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Abstract. This paper presents a one-dimensional-in-space mathematical model of a bacterial self-
organization in a circular container along the contact line as detected by quasi-one-dimensional bi-
oluminescence imaging. The pattern formation in a luminous Escherichia coli colony was modeled
by the nonlinear reaction-diffusion-chemotaxis equations in which the reaction term for the cells is
a logistic (autocatalytic) growth function. By varying the input parameters the output results were
analyzed with a special emphasis on the influence of the model parameters on the pattern formation.
The numerical simulation at transition conditions was carried out using the finite difference tech-
nique. The mathematical model and the numerical solution were validated by experimental data.

Keywords: reaction-diffusion, chemotaxis, pattern formation, mathematical modeling, whole-cell
biosensor.

1 Introduction

The survival of many microscopic as well as large organisms often depends on their
ability to move within an environment by responding to internal and external signals.
Microorganisms respond to different chemicals found in their environment by migrating
either toward or away from them. The directed movement of microorganisms in response
to chemical gradients is called chemotaxis [1]. Chemotaxis plays crucial role in a wide
range of biological phenomena. Within the embryo, chemotaxis affects avian gastrulation
and patterning of the nervous system. The same mechanisms are utilized during cancer
growth, allowing tumour cells to invade into healthy tissue or drive new blood vessel
growth (angiogenesis) [2]. Although chemotaxis has been observed in many bacterial
species, Escherichia coli is one of the mostly studied examples. E. coli respond to the
chemical stimulus by alternating the rotational direction of their flagella [1].
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Bacterial species including E. coli have been observed to form various patterns under
different environmental conditions [3–5]. Populations of bacteria are capable of self-
organization into states exhibiting strong inhomogeneities in density [6, 7].

Starting from the fifties various mathematical models have been successfully used
as important tools to study the mechanisms of chemotaxis [8]. The patterns of bac-
terial chemotaxis have been studied theoretically on the basis of Patlak–Keller–Segel
model [9–11]. A comprehensive review on the mathematical modeling of chemotaxis
has been presented by Hillen and Painter [12].

Recently, the spatiotemporal patterns in the fluid cultures of E. coli have been ob-
served by employing lux-gene engineered cells and a bioluminescence imaging tech-
nique [13, 14]. However, the actual mechanisms governing the formation of biolumi-
nescence patterns remained unclear with respect to the investigations into bacterial self-
organization and transport. Over the last decade, lux-gene engineered bacteria have been
successfully used to develop whole cell-based biosensors [15].

In this paper, we investigate the bacterial self-organization in a small circular container
along the contact line as detected by quasi-one-dimensional bioluminescence imaging.
The aim of the current study was to develop a mathematical model describing patterns
of bioluminescence in the fluid cultures of E. coli. Assuming that the luminescence in
experiments is proportional to the cell density, the pattern formation in a luminous E. coli
colony was modeled by the nonlinear reaction-diffusion-chemotaxis equations in which
the reaction term for the cells is a logistic (autocatalytic) growth function. Due to the
accumulation of luminous cells near the contact line, the essentially three-dimensional
processes were mathematically described in one-dimensional domain (quasi-one dimen-
sional ring). By varying the input parameters the output results were analyzed with a
special emphasis on the influence of the model parameters on the pattern formation. The
numerical simulation at transition conditions was carried out using the finite difference
technique [16]. The mathematical model and the numerical solution were validated by
experimental data.

2 Mathematical modeling

A representative class of mathematical models based on advection-reaction-diffusion equa-
tions has been developed for modeling of pattern formation in bacterial colonies [3,4,17–
24]. The system of coupled partial differential equations introduced by Keller and Segel
remains among the most widely used [9, 10, 12].

2.1 Governing equations

According to the Keller and Segel approach, translating the main biological processes into
a mathematical model leads to a system of two conservation equations [9, 10, 20],

∂n

∂t
= ∇ (Dn∇n− h(n, c)n∇c) + f(n, c),

∂c

∂t
= ∇ (Dc∇c) + gp(n, c)n− gd(n, c)c, x ∈ Ω ⊂ Rn, t > 0,

(1)
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where x and t stand for space and time, n(x, t) is the cell density, c(x, t) is the chemoat-
tractant concentration, Dn and Dc are the diffusion coefficients usually assumed to be
constant, f(n, c) stands for cell growth and death, h(n, c) is the chemotactic sensitivity, gp
and gd describe the production and degradation of the chemoattractant [9]. Instantiating f ,
gp, gd and h with concrete expressions leads to particular models for chemotaxis [12,25].

