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Abstract. This paper presents a Bayesian approach rooted algorithm oriented to the properties of
multi-objective optimization problems. The performance of the developed algorithm is compared
with several other multi-objective optimization algorithms. The approach is applied to the multi-
objective optimization of a batch stirred tank reactor based on spherical catalyst microreactors. The
microbioreactors are computationally modeled by a two-compartment model based on reaction–
diffusion equations containing a nonlinear term related to the Michaelis–Menten enzyme kinetics.
A two-stage visualization procedure based on the multi-dimensional scaling is proposed and applied
for the visualization of trade-off solutions and for the selection of favorable configurations of the
bioreactor.

Keywords: multi-objective optimization, multi-dimensional scaling, microreactor, reaction–
diffusion.

1 Introduction

Bioreactors, based on microparticles containing immobilized enzyme, permit a specific
substrates conversion to a certain product, a use of small volumes of samples and reagents,
reduced costs, short processing time and system compactness [18, 29]. For the develop-
ment and improvement of highly efficient and productive bioreactors usually a number of
physical and biochemical characteristics should be measured and considered [13, 18, 35].

With the aid of computer tools, the efforts for the design and optimization of bio-
processes and bioelectronic devices can be remarkably reduced [33]. The multi-objective
optimization of bioprocesses and biosystems has been successfully applied in different
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applications, particularly, for increasing the productivity and yield of bioreactors [22]
and for the optimal design of amperometric biosensors [5]. The importance of the multi-
objective optimization in chemical and biochemical engineering permanently increases
due to the development of new methods sustained by increased computational resources
[21, 32].

Multi-objective optimization tools provide a mechanism to obtain a certain number of
trade-off solutions, known as Pareto-optimal solutions [25]. Establishing an efficient ap-
proach to find a set of solutions with good trade-off among different objectives has a great
practical significance, as these allow engineers to gain insight into the key characteristics
of potentially good configurations before moving on to more detailed simulations and pi-
lot commercial tests [16,22,32]. Trade-off curves as a visualisation of trade-off solutions
are widely used for learning and making decisions when designing products [23].

Multi-objective optimization models are often developed on a basis of mathematical
modeling and numerical simulation of the processes [21, 22, 24, 32, 33]. The selection
of multi-objective optimization methods to tackle with those problems depends on the
mathematical model of the considered reactor [10, 24]. For the models of relatively low
computational complexity are appropriate metaheuristic algorithms, e.g., genetic algo-
rithms and particle swarm optimization [10, 12, 17, 19, 26].

However, the mathematical models of bioreactors based on an array of enzyme-loaded
particles are described by transient nonlinear partial differential equations and the nu-
merical solution often requires long lasting computations [2–4, 14, 34]. In such cases,
the objective functions of the respective optimization problem is so called expensive,
and Bayesian approach-based methods can be most appropriate for those optimization
problems [24, 25].

This paper presents a Bayesian approach rooted algorithm oriented to the properties of
multi-objective optimization problems [5]. The performance of the developed algorithm
is compared with several other multi-objective optimization algorithms. The approach
is applied to the multi-objective optimization of a batch stirred tank reactor based on
spherical catalyst microreactors [4]. The following three objectives were optimized: the
reactor operation time and the substrate and enzyme amounts. A two-stage visualization
procedure based on the multi-dimensional scaling is proposed and applied for the visu-
alization of trade-off solutions and for the selection of favorable configurations of the
bioreactor [37, 38].

2 Mathematical model

2.1 Model domain

A batch stirred tank reactor containing an array of identical spherical microbioreactors
placed is considered (see Fig. 1(a)). Assuming a uniform distribution of the microreactors,
a unit cell can be considered [3, 4]. An enzyme-loaded microreactor (MR) occupies the
center of the unit cell. The principal structure of the cross section of the modeled unit cell
is presented in Fig. 1(b).
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(a) (b)

Figure 1. Principal structure of a container containing spherical microreactors (a) and the cross section of
a modeled unit cell (b).

