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Abstract. During the last 10–20 years, a great deal of new ideas have been proposed to improve
the accuracy of speech emotion recognition: e.g., effective feature sets, complex classification
schemes, and multi-modal data acquisition. Nevertheless, speech emotion recognition is still the
task in limited success. Considering the nonlinear and fluctuating nature of the emotional speech,
in this paper, we present fractal dimension-based features for speech emotion classification. We
employed Katz, Castiglioni, Higuchi, and Hurst exponent-based features and their statistical
functionals to establish the 224-dimensional full feature set. The dimension was downsized by
applying the Sequential Forward Selection technique. The results of experimental study show a
clear superiority of fractal dimension-based feature sets against the acoustic ones. The average
accuracy of 96.5% was obtained using the reduced feature sets. The feature selection enabled us to
obtain the 4-dimensional and 8-dimensional sets for Lithuanian and German emotions, respectively.

Keywords: fractal dimension, speech emotion, feature selection.

1 Introduction

The speech emotion recognition is not a new task. The first investigation results were
published 30–35 years ago [5, 41, 42]. The outbreak of investigations appeared in the
last two decades: various effective feature sets and feature formation techniques were
proposed, various classifications, and multi-modal schemes were applied.

Most of the modern investigations report speech emotion classification rates of 70–
90% [4, 45, 54]. Particular results depend on the analyzed language, the number of emo-
tions, the speaker mode, and other important factors.

Looking from the perspective, a few trends in the speech emotion recognition could
be distinguished over the years. First of all, the exploration of acoustic features should
be mentioned: all research efforts were aimed at defining and applying feature sets for
the speech emotion classification. The proposed sets included various time, spectral and
cepstral features, that describe the rate, intensity, and prosody of the emotional speech
[27,50,52]. Besides, the sets were extended with various statistics of the primary features.
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That resulted in enormous sets up to a few thousand features [44, 51]. There emerged
a need for feature dimension reduction. Various feature selection and transformation tech-
niques have been proposed for the reduction of feature sets [1,11,26,40,43]. Nevertheless,
both selection and extraction techniques yield suboptimal feature subsets.

The rise of deep learning techniques brings so-called end-to-end speech emotion
recognition paradigm [14, 49]. Employment of deep learning networks enables us to
analyze the time representation of the speech signal directly. In this way, the neural
network becomes a “black-box” analysis technique for speech emotion feature extraction.
Nevertheless, acoustic (or any other) analysis of the speech signal still remains relevant
topic in speech emotion recognition [13, 28, 55].

The additional emotional attribute sources such as face expression, body pose and
gesture, electrocardiography, electroencephalography have been proposed for the imple-
mentation of multi-modal speech emotion recognition [8, 25]. However, a multi-modal
analysis means aggregation of different data, additional recording devices, and more
complex logic of decision making. Thus, the speech signal analysis still remains an
attractive way to identify emotions.

In parallel with the task of speech emotion recognition, the idea of the nonlinear nature
of a speech signal has been developed [47, 48]. Widely used linear models cannot help
to deal with the natural speech phenomena such as elision, co-articulation, assimilation,
rapid variations in the speech rate, fundamental frequency due to the speaker’s emotional
state, health state or physical activities. Therefore, different nonlinear techniques have
been proposed for modeling and analysis of a speech signal: nonlinear predictors, energy
operators, various modulation types [10], chaotic models, and fractal-based methods [33].

A fractal can be defined as an abstract mathematical object that describes a particular
set or sequence of values. A fractal exhibits a pattern-based fragmentation, self-similarity,
and self-affinity. Consequently, the fractal objects may be used to describe the irregular or
fragmented shape of natural features as well as other complex objects that the traditional
Euclidean geometry fails to analyze. The fractal properties of the object are characterized
using a fractal dimension (FD) value [19, 21]. It characterizes how densely a fractal fills
the space at different scales. The fractal dimension must not be an integer and it is often
a real number [21]. When FD is applied to one-dimensional or higher-dimensional real
data, the fractal dimension is capable to estimate the fragmentation level of the data.

The origin of a fractal dimension is the Hausdorff dimension [30]. The Hausdorff
dimension dH is defined as

dH =
logN

log r
,

where N is the number of self-similar objects created from the original object when it is
divided by r, i.e., each object is r times smaller than the original one.

