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Abstract: Alnus glutinosa is an important woody plant in Lithuanian forest ecosystems. Knowledge 
of fluorescence properties of black alder pollen is necessary for scientific and practical purposes. By 
the results of the study, we aimed to evaluate possibilities of identifying Alnus glutinosa pollen 
fluorescence properties by modeling ozone effect and applying two different fluorescence-based 
devices. To implement the experiments, black alder pollen was collected in a typical habitat during 
the annual flowering period in 2018–2019. There were three groups of experimental variants, which 
differed in the duration of exposure to ozone, conditions of pollen storage before the start of the 
experiment, and the exposure time. Data for pollen fluorescence analysis were collected using two 
methods. The microscopy method was used in order to evaluate the possibility of employing image 
analysis systems for investigation of pollen fluorescence. The second data collection method is 
related to an automatic device identifying pollen in real time, which uses the fluorescence method 
in the pollen recognition process. Data were assessed employing image analysis and principal 
component analysis (PCA) methods. Digital images of ozone-exposed pollen observed under the 
fluorescence microscope showed the change of the dominant green colour toward the blue 
spectrum. Meanwhile, the automatic detector detects more pollen whose fluorescence is at the blue 
light spectrum. It must be noted that assessing pollen fluorescence several months after exposure to 
ozone, no effect of ozone on fluorescence remains. 

Keywords: allergenic pollen; ozone; automatic real-time device; image analysis; principal 
component analysis 

 

1. Introduction 

Pollen, like any airborne particle of biological origin, can be identified using fluorescence 
examination methods. Application of these methods in the bioparticle identification process 
promotes designing and development of laser fluorescence–based devices for recognising airborne 
pollen in real time [1–3]. The topics of pollen fluorescence have been the focus of scientists for many 
years, and this issue is constantly readdressed. Identification of fossil pollen and spores in geological 
samples and the possibility of dating contaminated sediments became a strong impetus for gathering 
knowledge of pollen fluorescence [4,5]. Fluorescence-microscopical techniques and the physical and 
chemical nature of pollen walls have expanded the possibilities of palynological research. First, 
laboratory tests have shown that pollen fluoresced under ultraviolet light [4]. Also, fresh and 
subfossil pollen grains and spores showed various fluorescence colours, depending on type or species 
[5]. Studies on pollen in geological samples confirm that the exine of a pollen grain is naturally 
autofluorescent and the strength of the fluorescence varies with exine thickness [6]. Fluorescence 
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microscopy turned into a tool for studying different pollen type morphology, while acquired 
knowledge became valuable in analysing not only fossil biological particles but also airborne particles 
[7–11]. 

Studies on the fluorescence of airborne particles (pollen and spores) were encouraged not by the 
aspiration to acquired additional knowledge of particle morphology but by assessment of practical 
possibilities of applying the method itself. A new stimulus of employing the fluorescence method is 
a growing demand for devices capable of automatic identification of the airborne pollen and spores. 
Fluorescence microscopy has been used to develop 3D volumetric imaging technology [7] for 
designing the online pollen monitoring system. At present, microscopy techniques for identification 
of pollen and spores still prevail worldwide [12]. These methods have become traditional in 
aerobiology [13,14], requiring that specialists should identify each particle present in air samples 
under the microscope. For more than 15 years, there have been attempts to develop semi-automatic 
[1,15] or automatic [7,10,16] pollen identification systems, in which the use of the fluorescence method 
for identification of airborne particles occupies an important place. However, to date, the results of 
collected data, gained by automatic real-time devices, differ [10,11,17,18], and these differences may be 
determined not only by peculiarities of devices but also by conditions of the environment affecting 
identified pollen [19–22]. This fact is confirmed by scientific studies that are targeted at long-distance 
pollen transport analysis [23–29]. It is assumed that pollen suspended in the air is affected by 
environmental conditions (air temperature, humidity, radiation, chemical compounds), and the effect 
may change pollen fluorescence results (intensity, colour, etc.). Laboratory tests showed that pollen 
has chemosensitivity to ozone and ozone could directly oxidize the constituents of the pollen wall 
[30,31], although the number of pollen grains produced per inflorescence was unaffected by ozone 
[32]. There is scientific evidence that ozone alters the allergen content in the pollen [33–35] reduces 
or destroys viability of the pollen [36–38] and changes fluorescence properties of fluorescent 
substances present in pollen [8,30,31]. Studies on pollen fluorescence properties are conducted 
employing various devices ranging from the microscope to devices enabling automatic identification. 
Their application in routinely performed monitoring of airborne pollen requires specific knowledge. 

