
✐

✐

“LMD19_Alonderis” — 2019/11/13 — 11:12 — page 1 — #1
✐

✐

✐

✐

✐

✐

Lietuvos matematikos rinkinys, Vol. 60, 2019 ISSN 0132-2818

Proc. of the Lithuanian Mathematical Society, Ser. A eISSN 2335-898X

https://doi.org/10.15388/LMR.A.2019.14953 pages 1–6

A derivation-loop method for temporal logic

Romas Alonderisa, Haroldas Giedrab

aInstitute of Data Science and Digital Technologies, Vilnius University

Akademijos st. 4, LT-08412 Vilnius, Lithuania
bInstitute of Computer Science, Vilnius University

Didlaukio st. 47, LT-08303 Vilnius, Lithuania

E-mail: romas.alonderis@mif.vu.lt, haroldas.giedra@mif.vu.lt

Abstract. Various types of calculi (Hilbert, Gentzen sequent, resolution calculi, tableaux)
for propositional linear temporal logic (PLTL) have been considered in the literature. Cut-
free Gentzen-type sequent calculi are convenient tools for backward proof-search search of
formulas and sequents.

In this paper we present a cut-free Gentzen type sequent calculus for PLTL with the
operator “until”. We show that the calculus is sound and complete for the considered logic.

Keywords: temporal logics, sequent calculi, derivation loops. 1�

1 Introduction

Propositional linear temporal logic (PLTL) is used in computer science for specifi-
cation and verification of programs [2, 6]. Sequent calculi are used for analysis and
effective check of formula validity by performing backward proof-search.

In this paper, we consider the loop-type sequent calculus (LTSC) for PLTL with
temporal operators “next” and “until”.

We would like to mention the following sequent calculi for temporal discrete tense
temporal logics considered in the literature:

1. Infinitary sequent calculi containing ω-type induction rule. Finitization of the
ω-type induction rule is considered in [3].

2. The calculi with invariant-like rule. There are some works in which some con-
structive methods for finding invariant formulas are considered [13, 14].

3. In 1993, the so called saturation method was proposed in [9]. The saturated
calculus contains (instead of induction-like rules) some non-logical axioms indi-
cating the saturation of proof-search process. Saturation intuitively corresponds
to a certain type of regularity in proof-search.

4. The loop-type sequent calculi firstly were considered by Wolper in 1985 [16].
The loop-type sequent calculi (as saturated calculi) for temporal, mutual belief
and dynamic logics were considered in [10].

1�

© 2019 Authors. Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution
Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

https://doi.org/10.15388/LMR.A.2019.14953
mailto:romas.alonderis@mif.vu.lt, haroldas.giedra@mif.vu.lt
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/

✐

✐

“LMD19_Alonderis” — 2019/11/13 — 11:12 — page 2 — #2
✐

✐

✐

✐

✐

✐

2 R. Alonderis, H. Giedra

5. A cut-free and invariant-free sequent calculus for PLTL is presented in [5].
This calculus has the new operator “unless”, and do not retain the sub-formula
property.

To our knowledge, the loop-type sequent calculus introduced in the present paper
has not been considered in the literature before.

The present paper is organized as follows. In Section 2, we recall the syntax and
semantics of PLTL. The calculus LTSC is introduced in Section 3. In this section, we
present also the definition of derivation loops and prove some propositions concerning
them. The soundness and completeness of LTSC with respect to PLTL is proved in
Section 4. Some concluding remarks are in Section 5.

2 Syntax and semantics

2.1 Syntax

The language of considered PLTL contains the constant ⊤ (true); a set P of propo-
sitional symbols {p, p1, p2, . . . , q, q1, q2, . . .}; the logical operators ¬,∨,∧,⊃, temporal
operators U (“until”) and © (“next”). The language does not contain the temporal op-
erators ⋄ (“sometimes”) and � (“always”), assuming that ⋄φ = ⊤Uφ and �φ = ¬⋄¬φ.

Propositional symbols and ⊤ are called atomic formulas. The formulas φ of PLTL

are inductively defined as follows:

φ ::=⊤ | p | ¬φ | φ ∨ ψ |φ ∧ ψ | φ ⊃ ψ | ©φ | φUψ.

We use the Greek letters φ and ψ, possibly with subscripts, to denote arbitrary
formulas.

2.2 Semantics

We assume that time is linear, discrete, and ranges over the set of natural numbers.
The formula ©φ intuitively means “φ is true at the next point of time”; the formula
φUψ intuitively means “either ψ is true now or φ is true now and in all future time
points until the one at which ψ is true”.