In [21], the Hausdorff dimension dH of a set X ⊂ Rn is defined in detail. Since
it is difficult to evaluate the Hausdorff dimension numerically, various definitions of
a fractal dimension have been proposed or derived from the Hausdorff dimension. In
practical applications, the Hausdorff dimension is substituted by other fractal dimensions
[19–22], i.e., the box-counting (also known as the Minkowski–Bouligand dimension or
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capacity dimension), information, correlation, generalized Renyi, packing, Liapunov,
Katz, Higuchi, Maragos, Castiglioni dimensions, etc.

In data analysis, the fractal dimension can be employed to solve various problems: FD
is used to estimate the intrinsic dimensionality of high-dimensional data [15, 19, 21, 24]
as well as other intrinsic dimensionality estimators [20,22]. FD may be applied to reduce
the initial dimensionality of data [19,37,53] or to describe the complexity of the analyzed
object [19]. FD is also applied in the analysis of one-dimensional time series: biomedical
signals such as electrocardiogram [35], electroencephalogram [39], and speech signal
[2, 3, 32, 38].

Fractal dimension-based analysis of the emotional speech is not a new idea. The
relation between box-counting dimension and emotional utterance waveform has been
declared in [31]. In [11], the same dimension was combined with spectral and energy fea-
tures. Detrended Fluctuation Analysis-based fractal dimension calculation was presented
in [38]. Here, the obtained average emotion classification accuracy was 77% for German
language. Higuchi fractal dimension was applied for multiresolution analysis-based audio
emotion recognition in [12].

Considering the nonlinearity of emotional speech, the fractal-based analysis is applied
to classify speech emotions. In this paper, we demonstrate that the fractal analysis is
capable to describe the specificities and differences of emotional speech.

2 Fractal-based analysis of the speech signal

2.1 Emotions in speech

The speech signal is generated by the airflow floating through the vocal folds and a vocal
tract. Depending on the vocal fold operation (closed or relaxed), movements and the
position of articulators (position of tongue and velar, closed or open lips), various sounds
are generated: voiced and voiceless, consonants and vowels. The result of this process
is quite unique. All the pronunciations of the same phoneme, syllable of a word will be
different. This is because the speech production process is impacted by multiple factors:
the speaker’s age, gender, physiological state, emotional state, acoustic environment, the
topic of conversation, and others.

The emotional state affects the entire process of speech production: respiration rate
(anger and stress increase it), activity of vocal folds, dryness of the mouth, and movements
of articulators [16]. All that results in variations of fundamental frequency, duration of
vowels, varied speaking rate and loudness, shorter pauses, and other speech emotion
markers (Fig. 1).

Various analysis techniques were applied to represent all these speech signal varia-
tions across emotions. Considering the enormous number of employed acoustic features,
their temporal and statistical functionals, multi-stage classification schemes, multi-modal
classification ideas, we can state that the classification of speech emotions is still a task of
limited success.

In this paper, we have applied a fractal-based analysis for the extraction of speech
emotion features. Since the fractal dimension can describe the fragmentation, irregularity,
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(a) (b) (c)

Figure 1. The waveform of the German sound [a] in the neutral state (a), sadness (b), and anger (c).

and self-similarity of the speech signal, different signal patterns should yield different
fractal dimension values, which might enable us to identify speech emotion.

2.2 Fractal dimensions for a speech signal

The fractal-based analysis is a natural decision for an image analysis, where a coverage in
a two-dimensional space is analyzed. In the case of N ×M size image, the fractal-based
analysis requires a computational complexity of order O(N ×M). Therefore, we restrict
ourselves to one-dimensional analysis only, which would require the complexity of order
O(N).

From the graphical point of view the speech waveform is a planar curve with a mono-
tonically increasing argument (time variable). We can expect the fractal dimension value
larger than 1 (the straight line has FD = 1) and smaller than 2 (fully filled two-dimensional
space).

There are many algorithms for estimating the fractal dimension of one-dimensional
sequences, proposed by Maragos [32], Katz [23], Higuchi [17], Castiglioni [9], the am-
plitude scale method, etc. Hereinafter we define the fractal dimension calculation for the
speech signal.