By the results of our study, we aimed to evaluate the possibilities of identifying Alnus glutinosa 
pollen fluorescence properties by modeling ozone effect and applying two different fluorescence-
based devices. 

2. Materials and Methods  

2.1. Pollen Samples 

Alnus glutinosa ((L.) Gaertn.) is an important woody plant in Lithuanian forest ecosystems. It is 
the fourth most abundant tree in Lithuanian forests with an occurrence of around 8.5% [39]. Black 
alder is one of the earliest flowering plants producing abundant content of allergenic pollen [40]. 

Catkins for the experiments were collected in the forest, in the typical habitat of Alnus glutinosa 
during the annual flowering period. Catkins were collected from the same plant at the beginning of 
April 2018 and again at the end of March 2019 because we aimed to test the influence of storage 
conditions on pollen fluorescence. Weather conditions (data taken from Lithuanian 
hydrometeorological service Šiauliai weather station) in 2018 and in 2019 from January until March 
were different (Table 1). The beginning of 2019 was colder, and the average air temperature in 
February and March was higher than in 2018. 

Table 1. Meteorological conditions in January–March of 2018–2019. 

Years 
Average Monthly Air Temperature (°C)  Total Precipitation Per Month (mm)  

January February March January February March 
2018 −1.6 −6.6 −2.1 51.1 15.8 12.8 
2019 −4.0 1.3 3.1 54.0 38.4 31.8 
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In 2018, catkins were kept in a thermostatic convection oven in the laboratory for three days at 
40 °C, and in 2019, at 30 °C. The procedure of pollen separation from catkins was performed according 
to Šaulienė et al. [11]. Until the start of the experiment in 2018, clean, impurity-free pollen was stored 
in the refrigerator at a temperature of 5 ± 1 °C and relative humidity of 57 ± 10%. In 2019, was kept 
indoors at 25 ± 5 °C and 45 ± 10%, respectively. These different temperatures were used to ascertain 
the effect of temperature on pollen fluorescence trait. 

2.2. Pollen Exposures to O3 

The experiments were carried out in laboratory conditions using an ozone generator operating 
on the high voltage discharge principle. Ozone is generated in a sealed plastic box containing a 
system of insulators and electrodes. The applied high voltage (approx. 25 kV) to the electrodes creates 
an ionisation current that passes through an air gap and gives high energy to electrons to break the 
oxygen molecule, allowing the formation of a 3-atom oxygen molecule—ozone (Figure 1). 

 

Figure 1. Pollen sample exposure to O3 experimental set-up and high voltage electrical discharge 
system configuration. 

Here, 5 mg of Alnus glutinosa pollen were dispersed in two 100-mm-diameter Petri dishes and 
placed in the generator box (Figure 1). The first sample was kept in a running generator for 3 h per 
day, and the second sample was kept running for 5 h. The experiment was run for five days. In total, 
the first sample was exposed to ozone for 15 h, and the second was exposed for 25 h. The average 
measured ozone concentration was 5.83 ppm. The measurements were performed using GV-100 gas 
sampling pump (Gastec Corporation, Ayase-Shi, Japan) with colorimetric tubes GASTEC Ozone 18L 
and GASTEC Ozone 18M (Gastec Corporation, Ayase-Shi, Japan). The measurement of ozone 
concentration was performed every 30 min. 

