comp	ute		N				Position is in the same coordinate system as Target.	
Sort	by	• •	с 	0	0	0		
Query	by <u>Co</u>	onstraints a	pplied o	on Columns	(Not all o	columns pres	sent in the form!)	
Show	Sort	Column	Clear	Constraint	T.1	(TTT)	Explain	
M	0	E Alver	·		Diahtan	r (HIP numbe	er) (H1)	
	0	DEdma	·	(char)	Right as	tion in dog !!	ICRS (11001 25) (H4)	
L.	0	DEoms		(cnar)	(n)	tion in deg ,	ICKS (J1991.23) (H4)	
	0	Vmag	l	mag	(^{III})Magn	itude in Johns	son V (H5)	
	0	RA(ICRS)		deg	⁽ⁿ⁾ alpha	, degrees (ICR	RS, Epoch=J1991.25) (H8) (Note)	
	c	DE(ICRS)		deg	(n) delta	degrees (ICR	S Enoch=11991 25) (H9) (Note)	
	0	Dly	>-30	10000	(n) _m .	and the front	1) (TTA)	
M	0	FIX	-30	11105	Trigo	nometric para	allax (H11)	
	c	pmRA		mas/y	r ^(III) Prope epoch)	r motion mu	_alpha.cos(delta), ICRS(H12) (for J1991.25	
	o	pmDE		mas/y	r ⁽ⁿ⁾ Prope	r motion mu	_delta, ICRS (H13) (for J1991.25 epoch)	
v	o	e_Plx		mas	⁽ⁿ⁾ Stand	ard error in P	lx (H16)	
	С	B-V		mag	⁽ⁿ⁾ Johns	on B-V colou	ur (H37)	
		Notes		(char)	[DGPW	XYZ] Exister	nce of notes (H70) (Note)	

DARBAL .

LABORATORINIAI

KOMPIUTERINIAI

2.3 pav. Pagrindinio Hipparcos katalogo langas sistemoje VizieR. Pažymėti reikalingi duomenys. Atrenkamos artimesnės negu 33 pc žvaigždės, kurių paralaksai didesni negu 30 mas (30·10⁻³ arcsec).

Pagal pavyzdyje duotus parametrus atrenkamos 2934 žvaigždės. Atrinktų duomenų dalis pavaizduota 2.4 pav.

Toliau duomenis įrašykite į rinkmeną.

ŽVAIGŽDŽIU FIZIKOS

Iš atstumo modulio formulės apskaičiuojame absoliutinį ryškį M_V (tarpžvaigždinės ekstinkcijos nepaisome, $A_V = 0$):

$$m - M_V = 5 \cdot \lg r - 5, \tag{2.1}$$

kur r – nuotolis parsekais. Nuotolį apskaičiuojame pagal formulę

$$r = \frac{1}{\pi'}$$
(2.2)

kur π – žvaigždės paralaksas kampinėmis sekundėmis. Nepamirškite, kad *Hipparcos* kataloge paralaksas duotas milikampinėmis sekundėmis.

Absoliutinio ryškio paklaidą apskaičiuojame pagal formulę

$$\sigma M_{v} = 2.17 \cdot \frac{\sigma \pi}{\pi}.$$
 (2.3)

File Edi	t View Favorite	es Tools Help								20
G Back	• 🕑 • 💌	2 🏠 🔎	Search 🗧	Favorite	es 🜒 Me	edia 🧭	8-	🖕 🖸 - 🗾		
Address	🖹 http://vizier.u-st	trasbg.fr/cgi-bin/Vizie	R-4						💌 🛃 Go 🛛 Links 🎽 Norton A	ntiVirus 🛃 🕶
]	Max. Entries:		HTML	Output Table	layout:	•		ALL columns	ReSubmit	-
1/2	39/hip_main	Th T	e Hipp he Hip	arcos a parcos	<u>nd Tyc</u> Main (<u>ho Cata</u> Catalog	alogue ue	<u>s (ESA 1997)</u> (<u>Read</u>	<u>4e</u>)	
To ge The 2	et all detail. 2 columns in lingtes are	s for a row, n color are c commuted fi	<i>just cli</i> omput com the	ick on a ed by V e positi	the row vizieR,	and are d the n	er in ti <mark>e not p</mark> proper	he leftmost `Full' colu art of the original da motions given in the	mm. <mark>(ta</mark> (note that the <mark>computed</mark> table)	
Note:	Errors found	d in the Hipp	arcos co	atalogu	e are re	ported i	in the f	ile <u>errata.htx</u>		
Fu11	_RAJ2000 	_DEJ2000 	HIP	<u>Vmag</u> mag	Plx mas	e Plx mas	<u>B-V</u> mag			
1 2 3 4 5 6 6 7 7 8 9 9 10 11 11 12 13 14 15 16 17 7	00 13 30.922 00 16 52.523 01 56 47.653 20 18 03.255 04 14 30.297 12 23 34.713 22 53 37.931 11 05 33.670 14 14 05.180 00 41 24.254 07 42 36.063 20 59 14.476 01 20 36.943 20 57 02.486 18 42 02.356 18 42 02.556 18 42 02.556 18 42 02.556 18 42 02.556 18	$\begin{array}{ccccc} -40 & 21 & 29, 75 \\ +81 & 39 & 49, 09 \\ +23 & 03 & 04, 09 \\ +44 & 15 & 37, 60 \\ -12 & 32 & 41, 47 \\ +03 & 01 & 19, 41 \\ +27 & 54 & 47, 66 \\ -48 & 35 & 53, 83 \\ +45 & 00 & 31, 32 \\ -24 & 59 & 20, 65 \\ +12 & 57 & 34, 00 \\ -13 & 10 & 19, 73 \\ -25 & 17 & 50, 75 \\ -10 & 42 & 49, 45 \\ +54 & 57 & 44, 46 \\ -34 & 27 & 58, 80 \\ -34 & 27 & 58, 80 \\ \end{array}$	1085 1347 9073 28767 100064 19788 60448 113044 54212 83196 69536 3249 37563 103581 6285 26381 91700	9.05 8.67 7.85 6.74 3.58 8.78 11.33 6.03 11.10 5.74 5.53 10.67 7.17 8.51 7.21 7.68 7.95	30.00 30.00 30.00 30.00 30.02 30.02 30.04 30.05 30.05 30.06 30.07 30.07 30.07 30.07 30.07 30.08 30.08	1.25 0.82 0.92 0.82 0.91 1.68 2.58 0.73 2.28 1.01 0.74 4.42 0.56 1.25 1.29 1.15	0.913 0.855 0.711 0.573 0.883 0.943 1.474 0.621 1.483 0.407 0.537 1.176 0.637 0.955 0.586 0.667 0.748			
18	23 42 47.927	+13 19 24.50	116976	9.56	30.09	1.41	0.970			-

ŽVAIGŽDŽIU

FIZIKOS

KOMPIUTERINIAI

LABORATORINIAI

DARBAI

2.4 pav. Atrinkti Hipparcos katalogo duomenys. RAJ2000 ir DEJ2000 yra žvaigždžių koordinatės 2000 metų epochai, HIP yra Hipparcos katalogo numeris, Vmag – ryškis V, Plx – paralaksas milikampinėmis sekundėmis, e_Plx – paralakso paklaida milikampinėmis sekundėmis, B–V – spalvos rodiklis ryškiais.

Klausimai ir užduotys

- 1. Iš *Hipparcos* katalogo atrinkite žvaigždes iki 10 pc (po to iki 15, 20, 25, 30 pc) nuotolio.
- Nubrėžkite atrinktų žvaigždžių HR diagramas. Nepamirškite, kad kuo aukštesnė žvaigždės efektinė temperatūra, tuo mažesnis spalvos rodiklis *B−V*. Nustatykite, kokių spektrinių klasių žvaigždžių daugiausia tarp artimiausių žvaigždžių (r ≤25 pc).
- 3. Nubraižykite absoliutinio ryškio paklaidos priklausomybės nuo atstumo grafiką.

FIZIKOS

3. Pagrindinės sekos žvaigždės vidinės sandaros modelis

Programos aprašymas

Darbe naudosime programą *Statstar99* iš <u>http://astrophysics.weber.edu/Codes.html</u>. Tai *Fortran* programavimo kalba parašyta programėlė, kurioje konstruojamas pagrindinės sekos žvaigždės modelis, remiantis keturiomis pagrindinėmis žvaigždžių vidinės sandaros lygtimis [4].

1. Hidrostatinės pusiausvyros lygtis:

$$\frac{dP}{dr} = -\rho \frac{G \cdot m}{r^2},\tag{3.1}$$

kur dP – slėgio pokytis dr dujų sluoksnelyje, G – gravitacinė konstanta, ρ – dujų tankis nuotolyje r nuo žvaigždės centro ir m – žvaigždės dalies, apribotos spinduliu r, masė.

2. Masės pasiskirstymo lygtis:

$$\frac{dm}{dr} = 4 \cdot \pi \cdot r^2 \cdot \rho \,, \tag{3.2}$$

kur dm – masės pokytis dr dujų sluoksnelyje.

3. Spindulinės pernašos lygtis:

$$\frac{dT}{dr} = -\frac{3 \cdot \kappa \cdot \rho}{16 \cdot T^3} \frac{F}{4 \cdot \pi \cdot r^2}, \qquad (3.3)$$

kur dT – temperatūros pokytis dr dujų sluoksnelyje, κ – žvaigždės masės vieneto sugerties koeficientas, F – žvaigždės dalies, apribotos spinduliu r, spinduliuojamas energijos srautas.

4. Energijos lygtis:

$$\frac{dF}{dr} = 4 \cdot \pi \cdot r^2 \cdot \rho \cdot \varepsilon, \qquad (3.4)$$

kur dF – energijos srauto pokytis dr dujų sluoksnelyje, ε – energijos gamybos greitis.

