
i

i

“LMD2010sm_StiO” — 2010/12/7 — 18:35 — page 385 — #1
i

i

i

i

i

i

Lietuvos matematikos rinkinys. LMD darbai ISSN 0132-2818

51 tomas, 2010, 385–390 www.mii.lt/LMR/

Numerical investigation of alternating-direction
method for Poisson equation with weighted integral
conditions

Olga Štikonienė1,2, Mifodijus Sapagovas1

1Institute of Mathematics and Informatics

Akademijos 4, LT-08663 Vilnius
2Vilniaus University, Faculty of Mathematics and Informatics

Naugarduko g. 24, LT-03225 Vilnius

E-mail: olgast@ktl.mii.lt; m.sapagovas@ktl.mii.lt

Abstract. The present paper deals with a generalization of the alternating-direction im-
plicit (ADI) method for a two dimensional Poisson equation in a rectangle domain with a
weighted integral boundary condition in one coordinate direction. We consider the alternat-
ing direction method for a system of difference equations that approximates Poisson equation
with weighed integral boundary conditions with the fourth-order accuracy. Sufficient con-
ditions of stability for ADI method are investigated numerically. An analysis of results of
computational experiments is presented.

Keywords: elliptic equation, nonlocal integral conditions, finite-difference method, alternating-

direction method, convergence of iterative method.

Introduction

Various numerical finite difference schemes have been proposed to solve boundary
value problems of elliptic partial differential equations. The demand for better and
more efficient methods has grown as the range of applications has increased. Mathe-
matical models involving elliptic partial differential equations arise in diverse applica-
tions such as heat conduction, electrostatics, mechanical engineering and theoretical
physics [1]. The simplest discretization method for elliptic equations is the classical
finite difference method then equation are discretized and reduced to finite differ-
ence equations, and then linear systems with large sparse matrices are solved using
appropriate numerical techniques. But many difficulties arise in the case of more
complicated differential operators, boundary conditions, and computational domains.
Problems with nonlocal boundary conditions have been intensively studied during
last time. Second-order finite-difference methods for elliptic equations with nonlocal
conditions were considered in [3, 6, 10], where the main aspect was the convergence
of methods. In [7, 5], a difference scheme of fourth-order accuracy was considered for
elliptic equation with nonlocal integral conditions. Necessary and sufficient conditions
and a convergent iterative solution method were found for the system of difference
equations in the case of a unique solution. In this paper, we consider the alternat-
ing direction method for a system of difference equations that approximates Poisson
equation with weighed integral boundary conditions with the fourth-order accuracy.
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The matrix of a system of difference equations with nonlocal conditions is always
nonsymmetric, and its spectrum can be rather complicated, i.e., there may exist neg-
ative, multiple, or complex eigenvalues [8]. The purpose of the present work is to
perform a numerical investigation of the influence of the integral boundary conditions
on the ADI method applicability to solution of the elliptic differential equations with
nonlocal conditions [5].

This paper is organized as follows. In Section 1, we formulate a difference prob-
lem and write the fourth-order ADI method [4]. In Section 2, we present results of
numerical experiment. Section 3 contains some brief conclusions and comments.

1 Statement of a difference problem

We consider two-dimensional elliptic equation with weighted integral conditions:

−
∂2u

∂x2
−

∂2u

∂y2
= f(x, y), (x, y) ∈ Ω, (1)

u(0, y) = γ0

∫ Lx

0

α(x, y)u(x, y) dx + vl(y), y ∈ [0, Ly], (2)

u(Lx, y) = γ1

∫ Lx

0

β(x, y)u(x, y) dx + vr(y), y ∈ [0, Ly], (3)

u(x, 0) = wl(x), u(x, Ly) = wr(x), x ∈ [0, Lx]. (4)

where Ω = (0, Lx) × (0, Ly) is a rectangular domain, γ0 and γ1 are given constants.
Finite-difference methods of fourth order accuracy for elliptic equations with nonlocal
conditions (α(x, y) = β(x, y) = 1) were considered and investigated in [7]. The ADI
method for this problem was considered in [5, 9].

In the domain Ω we consider the grid ωh = ωh
x × ωh

y with steps hx = Lx/n and
hy = Ly/m.