Groups of experimental variants of pollen, formed this way (Table 2) differed in the duration of 
exposure (3 and 5 h) to ozone, pollen storage conditions (refrigerator or indoors) until the start of the 
experiment, and the time of their use in the experiment (1–5 months). After exposure, pollen was 
stored in room temperature conditions. Pollen of control group was not exposed to ozone therefore 
during the experiment stored in room conditions (C_1, C_2) or in the refrigerator (CS_1).  

Table 2. Groups of experimental variants of pollen. 

Name of the 
Group of 

Experimental 
Variant 

Abbreviation 

Exposure to ozone 

Storage Duration of Storage Until the 
Start of the Experiment, Months Cumulative Concen-

tration, ppm 
Exposure 
Time, h 

Control  
CS_1 

0 0 

In the refrig-
erator 

5 

C_1 
Indoors 

1 
C_2 5 
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3-h exposure 
3 h_1 

20.5 3 Indoors 
1 

3 h_2 5 

5-h exposure 
5 h_1 

24.1 5 Indoors 
1 

5 h_2 5 

2.3. Pollen Fluorescence Data Collection 

Data for performance of pollen fluorescence analysis were collected employing two methods. 
The microscopy method was used to evaluate the possibility of using image analysis systems for 
investigation of pollen fluorescence. The second data collection method is related to the automatic 
device identifying pollen in real time, which uses the fluorescence method in the pollen recognition 
process. 

2.3.1. Fluorescence by Microscope 

After exposure to ozone, pollen was stored in room conditions for 5–6 days until it was prepared 
for microscopy. Pollen samples were prepared for work with the fluorescence microscope having 
scattered pollen on slides. They were embedded into a solution of polyvinylalcohol (Gelvatol from 
Sigma-Aldrich, St. Louis, MO, USA) [41,42]. Pollen was photographed with Nikon ECLIPSE 80I 
fluorescence microscope (BioTek Instruments, Inc., Winooski, VT, USA), using 400× magnification. 
Samples were paced under UV light. To obtain the fluorescence image, three neutral-density (4, 8, 16) 
filters were used. Pollen images was digitized at random, but not less than 200 pollen per one type 
(pollen not affected by ozone/ozone-exposed pollen) sample. Collected digital pollen fluorescence 
images were analysed using image analysis techniques (see 2.4.1.). 

2.3.2. Fluorescence by Automatic Pollen Recognition Device 

The study employed the device Rapid-E (Plair, Geneva, Switzerland) which has capabilities 
allowing real-time detection, counting and classification of airborne pollen. To identify airborne 
particles of biological origin, the device uses the fluorescence method. Fluorescence of particles is 
excited using the UV laser (Plair, Geneva, Switzerland) (320 nm light) [3]. Ozone-exposed black alder 
pollen and those not affected by ozone was blown into the device using the method described by 
Šaulienė et al. [11]. The experiment was carried out with Alnus glutinosa pollen, whose average size 
was less than 30 µm [43]. For pollen recognition, the device was set in the pollen mode when the 
range of identified particles was 5–100 µm. Not less than 10000 fluorescent particles were analysed 
per one type (not exposed to ozone/ozone-exposed pollen) sample. 

2.4. Data Analysis 

2.4.1. Image Analysis 

The RGB image digitized with the fluorescence microscope contained several or a dozen of 
pollen. In such cases, it is necessary to find and group pixels belonging to fluorescent pollen and 
count the statistics of obtained pixels. To achieve this, the following steps were made: image 
binarization, blob detection, morphological blob correction, turning blobs into masks, pixel selection 
by masks, conversion of pixel RGB values into HSV space, and calculation of statistics in HSV space 
for each pollen. The actions were implemented in Python programming language using modules 
matplotlib.image, scipy.ndimage.morphology, and scikit-image. 