Lygtys sprendžiamos skaitmeniškai, ir nustatoma slėgio, temperatūros, išspinduliuotos energijos priklausomybė nuo žvaigždės spindulio *r*, t. y. gaunamas žvaigždės modelis. Programa *Statstar99* tinka tik pagrindinės sekos žvaigždėms. Įrašomi dydžiai yra (3.1 pav.):

- 1. Žvaigždės masė Saulės masėmis Mass (solar units).
- 2. Šviesis Saulės šviesiais Luminosity (solar units).
- 3. Efektinė temperatūra kelvinais Effective Temperature (K).
- 4. Vandenilio gausa pagal masę Mass Fraction of Hydrogen (X).
- 5. Sunkesnių už helį elementų gausa pagal masę Mass Fraction of Metals (Z).
- 6. Helio gausa pagal masę apskaičiuojama automatiškai, žinant, kad X + Y + Z = 1, kur Y yra helio gausa.

STATSTAR99		_ 6 ×
<u>Ele</u>		
StatStar Nodel Parameter	2	×
Mass (solar units) Luninooly (solar units Effective Temperature (F	1.00000 Enter the name of your output 0.86071 Enter the name of your output 10500.2000 rexultation dat	Execute (le below
Composition Parameters Mass Fraction of Hydrogen Mass Fraction of Metals (2	0.00000 Mass Fraction of Helium	0.292000
Start Star51a/39 (R)kryga.doc - Micronoft	Vord 🖉 Zvaigzdez videuz zandezu. 🗐 STATST	AR99

3.1 pav. Pradiniai duomenys, įrašomi programoje StatStar99.

Programą paleidžiame skaičiuoti paspaudę mygtuką Execute.

Kitame lange programa pateikia keletą grafikų, kuriuose atvaizduojama įvairių žvaigždės astrofizikinių parametrų priklausomybė nuo žvaigždės spindulio (3.2 pav.).

3.2 pav. Programos StatStar99 pateikiami rezultatai, atvaizduoti grafiškai.

Jei peržiūrėję grafikus norėsite pakeisti žvaigždės parametrus, tai galėsite padaryti spustelėję pelyte *Model Results* langą. Išeiti iš programos galima *File* meniu pasirinkus komandą *Exit*. Jei žvaigždės parametrai pasirinkti teisingai, programa praneša radusi gerą modelį.

Hod Ste	lel A	lesults					_ 0 ×
		CONGR	TULATIONS,	, I THINK YOU FOUND	DI	T!	
		However, be a	sure to loo	ok at your model co	are	fully.	
The :	sur	face condition	are:	The central	cc	nditions are	:
What	-	1 000000	Mann	Ma/Mtot	_	4 004198-04	
Prot	_	1.020008	Deun	Pa/Ptot	-	1.000008-02	
RCOU	Ξ.	0.020990	rsun Laun	RC/RCOC	0	1.90000E-02	
LCOC		0.060710	Laun	LC/LCOC		7.672231-02	
Terr	=	5500.200000	K	Density	=	7.725298+01	g/cm**3
X	-	0.700000		Temperature	-	1.41421E+07	K
Y	=	0.292000		Pressure	=	1.46284E+17	dynes/cm**2
Z	=	0.008000		epsilon	=	3.17232E+02	ergs/s/g
1				dlnP/dlnT	-	2.49808E+00	
		***** The :	ntegration	n has been complete	ed	*****	
		The mode.	has been	stored in regultar	tas	.dat	

3.3 pav. Modelio rezultatai.

Modelio rezultatų lango (3.3 pav.) kairėje pusėje surašomi astrofizikiniai parametrai žvaigždės paviršiuje, o dešinėje – žvaigždės centre.

Parametrai žvaigždės paviršiuje:

- 1. Žvaigždės masė Mtot Saulės masėmis.
- 2. Žvaigždės spindulys Rtot Saulės spinduliais.
- 3. Žvaigždės šviesis Ltot Saulės šviesiais.
- 4. Efektinė temperatūra Teff kelvinais.
- 5. Vandenilio gausa X.
- 6. Helio gausa Y.
- 7. Sunkesnių už helį elementų gausa Z.

Parametrai žvaigždės centre:

- 1. Žvaigždės centrinės dalies masės ir visos žvaigždės masės santykis Mc/Mtot.
- 2. Žvaigždės centrinės dalies spindulio ir visos žvaigždės spindulio santykis Rc/Rtot.
- 3. Žvaigždės centrinės dalies šviesio ir visos žvaigždės šviesio santykis *Lc/Ltot*.
- 4. Tankis žvaigždės centre Density (g/cm³).
- 5. Temperatūra *Temperature* (K).
- 6. Slėgis Pressure (dynes/cm²).
- 7. Energijos gamybos greitis epsilon (ergs/s/g).
- 8. Slėgio gradientas *dlnP/dlnT*.

Modelio rezultatai išsaugomi rezultatų rinkmenoje rezultatas.dat (3.4 pav.).

a rezultata	as.dal - Notepad		- 0
Elle Edit	Search Help		
	A Honogeneous Nair	-Sequence Hodel	
The sur	Face conditions are:	The central conditions are:	
The set			
Ntot =	1.000000 Hsun	Hc/Htot = 4.00418E-04	-
Rtot =	1.020998 Rsun	Rc/Rtot = 1.90000E-02	
Ltot =	8.860710 Lsun	Lc/Ltot = 7.67225E-82	
Teff =	5508.288088 K	Density = 7.72529E+01 g/cn**3	
x -	8.788088	Temperature = 1.41421E+87 K	
Y -	0.292008	Pressure = 1.40284E+17 dynes/cn×+2	
ζ =	6.008000	epsiton = 3.1/232E+82 ergs/s/g	
		0101/0101 - 5'48695+90	
Notes:			
(1) Has	s is listed as Qn = 1.0 -	H r/Htot, where Htot = 1.989000E+33 g	
(2) Con	vective zones are indicate	d by c, radiative zones by r	
(3) dln	P/dlnT may be limited to	99.9 or -99.9; if so it is labeled by *	
	••••••••		
r orr		P rho kap eps dlPdlT	
1.356*	09 1.00E+00 2.53E+32 1.40	+07 1.45E+17 7.72E+01 1.40E+00 1.51E+01 C 2.5	
2.002+	09 9.99E-01 2.83E+32 1.39	+07 1.43E+17 7.00E+01 1.42E+00 1.40E+01 C 2.5	
3 bBE+	00 0 03E-01 h 28E+32 1 27	+07 1.346-17 7.572-01 1.442-00 1.372-01 C 2.5	
4.19E+	09 9.88E-01 5.51E+32 1.35	+07 1.32E+17 7.31E+01 1.49E+00 1.21E+01 C 2.5	
4.90E+	09 9.82E-01 7.06E+32 1.33	+07 1.27E+17 7.15E+01 1.53E+00 1.11E+01 c 2.5	
5.61E+	09 9.73E-01 8.90E+32 1.31	+07 1.22E+17 6.97E+01 1.58E+00 1.00E+01 c 2.4	
6.32E+	09 9.62E-01 1.10E+33 1.28	+07 1.16E+17 6.77E+01 1.63E+00 8.87E+00 r 2.5	
7.03E+	09 9.49E-01 1.32E+33 1.25	+07 1.10E+17 6.55E+01 1.70E+00 7.79E+00 r 2.7	
7.75€.	09 9.33E-01 1.54E+33 1.22	+07 1.03E+17 6.30E+01 1.76E+00 6.76E+00 r 2.7	
8.46E+	09 9.15E-01 1.77E+33 1.19	*07 9.65E+16 6.04E+01 1.03E+00 5.01E+00 r 2.0	
9.17E+	89 8.94E-81 1.99E+33 1.16	+87 8.96E+16 5.76E+81 1.91E+80 4.93E+80 r 2.9	
9.88E+	09 8.71E-01 2.19E+33 1.13	+87 8.28E+16 5.46E+81 1.99E+80 4.14E+80 r 3.0	
1.06E+	10 8.46E-01 2.38E+33 1.10	+07 7.60E+16 5.16E+01 2.07E+00 3.45E+00 r 3.1	
1.13E+	10 8.19E-01 2.55E+33 1.07	+07 6.95E+16 4.86E+01 2.16E+00 2.83E+00 r 3.1	
1.20E+	10 7.912-01 2.702+33 1.04	+07 0.31E+10 4.55E+01 2.25E+00 2.31E+00 P 3.2	
1.2/2+	10 7.002-01 2.822+33 1.00		
1.346+	10 6 075-01 9 015-99 0 00	- 00 5.10E+10 0.94E+01 2.45E+00 1.48E+00 F 0.3	
1 405+	10 6 685-01 3 085+93 9 07	+06 & 09E+16 3 36E+01 2 66E+00 0 10E-01 # 3 5	
1.566+	18 6.38E-81 3.13E+33 8.77	+06 3.62E+16 3.08E+01 2.76E+00 7.14E-01 F 3.5	
1.636+	18 5.97E-81 3.17E+33 8.46	+06 3.20E+16 2.82E+01 2.88E+00 5.50E-01 r 3.6	
0			2
BStart	StaSta99	adoc - Microsoft Word STATSTAR99 - Model Ta.	ezultatas dal - Noteo
	Colorado		The second secon

3.4 pav. Modelio rezultatai tekstinėje rinkmenoje, pvz., rinkmenoje rezultatas.dat. Rinkmenos pradžioje pateikiami tie patys žvaigždės modelio parametrai žvaigždės paviršiuje ir centre.