An interpretation M = (T, I) for propositional linear tense logic consists of the
set T = {ti : i > 0}, where ti < tj, if i < j, and the function I : T 7→ 2P, where
2P is the set of subsets of P. The semantics of PLTL formulas is provided by the
satisfaction relation |=:

M, ti |= ⊤;

M, ti |= p, iff p ∈ I(ti);

M, ti |= ©φ, iff M, ti+1 |= φ;

M, ti |= φUψ, iff there is m ≥ i such that M, tm |= ψ and for all i ≤ j < m,
M, tj |= φ.

(|= for the propositional operators is defined in the usual way.)

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

✐

✐

“LMD19_Alonderis” — 2019/11/13 — 11:12 — page 3 — #3
✐

✐

✐

✐

✐

✐

A derivation-loop method for temporal logic 3

An interpretation M is a model for a formula φ, iff M, t0 |= φ. For an arbitrary
sequent S = (φ1, . . . , φm ⇒ ψ1, . . . , ψn), we say that M, ti |= S, iff there is ι ∈
{1, 2, . . . ,m} such that M, ti 6|= φι, or there is ι ∈ {1, 2, . . . , n} such that M, ti |= ψι.

A formula φ (sequent S) is called valid, |= φ (|= S) in notation, iff every PLTL

interpretation is a model for φ (S). For example, it is true that |= (p ∧ ©q) ⊃ (pUq).

3 Sequent calculus LTSC for PLTL

The sequent calculus LTSC is defined by the following postulates:

1. Logical axioms: Γ, φ⇒ ∆,φ and Γ ⇒ ∆,⊤.

2. Propositional rules are the same as of the calculus LK0 in [1].

3. Temporal rules:

Γ ⇒ ∆

Σ,©Γ ⇒ ©∆,Σ′
(©),

ψ, Γ ⇒ ∆ φ,©(φUψ), Γ ⇒ ∆

φUψ, Γ ⇒ ∆
(U ⇒),

Γ ⇒ ∆,φ, ψ Γ ⇒ ∆,ψ,©(φUψ)

Γ ⇒ ∆,φUψ
(⇒ U).

Here: Γ,∆,Σ,Σ′ denote finite, possibly empty, multisets of formulas, where
Σ∪Σ′ consists of atomic formulas; the conclusion is not an axiom and Γ ∪∆ 6= ∅
in (©).

Given a sequent S, a LTSC proof-search tree with the sequent S at the root is
constructed in usual way by subsequently applying backwards the LTSC derivation
rules to S and the sequents obtained in the course of the tree construction. A proof
search tree is denoted by V . The expression V (S) denotes that S is the root of V .

We say that a sequent S′ subsumes S (S′ � S in notation), iff S′ can be inferred
from S by the structural rule of weakening. For example, the sequent Γ,Π ⇒ ∆,Λ

subsumes Γ ⇒ ∆.
Let Γ1, Π1, ∆1, Λ1 be obtained from Γ,Π,∆,Λ, respectively, by dropping atomic

members. If {Γ1} = {Γ1, Π1} and {∆1} = {∆1, Λ1}, then we say that the sequent
Γ,Π ⇒ ∆,Λ strongly subsumes the sequent Γ ⇒ ∆, denoted by (Γ,Π ⇒ ∆,Λ) ⊒
(Γ ⇒ ∆).

Definition 1. Given a proof-search tree, the upward path p from some sequent S in
the tree to S′ inclusive is called a (strong) derivation loop, [S − S′] in notation, iff:
1) the length of p is greater than 0, 2) S′ � S (S′ ⊒ S), and 3) there is no other
sequent in p, except S, which (strongly) subsumes S. The nodes marked with S and
S′ are called the base and terminal of [S − S′], respectively. The sequents S and S′

are called the base and terminal sequents of [S − S′], respectively. It is true that
λ(S) 6 λ(S′).

The expression (φUψ ⇒) denotes an application of (U ⇒) with the principal
formula φUψ.

Definition 2. A (strong) derivation loop [S − S′] is called a (strong) derivation
loop with the eventuality formula φUψ, iff: 1) S = θ(φUψ), Γ ⇒ ∆, 2) S′ =
Π, θ(φUψ), Γ ⇒ ∆,Λ, where θ = ∅ | ©, and 3) [S − S′] contains the right premise of
(φUψ ⇒), and does not contain the left premise of (φUψ ⇒).