Image binarization requires a threshold value to distinguish the pollen from the background. 
The threshold value was manually selected for each photo searching for the best option. Blobs were 
found using the Difference of Gaussian (DoG) method implemented in the scikit-image module. To 
avoid erroneously detected small areas of the image, the morphological operation erosion was 
applied. Having applied dilation after erosion, pollen areas are restored to the original area. The 
obtained blobs served as masks in order to select pixels of individual pollen. Conversion of pixels 
into HSV space allows us to perform averaging of hue values and to obtain a generalized value for 
describing the fluorescence hue of the pollen. The hue value is expressed in the interval 0–1. 
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2.4.2. Principal Component Analysis 

In previous research [11], the detection of pollen by fluorescence spectrum was performed 
employing artificial neural networks (ANNs). However, neural networks prevent us from finding 
out why one or another decision was made. Therefore, although neural networks are widely used 
today and often yield good recognition results, they can generate many errors if unfavourable 
conditions are formed. For this reason, in this study, the fluorescence spectrum analysis was 
performed applying the principal component analysis method (PCA). 

Applying the PCA method, the correlated variables (in this case, fluorescence amplitudes of 
certain captured wavelengths of light) are replaced by their linear combinations that are uncorrelated 
with each other. Besides, these components are ranked according to the average power falling to 
them. The PCA method particularly serves the purpose when the highest power is borne only by a 
small share of components. In this case, the first component used to receive from 65% to 85% of the 
total power, and the first five components receive about 95% of the power. 

Because of the variety of particles dispersion in the air, the excited laser of the Rapid-E device 
often illuminates particles other than pollen. Therefore, it is important to filter obtained data, leaving 
only the pollen spectra for further analysis. Pollen spectra compared to those of various artefacts are 
wide (the radiation power is distributed in the entire range of visible light rather than a narrow band). 
Therefore, the first step is to reject fluorescence events where only a narrow range light is radiated. 
To implement this step, the maximum value of the spectrum of one fluorescence event was taken, 
and its ratio with the sum of values of all components of the spectrum was calculated. The obtained 
ratio must not exceed the experimentally selected threshold value. 

The remaining data were subjected to PCA analysis. To perform it, the Python programming 
language and the scikit-learn module were used. Once the principal components were obtained, 
fluorescence spectra emission by them was performed, thus obtaining emission coefficients. 

The success of the method selection was confirmed by its repetition with the data of different 
samples when the results would replicate well. 

3. Results 

3.1. Recognition of Ozone Effect on Pollen under Fluorescence Microscope 

Digitized images of Alnus glutinosa pollen fluorescence were analysed in order to evaluate 
whether high concentrations of ozone and duration of exposure could substantially alter fluorescence 
peculiarities. The results of the microscope used in this study highlighted inequalities of pollen 
properties in individual groups of experimental variants. Figure 2 demonstrates several cases 
illustrating fluorescence variations in groups. 

 
Figure 2. Alnus glutinosa pollen image under the fluorescence microscope (400×). The columns show 
examples of images captured in photos in each of the experimental variant groups: Control—C_1; three-hour 
exposure—3 h_1; five-hour exposure—5 h_1. 
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The given examples show that walls of pollen that are not affected by ozone fluoresce more 
intensively than the walls of ozone-exposed pollen. The strength of the fluorescence signal also 
depends on the duration of ozone exposure. Pollen fluorescence images demonstrated that longer 
ozone exposure time weakened the fluorescence signal of pollen walls. This statement is verified by 
the results given in the column called “five-hour exposure.” The comparison of experimental variant 
groups with each other shows that the fluorescence signal of pollen that was exposed to ozone for 
the longest time is most altered. Systematized results given in Figure 3 demonstrate a shift of the 
change. 

   
(A) (B) (C) 

Figure 3. Fluorescence colour dispersion chart of digital images of Alnus glutinosa pollen experimental 
variant groups by hue values: (A)—control (C_1); (B)—three-hour exposure (3 h_1); (C)—five-hour 
exposure (5 h_1). The x-axis represents hue values and the y-axis represents the number of cases. 