Toliau lentelėje pateikiami žvaigždės modelio parametrai atsižvelgiant į žvaigždės spindulį *r.*

Rezultatų lentelėje pateikiami tokie žvaigždės parametrai:

r – žvaigždės spindulys;

Qm – spindulio *r* žvaigždės dalies masė, išreiškiama visa žvaigždės mase: *Qm* = 1,0 – *M_r/Mtot*, kur *M_r* būtų *r* spindulio žvaigždės dalies masė, o *Mtot* – visos žvaigždės masė;

 L_r – spindulio *r* žvaigždės dalies spinduliuojama energija, žvaigždės paviršiuje dydis *L* vadinamas šviesiu;

T-temperatūra ties žvaigždės spinduliu r;

P-slėgis ties žvaigždės spinduliu r;

Rho – tankis ties žvaigždės spinduliu r sluoksnelyje dr;

Kap – žvaigždės masės vieneto sugerties koeficientas;

Eps – energijos gamybos greitis;

c/r – čia c, kai energija pernešama konvekcija, r – spinduliais;

dlPdlT – slėgio logaritmo pokytis dlP temperatūros logaritmo intervale dlT.

3.5 pav. Temperatūros kitimas žvaigždės gelmėse. Abscisių ašyje pažymėtas spindulys, išreikštas žvaigždės spinduliais, – r/Rstar. Šis dydis lygus vienetui žvaigždės paviršiuje. Ordinačių ašyje pažymėta temperatūra, išreikšta žvaigždės centrinės dalies temperatūra, – T/Tcore. Žvaigždės centre temperatūra aukščiausia. Žvaigždės paviršiaus link temperatūra žemėja eksponentiškai, kol žvaigždės paviršiuje tampa lygi nuliui.

X = 0,70; Y = 0,292; Z = 0,008						
<i>M</i> / <i>M</i> ⊙	L/L _☉	Те (К)				
0,5	0,02130	2321,4				
1,0	0,86071	5500,2				
2,0	22,61200	11218,4				
4,0	341,09998	17904,0				
6,0	1375,34998	22310,0				
10,0	6641,59961	28263,6				
X = 0,70;	Y = 0,29; Z = 0,01					
M/M⊙	L/L ⊙	<i>Te</i> (K)				
0,5	0,018065	2196,04				
1,0	0,746150	5233,10				
2,0	20,297539	10765,12				
2,0 4,0	20,297539 320,644369	10765,12 17372,69				
2,0 4,0 6,0	20,297539 320,644369 1322,551452	10765,12 17372,69 21807,77				

 Ientelė. Pradiniai parametrai programai StatStar99 dviejų skirtingų cheminių sudėčių žvaigždžių modeliams.

Klausimai ir užduotys

- 1. Apskaičiuokite dviejų žvaigždžių, kurių masės vienodos, bet cheminės sudėtys skirtingos, modelius.
- 2. Nustatykite, kiek kartų temperatūra žvaigždės centre aukštesnė negu jos paviršiuje.
- 3. Ties kokiu žvaigždės spinduliu (Saulės spinduliais) žvaigždės spinduliuojama energija *Lr* tampa pastovi?
- 4. Kaip keičiasi modelio su didesniu Z (metalingesnės žvaigždės) šviesis L/Lo ir efektinė temperatūra Te lyginant su modeliu, kurio Z mažesnis? Paaiškinkite gautą rezultatą.
- 5. Įrašykite tarpinę Z vertę, pavyzdžiui, Z = 0,009. Keisdami modelio temperatūrą *Te* ir šviesį *L*, pamėginkite rasti gerą sprendinį. Kokie jo parametrai?

4. Žvaigždžių evoliucija

Žvaigždės susidaro šaltos tarpžvaigždinės medžiagos debesyse. Besitraukdami tarpžvaigždinės medžiagos gniužulai, vadinami prožvaigždėmis, pasiekia pagrindinę HR diagramos seką. Čia žvaigždės centre įsižiebia branduolinės reakcijos, po kurių vandenilis virsta heliu. Vėliau vandenilio virtimo heliu reakcijos persikelia į toliau nuo žvaigždės centro esančius sluoksnius, o žvaigždės centre helis pradeda virsti anglimi. Tam tikruose žvaigždės raidos etapuose temperatūra žvaigždės centre kyla dėl to, kad centrinė žvaigždės dalis traukiasi. Tuo tarpu išoriniai žvaigždės sluoksniai pučiasi ir vėsta. Visi šie pokyčiai, vykstantys žvaigždės viduje, atsispindi ir žvaigždės paviršiuje. Keičiasi žvaigždės efektinė temperatūra ir šviesis. Dėl to keičiasi ir žvaigždės padėtis HR diagramoje. Kuo didesnė žvaigždės masė, tuo sparčiau žvaigždės ejie vyksta milijonus metų, o nedidelės masės žvaigždės evoliucionuoja dar lėčiau. Todėl žvaigždės raidą galima išsiaiškinti tik šį procesą modeliuojant.

Įvairių masių žvaigždžių vidinę sandarą ir raidą panagrinėsime remdamiesi programėle *Sclock2.0*. Tyrinėsime tik pagrindinės, submilžinių, milžinių, horizontaliosios ir asimptotinės sekos žvaigždžių raidą. Ankstesni ir vėlyvesni žvaigždžių raidos etapai šioje programėlėje nėra nušviečiami.

Programos aprašymas

Programėlę *Sclock2.0* galima parsisiųsti iš <u>http://leo.astronomy.cz/sclock/sclock.html</u>. Programa veikia *DOS* operacinėje sistemoje. Ją parašė astronomijos mėgėjas Leosas Ondra. Programoje panaudoti *Maeder* [3] evoliucijos trekai.

Paleidžiamoji programos rinkmena – *Sclock2.0.exe*. Rinkmenose *Algol.dat, Cepheids.dat, Ecl_bin.dat* ir *General.dat* yra atitinkamai trijų Algolio žvaigždžių, cefeidžių, užtemdomų dvinãrių ir 25 šviesių žvaigždžių duomenys.

Programa valdoma tik klavišais.

Evolve meniu

Nuspaudę bet kurį mygtuką, iš karto atsidursite pagrindiniame režime, kuris vadinamas *Evolve* (4.1 pav.). Kitas režimas vadinamas *Explore*.

4.1 pav. Programos Starclock20 pagrindinis langas. Režimas Evolve.

Dešinėje ekrano pusėje matysite HR diagramą, kurios ašyse atidėta lg *Te* ir lg $L/L \otimes Z = 0,02$, t. y. nagrinėjamos Saulės cheminės sudėties žvaigždės. Amžius (*Age*) nurodomas milijonais metų ir skaičiuojamas nuo žvaigždės evoliucijos pagrindinėje sekoje pradžios. Žvaigždės atidedamos raudonais taškais, kai jų centre vandenilis virsta heliu, žaliais – kai helis virsta anglimi, mėlynais taškais žymimi kiti žvaigždžių raidos etapai (branduolinės reakcijos nevyksta arba vyksta kitokios reakcijos).

Kairėje ekrano pusėje nurodytos žvaigždžių masės – nuo 0,8 iki 25 Mo. Nuspaudus *Run*, žvaigždės HR diagramoje pradeda brėžti raidos takus (evoliucijos trekus). Evoliuciją laikinai sustabdome nuspaudę *Enter*, visiškai nutraukiame nuspaudę *Esc*. Raidos greitį ekrane galime pakeisti panaudoję kitą *Step* vertę. Į kitus meniu punktus pereiname rodyklėmis.

Taip pat galima pakeisti evoliucijos pradžios Start ir pabaigos End laiką.

Pakeitus *Delay* galima pristabdyti animaciją greituose kompiuteriuose. Langelyje *Elapsed* rodoma, kiek procentų viso evoliucijos laiko jau prabėgo.

Trace – jei pakeisime *Yes* į *No,* nebematysime raidos tako.

Phase – jei pakeisime *Yes* į *No,* visose evoliucijos stadijose žvaigždės bus žymimos tik baltais taškais.

Eclipse leidžia modeliuoti, kur gali būti antroji Algolio tipo užtemdomos žvaigždės komponentė. Kursoriumi pasižymime pirmosios komponentės vietą HR diagramoje, spaudžiame *Enter*, ir programa nubrėš HR diagramos sritį, kur gali būti antroji dvinarės žvaigždės komponentė.

Jei *Stars* langelyje pažymėta *No*, HR diagramoje atskiros žvaigždės nebus atidedamos. Jei pasirinkta *Yes*, HR diagramoje bus atidėtos *File* langelyje pasirinktos žvaigždės, pavyzdžiui, cefeidės (4.2 pav.). Meniu langelių vertės keičiamos spaudžiant klavišą *Enter*.

4.2 pav. Pažymėtas 5 Saulės masių žvaigždės raidos takas. Taip pat atidėtos stebėtos cefeidės.

Stars langelyje *No* pakeitę į *Yes,* langelyje general pamatysime pasirinktas žvaigždes. Spausdami *Enter,* galime keisti žvaigždžių duomenų rinkmeną: general (įvairios ryškios žvaigždės), algol (trys Algolio komponentės), cepheids (cefeidės), ecl_bin (užtemdomos dvinārės). Taip galima nustatyti, kokioje HR diagramos vietoje atsiduria įvairių tipų žvaigždės. Pasirinkus ecl_bin (užtemdomos dvinārės), skirtingomis spalvomis bus žymimos skirtingos dvinārės komponentės. Pasirinkus cepheids, geltona spalva bus pažymėtos tikros cefeidės, violetine spalva – nekintančios supermilžinės. Galima susikurti ir savo duomenų rinkmeną. Jos plėtinys turi būti dat, o formatas toks pat, kaip ir kitų dat rinkmenų. Pavyzdys iš general.dat rinkmenos:

1 4,461 4,856 7 7 14 Mimoza

Viena tokia eilutė skiriama vienai žvaigždei. 1 – žvaigždės numeris ar vardas, kuris pasirodo brėžinyje (maksimaliai žvaigždės numeriui skiriamos 7 pozicijos); 4,461 ir 4,856 – žvaigždės efektinės temperatūros ir šviesio logaritmai; 7 ir 7 – žvaigždės žymės pozicija ekrane taško atžvilgiu (pikseliais); 14 – taško spalva; nuo 15 iki 256 pozicijos gali būti pastabų.