The function h(n, c) controls the chemotactic response of the cells to the chemoat-
tractant. The form of h(n, c) ultimately depends on the sensitivity of cells at different
concentrations of the attractant [26]. In the simplest form, the sensitivity of cells to
attractant is assumed to be independent of the chemoattractant concentration, i.e. h(n, c)
is constant, h(n, c) = k1. Since the bacterial current flow declines at low chemical
concentrations and saturates at high concentrations, Lapidus and Schiller derived the
following expression of the chemotactic sensitivity for E. coli: h(n, c) = k1/(k2 + c)2,
where k1 and k2 are constants [17, 20, 27].

The cell growth is usually assumed to be logistic, i.e. f(n, c) = k3n(1−n/n0), where
k3 is the growth rate of the cell population, and n0 is the cell density under steady-state
conditions. k3 and n0 are usually constant [3].

A number of chemoattractant production functions have been used in chemotactic
models [12]. Usually, a saturating function of the cell density is used indicating that, as the
cell density increases, the chemoattractant production decreases. The Michaelis–Menten
function is widely used to express the production rate, gp(n, c) = k4/(k5 + n) [9, 18, 26].
Tyson et al. [20] introduced a n2 dependence for sufficiently rapid increase in production
of attractant when modeling E. coli pattern formation, gp(n, c) = k4n/(k5 + n2). The
degradation or consumption of the chemoattractant is typically linear, gd(n, c) = k6,
where k6 is a constant. Values of k4, k5 and k6 are not exactly known [20].

When modeling the bacterial self-organization in a circular container along the contact
line [13, 14], the mathematical model can be defined on a one dimensional space - the
circumference of the vessel. Inserting the concrete expressions of f , gp, gd and h to
system (1) leads to the governing equations of the cell kinetics model with nonlinear
signal kinetics and signal dependent sensitivity,

∂n

∂t
= Dn∆n−∇

(
k1n

(k2 + c)2
∇c
)

+ k3n

(
1− n

n0

)
,

∂c

∂t
= Dc∆c+

k4n
p

k5 + np
− k6c, x ∈ (0, l), t > 0,

(2)

where ∆ is the Laplace operator formulated in the one-dimensional Cartesian coordinate
system, p stands for the production dependence order of attractant, p equals 1 or 2, and l
is the length of the contact line, i.e. the circumference of the vessel (a circle). Assuming
R as the vessel radius, l = 2πR, x ∈ (0, 2πR).

2.2 Initial and boundary conditions

We assume a possibly non-uniform initial distribution of cells as well as of the chemoat-
tractant,

n(x, 0) = n0x(x), c(x, 0) = c0x(x), x ∈ [0, l], (3)
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where n0x(x) and c0x(x) stand for the initial (t = 0) cell density and the chemoattractant
concentration, respectively.

For the bacterial simulation on a continuous circle of the length l of the circumference,
we apply the following boundary conditions (t > 0):

n(0, t) = n(l, t), c(0, t) = c(l, t),
∂n

∂x

∣∣∣
x=0

=
∂n

∂x

∣∣∣
x=l

,
∂c

∂x

∣∣∣
x=0

=
∂c

∂x

∣∣∣
x=l

. (4)

2.3 Dimensionless model

In order to define the main governing parameters of the mathematical model (2)–(4) [5,
12, 26], a dimensionless mathematical model has been derived by setting

u =
n

n0
, v =

k5k6c

k4n
p
0

, t∗ =
k6t

γ
, x∗ =

√
k6
Dcγ

x, D =
Dn

Dc
,

(5)
χ =

k1k4n
p
0

k22k5k6Dc
=

k1α

k2Dc
, r =

k3
k6
, α =

k4n
p
0

k2k5k6
=

k4β

k2k6
, β =

np0
k5
.

Dropping the asterisks for algebraic simplicity, the dimensionless governing equations
then become

∂u

∂t
= D

∂2u

∂x2
− ∂

∂x

(
χu

(1 + αv)2
∂v

∂x

)
+ γru(1− u),

∂v

∂t
=
∂2v

∂x2
+ γ

(
up

1 + βup
− v
)
, x ∈ (0, 1), t > 0,

(6)

where u is the dimensionless cell density, v is the dimensionless chemoattractant concen-
tration, α stands for the signal-dependent (receptor) sensitivity, β stands for saturating of
the signal production, and γ stands for the spatial and temporal scale.