Liet. matem. rink. Proc. LMS, Ser. A, 60:1–6, 2019

https://doi.org/10.15388/LMR.A.2019.14953

✐

✐

“LMD19_Alonderis” — 2019/11/13 — 11:12 — page 4 — #4
✐

✐

✐

✐

✐

✐

4 R. Alonderis, H. Giedra

Proposition 1. In any derivation loop with an eventuality formula φUψ, there is an

application of (φUψ ⇒) between any two applications of (©).

Proof. The proof follows from the fact that the succedent of the base of the loop has
the member φUψ or ©(φUψ), from item 3 of Definition 2, and from the shape of the
rule (©). ⊓⊔

Definition 3. Any maximal connected graph Υ in a backward proof-search tree V
such that each edge of Υ is in some derivation loop with an eventuality formula, is
called a connected component.

It is said that a connected component Υ has a common eventuality formula, iff all
derivation loops in Υ have a common eventuality formula φUψ. Such a formula is
called the eventuality formula of Υ .

A connected component is called strong, iff all derivation loops in it are strong.

Definition 4. Let Υ be a connected component. The path between sequents S1 and
S2 in Υ is denoted by p(S1, S2). Let [S1 − S′

1], . . . , [Sk − S′

k] be all the derivation
loops with eventuality formulas in Υ . A (Si ◦ S′

i) loop structure of Υ (i ∈ {1, . . . , k})
is obtained by merging Υ into a single path containing all the edges of Υ . It is
assumed that any two adjacent p(Sl, S

′

m) in the loop structure are connected with an
application of an unnamed rule.

Definition 5. A sequent S is called axiomatically derivable in LTSC, iff there exists
a backward proof-search tree V (S) such that each leaf of V (S) is an axiom.

Definition 6. A sequent S is called derivable in LTSC (⊢ S in notation), iff it is
axiomatically derivable or there exists a backward proof-search tree V (S) such that:

1) each leaf of V (S) is an axiom or a terminal sequent of a derivation loop
with some eventuality formula and 2) each connected component in V (S) has a
common eventuality formula.

Such a tree V (S) is called a derivation of S or a derivation tree. We use the notation
⊢V S to say that V (S) is a derivation of S.

A formula φ is called derivable in LTSC, iff ⊢⇒ φ.

4 Soundness and completeness of LTSC

Lemma 1. Let
S1 (S2)

S
(r)

be an arbitrary instance of an application of any LTSC derivation rule, except (©).
If M, ti 6|= S, then there is j ∈ {1, 2} such that M, ti 6|= Sj.

Proof. The proof of the lemma is straightforward. ⊓⊔

Lemma 2. For any instance of an application of (©) with the conclusion S and

premise S′, if M, ti 6|= S, then M, ti+1 6|= S′.

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

✐

✐

“LMD19_Alonderis” — 2019/11/13 — 11:12 — page 5 — #5
✐

✐

✐

✐

✐

✐

A derivation-loop method for temporal logic 5

Proof. The proof of the lemma is straightforward. ⊓⊔

Theorem 1. The calculus LTSC is sound: if ⊢ S, then |= S, where S is an arbitrary

sequent.

Proof. The theorem is proved by induction on the number d of the leaves of derivation
tree V (S) that are terminal sequents of derivation loops, making use of Lemmas 1, 2,
and Proposition 1. ⊓⊔

Theorem 2. The calculus LTSC is complete: if |= S, then ⊢ S, where S is an

arbitrary sequent.

Proof. We prove that 6⊢ S implies 6|= S. ⊓⊔

5 Concluding remarks

In the present paper, we have introduced and considered the Gentzen-type sequent
calculus LTSC. This calculus is sound (Theorem 1) and complete (Theorem 2) for
the considered logic PLTL. Hence an arbitrary sequent is derivable in LTSC if and
only if it is valid in PLTL. Let us consider, for example, the sequent

S : p,⊤U¬p⇒ ⊤U¬(p ⊃ ©p).

It is derived in LTSC as follows:

S1

S2

S3

S′ : p,⊤U¬p⇒ ⊤U¬(p ⊃ ©p)
(©)

©p, p,©(⊤U¬p) ⇒ ©

(

⊤U¬(p ⊃ ©p)
)

(⊃⇒)
p ⊃ ©p, p,©(⊤U¬p) ⇒ ©

(

⊤U¬(p ⊃ ©p)
)

(⇒ ¬)
p,©(⊤U¬p) ⇒ ¬(p ⊃ ©p),©

(

⊤U¬(p ⊃ ©p)
)

(⇒ U)
p,©(⊤U¬p) ⇒ ⊤U¬(p ⊃ ©p)

(U ⇒)
S : p,⊤U¬p⇒ ⊤U¬(p ⊃ ©p)

(Here S1 : p,¬p ⇒ ⊤U¬(p ⊃ ©p) is axiomatically derivable by backward applying
(¬ ⇒) to it; S2 : p,©(⊤U¬p) ⇒ ⊤,¬(p ⊃ ©p) is an axiom; S3 : p,©(⊤U¬p) ⇒
©

(

⊤U¬(p ⊃ ©p)
)

, p is an axiom; [S − S′] is the strong derivation loop with the
eventuality formula ⊤U¬p.) We obtain that the considered sequent S is valid in
PLTL.

