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Abstract: This study assesses economic and environmental performance in the Chinese industry sector
across 30 provinces during the period of 2006–2017. The study relies on a nonparametric framework
and we apply a novel decomposition of the overall inefficiency scores into three components of
technical, scale and mix inefficiency at the aggregate level by incorporating undesirable outputs. As we
rely on by-production technology, industry performance is split into economic and environmental
dimensions. Our results show that Chinese industry inefficiency is equally due to economic and
environmental performance during 2006–2017, whereas technical and scale inefficiencies are relatively
higher for environmental sub-technology (which relates energy to CO2 emission) if opposed to the
economic sub-technology (which relates all the inputs to the economic value added). This implies
that Chinese industry still requires improvements in environmental performance. The eastern region
shows a relatively low average economic overall inefficiency if compared to other regions, yet its
total OI (overall inefficiency) is the highest among the regions. Thus, environmental performance
and misallocation of resources constitute the underlying causes of the total inefficiency. Therefore,
structural reforms are necessary besides improvements in the production processes in the eastern
region. This is important since China has experienced economic growth, but also policy must pay
attention to environmental issues and sustainability.

Keywords: China; industry; structural reform; mix efficiency; by-production technology

1. Introduction

Since its reform and opening up in 1978, China has embarked on serious economic and social
advances and has become the second largest economy in the world. Driving this economy is the
Chinese industry sector that also experienced rapid growth. One important circumstance was moving
from a labor-intensive to a labor, capital, and technology-intensive economic structure. The average
annual growth rate of Chinese industrial value added is 10.8% reaching 28 trillion yuan (US$4 trillion)
in 2017, which is 53 times that of 1978 [1]. However, it should be noted that China’s extensive industrial
development requires a large amount of resources, causing serious damage to the environment which,
in turn, undermines sustainable development.

Although China’s industrial economic development has shifted from quantitative expansion
to quality improvement, China’s industrial economic development needs to be more accomplished
to achieve high-quality economic development along with a reduction in environmental pollution
from energy consumption. In light of these two objectives, it is necessary to measure the efficiency of
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Chinese industry in this context. Instead of evaluating China’s economic growth performance from
the perspective of traditional efficiency and productivity, this paper takes into account unintended
processes such as the generating of CO2. This paper employed the by-production model that can
examine the generation of desirable output and undesirable output (CO2 emission) simultaneously.
The by-production model relies on two sub-technologies, one defining the production of desirable
outputs and the other defining the generation of the undesirable ones (see Section 3.1 for details).

Based on a nonparametric framework, we evaluate economic and environmental performance in
the Chinese industrial sector among 30 provinces during 2006–2017. Contributions to the literature
include identifying the mix and scale effects in Chinese industry at both an aggregate and individual
levels and decomposing the overall performance into economic and environmental components by
applying this by-production model.

2. Literature Review

The increasing concerns on the sustainability of economic activities have induced the need for
appropriate analytical tools [2–5]. Among different methods, DEA (Data Envelopment Analysis) has
appeared as a tool capable of analyzing environmental performance in the context of the neo-classical
economic theory. Indeed, there have been a number of studies applying DEA for analysis of the
energy-economic-environment nexus [6,7]. Song et al. [8] identified the key challenges for the creation
of a comprehensive system for the assessment of green growth.

China has seen economic growth amidst environmental degradation. Accordingly, there have been
different studies attempting to identify the key patterns in environmental efficiency and productivity [9].
Indeed, DEA was often applied in such studies.