Equations (1)–(4) are replaced with a finite-difference equations:

−

(

δ2x + δ2y +
h2

x + h2

y

12
δ2xδ

2

y

)

uij = f ij ,

f ij = fij +
h2

x

12
δ2xfij +

h2

y

12
δ2yfij , (xi, yi) ∈ ωh,

(5)

u0j = γ0

n
∑

i=0

αijuijρihx + vlj , yj ∈ ωh
y , (6)

unj = γ1

n
∑

i=0

βijuijρihx + vrj , yj ∈ ωh
y , (7)

ui0 = wl
i, uim = wr

i , xi ∈ ωh
x. (8)

where δ2x and δ2y are second order central difference operators. We assume the com-
partability of the boundary conditions

wl
0
= γ0

n
∑

i=0

αi0w
l
iρihx + vl

0
, wr

n = γ1

n
∑

i=0

βinw
r
i ρihx + vrn.
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We approximate integral conditions (2)–(4) using the Simpson formula with the fourth
order approximation error: ρi = (3 + (−1)i−1)/3, i = 1, . . . , n − 1, ρ0 = ρn = 1/3,
n is even.

We consider the corresponding discrete Sturm–Liouville problem

−δ2xvi = λvi, xi ∈ ωh
x , (9)

v0j = γ0

n
∑

i=0

αiviρihx, vnj = γ1

n
∑

i=0

βiviρihx, (10)

where αi, βi, ρi ∈ F (ωh
x). Problem (9)–(10) can be interpetated as difference analogue

of differential eigenvalue problem:

−
d2v

dx2
= λv, 0 < x < Lx, (11)

v(0) = γ0

∫ Lx

0

α0(x)v(x) dx, v(Lx) = γ1

∫ Lx

0

α1(x)v(x) dx. (12)

Stationary problems with different nonlocal conditions are investigated in paper [2]
and the following theorem is valid.

Theorem 1. λ = 0 is eigenvalue of matrix −Λx if and only if

detK · γ0γ1 − k00γ0 − k11γ1 + 1 = 0, (13)

where

K =

(

k00 k01
k10 k11

)

, ki0 =

∫ Lx

0

αi(x)x dx, ki1 =

∫ Lx

0

αi(x)(1−x) dx, i = 0, 1.

Namely, λ = 0 is eigenvalue of matrix −Λx if and only if point (γ0, γ1) belongs to
the second order curve.

• If detK 6= 0, k01k10 6= 0 it is hyperbola with vertical and horizontal asymptotes;

• If detK 6= 0, k01k10 = 0 it is a pair of perpendicular lines (the vertical line and
the horizontal line);

• If detK = 0, k01k10 6= 0 it is a line.

2 Numerical experiment

We consider a problem (1)–(4) in unit square domain [0, 1]× [0, 1] with weights

α(x) =
2(1− bx)

2− b
, β(x) =

2(1 + bx)

2 + b
.

This gives a qualitatively different regions of convergence for the ADI method.
The exact solution of this test problem is given by

u(x, y) = x6 + y6.

Liet. mat. rink. LMD darbai, 51:385–390, 2010.
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(1) b = −3. (2) b = −3.5. (3) b = −2.5.

Fig. 1. Domains of the stability.

The right-hand side function f(x, y), initial and boundary conditions were prescribed
to satisfy the given exact solution u(x, y). We consider uniform grids with different
mesh sizes and analyze the convergence and accuracy of the computed solution from
the present ADI scheme. We compute the maximum norm of the error of the numerical
solution with respect to the exact solution, which is defined as

‖ε‖C,h = max
j=1,...,m

max
i=1,...,n

∣

∣u(xi, yj)− uij

∣

∣.

Test problems were solved with different values of parameters b, γ1 and γ2.
Numerical experiments let us to determine domains where real parts of all eigen-

values are positive and domains where they are negative or zero. We fix values of
the parameter b (b = −2.5, b = −3, or b = −3.5) and study the influence of weight
functions on the stability of solutions given by ADI method depending on γ1 and γ2.
In all cases there exists a region where ADI method gives stable solutions. Fig. 1
demonstrate the regions where the real part of eigenvalues for operator of the ADI
method are positive or negative for different weights α and β. All eigenvalues are
positive in Ω1, so ADI method is converged. There exists negative eigenvalue in Ω2,
but ADI method is converged in Ω2, too. ADI method isn’t converged in other parts
of domain Ω. Therefore, Ω1 is the domain of the stability of the solution finding by
ADI method according to theoretical result based on spectral stability while Ω2 is the
region of the stability of the solution established by numerical experiment.