In the enzyme-loaded MR, the substrate (S) combines reversibly with an enzyme (E)
to form a complex (ES), then the complex dissociates into the product (P) and the enzyme
is regenerated [4, 35],

(1)E + S
kf−⇀↽−
kr

ES
kcat−→ E + P. (2)

Since in batch stirred tank reactors the reaction product is usually produced at the same
rate as the substrate is consumed, the reactor dynamics can be qualitatively expressed by
dynamics only of the substrate concentration [6, 13].

2.2 Governing equations

Assuming the symmetrical geometry of the MR and homogenized distribution of the
enzyme inside the porous MR, the mathematical model can be described in a one-dimen-
sional radial domain [4]. Applying the quasi-steady-state approximation of reaction (2),
the dynamics of the substrate concentration in MR is described by the following nonlinear
reaction–diffusion equation:

∂sr
∂t

= Dr∆sr −
kcate0sr
KM + sr

, 0 < r < r0, t > 0, (3)

where sr(r, t) is the concentration of the substrate in the MR, r and t stand for the space
and time, respectively, ∆ is the Laplace operator, r0 is the radius of the MR, Dr is the
effective diffusion coefficient, e0 is the total concentration of the enzyme, KM is the
Michaelis constant, and kcat is the turnover number [13, 35]. The product of kcat and e0
(Vmax = kcate0) refer to the maximal enzymatic rate [1, 35].
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Outside the MR, a thin diffusion shell adjacent to the MR surface remains at a constant
thickness h1 = r1 − r0 [35],

∂sd
∂t

= Dd∆sd, r0 < r < r1, t > 0, (4)

where sd(r, t) is the concentration of the substrate in the diffusion shell, and Dd is the
corresponding diffusion coefficient.

The substrate is assumed to be uniformly distributed throughout the outside of the
diffusion shell and its concentration depends only on time [7],

dsb
dt

= −1

q
Dd

∂sd
∂r

∣∣∣∣
r=r1

, t > 0, (5)

where sb(t) is the substrate concentrations in the convective shell, q is the ratio of the
volume of the convective enclosure (r1 6 r 6 r2) to the area of the outer surface of the
diffusion shell (r = r1),

q =
4π(r32 − r31)/3

4πr21
=
r32 − r31

3r21
. (6)

The thickness h2 = r2 − r1 of the convective shell indirectly corresponds to the density
as well as to the number of the microreactors placed in the container.

2.3 Initial and boundary conditions

The process starts (t = 0) when substrate of concentration s0 is injected into the reactor,

sr(r, 0) = 0, 0 6 r 6 r0, (7)

sd(r, 0) = 0, r0 6 r 6 r1, (8)

sb(0) = s0. (9)

The zero-flux boundary condition is used for the MR centre (t > 0),

Dr
∂sr
∂r

∣∣∣∣
r=0

= 0. (10)

The formal partition coefficient φ is used in the matching conditions to describe the
specificity in the concentration distribution, and the flux of the substrate through the
diffusion shell is assumed to be equal to the flux entering the MR surface (t > 0) [15,34],

Dr
∂sr
∂r

∣∣∣∣
r=r0

= Dd
∂sd
∂r

∣∣∣∣
r=r0

, sr(r0, t) = φsd(r0, t). (11)

The continuity of the substrate concentration is defined on the boundary between the
diffusion and convective shells (r = r1, t > 0),

sd(r1, t) = sb(t). (12)
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3 Multi-objective optimization problem

3.1 Problem statement

A minimization of time-cost is often sought by designers of biotechnological processes
[18,31]. The batch time required to achieve a certain conversion of the reactants is usually
assumed as the main characteristic of the process duration [13]. The reactor should convert
as much substrate as possible within the shortest possible time.