Let us analyze and denote a speech signal as X = {x(1), x(2), . . . , x(N)}. We are
not going to consider the sampling period value, but integer values of time indices of
the signal samples. That makes our extracted features independent of the signal sampling
frequency.

2.2.1 The Katz algorithm

The Katz fractal dimension of a waveform is defined in [23] as

D =
lg(L/l̄)

lg(d/l̄)
, (1)

where L is the sum of Euclidean distances between adjacent signal values and can be
interpreted as an accumulated change of the speech signal values. L is calculated as
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follows:

L =

N−1∑
i=1

li,i+1 =

N−1∑
i=1

√
1 +

(
x(i + 1)− x(i)

)2
. (2)

The value d in (1) is the maximum distance between the first signal value and any
other:

d = max
26i6N

{l1,i}, (3)

We call d as the signal extent, since it represents the maximum change of the signal value
in comparison with the first one (which is likely to represent the silent segment of the
speech).

The accumulated change L and the signal extent d are normalized by the factor l̄ that
is calculated as the average distance between adjacent signal values

l̄ =
L

N − 1
. (4)

Normalization discards the impact of a signal dynamic range on the calculated FD value
and makes it dimensionless.

Considering (4), Katz FD expression (1) can be rewritten as

D =
lg(N − 1)

lg(N − 1) + lg(d/L)
. (5)

By analyzing the Katz FD expression obtained in (5), we can determine the relation-
ship between the Katz fractal dimension and the properties of the speech signal. The more
high frequency components appear in the speech signal, the lower value the ratio d/L
acquires (because of increasing L). Therefore, a higher value of D will be obtained. On
the contrary, a low value of D will reflect dominance of low frequency components. Thus,
for high arousal emotions (like anger, joy), containing more high frequency components,
we can expect higher Katz FD values. Lower values will identify low arousal emotions
(sadness, boredom).

2.2.2 The Castiglioni algorithm

The Castiglioni fractal dimension can be considered as a modified version of the Katz
FD. In his paper [9], Castiglioni has discovered that the Katz algorithm considers a signal
as a two-dimensional value with homogeneous argument variables and this is true for
geometrical shapes and curves where both variables represent physical distance. In the
case of time series (for example, speech signal), we have single-dimensional sequences
with completely different time and signal variables.

The core of Castiglioni proposed modification is refusal of time index from the cal-
culation of accumulated distance L and the signal extent d. In this case, (2) and (3) are
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expressed as follows:

L =

N−1∑
i=1

∣∣x(i + 1)− x(i)
∣∣,

d = max
{
x(i)

}
−min

{
x(i)

}
, i = 1, . . . , N.

L can be interpreted as an accumulated change of signal values, and d as a dynamic range
of the speech signal.

The descriptive properties of the Castiglioni dimension should be similar to that of
Katz FD properties. The speech with high frequency components (i.e., abrupt changes of
the signal) would have a higher Castiglioni FD value, whereas the low frequency-based
speech would have a lower FD value.

2.2.3 Higuchi algorithm

The Higuchi approach [17] evaluates the regularity properties of a time series over dif-
ferent time scales. Employment of different time scales enables us to analyze frequency
properties of time series. The more changes we find in a sequence in time scales, the more
irregular the analyzed sequence is supposed to be.

In the speech signal analysis different time scales correspond to the different sampling
frequency of the signal. At first, a set of the original signal segments {Xm} is obtained
by shifting the starting time moment of the signal by m samples. These signal segments
are resampled, obtaining k new versions {Xk

m} of the signal. The obtained new signals
are described as follows:

Xk
m =

{
x(m), x(m + k), . . . , x

(
m + bm, kc · k

)}
,

where m, m = 1, 2, . . . , k, is the starting index value, k indicates a resampling period,
k = 1, 2, . . . , kmax. bm, kc denotes the integer part of the ratio (N −m)/k.

Then, the frequency properties of the resampled signal are estimated by calculating
the normalized accumulated change of signal values:

Lm(k) =
N − 1

bm, kck2

bm,kc∑
i=1

∣∣x(m + ik)− x
(
m + (i− 1)k)

∣∣.
The average accumulated change L(k) of the sequence X for each k, k = 1, 2, . . . ,

kmax, is defined as the average value of Lm(k) for all m = 1, 2, . . . , k. Then the Higuchi
FD value is obtained as the D value assuming L(k) ∝ k−D.