At the regional level, DEA was applied to measure both efficiency and productivity change.
For instance, Chen et al. [10] applied the cross-efficiency DEA with different scenarios to account
for different priorities of the decision makers. Wu et al. [11,12] employed the extended DEA model
to measure the energy and environmental efficiency of China’s industrial sectors. Shao et al. [13]
and Wang et al. [14] evaluated the eco-efficiency of China’s industrial sectors by using a two-stage
network DEA and hybrid super-efficiency DEA model, respectively. Wang et al. [15] suggested using
the window DEA (i.e., establishing technology based on several adjacent time periods) for analysis of
the environmental efficiency in China. Wang et al. [16] applied the multi-directional efficiency analysis
which allowed identifying input-specific inefficiencies. Wang et al. [17] used the range-adjusted
DEA for analysis of environmental performance in China. Shen et al. [18] analyzed the influence
of pollution emissions on the total factor productivity of Chinese industry by adopting the method
of meta-frontier Malmquist-Luenberger. Feng et al. [19] applied the meta-frontier approach for the
case of China and accounted for regional and sectoral heterogeneity by introducing three levels of
aggregation. Yang et al. [20] applied the super-efficiency DEA allowing for better discrimination in order
to measure environmental efficiency in China. Du et al. [21] applied DEA to measure the environmental
productivity change in China. Zhang and Gao [22] analyzed environmental performance in China by
means of DEA. Sueyoshi et al. [23] also addressed the issue of environmental performance in China
by applying the window DEA approach and assuming managerial disposability. Meng et al. [24] and
Wang et al. [25] evaluated the energy and environmental performance of China’s industrial sectors by
using non-radial DEA models.

Zhang et al. [26] calculated the environmental efficiency of China’s industrial sector across different
provinces by using the weak disposability DEA model. Zhang et al. [27] estimated the dynamic
carbon emissions performance of China’s industrial sectors by using the non-radial global Malmquist
carbon emissions performance index. The national CO2 emissions and energy intensity reduction
targets over Chinese provincial industrial sectors were allocated under a DEA-based approach by
Wu et al. [28]. The focus on the environmental performance of China’s industrial sectors has been
stressed by Xie et al. [29] who applied DEA adjusted for contextual variables and estimated the shadow
prices of the CO2 emission. Wu et al. [30] calculated environmental efficiency and productivity change
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for China’s industrial sector. Ding et al. [31] established an interactive DEA model allowing analysis of
water use efficiency along with industrial production.

There have also been studies focusing on particular sectors or groups of regions. Such studies
allow identifying specific policy priorities in regards to a particular context. Lam and Shiu [32] and
Yang and Pollitt [33] focused on the efficiency of thermal power generation in China. Zhang [34] and
Shen et al. [35] looked into the environmental efficiency of China’s agriculture. Feng and Wang [36]
applied the weak disposability DEA and the meta-frontier approach to calculate environmental
efficiency and productivity change (the latter was obtained by applying the global Malmquist index).
Lin and Zheng [37] estimated the energy efficiency evolution of China’s paper industry by using
the DEA method. Li et al. [38] examined water pollution emissions in China’s industrial sector by
using a green-biased technological progress model. Yu et al. [39] and Ding et al. [31] focused on
the environmental performance of Chinese urban regions. Clearly, the studies on environmental
performance in China differ in terms of both the data used and models applied. The level of
aggregation (regional, sectoral) allowed for the identification of performance gaps for different
regions and sectors. In addition, the use of different input and output variables rendered different
environmental production technologies (see, e.g., Färe et al. [40], for discussion on environmental
production technologies). The different models allowed for the identification of performance gaps and
possible ways for improvement.

Even though there has been literature on the environmental performance of different sectors and
regions in China, certain literature gaps persist. First, the by-production model [41] is still scarcely
applied in the analysis. Second, the analysis of structural inefficiency is also limited. Third, the analysis
of structural inefficiency in the presence of undesirable outputs has only been applied to China’s
agriculture. Thus, this paper further looks into the trends of environmental performance including
structural inefficiency for China’s industry sector.

3. Methodology

The research attempts to incorporate environmental performance into economic efficiency
measurement as the by-production approach is applied to model economic activities and environmental
pressures. Thus, by-production technology, as discussed in Section 3.1, accounts for externalities
related to the production process. Thanks to the two sub-technologies based on the by-production
model, all estimated efficiency scores could be divided into environmental and economic components.
Moreover, overall efficiency can be decomposed into technical and structural elements (Section 3.2).
Structural efficiency can be further decomposed into measures of scale and mix effects. The latter one is
a new measure that captures the heterogeneity of input and output allocations in the Chinese industry
sector. In detail, a misallocation in output mix may cause an inefficient price system at a provincial
industry level. The mix effect implies a possible improvement in industry performance by allocating
resources effectively.