In some applications of bioreactors, enzymes are available only in microgram to mil-
ligram quantities and are very expensive [13, 35]. In such applications, the minimization
of the enzyme usage is of crucial importance. In the case of biocatalytic microreactor
shown in Fig. 1(b), the amount of the enzyme loaded into the MR is equal to the product
of the initial enzyme concentration e0 and the microreactor volume (Vr = 4πr30/3).
The amount of enzyme loaded into all the microreactors placed into the container equals
e0VrN , where N is the number of microreactors.

For the optimization, without losing generality, the volumetric density NV of mi-
croreators placed in the container (NV = N/V ) can be used instead of the total number
N = 3V/(4πr32) of microreactors. Thus, the amount of enzyme used inNV microreactors
(used per volume unit of the container) equals e0VrNV = e0VrN/V = e0 · 4πr30/3 ·
3/(4πr32) = e0r

3
0/r

3
2 . Accordingly, the amount of the substrate in the bulk per volume

unit of the container can be expressed as follows: sb · 4π(r32− r31)/3 · 3/(4πr32) = sb(r32−
r31)/r32 .

The optimal design of the batch reactor mathematically is stated as a multi-objective
optimization problem with three objective functions,

ϕ1(r0, e0, s0, r2) = t0.9 =
{
t: sb(t) = 0.1s0

}
,

ϕ2(r0, s0, r2) = 0.9so
r32 − (r0 + h1)3

r32
,

ϕ3(r0, e0, r2) =
e0r

3
0

r32
,

(13)

where ϕ1(·) stands for the batch time t0.9 required to convert 90% of the initial amount
of the substrate [4], ϕ2(·) is the amount of the substrate per volume unit converted to
the product, and ϕ3(·) is the total amount of the enzyme used per volume unit of the
reactor. The first and third objectives should be minimized while the second one should
be maximized.

The appropriate intervals of the decision variables for the optimal design problem are
given in Table 1. Assuming the highly stirred reactor, the thickness h1 of the diffusion
shell can be assumed as a constant parameter [3, 4]. The radius r2 of the unit cell can be
expressed via (independent) decision variables r0, h2, and the parameter h1 as follows:
r2 = r0 + h1 + h2.

Additionally, only reactor configurations with reasonable batch time were considered.
If the time required to convert 90% of the initial amount of the substrate is less than
the time limit Tmax = 104 seconds (i.e., t0.9 6 104 s), the reactor configuration was

Nonlinear Anal. Model. Control, 24(6):1019–1033
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Table 1. Decision variables x = (x1, x2, x3, x4)T for the bioreactor
design problem.

Variable Description Range Units
x1 r0 MR radius [10−4, 10−3] m
x2 h2 Convective shell thickness [10−4, 10−3] m
x3 e0 Enzyme concentration [10−8, 10−4] M
x4 s0 Substrate concentration [10−5, 10−1] M

considered as acceptable [4, 13, 35]. Otherwise the problem solution was excluded from
a further analysis.

The following typical values of the model parameters were kept constant [1,11,13,35]:

Dd = 6 · 10−10 m2s−1, Dr = 2 · 10−10 m2s−1, φ = 0.7,

h1 = 6 · 10−5 m, KM = 10−2 M, kcat = 25 s−1.
(14)

3.2 Optimization algorithm

A main challenge of the three-objective (13) optimization problem is the computational
complexity of the objective function ϕ1(x), the computation of which includes the nu-
merical integration of the transient nonlinear governing equations [4]. Because of the
nonlinearity of the initial boundary value problem (3)–(12), the bioreactor action was
simulated numerically using the finite difference method with explicit scheme [3, 4].
Although explicit difference schemes have the strict stability limitations, these schemes
have a convenient algorithm of the calculation and are simple for programming [8]. The
computation of a single value of ϕ1(x) using computer with Intel Xeon X5650 2.66GHz
processor can take up to 10 minutes.