For the dimensionless simulation the initial conditions were

u(x, 0) = 1 + ε(x), v(x, 0) = 0, x ∈ [0, 1], (7)

where ε(x) is a 20% random uniform spatial perturbation.
The boundary conditions (4) transform to the following dimensionless equations

(t > 0):

u(0, t) = u(1, t), v(0, t) = v(1, t),
∂u

∂x

∣∣∣
x=0

=
∂u

∂x

∣∣∣
x=1

,
∂v

∂x

∣∣∣
x=0

=
∂v

∂x

∣∣∣
x=1

. (8)

The dimensionless model (6)–(8) involves six parameters (D, χ, r, α, β and γ) while
the corresponding dimensional model (2)–(4) contains even ten (Dn, Dc, k1, k2, . . . , k6,
n0 and l) parameters.

According to the classification of chemotaxis models [12] the dimensionless model
of the pattern formation is a combination of the signal-dependent sensitivity (M2a), the
saturating signal production (M6) and the cell kinetics (M8) models.
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3 Numerical simulation

The mathematical model (2)–(4), as well as the corresponding dimensionless model (6)–
(8), of the bacterial self-organization has been defined as an initial boundary value prob-
lem based on a system of nonlinear partial differential equations. There exist theoretical
methods which may yield helpful analytical results into the behavior of the system, e.g.,
linearization, stationary solutions, homogeneous solutions, stability analysis [5,11,28,29].
However, in the general case, because of the nonlinearity of the problem, no analytical
solutions could be derived [5, 11, 28, 29]. Hence the numerical simulation of the bacterial
self-organization was used.

The simulations were carried out using the finite difference technique [16]. To find
a numerical solution of the problem we introduced a uniform discrete grid with 250
points and the dimensionless step size 0.004 in the space direction, 250 × 0.004 = 1.
A constant dimensionless step size 10−6 was also used in the time direction. An explicit
finite difference scheme has been built as a result of the difference approximation [16,30].
The digital simulator has been programmed by the authors in JAVA language [31].

Assuming that the luminescence in experiments is proportional to the cell density, the
mathematical model and the corresponding numerical model were validated by computa-
tional simulation of bioluminescence patterns observed in small circular containers made
of glass [14]. Fig. 1 shows typical top view bioluminescence images of bacterial cultures
illustrating an accumulation of luminous bacteria near the contact line. In general, the
dynamic processes in unstirred cultures are rather complicated and need to be modeled
in three dimensional space [13, 14, 32, 33]. Nevertheless, the accumulation of luminous
cells near the contact line implies that the essentially three-dimensional processes may
be approximated in one dimension (quasi-one dimensional rings in Fig. 1). The typical
space-time plot of quasi-one-dimensional bioluminescence intensity is shown in Fig. 2.

Fig. 1. Top view bioluminescence images of the bacterial cultures in the cylindrical
vessel at different time moments: 5 (a), 20 (b), 40 (c), 60 (d) and 90 (e) min [14].

The patterns of bioluminescence observed during the long run experiments can be
characterized by the formation of meandering traveling waves and relative stability of the
corresponding wave number (number of waves along the contact line). The characteristic
wave speed of the bioluminescent waves is ∼ 7µm/s. Qualitatively, the observed space-
time plot exhibits the so-called merging and emerging dynamics in chemotaxis [12].

By varying the model parameters the output results were analyzed with a special
emphasis on simulating a spatiotemporal pattern similar to the experimentally obtained
pattern shown in Fig. 2. Fig. 3 shows the results of the informal pattern fitting.
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Fig. 2. Space-time plot of bioluminescence measured in a circular container along the
contact.

Fig. 3. Simulated space-time plot of the dimensionless cell density u (a), the
chemoattractant concentration v (b) and the corresponding values ū and v̄ averaged

on circumference of the vessel (c) at values defined in (10).
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Fig. 3 presents numerically simulated space-time plots of the dimensionless cell den-
sity u (a), the chemoattractant concentration v (b). The dynamics of the corresponding
values of ū and v̄ averaged on circumference of the vessel are depicted in Fig. 3(c),

ū(t) =

1∫
0

u(x, t)dx, v̄(t) =

1∫
0

v(x, t)dx . (9)

The dynamics of the bacterial population was simulated at the following values of the
model parameters:

D = 0.1, χ = 9.2, r = 1, α = 0.7, β = 1.4, γ = 625, p = 2 . (10)