References

[1] R. Alonderis. sequent calculi for propositional star free likelihood logic. Lit. Math. J.,
45(1):1–15, 2005.

[2] C. Baier and J.P. Katoen. Principles of Model Checking, The MIT Press Cambridge,
Massachusetts London, England, 2008.

[3] K. Brünnler and D. Steiner. Finitization for Propositional Linear Time Logic. Unpub-
lished, available on the Web, 2006

Liet. matem. rink. Proc. LMS, Ser. A, 60:1–6, 2019

https://doi.org/10.15388/LMR.A.2019.14953

✐

✐

“LMD19_Alonderis” — 2019/11/13 — 11:12 — page 6 — #6
✐

✐

✐

✐

✐

✐

6 R. Alonderis, H. Giedra

[4] M. Fisher, C. Dixon and M. Peim. Clausal temporal resolution. ACM Trans. Comp.

Logic, 2(1):12–56, 2001.

[5] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas. A cut-free and invariant-
free sequent calculus for PLTL. Lect. Not. Comp. Sci., 4646:481–495, 2007.

[6] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about

Systems. Cambridge University Press, 2012.

[7] N. Nide and S. Takata. Deduction systems for BDI logic using sequent calculus. In Proc.

AAMAS02, pp. 928–935, 2002.

[8] B. Paech. Gentzen-systems for propositional temporal logics. Lect. Not. Comp. Sci.,
385:240–253, 1988.

[9] R. Pliuškevičius. On saturated calculi for linear temporal logic. Lect. Not. Comp. Sci.,
711:640–649, 1993.

[10] R. Pliuškevičius and A. Pliuškevičienė. Decision procedure for a fragment of mutual
belief logic with quantified agent variables. Lect. Not. Art. Int., 3900:112–128, 2006.

[11] S. Schwendimann. A new one-pass tableau calculus for PLTL, Lect. Not. Comp. Sci.,
1397/1998:277–291, 1998.

[12] G. Sundholm. A completeness proof for an infinitary tense-logic. Theoria, 43:47–51,
1977.

[13] M. Valiev. On temporal logic of von Vright. In Soviet-Finland Colloquim on Logic,

Moscow, pp. 7–11, 1979 (in Russian).

[14] M.K. Valiev. Decision complexity of variants of propositional dynamic logic. In P. Dem-
binski (Ed.), Proc. MFCS’80, LNCS, Vol. 88. Springer-Verlag, Berlin, pp. 656–664, 1980.

[15] P. Wolper. Temporal logic can be more expressive. Inf. Control, 56:72–99, 1983.

[16] P. Wolper. The tableau method for temporal logic: an overview. Log. Anal., 28:119–136,
1985.

REZIUMĖ

Įrodymo ciklų metodas laiko logikai
R. Alonderis, H. Giedra

Literatūroje yra nagrinėjamos įvairios propozicinės tiesinės laiko logikos dedukcinės sistemos, tokios
kaip: Hilberto tipo skaičiavimai, Gentzeno tipo sekvenciniai skaičiavimai, rezoliucijų ir lentelių
metodai. Pjūvio taisyklės neturintys Gentzeno tipo sekvenciniai skaičiavimai leidžia efektyviai
atlikti atgalinę formulių ir sekvencijų įrodymo paiešką, siekiant patikrinti jų tapatų teisingumą.
Šiame straipsnyje pateikiamas pjūvio taisyklės neturintis Gentzeno tipo sekvencinis skaičiavimas
propozicinei tiesinei laiko logikai su operatoriumi “kol”. Parodoma, kad šis skaičiavimas yra korek-
tiškas ir pilnas nagrinėjamos logikos atžvilgiu.

Raktiniai žodžiai: laiko logika, sekvenciniai skaičiavimai, įrodymo ciklai.

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

	Introduction
	Syntax and semantics
	Syntax
	Semantics

	Sequent calculus LTSC for PLTL
	Soundness and completeness of LTSC
	Concluding remarks
	References