For the solution of applied black-box multi-objective optimization prevail meta-heu-
ristic methods [12, 30]. However, the objective functions of the considered problem are
computationally expensive, and the solution of this problem by a meta-heuristic method
would take prohibitive long computing time. For such, so called expensive, objective
functions, Bayesian methods proved to be efficient [25]. On the other hand, the inherent
complexity of standard implementations of Bayesian methods limits the number of values
of the objective functions which can be processed. The modest number of iterations
seems sufficient for the solution of various applied problems, e.g., up to 60 evaluations
of values of the objective functions in [24], 100 function evaluations in [27], and 200
functions evaluations in [20]. However, such a number of function values is not sufficient
for the appropriate representation of the Pareto front of the considered three-objective
optimization problem. Therefore, a partition based implementation of the P-algorithm was
implemented. The P-algorithm is a Bayesian approach rooted algorithm defined by the
maximum probable improvements at each iteration. The improvement means a correction
of the approximation of the Pareto front, and the improvement probability is computed
with respect to the accepted statistical model of objective functions. The developed imple-
mentation is based on the theoretical multi-objective method proposed in [36] and adapts
the implementation of the single-objective P-algorithm proposed in [9]. The implementa-
tion of the P-algorithm in [9] is based on the rectangular partition of the feasible region,
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where a hyper-rectangle for the bisection is selected according to maximum probability
of the improvement of the estimate of global minimum. In the newly developed multi-
objective generalization, the selection criterion is the probability of the correction of the
approximation of the Pareto front. The computational burden of the proposed algorithm
is essentially lower than that of standard implementations of Bayesian algorithms. The
further reduction of computational burden is planned by the replacing the rectangular
partition with the simplicial partition; see, e.g., [39].

The optimization algorithm, as well as the bioreactor simulation algorithm, was im-
plemented in C++ [4, 5, 28]. The computing time referenced below is measured experi-
menting using computer with Intel Xeon X5650 2.66GHz processor.

3.3 Numerical example

The following bi-objective minimization problem is solved to illustrate the performance
of the developed algorithm by comparison its testing results with the testing results of
several other multi-objective optimization algorithms:

min
x∈[0,1]2

f(x), f1(x) = (x1 − 1)x22 + 1, f2(x) = x2. (15)

The problem is considered hard because of non-convexity, and of the coincidence
of the set of Pareto optimal decisions with the boundary of the feasible region. Let us
note that the Pareto optimal solution (1, 0)T corresponds to the set of optimal decisions
PD = {x: 0 6 x1 6 1, x2 = 0}. The computed approximation of the Pareto front and
the corresponding set of decisions are shown in Fig. 2. In the right-hand side of Fig. 2, the
rectangular partition of the feasible region is shown at the vertices of which are computed
the values of the objective functions.

(a) (b)

Figure 2. Spaces of objectives (a) and variables (b) illustrating the results optimizing the problem (15).

Nonlinear Anal. Model. Control, 24(6):1019–1033

https://doi.org/10.15388/NA.2019.6.10


1026 A. Žilinskas et al.

Table 2. Summary of the results of numerical examples.

Method NFE ε NGEN NP HV UD
Genetic algorithm 500 500 104 0.312 1.116
Monte Carlo 500 67 0.300 1.277
Nonuniform covering 515 0.0675 29 0.306 0.210
Multiobjective trisection 498 0.0630 68 0.308 0.175
Proposed algorithm 500 45 0.333 0.129

The performance metrics of the proposed algorithm are presented in Table 2, where
the performance of metrics of several other algorithms are also presented for compari-
son [25]. The following notation is used in Table 2: NFE-number of evaluations of the
objective functions, ε – tolerance of the termination condition, NGEN-number of genera-
tion in the termination criterion of the genetic algorithm, HV-hypervolume computed with
respect to the reference point (1, 1)T, NP-number of found non-dominated solutions, UD-
uniformity of distribution of points approximating the Pareto front. For the convenience
of readers the definition of the metric UD follows [25]:

UD =

√√√√ k∑
i=1

(di − d̄)2, d̄ =
1

k

k∑
i=1

di,

where k is the number of found non-dominated points, and di is the minimum distance
from the point of the set of non-dominated points indexed by i to the other point of this
set, i = 1, . . . , k.