Pasirinkus *Define*, galima keisti fazių, kurių metu dega vandenilis ir helis, pradžios ir pabaigos sąlygas. Šios fazės žymimos raudonais ir žaliais taškais.

Run paleidžia animaciją. Nutraukiame su *Esc* arba *Enter*. Pastaruoju atveju evoliucija bus tik laikinai sustabdyta, vėl nuspaudus *Enter* ji vyks toliau.

Iš programos išeinama nuspaudus Quit arba Q.

Explore meniu

Pasirinkus šį meniu galima detaliau patyrinėti pasirinktos masės žvaigždės raidą.

Pirmiausia pasirenkame norimos masės žvaigždę, spaudžiame *Enter*. Nuspaudę *Run*, gausime pasirinktos masės žvaigždės evoliucijos treką.

Explore meniu rodyklėmis \leftarrow ir \rightarrow galima judėti evoliucijos treku. Taip pat keturiomis rodyklėmis galima pereiti iš vieno meniu punkto į kitą. Iš vienos būsenos į kitą pereinama klavišu *Tab*.

Nuspaudę *Page Down,* atsidursime naujame lange ir galėsime panagrinėti, kaip pasirinktos masės žvaigždės evoliucionuodamos keičiasi:

- 1) žvaigždės šviesis lg L/Lo (Luminosity);
- 2) efektinės temperatūros logaritmas lg Te (Surface temperature, kelvinais);
- 3) žvaigždės spindulys lg R/Ro (Radius);
- 4) žvaigždės branduolio cheminė sudėtis (*Central chemical composition,* procentinė cheminė sudėtis); skirtingos spalvos žymi skirtingus elementus (4.3 pav.);
- 5) žvaigždės branduolio temperatūra lg Tc (Central temperature, kelvinais);
- 6) žvaigždės branduolio tankis lg r (Central density, g/cm³).

Su *Tab* klavišu taip pat perjungiame klavišų \leftarrow ir \rightarrow funkcijas, t. y. pasirenkame, ar stumdysime kursorių grafiko lange, ar pasirinksime meniu klavišus.

Su *Zoom* galime keisti grafiko mastelį. Pasirinkę *Main,* grįžtame į pagrindinį meniu. Su *PgUp* ir *PgDn* vaikštome pirmyn ir atgal, t. y. nuo 1 iki 6 lango.

lšeiname iš programos su Quit.

4.3 pav. 5 Saulės masių žvaigždės cheminės sudėties priklausomybė nuo žvaigždės evoliucijos laiko. Abscisių ašyje atidėtas laikas. Nulis žymi žvaigždės evoliucijos pagrindinėje sekoje pradžią, vienetas – evoliucijos pabaigą. Programoje Sclock2.0 tai atitinka evoliucijos asimptotinėje sekoje pabaigą. Ordinačių ašyje atidėta procentinė žvaigždės centrinės dalies cheminė sudėtis. Juodas vertikalus brūkšnys žymi momentą, kai žvaigždės centre visas vandenilis virsta heliu. Tada žvaigždė palieka pagrindinę seką ir evoliucionuoja milžinių sekos link.

Klausimai ir užduotys

1. Pasirinkite trijų skirtingų masių žvaigždes:

a) $M \le 1,5 M_{\odot}$,

- b) 1,5 Mo < M \leq 9 Mo,
- c) $M > 9 M_{\odot}$.
- 2. Po kiek milijonų metų visas vandenilis virto heliu kiekvienos iš trijų pasirinktų žvaigždžių centre?
- 3. Po kiek milijonų metų kiekvienos iš trijų pasirinktų žvaigždžių centre helis pradėjo virsti anglimi?
- 4. Kaip keičiasi kiekvienos pasirinktos masės žvaigždės šviesis, efektinė temperatūra, spindulys, temperatūra ir tankis žvaigždės centre tuo momentu, kai jos centre baigia degti vandenilis?
- 5. Kokia apytikriai yra kiekvienos pasirinktos masės žvaigždės centrinės dalies cheminių elementų gausa evoliucijos (nagrinėjamos programoje *Sclock2.*0) pabaigoje?

5. Padrikojo spiečiaus amžiaus nustatymas

• • • • • ŽVAIGŽDŽIU

Žvaigždės spiečiuose gimsta tuo pačiu metu, tačiau dėl skirtingos masės spiečių nariai evoliucionuoja skirtingu greičiu. Todėl po tam tikro laiko žvaigždės atsiduria skirtinguose evoliucijos etapuose ir išsibarsto HR diagramoje. Lyginant spiečių stebėjimų rezultatus su teorinėmis izochronomis (vienodo amžiaus skirtingos masės žvaigždžių išsidėstymo linijomis HR diagramoje), nustatomas spiečių amžius. Šiame darbe bus įvertinamas padrikųjų spiečių amžius.

Padrikųjų spiečių stebėjimų duomenys

Žvaigždžių *UBV* fotometrijos duomenis paimsime iš padrikųjų spiečių duomenų bazės (*WEBDA*) [5] <u>http://obswww.unige.ch/webda/webda.html</u>. Pasirinkime meniu punktą *Navigation* ir pateksime į vieną iš bazės langų, kuriame bus galima susirasti reikiamą spiečių, pavyzdžiui, Sietyno spiečių (*Pleiades*, 5.1 pav.).

5.1 pav. Padrikųjų spiečių duomenų bazės Navigation langas, kuriame galima susirasti reikiamą spiečių, pavyzdžiui, Sietyną (Pleiades).

Kitame lange rasime visus pagrindinius pasirinkto Sietyno spiečiaus parametrus (5.2 pav.).

5.2 pav. Pagrindiniai pasirinkto padrikojo Sietyno spiečiaus (Pleiades) parametrai: Right Ascension (2000), Declination (2000) – 2000 metų epochos spiečiaus rektascensija ir deklinacija, Distance [pc] – spiečiaus nuotolis parsekais, Reddening [mag] – spalvos ekscesas E_{B-V} ryškiais, Distance modulus [mag] – atstumo modulis ryškiais, Log Age – amžiaus logaritmas, Metallicity – metalingumas.

WEBDA duomenų bazėje yra duotas ir spiečiaus amžius, tačiau mes jį nustatysime patys, naudodami Padova izochronas [6]. Toliau mums reikia susirasti spiečiaus žvaigždžių stebėjimus UBV fotometrinėje sistemoje. Todėl 5.2 pav. lange žemiau susirandame nuorodą Available data ir patenkame į stebėjimo duomenų langą (5.3 pav.):

🚰 WEBDA: Available Data - Microsoft Inte	ernet Explorer							
File Edit View Favorites Tools Help								
🕞 Back + 🕑 - 🖹 🛃 🏠 🔎 Search 🧙 Favorites 🜒 Media 🧭 😥 + 😓 🗔 + 📃								
Address 🙆 http://obswww.unige.ch/webda/cgi-bin/frame_list.cgi?mel022 🗾 🖻 Go 🛛 Links 🍟 Norton AntiVirus 🌄 🗸								
Melotte 22	- UBV	phot	oelecti	ric obs	ervati	ons		<u> </u>
<u>Data types</u>	No	Ref	v	B-V	U-B	N		
Fundamental	0.025	25	9 47	0 48	0 01			
	0023	25	12 03	0.40	0.01			
 Coordinates J2000 	0034	132	11.96	0.92	0.02			
 Coordinates B1950 	0070	909	10.77	0.70	0.15	2		
 Positions 	0081	25	13.59	0.90	0.38			
XY positions	0081	124	13.55	0.92	0.35			
Cross-identifications	0081	909	13.51	0.88	0.61	1		
- Cross-references	- 0081	1043	13.56	0.88	0.39			
- DS identification	0083	124	14.86	1.05	0.74			
Absolute a m	0083	1043	14.89	0.99	0.71			
• Absolute p.m.	0097	25	12.50	1.08	0.79			
• <u>Relative p.m.</u>	0097	132	12.65	1.08	0 07			
L	0102	1051	10 51	1.08	0.87			
Photometry	0102	144	10.51	0.71	0.13			
	0102	909	10.54	0.76	0.30	1		
• <u>UBV</u>	0105	25	13.76	0.98	0.48	-		
• <u>uvby</u>	0105	1043	13.78	0.95	0.43			
 <u>uvby mean</u> 	0120	25	10.79	0.70	0.19			
• <u>B</u> data	0120	144	10.84	0.70				
• ß mean	0129	25	11.47	0.88	0.40			
Eggen uvby	0133	124	14.33	1.38	1.20			
Geneva 7-col	0133	132	14.26	1.35				
Geneva	0133	304	14.32	1.35				-
- Vilnins	0133	1043	14.32	1.38	1.11			<u>×</u>
• Walraven	D	ESCE	NILLEN	ON	N	avigation	Cluster	HELP
- WRVR	-							
8								🔮 Internet

ŽVAIGŽDŽIII

5.3 pav. Sietyno spiečiaus (Pleiades arba Melotte22) stebėjimo duomenų langas WEBDA duomenų bazėje.

WEBDA duomenų bazėje galime pasirinkti stebėjimus įvairiose fotometrinėse sistemose: UBV, uvby, Ženevos, Vilniaus, VI ir t. t. Gali būti tiek fotoelektriniai, tiek CCD stebėjimai. Toliau pateiktame pavyzdyje nagrinėsime fotoelektrinius stebėjimus UBV sistemoje.

Stebėjimų duomenys pateikti dešinėje lango pusėje (*UBV photoelectric observations*). Pateikiama žvaigždės numeris *No*, stebėjimų duomenų šaltinis *Ref*, ryškis *V*, spalvos rodikliai *BV* ir *UB* bei stebėjimų skaičius *N*. Šiuos duomenis galime nusikopijuoti į tekstinę rinkmeną, po to importuoti į bet kurią programą (*Excel, Origin, Mathematica* ir kt.), su kuria galėtume atlikti apskaičiavimus ir nubrėžti grafikus. Taip pat galima pasirinkti stebėjimų duomenis *uvby*, Ženevos, Vilniaus ir kitose fotometrinėse sistemose.