3.1. By-Production Technology and Directional Distance Functions

We start modeling the environmental production technology introduced by Murty and Russell [42],
and Murty et al. [41]. The by-production approach contains two sub-technologies: one is to model an
intended production process for O desirable outputs (y) produced by using M non-pollution-causing
inputs (xc) and N pollution-causing inputs (xd); another is to model an unintended production process
for P undesirable outputs (z) produced by pollution-causing inputs (xd). Thus, the by-production
technology T can be represented by the economic sub-technology T1 and environmental sub-technology
T2 [41]:

T = T1 ∩ T2

=
{
(xc, xd, y, z) ∈ RM+N+O+P

+ : (xc, xd) can produce y; xd can generate z
}

T1 =
{
(xc, xd, y, z) ∈ RM+N+O+P

+

∣∣∣ f (xc, xd, y) ≤ 0
}

T2 =
{
(xc, xd, y, z) ∈ RM+N+O+P

+

∣∣∣g(xd) ≤ z
} (1)
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where f ( ) and g( ) are continuously and differentiable functions. Free disposability is imposed on T1 for
all inputs and desirable outputs (A1) while the cost disposability is added to T2 for pollution-causing
inputs and undesirable outputs (A2). According to Murty et al. [41], T1 and T2 meet some basic
economic assumptions, such as convexity, closedness, free disposability of inputs and outputs, returns
to scale, etc. For sake of brevity, we denote x = (xc, xd).

Detailed illustration of the economic assumptions is available from Hackman [43] and
Murty et al. [41]. The disposability assumptions imply:

A1 : (xc, xd, y, z) ∈ T1 then (x̃c, x̃d, ỹ, z̃) ∈ T1 f or all (−x̃c, −x̃d, ỹ) ≤ (−xc, −xd, y)
A2 : (xc, xd, y, z) ∈ T2 then (x̃c, x̃d, ỹ, z̃) ∈ T2 f or all ( x̃d, −̃z) ≤ ( xd, z̃)

(2)

Distance function can be applied to characterize production technology. Several types of distance
functions are used in the literature. The directional distance approach (DDF) was proposed by
Chambers et al. [44]. The DDF involves the directional vector that can be defined flexibly according to
the requirement of policy and decision makers. Following Shen et al. [35], we define an output oriented
directional distance function to increase desirable and reduce undesirable outputs simultaneously for
by-production technology as:

D(xk, yk, zk; gy, gz) = Max
{
δ,θ ∈ <+ : (y + δgy, z− θgz) ∈ T

}
(3)

where (gy, gz) = (
K∑

k=1
yk,

K∑
k=1

zk) are directional vectors of outputs. The directional distance function

measures the distance between the observed production plans and the frontier in the units of the
aggregate outputs. The inefficiency scores δ and θ indicate the maximum extent of simultaneously
increasing desirable outputs and reducing undesirable outputs, respectively. We employ the aggregate
value of outputs as a direction vector to estimate the technical inefficiency at a group level rather
than quantities observed at the Decision Making Unit (DMU) level. One advantage of this aggregate
direction is allowing the inefficiency scores to be compared and aggregated across the DMUs. In this
paper, we investigate industrial economic and environmental contributions in each province based on
this aggregate direction.

3.2. Decomposition of Aggregate Efficiency

According to Ferrier et al. [45] and Shen et al. [35], we decompose the overall efficiency scores
into technical and structural efficiencies for each DMU. The latter one can be further divided into scale
and mix elements, which indicate the convergence or divergence process in the blend of input/output
mixes and the distance to the most productive scale size (MPSS) [45–47].

China is constituted by K provinces (k = 1, 2, . . . , K). The national (aggregate) technology Ttotal

can be defined as the sum of the provincial technologies:

Toverall =
K∑

k=1

Tk (4)

If the convexity assumption is imposed on the production set, the aggregate constant returns to
scale (CRS) technology equals to the individual technology while the aggregate variable returns to
scale (VRS) technology is equal to K times the individual technology [48]:

Toverall
CRS =

K∑
k=1

Tk,CRS = Tk,CRS

Toverall
VRS =

K∑
k=1

Tk,VRS = K ∗ Tk,VRS

(5)
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Under the VRS assumption, the overall inefficiency (OI) for the total Chinese industrial sector is
defined as:

OI = DVRS(
K∑

k=1

xk,
K∑

k=1

yk,
K∑

k=1

zk; gy, gz) (6)

Then we can decompose overall inefficiency into technical inefficiency (TI) and structural
inefficiency (SI). Technical inefficiency reflects the possible improvement in the manner of better using
resources for each province and structural inefficiency is captured by the difference between overall
inefficiency and the summation of technical inefficiency.