3.4 Solution of the three-objective optimization problem

The considered optimization problem is three-objective (13) with four decision variables
(Table 1). The variables in the problem description were defined in physical units. The
equations of the mathematical model are well conceivable when variables are presented
in natural units, however, the feasible values of variable in this case differ in several
orders. Since the transition to the logarithmic scale facilitates the proper partitioning of
the feasible region by the considered optimization algorithm, the variables should be re-
scaled. The new variables are: x = (x1, . . . , x4)T, x1 = lg r0, x2 = lg e0, x3 = lg s0,
and x4 = lg h2, and the potential feasible region is

A = {x: − 4 6 x1, x4 6 −3, −8 6 x2 6 −4, −5 6 x3 6 −1}. (16)

The optimization algorithm uses internal scales, where the variables vary in the inter-
val [0, 1]. We used the term “potential” in the definition ofA since some infeasible subsets
of A remain not defined explicitly. The infeasibility is determined during the simulation
of the bioreactor action, meaning that the reactions in bioreactor are not completed during
the time limit Tmax, i.e., t0.9 > Tmax. Since a returned undefined function value can
crash optimization process, the algorithm computing the objective functions was stopped
by reaching the predefined bioreactor batch time t0.9 = Tmax and returned the values of
the objective functions corresponding to the maximum feasible simulation time.
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Figure 3. The representation of Pareto front.

We expected to obtain reasonable approximation of the Pareto front after 1000 evalua-
tions of the objective functions. The computations continued 4342 minutes. However, 351
computations out of thousand were indicated as infeasible. The number of non-dominated
points was equal to 124. The corresponding representation of the Pareto front is shown in
Fig. 3.

The general shape of Pareto front shown in Fig. 3 is not very helpful for making
a decision. An interactive extension of the optimization algorithm also does not seem
promising because of long lasting computations of the objective functions.

The considered optimization problem is difficult partly due to the implicitly infeasible
points. The description of a region of the infeasible points could increase the optimiza-
tion efficiency by avoiding the redundant time consuming computations. Methods of the
visualization of multi-dimensional data were shown helpful in the solution of similar
problems [5, 37, 38].

The location of the infeasibility region in the hypercube can be understood by the
analysis of the two-dimensional images of the infeasible points with respect to the im-
age of the vertices of the hypercube. Therefore, a visualization method is needed to
produce an image with clearly expressed structural properties of the hypercube. The
multi-dimensional scaling (MDS) based visualization meets these requirements [37, 38].
However, the vertices constitute only a small fraction of the visualization data (351 in-
feasible points, 124 Pareto optimal solutions, and 16 vertices), therefore, the original
structure of the set of vertices is not hold in the image of whole set of data. Since we
cared about the position of the points in question with respect to vertices but not about
the mutual distances between them, we have applied a two-stage visualization procedure.
First, an image of the set of vertices complemented with the average of the infeasible
vectors was computed by the hybrid algorithm of MDS [38]. The sequential MATLAB
implementation of the MDS algorithm was used as suitable for the modest dimensionality
of the data. In the second stage, the image z of an infeasible point (or an optimal Pareto

Nonlinear Anal. Model. Control, 24(6):1019–1033
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Figure 4. Visualization of the distribution of infeasible points (indicated by ·), Pareto optimal solutions (+) and
vertices of the hypercube (I).

solution) x was defined as follows:

z = arg min
t∈R2

16∑
i=1

(
‖t− zi‖ − ‖x− vi‖

)2
,

where vi denote the vertices of the hypercube, and zi denote the two-dimensional images
of vertices computed by the algorithm of multi-dimensional scaling, i = 1, . . . , 16. The
visualization results are presented in Fig. 4. The triangle markers indicate the images of
vertices: left pointing triangles indicate the vertices with x2 = −8, and right pointing
triangles indicate vertices with x2 = −4. The whole image is translated and rotated to
identify the image of the vertex (−4,−8,−5,−4)T with the point (0, 0)T (indicated by
a pentagram), and to place the image of the vertex (−3,−4,−1,−3)T on the bisector line
(indicated by asterisk).