Mūsų tikslas yra nubrėžti spiečiaus HR diagramą $M_{V'}$ ($B-V_{0'}$, kur ($B-V_{0}$ – tikrasis spalvos rodiklis, t. y. nepaveiktas tarpžvaigždinės ekstinkcijos. Žvaigždžių absoliutiniai ryškiai apskaičiuojami iš atstumo modulio formulės:

$$V - M_v = 5 \cdot \lg r - 5 + A_v, \tag{5.1}$$

kur V- regimasis ryškis, M_v - absoliutinis ryškis, r- žvaigždės nuotolis parsekais, A_v - tarpžvaigždinė ekstinkcija ryškyje V. Esant normaliam ekstinkcijos dėsniui, tarpžvaigž-

dinė ekstinkcija su spalvos ekscesu yra susijusi taip:

$$A_{V} = 3.1 \cdot E_{B-V}. \tag{5.2}$$

Tikrasis spalvos rodiklis (B–V), apskaičiuojamas pagal formulę

$$(B - V)_0 = B - V - E_{B - V}.$$
(5.3)

Spalvos rodiklis (V–I), randamas pagal formulę

$$(V-I)_0 = V - I - E_{V-I'}$$
(5.4)

kur E_{V-1} apskaičiuojamas pagal formulę

$$\frac{E_{V-I}}{E_{B-V}} = 1,25.$$
(5.5)

Dabar jau galime nubrėžti spiečiaus HR diagramą (5.4 pav.).

5.4 pav. Sietyno spiečiaus HR diagrama. Stebėjimai UBV fotometrinėje sistemoje paimti iš WEBDA duomenų bazės.

HR diagramoje gerai matoma pagrindinė seka. Tačiau į tą diagramą patenka ne tik padrikojo spiečiaus žvaigždės, bet ir lauko žvaigždės. Jeigu norėtume atrinkti tik spiečiaus narius, reikėtų panagrinėti savuosius žvaigždžių judėjimus. Tačiau šiame darbe mes laikysime, kad dauguma HR diagramos žvaigždžių priklauso padrikajam spiečiui, ir spiečiaus narių neatrinkinėsime.

Izochronos

Dabar mums reikia stebėjimų duomenis palyginti su iš modelių apskaičiuotomis izochronomis [6]. Naudosime izochronas iš evoliucijos trekų ir *Padova* izochronų duomenų bazės: <u>http://pleiadi.pd.astro.it/</u>.

Laikysime, kad mūsų spiečius yra Saulės cheminės sudėties, todėl parsisiųsime 0,019 (Z) metalingumo izochronas. 5.5 pav. parodytas izochronų rinkmenos pavyzdys.

1								
Isochro	one Z = O	.01900	Age =	1.000e+	08 yr			
log(age/yr)	M_ini	M_act	logL∕Lo logTe	logG	Mbol	Mu	Mb	Mv
8.00	0.15000001	0.1500	-2.5110 3.5183	5.1444	11.048	16.096	14.564	12.987
8.00	0.2000000	0.2000	-2.2371 3.5399	5.0818	10.363	14.928	13.516	12.016
8.00	0.25000000	0.2500	-2.0498 3.5514	5.0374	9.895	14.236	12.872	11.407
8.00	0.30000001	0.3000	-1.9012 3.5605	5.0043	9.523	13.729	12.386	10.937
8.00	0.34999999	0.3500	-1.7726 3.5691	4.9771	9.202	13.295	11.967	10.529
8.00	0.40000001	0.4000	-1.6326 3.5769	4.9262	8.851	12.859	11.542	10.116
8.00	0.44999999	0.4500	-1.5094 3.5859	4.8902	8.543	12.406	11.104	9.701

5.5 pav. Izochronų rinkmenos pavyzdys.

Jame pateikiamos izochronos amžius – 100 milijonų metų. Log (age/yr) – amžiaus dešimtainis logaritmas, M_{ini} ir M_{act} – pradinė ir dabartinė (100 metų) žvaigždės masė, log L/L_{\odot} – šviesis Saulės šviesiais, log Te – efektinės temperatūros logaritmas, log G – paviršiaus gravitacijos pagreitis, Mbol – absoliutinis ryškis. Toliau pateikiami UBVRIJ fotometrinės sistemos absoliutiniai ryškiai Mu, Mb, Mv ir kiti. Akivaizdu, kad teoriniai tikrieji spalvos indeksai bus:

$$(B-V)_0 = Mb - Mv,$$

(V-I)_0 = Mv - Mi. (5.6)

Dabar jau galėsime parinkti ir nubrėžti HR diagramoje tokio amžiaus izochronas, kurios derėtų su stebėjimų duomenimis. Paprastai apie spiečiaus amžių sprendžiama pagal posūkio tašką, HR diagramos sritį, kurioje pagrindinė seka pasislenka ir pereina į submilžinių ir milžinių seką. 5.6 pav. matome, kad mūsų nagrinėjamo Sietyno spiečiaus amžius yra maždaug 100 milijonų metų.

5.6 pav. Sietyno spiečiaus HR diagrama su trijomis 50, 100 ir 160 milijonų metų izochronomis. Dalis žvaigždžių yra lauko žvaigždės ir spiečiui nepriklauso.

ŽVAIGŽDŽIŲ FIZIKOS KOMPIUTERINIAI LABORATORINIAI DARBAI • •

Literatūros apžvalga

Dabar galime literatūroje paieškoti, kokį Sietyno amžių nustatė kiti autoriai. Paiešką atliksime NASA ADS duomenų bazėje: http://adsabs.harvard.edu/abstract_service.html.

🖉 NASA ADS Custom Query Form Fri Mar 19 02:26:20 2004 - Microsoft Internet Explorer
File Edit View Favorites Tools Help 🦧
🕞 Back + 🕑 - 📓 😰 🏠 🔎 Search 🤺 Favorites 🜒 Media 🚱 🍰 + 💺 🔯 + 🛄
Address 👔 http://adsabs.harvard.edu/abstract_service.html 💌 🔁 Go 🛛 Links 🍟 Norton AntiVirus 🛃 🔹
NASA ADS Astronomy/Planetary Query Form for Fri Mar 19 02:26:20 2004
Sitemap What's New Feedback Preferences FAQ HELP
Full Text Search: You can now search the complete text of all scanned articles in the ADS (see link below).
Send Query Return Query Form Store Default Form Clear Databases to query: Astronomy/Planetary Instrumentation Physics/Geophysics ArXiv Preprints
Authors: (Last, F.I., one per line) <u>Niddle Initial name search</u> Require author for selection (© OR © AND © <u>simple logic</u>) Publication Date between (Combine with: © OR © AND) Pleiades Enter <u>Title Words</u> Enter <u>Abstract Words/Keywords</u> Enter <u>Abstract Words/Keywords</u> Pleiades isochrones age

5.7 pav. NASA ADS duomenų bazės langas. Čia galime ieškoti literatūros pagal įvairius kriterijus: autoriaus pavardę, objektą, publikacijos metus, žodžius pavadinime ir santraukoje.

Kaip paieškos kriterijus panaudojus objektą ir raktinius straipsnio santraukos žodžius *Sietynas, izochronos* ir *amžius,* randama pora dešimčių straipsnių. Kitas panašus yra *arXiv.org e-Print* archyvas. Jį galima rasti adresu: <u>http://arxiv.org/</u>. Šiame archyve talpinamos pačios naujausios, dar neatspausdintos publikacijos.

Užduotys

- 1. Iš *WEBDA* padrikųjų spiečių duomenų bazės parsisiųskite stebėjimų duomenis pasirinktoje fotometrinėje sistemoje.
- Apskaičiuokite stebėtų žvaigždžių absoliutinius ryškius M_V ir tikruosius spalvos indeksus pasirinktoje fotometrinėje sistemoje, pvz., (B–V)₀ – UBV sistemoje, (V–I)₀ – UBVRI sistemoje, (Y–V)₀ – Vilniaus sistemoje. Nubraižykite stebėtų žvaigždžių HR diagramą.
- 3. Parsisiųskite izochronas su reikalingu Z. Dauguma padrikųjų spiečių bus maždaug Saulės cheminės sudėties, su Z = 0,019.
- 4. Toje pačioje spiečiaus HR diagramoje atidėkite ir keletą izochronų. Parinkite jas tokias, kad posūkio taškas derėtų su stebėjimų rezultatais. Apytikriai įvertinkite spiečiaus amžių.
- 5. NASA ADS duomenų bazėje ir arXiv.org e-Print archyve paieškokite straipsnių apie tiriamą padrikąjį spiečių ir pasidomėkite, kokius jo amžius pateikia įvairūs autoriai.

6. Kintamosios žvaigždės periodo nustatymas

Kintamosiomis žvaigždėmis vadinamos žvaigždės, kurių spindesys kinta. Kitimo periodai įvairūs – nuo kelių valandų iki kelerių metų. Pagal priežastis, sukeliančias spindesio kitimą, kintamosios žvaigždės skirstomos į užtemdomąsias ir fizikines. Užtemdomųjų kintamųjų žvaigždžių spindesys kinta dėl to, kad dvinārės žvaigždės komponentės, skriedamos apie bendrą masių centrą, periodiškai užtemdo viena kitą. Fizikinių kintamųjų žvaigždžių spindesys kinta dėl fizikinių procesų žvaigždžių gelmėse ir paviršiuose. Pavyzdžiui, cefeidės, lyridės, virginidės, miridės kinta dėl pulsacijų žvaigždžių gelmėse, šios pulsacijos kyla, kai žvaigždės gelmėse pagamintos energijos dėl sumažėjusio medžiagos skaidrumo nebespėjama pernešti į žvaigždės paviršių. Tokių žvaigždžių spindesys kinta gana taisyklingai. Dėl chromosferos žybsnių staigiai kinta orionidės ir cetidės. Kai kurios kintamosios žvaigždės, pavyzdžiui, novos, supernovos, dėl sprogimų žvaigždės paviršiuje ar pačios žvaigždės sprogimo gali sužibti netikėtai. Tokias žvaigždes atranda ir astronomijos mėgėjai, nuolat stebintys žvaigždėtą dangų.