The idea of the Higuchi FD is as follows. Resampling of a nonstationary high-frequency
signal segment will result in a set of quite different versions of the original signal. There-
fore, the nonlinear dependency law of L(k) yields a non zero value of D. The more
similar the resampled sequences are, the closer to zero the value of D is attained.
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2.2.4 The Hurst exponent

The Hurst exponent was proposed to evaluate a long-term memory and fractality of time
series [18,30]. It characterizes the dynamics of time sequences and can be estimated both
globally for the entire sequence and locally by applying a sliding window [36].

The originally proposed evaluation technique of the Hurst exponent is based on a re-
scaled-range analysis of time series. The ratio of range and standard deviation (rescaled
range) is calculated for all possible length segments of the analyzed series. The statistics
of the rescaled range considered to follow a power law, and the Hurst scaling exponent H
is defined as a power index:

E

[
R(M)

S(M)

]
= CMH , M →∞,

where R(M) is the range of the first M sequence values, S(M) is their standard deviation,
E[·] is an expectation operator, M is the number of analyzed sequence values, and C is
a constant.

The value of the Hurst exponent lies between 0 and 1 [30]. The Hurst exponent value
can be applied to estimate the sequence dynamics:

• H < 0.5: a sequence is said to be anti-persistent, negative deviations of the values
are followed by positive deviations. In other words, the autocorrelation of such
a sequence is negative. That could be characteristic of high frequency (as compared
to the sampling frequency) speech segments. As we have mentioned before, high
frequency components can be the attribute of the high arousal emotions in the
speech.

• H > 0.5: a persistent sequence with trending variation of values. In this case,
the autocorrelation of a signal is considered positive, which could be a sign of
dominant low frequency components in a speech signal and low arousal emotions
of the speaker.

• H = 0.5: there is no correlation between sequence values and the analyzed se-
quence is considered as random, the change of the value is hardly predictable. In
the case of a speech signal, that can be interpreted as a constant change of the
signal: the signal contains segments with the positive and negative autocorrelation.
Nevertheless, it will be true both for random and quasi-periodic speech signals of
any frequency and cannot be considered as characteristic of a particular emotion.

In order to relate the Hurst exponent H value with fractal dimension D and consider-
ing their ranges, the Hurst exponent-based fractal dimension is expressed as follows:

D = 2−H.

In addition to the rescaled-range technique, many different techniques were proposed
for estimating the Hurst exponent [6]: detrended fluctuation analysis, periodogram anal-
ysis, aggregated variance method, local Whittle estimator, wavelet analysis, absolute
moments method, Geweke–Porter–Hudak estimator, and others. Nevertheless, their de-
scriptive and discriminant power for the speech signal analysis is not established and
should be considered as unknown.
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3 Fractal dimension-based feature sets

Considering the variability of a speech signal, all emotional utterances were analyzed in
the classical frame-by-frame manner. Therefore, the FD-based speech emotion features
were extracted from fractal dimension values in two steps. At first, the frame-level fea-
tures were extracted. At the second step, utterance-level features were generalized from
the frame-level data.

In order to highlight fractal properties of the speech signal, segments 3–4 fundamental
periods long were analyzed. That ensured the waveform of the speech signal to have at
least 3–4 affine segments. Therefore, the frames 45 ms long were selected for the analysis
with 20% overlap to ensure the time consistency of signal variation. Eight different FD
values were extracted for each frame of the signal: Katz, Castiglioni, Higuchi and 5 differ-
ent Hurst exponent-based (approximated by polynomial, detrended fluctuation analysis,
average wavelet coefficient, Geweke–Porter–Hudak estimator, and generalized version of
the Hurst exponent) fractal dimension values. The result of the first step analysis was
sequences of FD values for each emotional utterance.

Utterance-level features were established as statistical generalizations of the frame-
level feature values during the utterance. We believe that utterance-level features will
generalize the emotion-driven variability of FD values and will gain discriminative power
of the features.

For utterance-level features we calculated the following statistical functionals of the
frame-level FD values [46]:

• Range values: minimal, maximal values, and the range of the fractal dimension.
• Mean values: arithmetical, geometrical, and harmonic mean values of the FD se-

quences. Mean values excluding outliers were calculated additionally.
• Higher moments: variance, skewness, and kurtosis of the FD values.
• Central moments: 2nd–5th central moments.
• Quantiles: 5 different quantiles were calculated as well.