Let us note the closeness of the images of the infeasible points (red crosses in Fig. 4)
to the vertices (indicated by the left pointing triangles) the third coordinate of which is
equal to −8. Based on this observation we can guess that the infeasibility is related to the
small enzyme concentration. Contrary, the images of the Pareto optimal solutions (blue
plus signs) are closer to the images of vertices, the third coordinate of which is equal to
−4. Consequently, we can guess that the enzyme concentration of the majority of Pareto
optimal decisions is distant from the lower bound of the enzyme concentration given in
Table 1, and that only a few Pareto optimal decisions are closely located to the infeasible
points.

3.5 Reformulation of the problem

Graphical presentation of the Pareto front of bi-objective optimization problems excel-
lently aids decision makers to compare quantitatively the available alternative before
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decision making. However, in the case of three objective problems, similar 3D graphs are
useful rather for a qualitative illustration of the Pareto front than for the tradeoff between
potential decisions. Fortunately, the considered problem (13) and (16) can be reduced
to several bi-objective problems. The structure of the considered optimization problem
is favorable to reformulation which not only reduces the number of objectives but also
the number of variables. The idea is following. Let fix several favorable values of third
objective function, and compute and draw the Pareto fronts of the modified, bi-objective,
optimization problems. An appropriate solution can be found by interpolating between
the drawn fronts.

Let us reformulate the original optimization problem by introducing a new indepen-
dent variable r2. h2 becomes dependent and is expressed through variables r2, r0 and
constant parameter h1, h2 = r2 − r0 − h1. Instead of functions φ(·), we will consider
their (decimal) logarithms

min
x∈A

F (x), F (x) =
(
f1(x), −f2(x), f3(x)

)T
,

f1(x) = lgϕ1(x),

f2(x) = lgϕ2(x) = lg 0.9 + x3 + lg
(
103x4 −

(
10x1 + h1

)3 )− 3x4,

f3(x) = lgϕ3(x) = x2 + 3x1 − 3x4,

(17)

where x1 = lg r0, x2 = lg e0, x3 = lg s0 and x4 = lg r2.
The feasible region is expressed by the bounds defined for the original independent

variables,

A =
{
x: −4 6 x1 6 −3, −8 6 x2 6 −4, −5 6 x3 6 −1,

lg(2.6)− 4 6 x4 6 lg(2.06)− 3
}
.

Let us fix an appropriate value of f3(·), E = f3(x). The last equation of (17) can be
rewritten in the form

x4 = x1 +
x2 − E

3
,

meaning that the number of independent variables can be reduced to three, and the opti-
mization problem (17) can be reduced to the following bi-objective parametric minimiza-
tion problem:

min
x∈X

F (x), F (x) =
(
f1(x), −f2(x)

)T
, x = (x1, x2, x3)T, (18)

where the feasible region X of three independent variables is defined as follows:

X =

{
x: 4 6 x1 6 −3, −8 6 x2 6 −4, −5 6 x3 6 −1,

E

3
− 4 + lg(2.6) 6 x1 +

x2
3

6
E

3
− 3 + lg(2.06)

}
.
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The reformulated problem is more convenient for an analysis since the number of
variables and objectives is smaller than in the original problem. The time-consuming com-
putation of the first objective f1(·) remains the main difficulty of the problem. However,
an acceptable solution can be achieved with smaller number of the evaluations of the
objective functions because of the reduced dimensionality.