Values (10) of the model parameters were determined experimentally by changing
input parameters and aiming to achieve a meandering wave pattern comparable to the
one shown in Fig. 2. Taking into account the transformation (5) of the variables, we can
determine values of the dimensional parameters. Having the value of k6 we could have a
direct relation between the dimensional time and the dimensionless time. Unfortunately,
no precise value of k6 is known [5, 25]. Assuming the duration (250 min = 15000 s) of
a physical experiment correlates with the dimensionless duration (0.5), we obtain k6 =
0.5×625/15000 = 0.02 s−1. Having this estimation and the relation between the dimen-
sional (l = 25 mm) and the dimensionless (1) length, we found the diffusion coefficients,
Dc = k6l

2/γ = 0.02 × 2.52/625 = 2 × 10−4cm2/s, Dn = 0.1Dc = 2 × 10−5cm2/s.
This value of the diffusion coefficient Dn for E. coli cells in a liquid medium is notably
greater than that (2−4×10−6cm2/s) determined by Berg and Turner [34]. However, it fits
perfectly with the estimate (2.2± 0.15× 10−5cm2/s) obtained by Perry [21]. According
to Lin et al. [35], the diffusion coefficient of E. coli can be even several times greater. So,
values (10) seems to be admissible for the simulation of the pattern formation in an E. coli
colony. A more detailed interpretation of the parameters of the model will be given in the
biological-biochemical literature (Simkus and Baronas, in preparation).

Due to a relatively great number of model parameters, there is no guarantee that the
values (10) lead to the best agreement of simulation results with the pattern shown in
Fig. 2. In multiple simulation runs, very similar patterns were achieved at different values
of the parameters. The linearization and the stability analysis of homogenous solutions of
the chemotaxis-diffusion equations (Keller–Segel model) showed similar effects [11, 28,
29]. Often, an increase in one parameter can be compensated by decreasing or increasing
another one. Because of this, it is very important to investigate the dependence of the
pattern formation on the model parameters.

4 Results and discussion

By varying the input parameters the output results were analyzed with a special emphasis
on the influence of the model parameters on the spatiotemporal pattern formation in the
luminous E. coli colony.
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4.1 The significance of the signal-dependent sensitivity

The chemotactic response to chemical gradients is mediated through the external detec-
tion of a signal and its subsequent transduction to internal pathways [5]. A common
feature of many chemotaxis models is to build some of this complexity into the equa-
tions through a signal-dependent chemotactic sensitivity function [12]. One of the most
commonly utilized form is the “receptor” form, where the dimensionless chemotactic sen-
sitivity is expressed by χ/(1 + αv)2. According to this approach, at high concentrations
of v, the receptors may become fully occupied and the cell is unable to further resolve
a gradient [12, 36]. Nevertheless, many authors use the constant chemotactic sensitivity,
i.e. α = 0 [12, 18, 26].

In order to investigate the dependence of the signal-dependent sensitivity on the pat-
tern formation, the space-time plots were simulated at the different values α adjusting
other parameters (mainly, χ) so that to hold the pattern shown in Fig. 3(a). The simulated
patterns are depicted in Fig. 4.

Fig. 4. Space-time plots of the dimensionless cell density u simulated at different values
of α and χ: α = 0, χ = 6.2 (a); α = 0.35, χ = 7.7 (b); α = 0, χ = 9.2 (c). Values of

other parameters are as defined in (10).

Fig. 4 shows how a reduction in value of α can be compensated by decreasing in χ.
The complete reduction of α-parameter (α reduces from 0.7 to 0) and the decrease in
χ-value from 9.2 to 6.2 led to a change in the pattern from Fig. 3(a) to Fig. 4(a). When
comparing the patterns shown in these figures, one can see a noticeable difference only in
the initial stage of the pattern formation (up to t ≈ 0.04). Thus, a constant function of the
chemotactic response (h(n, c) in (2)) can be applied in modeling of the pattern formation
in a population along the contact line in a circular container.

The linear dependence of signal-dependent sensitivity on the pattern formation can
be also noticed when comparing the space-time plot simulated at intermediate values of
α and χ (α = 0.35, χ = 7.7, Fig. 4(b)) with the corresponding plots simulated at the
marginal values of these parameters, (α, χ = (0.7, 9.2) (Fig. 3(a)) and (α, χ) = (0, 6.2)
(Fig. 4(a)). All these three patterns look similar.

Fig. 4(c) shows that, in general, the reduction of α noticeably effects the pattern
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formation if it is not compensated by decreasing in χ. Nevertheless, the properly choosing
of χ-value allows to use the zero value of α (Figs. 3(a) and 4(a)).