In total, 28 different functionals were calculated for each of 8 aforementioned FD
values. Hence, a full set of 224 utterance-level features was extracted for every emotional
utterance. Considering different value ranges and variation of the calculated functional
values, all the extracted 224 features were normalized. The maximum value of a partic-
ular feature-based normalization was selected to obtain homogeneous feature sets with
a unitary range.

In some cases, 224 feature sets may be considered as redundant. If the speech dataset
analyzed contains less than 200 samples of every emotion, the classification process
becomes biased. The Sequential Forward Selection (SFS) technique was applied to reduce
the initial feature set size. The SFS technique is a suboptimal feature filtering approach to
eliminate redundant, irrelevant or noisy features. The reduced feature set is constructed by
adding overall set efficiency improving features. As our experience shows, the employ-
ment of feature selection techniques causes reduction of feature sets up to a few hundred
times [29].
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Therefore, two different feature sets have been obtained for experimental investiga-
tion: a full feature set and the SFS-based feature set.

4 Experimental results and discussion

The proposed fractal dimension features were experimentally tested in classifying the
speech emotion. The task of 7 emotions was selected as the most difficult one and assum-
ing it able to confirm the quality of the proposed features.

Two databases were employed for the experimental investigation: the Berlin database
of the German emotional speech [7] and the database of Lithuanian speech emotions [34].

The total amount of emotional German utterances was 535 (recorded by 5 male and
5 female speakers). The following emotions were analyzed: anger (127 utterances), bore-
dom (81 utterance), disgust (46 utterances), fear (69 utterances), happiness (71 utterance),
sadness (62 utterances), and the neutral state (79 utterances).

The recorded Lithuanian emotion set was a little bit different: anger, astonishment,
disgust, fear, happiness, sadness, and the neutral state. The number of each emotional
pattern was 1000 utterances (pronounced by 10 speakers).

In order to obtain comparable results, a classification with both databases was per-
formed under the same conditions. A 10-fold cross-validation scheme was chosen for
K-Nearest Neighbor classifier-based experimental testing (with K = 5). This choice was
due to the limited amount of German data. The results of statistical classification would
not be reliable in the German case, and employment of different techniques would lead to
incomparable and hardly interpreted experimental results.

Firstly, the general efficiency of feature sets was estimated. To this end, the criterion
of the classification accuracy (CA) was applied.

Figure 2 shows the averaged classification rates for different databases and feature
sets. We can see the obvious superiority of the SFS-based FD feature sets in both lan-
guages. Feature selection led to higher classification results: approximately by 14% in
the German case and by more than 6% in the Lithuanian case.

Figure 2. Averaged classification rates.
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Table 1. Classification rates of German emotions.

Feature
set

Classification accuracy, %
Neutral Anger Happiness Sadness Fear Boredom Disgust

Full 82.3 91.3 69.0 90.3 68.1 92.6 58.7
SFS 98.7 95.3 97.2 98.4 84.1 97.5 91.3

Table 2. Classification rates of Lithuanian emotions.

Feature
set

Classification accuracy, %
Neutral Anger Happiness Sadness Fear Astonishment Disgust

Full 92.0 94.0 86.6 95.2 87.7 96.7 88.8

SFS 99.9 97.9 94.8 99.9 96.8 98.9 97.9

The employment of feature selection for the German case has developed the 8-dimen-
sional feature set. In the Lithuanian case, the obtained sets dimension was 4. Thus, the
increase of the analyzed pattern set did not bring an expansion of the feature set. This re-
sult is the opposite to our experience with the acoustic feature sets. There the expansion of
feature sets was remarkable [29]. This result indicates that the speech emotion recognition
task is a full data-driven problem: all the techniques and feature sets can be approved only
by the experimentally tested data set. Therefore, this fact needs for a further investigation
and analysis.

The obtained average accuracy rates are quite high. They are similar or higher as
compared to the results of the acoustic analysis of speech emotions [29]. These higher
results have been obtained using the straightforward classification (against hierarchical,
multi-step, or multi-stage classification schemes) and plain feature set (against multi-
level and complex sets). Thus, we can state a clear superiority of FD features against
the acoustic ones.