3.6 Analysis of optimal solutions

Three multi-objective optimization problem (18) was solved with the following three
values of the parameter E: −7, −6.5, −6, where E denotes a fixed value of f3(·). These
values of E corresponds to the following relatively high values of the enzyme amount ϕ3

required per volume unit of the reactor: 10−7, 10−6.5 and 10−6 M.
The multi-objective optimization algorithm used for the three objective optimization

problem (13) was also used for the reduced optimization problem (18). The termination
condition was defined by the budget of computations of the objective functions equal to
500. The obtained Pareto fronts are presented in Fig. 5. One can see in Fig. 5 not fully
smooth curves since the global optimization algorithm stops not precisely reaching the
Pareto front. The specifications would be possible using a local minimization algorithm,
however, this would require long lasting computations needed for the simulation of the
reactor action.

The optimization results presented in Fig. 5 can be used for the evaluation of a poten-
tial configuration of a bioreactor (trade-off solution). For example, a bioreactor with the
following parameters could be of interest: the batch time ϕ1 = t0.9 = 3600 s, the amount of
the reduced substrate ϕ2 = 40 mM with the minimum amount of enzyme of ϕ3 = 0.1 µM
(E = −7). The values of ϕ2(x) on the Pareto fronts corresponding to the computed
values of ϕ1(x) closest to 3600 s are: 61.72 mM for the Pareto front with E = −6.5
(ϕ3 = 10−6.5 M), and 42.27 mM for the Pareto front with E = −7 (ϕ3 = 10−7 M).
The other parameters of these two solutions are presented in the first two lines of Table 3.

Figure 5. The Pareto fronts of the problem for the following three values of objective ϕ3: 10−7 (E = −7),
10−6.5 (E = −6.5) and 10−6 (E = −6) M.
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Table 3. Data and results of a candidate trade-off solution.

E ϕ1, s ϕ2, mM ϕ3, µM r0, µm h2, µm e0, µM s0, mM
−6.5 3618 61.7 0.32 423 235 1.54 98.6
−7 3633 42.2 0.1 524 163 0.29 89.9

−6.75 3625 51.9 474 199 0.92 94.2
−6.60 3100 52.1 0.25

Since the desirable value of ϕ2(x) is close to the average of the corresponding values
at the considered Pareto fronts it can be expected that the average of input parameters
of these two versions of bioreactors appropriately approximates the desirable version.
The average values of the parameters are presented in the third line of Table 3, and the
computed values of the objective functions are presented in the fourth line of this table.
Indeed, the computed values of the objectives are quite close to the desirable ones. The
neighbourhood of the obtained solution can be further analyzed either by the methods of
visualization or specified by a local optimization method.

The Pareto fronts computed for the reformulated two objective optimization problem
with several fixed values of f3(·) facilitate the analysis of trade-off solutions and aids
a designer to determine an optimal configuration of a bioreactor.

4 Conclusions

A multi-objective optimization can be successfully used for the development of efficient
and productive batch stirred tank reactors based on catalyst particles. The development
and improvement of such bioreactors involve consideration of the simultaneous opti-
mization of several objectives, some of whose are conflicting. The mathematical and
corresponding numerical models of a bioreactor can be used for the evaluation of the
objectives.

The stated problem of the multi-objective optimization of bioreactors is difficult to
solve due to relatively high computational complexity of the objectives as the solutions of
transient nonlinear reaction–diffusion problems. A Bayesian approach rooted algorithm
defined by the maximum probable improvements at each iteration is most appropriate for
solving the stated optimization problem (Table 2). A two-stage visualization procedure
based on the multi-dimensional scaling is a suitable method for the visualization of trade-
off solutions and the selection of favorable configurations of the bioreactor (Fig. 4).

For clearer analysis and graphical representation of the trade-off solutions, the multi-
objective optimization problem can be reduced to several bi-objective problems with
several fixed values of a certain objective, and the interpolation can be used for calculating
an appropriate solution (Fig. 5, Table 3).
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