Digital images of fluorescent pollen captured under the microscope were analysed by 
decomposing RGB components. The tendency in the dispersion chart of the control group emerges 
that, by hue values, about 80% of digital image results of pollen not affected by ozone concentrate at 
the green spectral band. Compared to the control group, the fluorescence results of ozone-exposed 
pollen differ. Figure 3B shows the shift of results toward the blue portion of the spectrum. This trend 
is particularly pronounced in the group of experimental variants where pollen was exposed to ozone 
for 3 h per day. About 60% of cases cover the portion of the colour spectrum from 0.42 to 0.48. In the 
case of three-hour exposure, data scattering is greater than in the case of five-hour exposure. 
However, the fluorescence spectrum of pollen exposed to ozone for 5 h/day has a visible shift to the 
blue position of the spectrum (0.55–0.60). Here, most results of pollen fluorescence digital images 
concentrate at the green portion of the spectrum (0.33–0.43 hue values). To sum up, the assumption 
is formed that the fluorescence microscope used in the study showed slight changes in fluorescence 
of those pollen that were exposed to ozone for 3 h. 

3.2. Possibilities of the Automatic Particle Detector in Assessing Ozone Effect on Pollen 

Unlike the image analysis under the fluorescence microscope, the automatic particle detector 
allows for the evaluation of the fluorescence spectrum of airborne particles in real time, thus 
separating biological origin particles from the overall aerosol flow. Because the data array while 
capturing pollen by the automatic particle detector is usually large, the fluorescence spectrum 
analysis was performed applying the PCA method. In the PCA results, it is important to properly 
evaluate principal components. Figure 4 shows 15 principal (32 in total) PCA components of the 
conducted study. 
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Figure 4. Principal component analysis (PCA) component variety, 15 principal components. Y axis 
indicates dimensionless values in interval [0–1], values at 32 wavelength forms unit length vector. 

The largest fluorescence amplitude of PCA component 1 includes wavelength from 400 to 550 nm, 
when the peak is at 450 nm. The peak of PCA component 2, expressed at 350 nm of fluorescence 
spectrum, is one of the few peaks of PCA components located in short wavelength. Meanwhile, PCA 
component 4 has several peaks located in the range of different wavelength. The first five PCA 
components receive about 95% of power. All combined PCA components form the fluorescence 
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spectrum of pollen analysed. Combining all components, a more accurate image of the fluorescence 
spectrum is formed. 

However, component 1 is principal and allows us to evaluate the shape of the spectrum. Such a 
situation is determined by wide scattering of experimental data; therefore, the chosen imaging 
method via component 1 (the dominant component that has 85% of the signal power) enables the 
grouping of data. Figure 5 shows the fluorescence spectrum of PCA component 1 for different groups 
of experimental variants. 

  
(A) (B) 

Figure 5. Component 1 of the pollen fluorescence amplitude obtained by the PCA method: (A)—
control group; (B)—group of ozone-exposed pollen and control average. Y axis indicates 
dimensionless values in interval [0–1], values at 32 wavelength forms unit length vector. 

The results given in Figure 5A show a similar pollen fluorescence spectrum of PCA component 
1. This corresponds to the cases where pollen was not affected by ozone (the control group) but was 
stored in different conditions until the start of the experiment (1–5 months). Minor differences can be 
seen only in the wavelength range up to 500 nm of the Alnus glutinosa pollen fluorescence amplitude. 
For this reason, when analysing fluorescence peculiarities of ozone-exposed pollen, the mean of 
control group results was used. The fluorescence amplitude of PCA component 1 of pollen exposed 
to ozone is most pronounced at wavelengths up to 400 nm (Figure 5B). The tendency is observed that 
there are minor differences between experimental groups that substantially differ with regard to time 
from pollen collection until the start of the experiment. The results of PCA component 1 show that 
the duration of exposure to ozone in principal does not change the pollen fluorescence amplitude, 
which is important for the calibration of real-time pollen detectors. This means that, in the case of 
evaluating pollen fluorescence several months after exposure to ozone, the effect of ozone on 
fluorescence may not be detected. Summarising these research results, it can be seen that, essentially, 
the results of the principal PCA component in both control group and ozone-exposed pollen group 
do not differ (Figure 5). After conducting further analysis, dispersion charts of PCA component 1 and 
component 2 are given.  