Tables 1 and 2 present the classification rates of German and Lithuanian emotions, re-
spectively. In the German case, the lowest rates, using a full feature set, were obtained for
happiness, fear, and disgust in all the cases, the rates were below 70%. Similar results were
obtained in the Lithuanian case: the classification rates of happiness, fear, and disgust
were poorest (below 90%). SFS-based selection of features raised up the classification
results of these emotions above 90% (except the German fear with the rate of 84.1%).

For a deeper analysis of the classification, confusion matrices are given in Tables 3
and 4 (here N, A, H, S, B, and D denote first letters of the analyzed emotions). The highest
false positive rates, in the German case, were observed for happiness (19.7% of happy
patterns were classified as angry) and disgust (17.4% as fear). In the Lithuanian case,
6.6% of happiness were identified as fear, and 6.4% of fear were identified as happiness.
These results correlate with the acoustic analysis of speech emotions: anger and happiness
were the most heavily distinguished emotions.

The results of the German and Lithuanian emotions differed quantitatively. The ex-
planation for this fact may be the different contingent of recorded persons. In the German
case, all emotions were played by professional actors, while in the Lithuanian case,
the recordings were performed by nonprofessional actors. Besides, there are not enough
experimental data to state a linguistic reason for the obtained differences.
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Table 3. Confusion matrix of Lithuanian emotions.

Actual
emotions

Predicted emotions, %
N A H S F B D

N 82.2 0.0 1.3 1.3 1.3 12.6 1.3
A 0.0 91.3 7.9 0.0 0.8 0.0 0.0
H 2.8 19.7 69.1 1.4 5.6 1.4 0.0
S 4.8 0.0 0.0 90.4 1.6 0.0 3.2
F 2.9 7.2 13.1 2.9 68.2 4.3 1.4
B 5.0 0.0 1.2 0.0 0.0 92.6 1.2
D 2.2 10.9 4.3 6.5 17.4 0.0 58.7

Table 4. Confusion matrix of German emotions.

Actual
emotions

Predicted emotions, %
N A H S F As D

N 92.0 1.3 0.4 0.0 1.8 0.3 4.2
A 1.0 94.0 1.5 0.0 1.0 0.5 2.0
H 1.4 1.9 86.6 0.4 6.6 0.1 3.0
S 0.2 0.4 0.4 95.2 1.3 2.2 0.3
F 0.9 0.7 6.4 0.9 87.7 0.0 3.4
As 0.4 0.4 0.3 1.5 0.2 96.7 0.5
D 2.7 1.6 2.4 1.0 3.4 0.1 88.8

The analysis of selected features has shown that two types of the fractal dimension
dominated in features: Higuchi and Hurst exponent dimensions. For the German emo-
tions, the feature set consisted of 3 Higuchi (mode, 10% and 25% quantile values) and
5 Hurst exponent-based (mode, median, maximal, 10% and 90% quantile values) features.
The selected features for the Lithuanian emotions were: 3 Higuchi (the same as in German
case) and 1 Hurst exponent-based (mode value) dimensions.

Comparing the feature sets of the German and Lithuanian emotions, we can state a full
overlap of these sets: the entire feature set of the Lithuanian emotions was included in the
set of German emotions. This fact and the high rates obtained show high discriminative
power of the selected fractal dimensions. Nevertheless, there are not enough data and
results to claim feature appropriateness for different language emotions.

The speech emotion classification, using acoustic features [29], has led to a high
variability of the selected feature sets for different tasks. Comparative study of acoustic
and fractal features has shown the clear superiority of fractal-based analysis in speech
emotion classification [46]. Acoustic features (including various time, energy, fundamen-
tal frequency, spectral, and mel-frequency cepstral characteristics) has resulted in 12–20%
lower classification rates. In this study, fractal dimension-based features demonstrated
a higher coherence in the speech emotion classification task than acoustic features: a full
overlap of features was observed in different language emotions. In the case of acoustic
features, the overlap of feature sets for Lithuanian and German languages was up to a few
percents.

In order to affirm the discriminative power of the selected fractal dimension-based
features, we have decided to carry out a speaker-independent emotion classification. We
have applied Leave-One-Speaker-Out technique for testing data separation. This is the
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Figure 3. Speaker-specific rates of speech emotion classification (Lithuanian language).