Kintamųjų žvaigždžių stebėjimus koordinuoja Amerikos kintamųjų žvaigždžių asociacija (AAVSO – American Association of Variable Star Observers, http://www.aavso.org/). Jos tinklalapyje rasime rekomenduojamų stebėti žvaigždžių sąrašą, žvaigždėlapius, stebėjimų duomenis ir šiems duomenims analizuoti skirtas kompiuterines programas.

Šiame darbe susipažinsime su *AAVSO* resursais, kintamųjų žvaigždžių tipais, nustatysime taisyklingos kintamosios žvaigždės periodą, palyginsime savo nustatytą periodą su kintamųjų žvaigždžių katalogo iš *Vizier* duomenimis. Taigi pamėginsime ištirti kintamąją žvaigždę, tik jos patys nestebėsime, o naudosime kitų stebėtojų duomenis.

Iš AAVSO parsisiųstus duomenis nagrinėsime su programėle TS, kurioje kintamõsios žvaigždė̃s, kaip ir bet kurio kito periodiškai kintančio dydžio, kitimo periodas nustatomas remiantis Fourier analize.

Trumpas programos TS aprašymas

Programa *TS* ir kitos programos kintamosioms žvaigždėms tirti yra: <u>http://www.aavso.org/cdata/software.stm</u>. Paleiskite programą *Ts.exe*. Ji veikia *DOS* operacinėje sistemoje ir valdoma klavišais. Programa klausia duomenų rinkmenos vardo: *Data file=*. Įrašykite duomenų rinkmenos vardą, pvz., *tcas.dat*. Jei Jūsų duomenys yra ne tame pačiame kataloge, kur ir programa *Ts.exe*, įrašykite ir kelią, pvz., *c:\tmp\tcas.dat*.

Programa Jums pasiūlys rinkmenos, į kurią bus rašomi iškeliami duomenys ir pastabos, vardą, pvz., *LOG file = tcas.TS*.

Nurodykite stulpelių, kuriuose yra stebėjimų momentai Julijaus dienomis (JD), ryškis ar žymė apie stebėtoją, numerius. Pvz.: *Time column = 1* (stulpelio, kuriame yra stebėjimų laikas, numeris), *X column = 2* (stulpelio, kuriame yra žvaigždės ryškis, numeris), *Obs column = 3* (stulpelio, kuriame yra pažymėtas stebėtojas, numeris; jei tokio stulpelio Jūsų duomenyse nėra, spauskite *Enter*).

Pasirodys užrašai *start time* ir *end time* – stebėjimų pradžios ir pabaigos momentai Julijaus dienomis, pagal nutylėjimą vertės yra 0 ir 2 450 000 (tai atitinka datą 1995 10 09). Nuspaudus *Enter*, programa pradės kaupti duomenis. Vienu metu ji maksimaliai gali sukaupti 4000 stebėjimų taškų. Kai visi duomenys bus sukaupti, programa nubrėš ryškio priklausomybės nuo stebėjimų laiko kreivę (6.1 pav.). Brėžinio ribas galime keisti nuspaudę kairįjį pelės klavišą ir raudonos juostos lango viršuje bei kairėje tempdami kraštą.

6.1 pav. Kintamosios žvaigždės spindesio kreivė – regimojo ryškio priklausomybė nuo laiko, išreikšto Julijaus dienomis.

Brėžinio apačioje yra komandų meniu. Kai keičiame kursoriaus vietą brėžinio lange, komandų meniu rodomos kursoriaus koordinatės – Julijaus dienos ir ryškis, pvz., 2 447 700,0 ir 12,3333. Jei brėžinyje kairiuoju pelytės klavišu pažymėsime norimą brėžinio tašką, meniu apačioje bus parodyta to taško Julijaus diena ir ryškis. Jei norime kurį nors nukrypstantį tašką iš tolimesnio tyrimo pašalinti, galime jį "išjungti" – nukeliaujame su kursoriumi iki pasirinkto taško ir paspaudžiame dešinįjį pelės klavišą. Išmestas taškas nusispalvins raudonai. Norėdami tašką atkurti, vėl ties juo spragtelime dešinįjį pelės klavišą – taškas vėl taps geltonas. Jei norime apie kokį nors tašką pasižymėti duomenis, pastatome ties juo kursorių ir paspaudžiame *p* klavišą – šio taško duomenys ir Jūsų komentarai bus surašyti į *.*ts* rinkmeną, pvz., *tcas.ts*. Jei kitą kartą paleidę programą nurodysite tą patį *LOG* rinkmenos vardą, įrašai bus pridedami rinkmenos pabaigoje.

Ryškio priklausomybę nuo Julijaus dienos galime ištirti detaliau. *F6* pastumia brėžinį per pusę lango laiko didėjimo kryptimi, *F5* – per pusę lango atgal. *F7* leis 5 kartus padidinti vaizdą ir vėl sumažinti.

Grafiką išplėsti galima ir kitu būdu. Spragtelėkime kairįjį pelės klavišą ties meniu punktu *F7 – Zoom in/out*. Atsiranda meniu iš trijų punktų:

- 1) Esc zoom back out grįžtama prie pradinio didinimo;
- 2) F1 zoom-IN didina; padidina mastelį 5 kartus, antrą kartą paspaudus 25 kartus ir t. t.;
- 3) F2 išplečia 5 kartus tik x ašį.

Jeigu lange atsirado nereikalingų užrašų, iškraipymų, į pradinę ekrano būseną grįžtama su *F9* (*Refresh Screen*).

Duomenų apdorojimas su TS

Duomenų vidurkinimas

Duomenys vidurkinami nuspaudus klavišą *F2*. Klausiama, po kiek taškų vidurkinti, ar pažymėti paklaidų ribas. Pagal nutylėjimą segmentai vidurkinami po 10 dienų. Suvidurkintus duomenis galima įrašyti į rinkmeną su plėtiniu *.*AVE* ir vėliau juos naudoti tolimesniam kintamosios žvaigždės tyrimui. Vidurkių rinkmenoje įrašoma: stebėjimų laiko vidurkis, ryškio vidurkis, standartinis nuokrypis, taškų skaičius suvidurkintame intervale.

• Polinomo parinktis (*fitting*)

Per taškus, matomus ekrane, mažiausių kvadratų metodu brėžiamas polinomas.

F3 – pasirenkamas polinomo laipsnis nuo 0 iki 20.

Apskaičiavus ir nubrėžus polinomą, atsidaro jo meniu:

Esc-išeiti,

F1 – įrašyti į rinkmeną konstantas,

F2 – įrašyti į rinkmeną apskaičiuotas vertes,

F3 – pasirinkti laipsnį,

F4 – įrašyti į rinkmeną nuokrypius.

Kelis kartus pakartoję F3, Jūs galite parinkti tinkamą polinomo laipsnį.

Laikas polinomo funkcijoje yra ne paprastos Julijaus dienos, bet skirtumas tarp ste-

bėjimo JD ir visų taškų, esančių lange JD, vidurkio, t. y. polinomo $t = T - T_0$, kur T_0 yra vidurkis. Skirtumai tarp stebėjimų ir iš polinomo gautų verčių apskaičiuojami pasirinkus *F4*. Šie skirtumai įrašomi į rinkmeną *.*RES*.

F5 parodo funkcijos maksimumą ir minimumą. Tam reikia su kursoriumi nukeliauti prie funkcijos maksimumo ar minimumo ir paspausti kairįjį pelės klavišą – programa suras funkcijos maksimumą ar minimumą, artimiausią kursoriaus padėčiai. Vertė bus įrašyta į *LOG* rinkmeną ir pažymėta *=CRIT*.

• Fourier analizė

Fourier analizė mums leis nustatyti kintamosios žvaigždės dažnius, kartu apskaičiuoti jos spindesio kitimo periodą.

Su *F4* iš pagrindinio meniu patenkame į *Fourier* analizės meniu. Pirmiausia reikia pasirinkti, kokius dažnius ar periodus tikrinsime. *F1* – standartinis skenavimas. Mažiausias tikrinamas dažnis (ilgiausias periodas) yra 1/4T, kur *T* yra visas stebėjimų intervalas. Standartiniu skenavimu patikrinsime dažnius nuo 1/4T iki N/4T, N yra santykio k/4T sveikoji dalis, kur k – stebėjimų skaičius. Patikrinusi kiekvieną dažnį, programa nustato periodą, laipsnį ir šią informaciją įrašo į *LOG* rinkmeną. Taip pat brėžiamas laipsnio priklausomybės nuo dažnio grafikas (6.2 pav). Dažnis, kurio laipsnis didžiausias, greičiausiai ir yra tikrasis kintamosios kitimo dažnis (jei kitimas tikrai periodinis, ne visos žvaigždės kinta taisyklingai). Dvidešimt pirmų dažnių yra iškeliami į ekraną ir į rinkmeną.

6.2 pav. Fourier analizė. Laipsnio priklausomybė nuo laiko.

F2 ir *F3* naudojami, kai norima patikrinti Jūsų pačių pasirinktus dažnius. Programa paklaus, koks žemiausias ir aukščiausias dažnis arba trumpiausias ir ilgiausias periodas, taip pat kokiu žingsniu (*resolution*) tikrinti. Programa pati gana gerai pasirenka, kokiu žingsniu tikrinti periodą, jei į klausimą "Resolution?" atsakome "0".

Jeigu norite patikrinti tik vieną periodą, tai vietoj didžiausios periodo (mažiausio dažnio) vertės įrašykite 0, tada programa tikrins tik vieną periodą.