In the case b = −3.5 according to theoretical results connected with eigenvalue
problem stability region for ADI method is region Ω1 under the hyperbola in the
third quarter (Fig. 1(2)). So convergence region for problem with b = −3.5 where
positive eigenvalues exist located under the hyperbola, but the method converges in a
much larger area with a negative eigenvalue. Table 1 presents the performances of the
algorithm for various weights depends on b = −3.5. Errors for the discrete solution
on the grids 32× 32, minimal eigenvalues, convergence rates and number of iterations
are presented for different γ1, γ2. The results show that the method can be applied
even when there is a negative or zero eigenvalue. The method has the fourth-order
convergence.

For b = −3 stability region of positive eigenvalues is angle between a pair of
perpendicular lines. (Fig. 1(1)).

For b = −2.5 region of positive eigenvalues is located between a pair of hyperbolas
(Fig. 1(3)). Table 2 presents the performances of the algorithm for various weights
depends on b = −2.5. Note that for large values of γ0, γ1 error increases.
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Table 1. Errors for the discrete solution for problem solved with different γ1, γ2 for b = −3.5.

γ0 γ1 h λmin εk εk−1/εk Number of iter.

1.0 1.0 0.125 0.000 0.002822 18
0.0625 1.8071 · 10−4 15.61 23
0.03125 1.1363 · 10

−5 15.90 27
0.015625 7.1129 · 10

−7 15.97 31

10.0 0.0 0.125 −7.80 0.01918 23
0.0625 1.2358 · 10

−3 15.52 28
0.03125 7.7792 · 10

−5 15.88 32
0.015625 4.8705 · 10−6 15.97 36

4.0 2.0 0.125 −3.91 0.03858 20
0.0625 2.4979 · 10−3 15.44 24
0.03125 1.5729 · 10−4 15.88 29
0.015625 9.8482 · 10−6 15.97 33

Table 2. Results for b = −2.5.

γ0 γ1 h λmin εk εk−1/εk Number of iter.

4.5 0.3 0.125 −3.1618 0.0095502 19
0.0625 −3.1650 6.1406 · 10

−4 15.5525 24
0.03125 −3.1652 3.8637 · 10

−5 15.8930 28
0.015625 −3.1653 2.4188 · 10−6 15.9736 33

0.0 0.95 0.125 −8.0803 0.06771 23
0.0625 −8.0594 4.2881 · 10−3 15.7895 28
0.03125 −8.0581 2.6968 · 10−4 15.9006 32
0.015625 −8.0580 1.6885 · 10−5 15.9721 37

−10 −10 0.125 32.7539 0.0025521 14
0.0625 32.7801 0.0002651 9.62608 18
0.03125 32.7818 2.6459 · 10−5 10.0200 22
0.015625 32.7819 2.4178 · 10−6 10.9434 27

2 0.5 0.125 4.4570 0.0027356 17
0.0625 4.4597 1.7531 · 10−4 15.6044 21
0.03125 4.4599 1.1024 · 10−5 15.9024 26
0.015625 4.4599 6.8999 · 10

−7 15.9773 30

10 1 0.1250 37.6440 0.0060 13
0.0625 37.6874 3.9819 · 10

−4 15.0682 18
0.03125 37.6885 3.9388 · 10

−5 10.1094 22
0.0156 37.6902 2.7557 · 10−4 0.1429 26

3 Conclusions and remarks

The ADI method can be used for the Poisson equation with weighted integral con-
dition with nontrivial weights α(x) and β(x). Nonlocal integral conditions never
make more problems than classical conditions both in number of iterations and pre-
cision of solution. But this conditions affect the region of convergence of the method.
Convergence domain depends essentially on the weight functions. The values of pa-
rameters γ1 and γ2 in NBC are essential for the stability of the ADI method. The
results of numerical experiment are in good agreement with existing theoretical results
for two dimensional Poisson equation in a rectangle domain with a weighted integral

Liet. mat. rink. LMD darbai, 51:385–390, 2010.
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boundary condition in one coordinate direction [5]. But numerical experiments show
that this problem is complicated and additional investigation is needed.
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REZIUMĖ

Kintamųjų krypčių metodo ketvirtos eilės tikslumo Puasono baigtinių skirtumų
lygčiai su integralinėmis sąlygomis skaitinė analizė
O. Štikonienė, M. Sapagovas

Straipsnyje išnagrinėtas kintamųjų krypčių metodo apibendrinimas dvimatei Puasono lygčiai sta-
čiakampėje srityje su svorinėmis integralinėmis kraštinėmis sąlygomis pagal vieną kryptį. Pakankamos
kintamųjų krypčių metodo stabilumo sąlygos tiriamos skaitiškai.

Raktiniai žodžiai: elipsinė lygtis, nelokaliosios integralinės sąlygos, kintamųjų krypčių metodas, kon-
vergavimas
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