TI = DVRS(xk, yk, zk; gy, gz)

SI = DVRS(
K∑

k=1
xk,

K∑
k=1

yk,
K∑

k=1
zk; gy, gz) −

K∑
k=1

DVRS(xk, yk, zk; gy, gz)
(7)

Structural inefficiency can be further decomposed into the mix effect (MIX) and scale element
(SCALE). Mix inefficiency arises from the misallocation of input/output mixes which is computed by
the difference between overall inefficiency and summation of technical inefficiency under the CRS
assumption. The scale inefficiency is the difference between structural inefficiency and mix inefficiency,
which indicates the DMU is farther away from or is closer to the MPSS [45].

MIX = DCRS(
K∑

k=1
xk,

K∑
k=1

yk,
K∑

k=1
zk; gy, gz) −

K∑
k=1

DCRS(xk, yk, zk; gy, gz)

SCALE = [
K∑

k=1
DCRS(xk, yk, zk; gy, gz) −

K∑
k=1

DVRS(xk, yk, zk; gy, gz)]

−[DCRS(
K∑

k=1
xk,

K∑
k=1

yk,
K∑

k=1
zk; gy, gz) −DVRS(

K∑
k=1

xk,
K∑

k=1
yk,

K∑
k=1

zk; gy, gz)]

(8)

In Section 3.3, we employ a non-radial measurement for two sub-technologies. Thus, each
inefficiency score contains economic and environmental terms. Finally, overall inefficiency is given by:

OI = TI + SI
= TI + MIX + SCALE
= TIEco + TIEnv + MIXEco + MIXEnv + SCALEEco + SCALEEnv

(9)

Note that MIXEnv disappeared in our setting due to the number of input and output variables for
the environmental sub-technology (one pollution-generating input and one bad output).

The inefficiency components for economic sub-technology are illustrated in Figure 1. Assume
there are two DMUs A and B and their distances to LA and LB indicate technical inefficiencies, whereas
the quantities of the two inputs are denoted by x1 and x2. When considering the operation of A and B in
the case of a merger, the resulting DMU A+B can be derived from summing up the inputs and outputs
of DMUs A and B. The distance between this new DMU and their aggregate production technology
LA+B is greater than (the sum of) technical inefficiencies for A and B as it contains a mix and scale effect
at an aggregate level. Note that mix inefficiency occurs due to differences in the input-mix structure
(if one considers the input space) and declines as these differences disappear. Thus, the merger of
identical DMUs would render only a sum of their technical and scale inefficiencies. In this regard,
mix inefficiency tells us about the degree of heterogeneity prevailing in the “industry” (in our case,
this is the Chinese economy). However, this degree of heterogeneity is measured in terms of multiple
input/output variables and considering the production frontier established by best-practice DMUs.
See, for instance, Ferrier et al. [45] for more details.
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3.3. Model Specification

Each term of overall inefficiency can be estimated by a corresponding linear program. At an
individual level, technical inefficiency measures the distance between each province and the benchmark
which can be estimated by primal LP1 under the VRS assumption. According to Murty et al. [41],
we allocate equivalent weights on economic and environmental sub-technologies thus scores for each

desirable and undesirable outputs (
O∑

o=1
δo/O and

P∑
p=1

θp/P) represent economic and environmental

provincial technical inefficiencies:

D(xm, xn, yo, zp;
K∑

k=1
yk,

K∑
k=1

zk) = Max
λ,σ,δ,θ

1
2 (

O∑
o=1

δo/O +
P∑

p=1
θp/P)

s.t.
K∑

k=1
λkyo

k ≥yo
k′ + δogy, o = 1, 2, . . . , O,

K∑
k=1

λkxc,m
k ≤ xc,m

k′ , m = 1, 2, . . . , M

K∑
k=1

λkxd,n
k ≤ xd,n

k′ , n = 1, 2, . . . , N,

K∑
k=1

σkzp
k ≤ zp

k′ − θ
pgz, p = 1, 2, . . . , P,

K∑
k=1

σkxd,n
k ≥ xd,n

k′ , n = 1, 2, . . . , N,

K∑
k=1

λk = 1,

K∑
k=1

σk = 1,

λk ≥ 0, σk ≥ 0

(LP1)

Similarly, overall inefficiency can be estimated by primal LP2 under the VRS assumption at an
aggregate level.

D(
K∑

k=1
xc,

K∑
k=1

xd,
K∑

k=1
y,

K∑
k=1

z;
K∑

k=1
yk,

K∑
k=1

zk) = Max
λ,σ,δ,θ

1
2 (

O∑
o=1

δo/O +
P∑

p=1
θp/P)

s.t. K
K∑

k=1
λkyo

k ≥yo
k′ + δogy, o = 1, 2, . . . , O,

K
K∑

k=1
λkxc,m

k ≤ xc,m
k′ , m = 1, 2, . . . , M,

K
K∑

k=1
λkxd,n

k ≤ xd,n
k′ , n = 1, 2, . . . , N,

K
K∑

k=1
σkzp

k ≤ zp
k′ − θ

pgz, p = 1, 2, . . . , P,

K
K∑

k=1
σkxd,n

k ≥ xd,n
k′ , n = 1, 2, . . . , N,

K∑
k=1

λk = 1,

K∑
k=1

σk = 1,

λk ≥ 0, σk ≥ 0

(LP2)
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Structural inefficiency is obtained by the distance between overall inefficiency and the summation
of provincial technical inefficiencies. As discussed in the previous section, the structural inefficiency
contains mix and scale elements. Mix inefficiency is calculated by considering CRS technology (i.e., both

the constraints of
K∑

k=1
λk = 1 and

K∑
k=1

σk = 1 are not considered in the estimations) and scale inefficiency

is calculated residually.

3.4. Allocating Overall and Structural Inefficiencies in a Dual Model

We employ a dual program of LP2 to allocate overall inefficiency for each DMU in LP3 to measure
provincial contribution to overall inefficiency. The aggregate overall inefficiency under the VRS
technology is obtained as:

D(
K∑

k=1
xc,

K∑
k=1

xd,
K∑

k=1
y,

K∑
k=1

z; gy, gz) =

Min
πc

x,πd
x,πy,ωd

x,ωz,v1,v2

(
M∑

m=1
πm

x xc,m
k′ +

N∑
n=1

πn
xxd,n

k′ −
O∑

o=1
πo

yyo
k′ − v1) + (

P∑
p=1

ω
p
zzp

k′ −
N∑

n=1
ωn

xxd,n
k′ + v2)

s.t. K
O∑

o=1
πo

yyo
k−K

M∑
m=1

πc,m
x xc,m

k −K
N∑

n=1
πd,n

x xd,n
k + v1 ≤ 0, k = 1, 2, . . . , K,

K
N∑

n=1
ωd,n

x xd,n
k −K

P∑
p=1

ω
p
zzp

k − v2 ≤ 0, k = 1, 2, . . . , K,

O∑
o=1

πo
ygo

y = 0.5,

P∑
p=1

ω
p
z gp

z = 0.5,

πo
y ≥ 0, o = 1, 2, . . . , O,
πc,m

x ≥ 0, m = 1, 2, . . . , M,
πd,n

x ≥ 0, n = 1, 2, . . . , N,
ωd,n

x ≥ 0, n = 1, 2, . . . , N,
ω

p
z ≥ 0, p = 1, 2, . . . , P

(LP3)

whereπc
x,πd

x,πy are shadow prices of non-pollution-causing and pollution-causing inputs, and desirable
outputs in T1, and ωn

x ,ωp
z are shadow prices of pollution-causing inputs and undesirable outputs in T2.

CRS is imposed by further restricting v1 = 0 and v2 = 0.