Naudojant išskirtus dažnius, galima sumodeliuoti spindesio kreivę ir pažiūrėti, kaip ji dera su stebėta kreive.

F5 – Fourier analizės duomenų lentelė. Joje yra saugoma tik 20 didžiausio *Fourier* eilutės laipsnio verčių. Lentelės turinį peržiūrime su *F5*. Lentelėje pateikiama eilės numeris (nuo 1 iki 20), periodas ir laipsnis. Nuspaudus *F5*, programa klausia, ar ištrinti pasirinktą įrašą *Delete frequency* **#**. Dabar galima pažymėti įrašo, kurį norime ištrinti, dažnį. Pavyzdžiui:

Delete frequency # 2+ – bus ištrinti visi įrašai pradedant antruoju.

Su *F6* modeliuojame duomenis, t. y. tikriname, kaip išskirti periodai (dažniai) atitinka stebėjimus. Programa paklaus, ar įtraukti pirmą išskirtą dažnį: *Include frequency # 1? Y.* Jei pažymėsime *A*, įtrauksime visus 20 dažnių. Į *Log* rinkmeną bus surašyti parametrai, nusakantys parinktą funkciją (konstanta ir *cos* ar *sin* koeficientai kiekvienam dažniui). Taip pat bus brėžiamas grafikas, kur duomenys bus pažymėti baltais taškais, sumodeliuota funkcija – geltona linija, nuokrypiai nuo modelio – raudona linija (6.3 pav.).

6.3 pav. Stebėtos ir sumodeliuotos spindesio kreivių palyginimas. Stebėjimai pažymėti taškais, sumodeliuota kreivė – ištisine linija. Skirtumai tarp stebėjimų ir sumodeliuotos kreivės pažymėti šviesesne ištisine linija. Abscisių ašyje atidėtos Julijaus dienos, ordinačių ašyje – ryškiai.

Nuokrypius nuo modelio galima įrašyti į rinkmeną. Tam į klausimą *Save residuals to a file?* reikia atsakyti *Y* ir po to nurodyti rinkmenos vardą. Rinkmenoje duomenys bus surašyti tokia tvarka: 1 stulpelis – JD, 2 stulpelis – nuokrypis – skirtumas tarp stebėjimo ir sumodeliuotos vertės, 3 stulpelis – stebėtojo kodas, 4 stulpelis – stebėta vertė, 5 stulpelis – sumodeliuota vertė.

Iš programos išeinama nuspaudus Esc ir atsakius Y.

Klausimai ir užduotys

- 1. Susipažinkite su *AAVSO* (Amerikos kintamųjų žvaigždžių asociacija) svetaine <u>http://www.aavso.org/</u>. Išsiaiškinkite, kokias žvaigždes asociacija rekomenduoja stebėti, kaip susirasti jų pagrindinius duomenis ir žvaigždėlapius.
- 2. Parsisiųskite pasirinktos kintamosios žvaigždės stebėjimų duomenis: <u>http://www.aavso.org/adata/onlinedata/</u>.
- 3. Parsisiųskite kintamosios žvaigždės aplinkos žvaigždėlapį: <u>http://charts.aavso.org/searchcharts.shtml</u>.
- 4. Su programėle TS nustatykite kintamosios žvaigždės periodą.
- 5. Konvertuokite stebėjimų datą į Julijaus dienas ir atvirkščiai, remdamiesi šia skaičiuokle: <u>http://www.tesre.bo.cnr.it/~mauro/JD/</u>.
- 6. Naudodamiesi *VizieR* sistema (<u>http://vizier.u-strasbg.fr/cgi-bin/VizieR</u>), suraskite duomenis apie kintamąją žvaigždę Jungtiniame kintamųjų žvaigždžių kataloge *GCVS* (*General Catalog of Variable Stars*). Apibūdinkite kintamosios žvaigždės tipą.

7. Pulsaro periodo nustatymas

Pagrindinės sekos žvaigždės paskutiniame evoliucijos etape, atsižvelgiant į jų masę, tampa baltosiomis nykštukėmis (~2M₀), neutroninėmis žvaigždėmis (2–8 M₀) arba juodosiomis bedugnėmis (>8 M₀). Kai kurias neutronines žvaigždes, kurių magnetiniai poliai nukreipti į mus, stebime kaip pulsarus. Dauguma pulsarų ypač ryškiai spinduliuoja radijo diapazone ir yra stebimi radijo teleskopais. Jų periodai labai trumpi, 0,1–10 s. Tai rodo, kad pulsarai labai greitai sukasi apie savo ašį. Taip greitai suktis gali tik masyvūs mažų matmenų kūnai. Laikui bėgant, pulsarai praranda sukimosi apie savo ašį energiją ir sukasi vis lėčiau. Kuo senesnis pulsaras, tuo lėčiau jis sukasi. Todėl pagal jo pulsacijų periodo ilgėjimą galima įvertinti pulsaro amžių.

DARBAI

Pulsarų spinduliavimą galime matuoti ties įvairiais dažniais. Jų skleidžiamos įvairių dažnių elektromagnetinės bangos tarpžvaigždinėje erdvėje, kuri nėra visiškai skaidri, sklinda šiek tiek nevienodu greičiu ir Žemę pasiekia ne tuo pačiu metu. Kuo žemesnis dažnis, tuo mažesnis elektromagnetinių bangų greitis. Nors šis efektas labai mažas, vis dėlto pastebima, kad ties aukštesniais dažniais pulsaro signalas stebėtoją pasiekia šiek tiek anksčiau negu ties žemesniais. Išmatavus, kiek laiko vėluoja žemesnio dažnio bangos lyginant su aukštesnio dažnio bangomis, ir priėmus vidutinį elektronų tankį tarpžvaigždinėje erdvėje, galima apskaičiuoti pulsaro nuotolį.

Pulsarus stebėsime su simuliuotu radioteleskopu iš *CLEA* programų (<u>http://www.gettysburg.edu/academics/physics/clea/CLEAhome.html</u>). Nustatysime kelių pulsarų periodus ir atstumus.

Trumpas programos aprašymas

Paleidžiame programą. Toliau, kaip ir visose *CLEA* programose, įrašome savo vardą (*File* \rightarrow *Login* \rightarrow *Yes* \rightarrow *OK*).

Radioteleskopas

Pasirenkame meniu punktus: *File→Run→Radio Telescope*.

Lango viduryje pamatysime radioteleskopą. Kairėje lango pusėje nurodytas pasaulinis laikas (*Universal Time*) ir vietinis žvaigždinis laikas (*Local Sideral Time*). Objekto, į kurį nukreiptas teleskopas, rektascensija (*Right Ascention*) ir deklinacija (*Declination*) rodomos lango apačioje (7.1 pav.).

• • • • • • • • • • • ŽVAIGŽDŽIŲ FIZIKOS

KOMPIUTERINIAI

LABORATORINIAI DARBAI

7.1 pav. Radioteleskopo valdymo langas.

7.2 pav. Kitas radioteleskopo valdymo langas.

Nuspaudus mygtuką *View,* atsivers langas (7.2 pav.), kuriame pavaizduota koordinačių tinklas ir geltonas kvadratukas, žymintis tašką, į kurį nukreiptas teleskopas. Šį prietaisą galime sukioti mygtukais *N-E-S-W*. Teleskopo judėjimo greitį galima keisti su *Slew Rate*. Nuspaudus *Traking on*, įjungiamas laikrodinis mechanizmas.

Teleskopą galima nukreipti reikalinga kryptimi įrašius koordinates *RA* ir *DE*, taip pat iš meniu pasirinkus pulsarų sąrašą (*Hot List*).

Pulsaro signalo registravimas

Radioteleskopo imtuvo dažnis gali būti keičiamas nuo 400 iki 1400 MHz. Pažiūrėsime, kaip keičiasi pasirinkto pulsaro signalo stipris atsižvelgiant į dažnį.

Nukreipkime radioteleskopą pulsaro 0628–28 link (*Hot List* \rightarrow *View* \rightarrow *Select from list* \rightarrow pasirenkame pulsarą 0628–28). Teleskopas pradės judėti pasirinkto pulsaro link. Kai sustos, galima įjungti imtuvą – nuspausti mygtuką *Receiver.*

Atsivers naujas langas (7.3 pav.), kuriame galima valdyti imtuvą. Grafike bus pavaizduota signalo stiprio priklausomybė nuo laiko. Dešinėje, viršuje, nurodytas imtuvo dažnis – *Freq MHz 600*, vėliau jį bus galima pakeisti. Dažnio keitimo žingsnis nurodytas gretimame langelyje – *Freq Incr. 100*. Jį taip pat galima keisti. Langeliuose *Vert. Gain* ir *Horz. Secs* keičiamas grafiko mastelis vertikalia ir horizontalia kryptimis.

7.3 pav. Pulsaro signalo registravimas.

Pradėkime registruoti pulsaro signalą – spaudžiame mygtuką *Mode*. Signalo registravimą sustabdome vėl nuspaudę *Mode*. Registruoti visai nustojama, kai užsipildo visas grafiko langas.

Signalo mastelį vertikalia kryptimi galime keisti nuo 0,25 iki 8. Didinant mastelį, didėja ne tik signalo aukštis, bet ir triukšmo aukštis. Reikia pasirinkti maksimalų didinimą, bet signalas neturi kirsti brėžinio ribų. Be abejo, mastelis priklausys nuo konkretaus pulsaro signalo stiprio.

Mastelį horizontalia kryptimi galime pakeisti tik tada, kai imtuvas išjungtas (*Mode* langelyje užrašyta *Stop*). *Horz. Secs* 4 reiškia, kad grafikas užpildo langą per 4 s, *Horz. Secs* 2 – per 2 s ir t. t. Kuo mažesnis skaičius, tuo silpnesnis signalas, nes trumpesnis

integravimo laikas. *Horz. Secs* galima keisti nuo 0,5 iki 16 s. Aukščiausi pikai bus stebimi, kai integravimo laikas ilgiausias – 16 s.