Figure 4. Speaker-specific rates of speech emotion classification (German language).

most rigorous testing for the speech analysis-based classification tasks, as the testing is
based on unknown data (which was not the case in our first experiment).

All the utterances of the individual speaker were dedicated to the testing subset, and
the remaining utterances were employed as the training data. Totally, ten different cases
with different testing data were analyzed. For feature set validation purposes, 3 different
classification techniques were employed for the same feature set in the experiment: kNN
(number of neighbours: 5, metric: Euclidean, weight: distance), Random Forest (number
of trees: 10), and Logistic Regression (regularization type: Lasso (L1), strength: C = 1)
based classification. The individual classification rates for every speaker are given in
Figs. 3 and 4.

In case of emotional Lithuanian speech (Fig. 3), the individual speaker results for
the different classification techniques are similar in most cases, only in case of Speakers
Nos. 1 and 5, results are scattered.
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The averaged classification rates for the classification techniques were as follows:
97.4% (kNN case), 97.5% (Random Forest), and 96.2% (Logistic Regression). The dif-
ference between different classification technique rates was less than 2%. Therefore, in
case of emotional Lithuanian speech, the discriminative power of the fractal dimension-
based features is affirmed.

In case of German language (Fig. 4), we observe different results. The main reason
for differences was the amount of speech data. For the German language, the number of
emotional utterances varied from 1 (fear by Speaker No. 2 and disgust by Speaker No. 4)
to 16 examples (anger by Speaker No. 8). This data unbalance affected the classifica-
tion rates heavily. The average rate of Logistic Regression-based classifier has decreased
down to 76.2%. The average rates for kNN and Random Forest classifiers were 92.8%
and 94.3% respectively. Although these average values are comparable with the case of
Lithuanian speech, the scattering of individual speaker results was higher for German
speech. The difference between classifiers has increased also and reached 30% (in case
of Speaker No. 8).

The classification results for Speaker No. 10 were the lowest individually (72.3%).
The reason for this could be the following: emotions of this speaker differ acoustically
from the rest mostly.

This scattering (both in Lithuanian and German cases) can be the consequence of the
impact of varying speaking style, recording conditions, or any other acoustic variability
among speakers. This may be the result of insufficient training: the training set of 9
speakers is not sufficiently representative. Using larger training data would solve this
problem.

5 Conclusions

In this study, we applied fractal dimension-based features in the speech emotion classifi-
cation. These features were proposed considering the nonlinear and fluctuating nature of
the emotional speech. Katz, Castiglioni, Higuchi, and 5 different Hurst exponent-based
features were employed for the classification of 7 emotions in two different languages:
German and Lithuanian.

The initial set of 224 features was reduced down to the 4-dimensional and to the
8-dimensional (for the Lithuanian and the German emotions, respectively) by applying
the Sequential Forward Selection technique. Employment of the feature selection has
increased the classification accuracy by 14% in the German case and more than 6% in
the Lithuanian case. The obtained average classification accuracy was 96.5% for both
languages. The classification accuracy of 97.2% was achieved in the speaker-independent
mode for the Lithuanian case and 94.3% for the German case, respectively.

Considering the obtained results, we conclude our study as follows:

• Fractal dimension-based features are distinguished by their discriminative power
and coherence as compared to the acoustic features. The obtained average clas-
sification accuracy of 96.5% (86.5% for a full feature set) significantly exceeds
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the acoustic feature-based classification accuracy. Besides, the fractal dimension-
based analysis of the speech signal provides more coherent feature sets for different
classification tasks.

• An increase in emotional patterns did not increase the size of the required feature
set. This result contradicts the results of the previous studies using the acoustic
features. Besides, the fractal dimension-based features enabled us to separate anger
and happiness reliably, which is not the case using the acoustic feature sets. There-
fore, the result implies the idea about the data-driven nature of the speech emotion
recognition problem.

• The feature selection provided 6–14% higher classification rates (for the Lithuanian
and the German emotions, respectively) in comparison with the full feature set.
The improvement has been obtained employing 28–56 times smaller feature sets as
compared with the full feature sets.

• The selected feature sets both for the German and Lithuanian emotions consisted
mainly of Higuchi and Hurst fractal dimension-based features. These fractal dimen-
sion techniques can be treated as having a high discrimination power to classify
speech emotions.
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