When assessing how changes in ozone-exposed pollen fluorescence are identified by real-time 
particle detector, we distinguished four main groups of results, which are presented in Figure 6. In 
cases when pollen was briefly stored in room conditions and was not affected by ozone before the 
start of the experiment (control C_1), PCA component coefficients do not depend on each other, as 
shown in Figure 6A,C. These graphs demonstrate that changes occur in cases when pollen is exposed 
to ozone. In cases of both three-hour exposure and five-hour exposure, direct dependence with regard 
to PCA component coefficients emerges. Dependence of coefficients shows that the dominant light 
wavelength of fluorescence of the part of pollen is decreasing. The dependence straight of C_2 
coefficients is insignificantly different compared to that of C_1. The obtained results may be 
determined by pollen maturation, because in the case of the second control, experiments were carried 
out 5 months after pollen dispersal from Alnus glutinosa catkins, which is four months later than time 
of C_1 experiment. It should be noted that fluorescence PCA component coefficients of ozone-
exposed pollen in the experiment performed after five months in principal do not differ from the 
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control (Figure 6B,D). The same trend is observed in the results of experiments when pollen was 
exposed to ozone for 3 h and 5 h. The assumption is formed that not only ozone can affect pollen 
fluorescence—storage conditions and duration of pollen shed from catkins can also become 
modifying environmental factors for determining variation in fluorescence properties. 

  
(A) (B) 

  
(C) (D) 

Figure 6. Dispersion charts with linear trends of PCA components of experimental variant 
groups: (A)—three-hour ozone exposure in comparison to control (pollen stored for one month 
before the start of the experiment); (B)—three-hour ozone exposure in comparison to control (pollen 
was stored for five months before the start of the experiment); (C)—five-hour ozone exposure in 
comparison to control (pollen was stored for one month before the start of the experiment); (D)—five-
hour ozone exposure in comparison to control (pollen was stored for five months before the start of 
the experiment). 

4. Discussion 

This article analyses possibilities of identifying Alnus glutinosa pollen fluorescence peculiarities 
using manual (fluorescence microscopy) and automatic real-time devices. At present, there is an 
increasingly active search for tools and techniques enabling us to replace the microscopic 
identification of pollen in routine aerobiological monitoring with recognition by automatic real-time 
detectors. Operation of the latter is inseparable from fluorescence measurements of identified 
particles, which has been performed by spectrometers or fluorescence microscopes for many years. 
Various experiences have been performed analysing fluorescence properties of different types of 
pollen with tools enabling measurement of fluorescence peculiarities of particles and gathering 
plentiful valuable knowledge [7–9,30,31,36]. Often, available knowledge of fluorescence is difficult to 
apply in real-time measurements due to the different methods used so far (photo/electro-
luminescence system with xenon lamps, various types of light-source-based fluorescence images, 
etc.) [8,31,36] or in measurement using automatic real-time devices (deep-UV laser, etc.) [10,11,18]. 
On the other hand, there is a lack of studies analysing pollen fluorescence characteristics of a 



Forests 2019, 10, 959 10 of 13 

 

particular plant species in various aspects, and searching for responses whether fluorescence 
peculiarities in a species can be modified or altered by environmental factors affecting pollen, e.g., 
air pollution [30,35], atmospheric condition [20,22,32], etc. 