The OI can be allocated to each DMUs according to (
O∑

o=1
πo

yyo
k−

M∑
m=1

πm
x xm

k −
N∑

n=1
πn

xxn
k + v1/K) and

(
N∑

n=1
ωn

xxn
k −

P∑
p=1

ω
p
zzp

k − v2/K) at economic and environmental dimensions, respectively.

4. Results and Discussion

To evaluate economic and environmental performance in the Chinese industrial sector, we apply
the methods introduced above to a balanced panel of data for China’s 30 mainland provinces,
municipalities, and autonomous regions during the years of 2006–2017. Data for the Tibet Autonomous
Region is not available; therefore, this paper does not include Tibet.

4.1. Data

To simplify the analysis, we divided the 30 provinces into three large economic zones based on their
geographic locations: eastern region (Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang,
Fujian, Shandong, Guangdong, Guangxi, and Hainan), inland region (Shanxi, Inner Mongolia, Jilin,
Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan), and western region (Sichuan, Chongqing,
Guizhou, Yunnan, Shannxi, Gansu, Qinghai, Ningxia, and Xinjiang).

The methods used to evaluate the economic and environmental performance in the Chinese
industrial sector are estimated using three inputs (labor force, capital stock, energy consumption) one
desirable output (value-added) and one undesirable output (carbon dioxide emission).
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Labor force is defined as the number of labor factors invested in industrial production. The data
come from the statistical yearbooks and labor statistics yearbooks [49,50] of various provinces in China.

Capital stock is defined as the amount of capital employed in industrial production, which is
calculated according to the perpetual inventory method [51]. The 2006–2017 fixed asset investment
data comes from the China Fixed Assets Investment Statistical Yearbook [52]. The depreciation rate
varies significantly among Chinese provinces, and its influence on capital stock estimation cannot
be ignored. This paper calculates the depreciation rate of each province according to the fixed asset
investment structure data of each provincial district [53]. The details for depreciation rate are available
in Table A1 in Appendix A.

Energy consumption is defined as the energy consumption of industrial terminals. We selected
the terminal consumption of all 19 types of energy in each sector provided by the China Energy
Statistics Yearbook [54] and converted it to 10,000 tons of standard coal according to the standard coal
conversion coefficient.

Value-added is defined as the value of the total output of all production activities of industrial
enterprises after deducting the value of the physical products and services consumed or transferred
in the production process during the reporting period. This paper uses the constant price of 1999 as
the benchmark price to measure the desirable output of the industry. The data come from the China
Industrial Economics Statistical Yearbook and the China Statistical Yearbook [50,55].

The International Panel on Climate Change [56] described the calculation of the energy-related
CO2 emissions based on the amount of fuel combusted and the emission factor. This paper uses the
IPCC [56] method to estimate carbon dioxide emissions data for 2006–2017 in 30 provinces in mainland
China. The data come from the China Energy Statistical Yearbook 2000–2018 [54]. The yearbook
provides data of both fossil and non-fossil energy consumptions. However, the types of energy
consumptions are different due to data availability. In detail, coal, coke, coke oven gas, other gas,
crude oil, gasoline, and kerosene are considered into the computation of CO2 emissions during
2006–2009. While in 2010–2017, additional energy sources, such as blast furnace gas, converter gas,
and liquefied natural gas, were also included. To avoid the double counting issue, some intermediate
energy consumptions are excluded from computation, such as electricity used.

Table 1 briefly describes the annual growth rates of the output and input variables for the three
large economic groups and the whole of China. The value-added trends surpass 10.7% while the
growth rates for CO2 emissions are nearly 4.5%. Consequently, slight decreases in CO2 emissions per
unit of the value-added unit can be observed for all areas. Whether it is value added or CO2, the growth
rate in the western region is much higher than that in the inland and eastern regions. This shows
that although the overall level of economic development is low, the area of the west is a vital force in
China’s industrial production.

Table 1. Annual growth rates of inputs and outputs (%, 2006–2017).

Type Variable Eastern Inland Western China

Inputs
Labor 1.96 2.62 2.66 2.25

Capital stock 16.00 20.94 19.33 17.97
Energy consumption 3.23 2.53 5.60 3.47

Desirable output Value added 9.46 12.00 13.75 10.72
Undesirable output CO2 3.99 4.44 5.88 4.47

Note: All monetary variables have been to deflated to the constant price level.