Dabar išmatuokime pulsaro periodą. Nustatykime *Vert. Gain* 4, *Horz. Secs* 4. ljunkime imtuvą nuspausdami *Mode*. Po kiek laiko imtuvą išjunkime. Dabar išmatuokime intervalus tarp pikų. Nuspaudus kairįjį pelės klavišą, ekrane pasirodys vertikali linija, kurią galime nustatyti ties pasirinktu piku. Ekrane užsidegs skaičiai (sekundės), rodantys, kada užregistruotas signalo sustiprėjimas (7.4 pav.). Tokiu pačiu būdu išmatuojame kito piko laiką. Skirtumas tarp abiejų laikų ir bus pulsaro periodas.

7.4 pav. Pulsaro signalo laiko matavimas.

Tikslesnį periodą gausime, jei matuosime ne gretimų, o toliau vienas nuo kito esančių pikų padėtis. Pavyzdžiui, pirmo ir dešimto. Tada pulsaro periodas bus:

$$P = \frac{(T_{10} - T_0)}{10}.$$
 (7.1)

Galime išmatuoti pulsaro periodą ties skirtingais dažniais – nuo 400 iki 1400 MHz – ir gauti vidutinį pulsaro periodą (7.1 lentelė).

Dažnis	Pirmo piko	Paskutinio piko	Pikų skaičius	Pulsaro periodas
	laikas	laikas		Р
400 MHz				
600 MHz				
800 MHz				
1000 MHz				
1200 MHz				
1400 MHz				

7.1 lentelė. Pulsaro periodo skaičiavimas.

Pulsarų atstumų nustatymas

Kuo žemesnis dažnis, tuo vėliau mus pasiekia signalas. Taip pat signalas labiau vėluoja esant didesniam elektronų tankiui tarpžvaigždinėje medžiagoje. Elektromagnetinių bangų greitis apskaičiuojamas pagal formulę

$$v = \frac{f^2}{4150 \cdot n_c},\tag{7.2}$$

kur f – dažnis (MHz), n_e – elektronų skaičius tūrio vienete. Šiame laboratoriniame darbe laikysime, kad tarpžvaigždinės erdvės tankis yra 0,03 elektronų/cm³. Taigi elektromagnetinių bangų greitis bus:

$$v = \frac{f^2}{124,5}.$$
 (7.3)

Tarkime, kad T_1 yra pulsaro piko registravimo laikas ties dažniu f_1 , T_2 – pulsaro piko registravimo laikas ties dažniu f_2 , D – pulsaro nuotolis, išreikštas parsekais (pc). Tada tos pačios pulsacijos pikų, išmatuotų ties skirtingais dažniais, laikų skirtumas bus:

$$T_{2} - T_{1} = \frac{D}{v_{2}} - \frac{D}{v_{1}},$$

$$D = \frac{T_{2} - T_{1}}{124,5 \cdot \left(\left(\frac{1}{f_{2}} \right)^{2} - \left(\frac{1}{f_{1}} \right)^{2} \right)}.$$
(7.4)
(7.5)

Taigi norint nustatyti atstumą iki pulsaro mums paprasčiausiai reikia išmatuoti pulsacijos piko laiką ties dviem skirtingais dažniais.

Matavimas

Nukreipkime teleskopą į pulsarą 0628–28. Įjunkime imtuvą ir nustatykime jį *Freq* 400MHz dažniui. Vert. Gain ir Horz. Secs tegul būna 4. Pradėkime signalą registruoti.

Dabar pridėkime dar kito dažnio kanalą (nuspauskime mygtuką *Add Channel*). *Freq Incr.* nustatykime 10 MHz. Įjunkime imtuvą ir žiūrėkime, kas vyksta didinant antro kanalo dažnį kas 10 MHz – 410, 420, 430... iki 600 MHz (7.5 pav.).

7.5 pav. Pulsaro signalas ties skirtingais dažniais.

Dabar su *Add Channel* pridėkite dar trečią kanalą ir nustatykite jį 800 MHz dažniui.

Įjunkime imtuvą ir rezultatų įrašymo įrenginį – *Record On.* Palaukite, kol pulsacijos perbėgs per ekraną 5–6 kartus. Kompiuterio ekrane pasirodys užrašas, kad įrašyta 1600 taškų. Nurodykite rinkmeną, į kurią bus įrašyti matavimo duomenys.

Dabar įrašytus duomenis galima analizuoti. Uždarykime imtuvo langus, pasirinkime iš meniu $File \rightarrow Run \rightarrow Data Analysis$. Jeigu Jūs dar nebuvote išėję iš programos, pasirodys bendra informacija apie įrašytą rinkmeną. Jei buvote išėję iš programos, reikės pakrauti duomenų rinkmeną: *Files – load*.

Išmatuokime pulsacijos piko laiką ties trim skirtingais dažniais. Nuspaudę kairįjį pelės klavišą, pamatysite vertikalią liniją, kurią galite stumdyti. Linijos padėtis parodys matuojamo pulsacijos piko laiką.

Dabar iš matavimo duomenų apskaičiuokite atstumą (7.2 lentelė).

Dažniai		$T_1 - T_2 (1/f_2)^2 - (1/f_1)^2$		D (pc)	
f_1	f_2				
600	400				
800	400				
800	600				

7.2 lentelė. Pulsaro atstumo apskaičiavimas.

Tokiu pat būdu nustatykite pulsarų 2154+40, 2154–40 ir kitų atstumus. Matuojant pulsarų signalus, svarbu matuoti tos pačios pulsacijos dažnius.

Užduotys

- 1. Nurodykite pulsarų 2154+40, 0740–28, 0531+21 ir dar keleto matuotų pavadinimus, koordinates, nustatytus periodus ir atstumus.
- 2. Ar priklauso pulsaro periodas nuo dažnio?
- 3. Kaip priklauso pulsaro signalo stipris nuo dažnio?
- 4. Ties kuriuo dažniu pulsaro signalas stipriausias?
- 5. Išmatuokite pulsarų 2154+40, 0740–28, 0531+21 ir dar keleto periodus. Surašykite šiuos pulsarus amžiaus didėjimo tvarka.

Interneto šaltiniai

Sloan teleskopo moksliniai projektai: <u>http://www.sdss.org/</u>

Spitzer kosminis teleskopas: <u>http://www.spitzer.caltech.edu/</u>

GALEX kosminis teleskopas: <u>http://www.galex.caltech.edu/</u>

CLEA (Contemporary Laboratory Experiences in Astronomy) kompiuteriniai laboratoriniai darbai: http://www.gettysburg.edu/academics/physics/clea/CLEAhome.html

VizieR sistema: <u>http://vizier.u-strasbg.fr/</u>

Programa *StatStar99*: <u>http://astrophysics.weber.edu/Codes.html</u>

Programa *Sclock2.0*: <u>http://leo.astronomy.cz/sclock/sclock.html</u>

Amerikos kintamųjų žvaigždžių stebėtojų asociacija: <u>http://www.aavso.org/</u>

Julijaus dienų skaičiuoklė: http://www.tesre.bo.cnr.it/~mauro/JD/

Padrikųjų spiečių duomenų bazė: http://obswww.unige.ch/webda/webda.html

Žvaigždžių evoliucijos trekų ir *Padova* izochronų duomenų bazė: *http://pleiadi.pd.astro.it/*

NASA ADS duomenų bazė: <u>http://adsabs.harvard.edu/abstract_service.html</u>

arXiv.org e-Print archyvas: http://arxiv.org/

Literatūra

- 1. Ažusienis A., Pučinskas A., Straižys V. Astronomijos vadovėlis. Vilnius : Kultūra, 2003.
- 2. Straižys V. Astronomijos enciklopedinis žodynas. Vilnius : Teorinės fizikos ir astronomijos institutas, 2002.
- 3. Schaller G., Schaerer D., Meynet G., Maeder A. New grids of stellar models from 0,8 to 120 M₀ at Z = 0,020 and Z = 0,001 // Astron. Astrophys. Suppl. Ser. 1992, vol. 96, p. 269–331.
- 4. Prialnik D. An Introduction to the Theory of Stellar Structure and Evolution. Cambridge: Cambridge University Press, 2000.
- 5. Mermilliod J.-C. The Database for Galactic Open Clusters (BDA) // Information and On-Line Data in Astronomy / Eds D. Egret & M. A. Albrecht. Dordrecht : Kluwer Academic Press, 1995, p. 127–138.
- Girardi L., Bertelli G., Bressan A., Chiosi C., Groenewegen M. A. T., Marigo P., Salasnich B., Weiss A. Theoretical isochrones in several photometric systems.
 I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets // Astron. Astrophys. – 2002, vol. 391, p. 195–212.
- 7. Straižys V. Multicolor stellar photometry. Tucson : Pachart Pub. House, 1992.
- 8. Eichhorn G., Kurtz M. J., Accomazzi A., Grant C. S., Murray S. S. The NASA Astrophysics Data System: The search engine and its user interface // Astron. Astrophys. Suppl. Ser. – 2000, vol. 143, p. 61–83.

ŽVAIGŽDŽIŲ FIZ	zikos	KOMPIUTERINIAI	LABORATORINIAI	DARBAI • • • • • • • • • • • • • • • • • • •
----------------	-------	----------------	----------------	--

••••••••••••••••••••••••••••••••••••••	FIZIKOS	KOMPIUTERINIAI	LABORATORINIAI	DARBAI

Redagavo Leta Jurgaitienė Maketavo Donaldas Petrauskas Viršelio autorė Eglė Varankaitė

6,5 sp. l. Tir. 100 egz. Užsak. Nr. 04– Išleido Vilniaus pedagoginis universitetas, Studentų g. 39, LT-08106 Vilnius. Maketavo ir spausdino VPU leidykla, T. Ševčenkos g. 31, LT-03111 Vilnius. Kaina sutartinė.