In this study, we used pollen collected from local Alnus glutinosa plant in the forest and did not 
process pollen with any chemical substances. The pure pollen fraction was as control. Accurately 
selected samples enabled us to obtain results that confirmed that the fluorescence properties of pollen 
changed over time. An obvious example is the disappearance of linear dependence of PCA 
component coefficients in the case of ozone-exposed pollen fluorescence, when samples were stored 
for a longer time. This result indicates that, when assessing pollen samples of different origin and 
preparation, qualitative parameters of pollen samples must be considered as well. We exposed Alnus 
glutinosa pollen to 5.83 ppm ozone to alter the fluorescence properties of pollen and analysed digital 
images obtained under the fluorescence microscope and pollen data captured by an automatic 
detector. Ozone changes the composition of the cell wall [31], increases the content of allergen in 
pollen [35], decreases viability [37], and otherwise modifies pollen development. Most researchers 
[30,31] who use fluorescence-based methods to assess ozone exposure note that fluorescence of pollen 
exposed to ozone is changing. Our research verifies this fact by colour changes that can be seen in the 
images of ozone-exposed Alnus glutinosa pollen taken under the fluorescence microscope. Blue hues 
appearing next to dominant green colour can be seen. The visual change is also confirmed by the 
analysis of digital images of pollen obtained under the fluorescence microscope. It shows that the 
results of pollen stored in the ozone environment shift toward the blue portion of the spectrum. 

The use of a Rapid-E automatic particle detector, which identifies pollen by the fluorescence 
spectrum, in this study enabled us to ascertain that ozone at the concentrations tested affects the 
pollen fluorescence spectrum. Data analysis supplemented the results obtained under a fluorescence 
microscope. Rapid-E shows the dominance of blue colour in Alnus glutinosa pollen fluorescence 
spectrum. By analysing the pollen fluorescence spectral feature, we obtained the result that the sharp 
peak of PCA 1 fluorescence amplitude of pollen not affected by ozone and ozone exposed pollen was 
identical, i.e., was at 450 nm. Meanwhile, the study of pure alder pollen, conducted using a custom-
built spectrometer, showed a sharp peak of Alnus glutinosa fluorescence at 420 nm [8]. Roshchina and 
Melnikova [30], who investigated changes in pollen fluorescence properties of other plant species 
due to ozone impact, found that fluorescence peaks of ozone-affected pollen had changed, e.g., 
control of Philadelphus grandiflorus (the variant that was not affected by ozone) had its peak at 465 nm, 
while having been exposed to 5 ppm ozone, the peak shifted toward 475–480 nm. The authors confirm 
that, in pollen whose fluorescence peak position was at blue or light blue colour, ozone treatment did 
not produce new peaks. In our experiments, there was no peak shift of fluorescence amplitude 
between ozone-exposed (neither 3 h or 5 h O3 exposure) pollen and pollen not affected by ozone. It is 
possible that the results of this investigation are typical only for Alnus glutinosa. Other researchers 
have shown [30] that the response to ozone exposure may be species-specific. 

It should be noted that the Rapid-E device registers the fluorescence spectrum as pollen falls into 
the device. The fluorescence-induced laser is pulsed and emits the light beam as the pollen 
approaches. Therefore, the moment of light beam activation is important for successful illumination 
of the pollen. In addition, the pollen itself is heterogeneous. Different locations can emit light at 
different wavelengths. It is therefore also important to know at what angle the pollen intersects with 
the exciting laser beam. 

5. Conclusions 

Digital images of ozone-exposed pollen observed under the fluorescence microscope showed 
the change of dominant green colour toward the blue spectrum. Meanwhile, the automatic device 
detects more pollen whose fluorescence is in the blue light spectrum. It should be noted that, when 
evaluating pollen fluorescence several months after exposure to ozone, no effect of ozone on 
fluorescence remains. It has been shown that the conditions of pollen storage can influence the 
fluorescence spectrum of the pollen. This assumption should be confirmed by additional studies, 
focusing attention on the pollen peculiarities of different species. 
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Summarizing the obtained results, it can be stated that both fluorescence-based devices 
employed in this study generate similar results-generating data. Data collection by the fluorescence 
microscope takes significantly longer, and during the same time, less data is accumulated by the 
microscope than by automatic detector. However, both types of technologies can be useful for the 
analysis of pollen fluorescence characteristics.  
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