4.2 The effect of the attractant production rate

As pointed out in Section 2, a number of chemoattractant production functions have
been used in chemotactic models [12, 18, 20]. Usually, it is assumed that the production
saturates with increasing cell density. The order n2 (p = 2) as well as n (p = 1)
dependences for the increase in the attractant production have been widely used [27].

In order to investigate the dependence of the attractant production rate on the pattern
formation, the space-time plots were additionally simulated at p = 1 and different values
of β. The simulated patterns are depicted in Fig. 5.

Fig. 5. Space-time plots of the dimensionless cell density u simulated at p = 1 and
three values of β: 0.3 (a), 0.73 (b), 0.8 (c). Values of other parameters are the same as

in Fig. 4(a).

One can see that pattern simulated at p = 1 and β = 0.73 (Fig. 5(b)) is similar to
that simulated at p = 2 and β = 1.4 (Fig. 4(b)) keeping other parameters the same.
Changing the n2-order dependence to the n-order dependence for the increase in the
attractant production leads to decreasing β-value from 1.4 to 0.73. Fig. 5 shows that the
model parameter β plays a key role in a pattern formation. Some additional simulations
showed that the pattern obtained experimentally (Fig. 3(a)) can not be simulated at β = 0.

4.3 A minimal model

Accepting α = 0 and p = 1, the governing equations (6) were assumed to be minimal for
modeling the pattern formation along the contact line in a cellular population. Accepting
α = 0 and p = 1 leads to the following governing equations:

∂u

∂t
= D∆u− χ∇(u∇v) + γru(1− u),

∂v

∂t
= ∆v + γ

(
u

1 + βu
− v
)
, x ∈ (0, 1), t > 0.

(11)
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The governing equations (11) together with the initial (3) and the boundary (4) condi-
tions form a mathematical model suitable for simulating the pattern formation in a colony
of luminous E. coli. The patterns shown in Fig. 5 were simulated by the minimal model
(11), (3) and (4).

According to the classification of chemotaxis models introduced by Hillen and Painter
[12], the minimal model of pattern formation (11) combines two models: the nonlinear
signal kinetics model M6 and the cell kinetics model M8. This model has been analyzed
by Maini and others [5, 18, 26].

Finally, we would like to clarify the concept of “bacterial self-organization” which is
frequently used in biophysical but not microbiological literature [6]. It should be noticed,
that prolonged accumulation of planktonic E. coli at surfaces can further instigate the
formation of biofilms [37]. Therefore, it is likely, that the bacterial self-organization
and the biofilm formation should be closely related phenomena, which accompany each
other. Our numerical simulations show that the processes detectable by bioluminescence
imaging in the culture of E. coli are rather fast. The diffusion coefficients, which were
used in our calculations, are typical for the liquid suspensions of motile bacteria. These
results imply that the majority of the luminous cells are mobile and capable of self-
organization in a liquid media. The term “bacterial self-organization” seems to be most
relevant [6], when describing the behavior of freshly harvested bacteria. On the other
hand, the initiation of the biofilm formation under ageing conditions (hours) is also prob-
able [37]. Seemingly, in our experiments, the number of cells which are attached to the
surfaces remains significantly lower than that the number of cells in a liquid phase. In
this case the biofilm formation may appear as a low background process of the suggested
bacterial self-organization.

5 Conclusions

We have shown that Patlak–Keller–Segel models can be used to describe the formation
of bioluminescence patterns representing the self-organization of the bacteria. Due to
the accumulation of luminous cells near the contact line (Fig. 1), the patterns of the
bioluminescence experiments can be qualitatively described by one-dimensional-in-space
Keller–Segel model.

The mathematical model (2)–(4) of the bacterial self-organization along the contact
line of the circular container as detected by bioluminescence imaging may be successfully
used to investigate the pattern formation in a colony of luminous E. coli. The correspond-
ing dimensionless mathematical model (6)–(8) can be used as a framework for numerical
investigation of the impact of the model parameters on the pattern formation. Very similar
patterns can be obtained at different values of the model parameters (Figs. 3(a), 4(a), (b)
and 5(b)).

The governing equations of the model (6)–(8) can be restricted to a minimal mo-
del (11) in order to obtain satisfactory agreement with experimental patterns.

The more precise and sophisticated two- and three-dimensional computational models
implying the formation of structures observed on bioluminescence images are now under
development.

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 3, 270–282
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