Compared to the value-added trends, the labor force is characterized by slow growth rates of
nearly 2%. As a result, labor productivity improved significantly for the sample period. At the same
time, the capital stock grows at a rate of around 16% or more, which may be due to China’s financial
opportunities and preferential policies that are conducive to industrial development and attracting
domestic and foreign investors. In terms of energy consumption, national energy consumption is
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around 3.5%. However, capital stock is more than 19% in the western region, energy consumption
and CO2 emissions in the west part are the highest in all areas, indicating that the west region
features an extensive growth pattern characterized by high investment, high energy consumption, and
high emissions.

4.2. Empirical Results and Discussion

Dynamics in the country-wide total OI (i.e., the sum of the economic and environmental
inefficiencies each comprising technical, mix and scale terms) is given in Figure 2. As one can note,
the trend in the total OI follows a U-shape for the Chinese industry sector. First, there was a decline in
inefficiency during 2006–2009 (the total OI went down from some 46 to 32%). Second, there was a
“steady” sub-period of 2009–2013 when the total OI fluctuated around 32%. Third, the sub-period of
2013–2017 marked an upward trend of the total OI. During the latter phase, the total OI went up from
32 to 38%.

The by-production technology allows for accounting for the two types of the OI, namely the
economy- and environment-related OI. The trends depicted in Figure 2 imply these two types of
inefficiency were quite close in their trajectories (both in terms of averages and variation). However,
there had been certain discrepancies during different phases. In the first sub-period, the environmental
performance was the major contributor of changes in the total OI, whereas the economic OI remained
rather stable. Throughout the second sub-period, economic and environmental OI moved to the
opposite directions. Finally, the directions of changes in the economic and environment OI coincided
during the third sub-period.
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Figure 2. Overall inefficiencies in the Chinese industry sector, 2006–2017.

A more detailed decomposition of the OI is presented in Table 2. On average, the contribution of
the economic OI is lower than that of the environmental OI (16.9 and 18.6% respectively). The same
pattern persists for all types of inefficiency. Region-wise, the western region shows the lowest total OI
(some 8% accounting for both economic and environmental OI), whereas the contribution of the inland
region is 12.9% and that of the eastern region is 14.7%, which was also found by Wang et al. [14,16],
Yang et al. [20], Wu et al. [28] and Lin and Zheng [37]. Thus, the performance gaps should be addressed
by considering different regions in China. Turning to the sources of the OI, the environmental
inefficiency prevails over the economic inefficiency in the eastern and inland regions. On the contrary,
the western region shows an opposite pattern with economic and environmental OI standing at 4.9
and 3.1% respectively. Ding et al. [31] obtained a similar result when examining industrial water and
energy utilization efficiency. Thus, a higher level of economic development induced both lower total
OI and minimal contribution of environmental OI.
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Note that the eastern region shows a relatively low average economic OI if compared to the other
regions, yet its total OI is the highest among the regions. Thus, environmental performance and the
misallocation of resources constitute the underlying causes of total inefficiency. Therefore, structural
reforms are necessary in addition to improvements in production processes in the eastern region.

Yet another nuance is the estimates of the scale inefficiency. As one can note, environmental
scale inefficiency is positive in all the instances, whereas economic scale inefficiency is negative for all
regions but the western region. According to Li et al. [57], the extensive expansion of heavy industry
in China was the reason of the decline in productivity, which also caused negative growth in economic
scale efficiency. Thus, the eastern and inland regions are closer to optimal scale size even though their
mix efficiency is lower. In addition, scale efficiency related to environmental sub-technology is much
higher for the aforementioned two regions if opposed to the western region. Thus, accounting for the
two sub-technologies unveils differences in the sources of the scale inefficiency across different regions.

Table 2. Industry inefficiency scores among regions (%, mean values during 2006–2017).

Region Time
Period

OI TI MIX SCALE

Eco Env Eco Env Eco Env Eco Env

Eastern
2006 7.51 15.09 2.72 7.90 5.45 −0.66 7.19
2017 5.98 8.79 3.47 5.87 5.22 −2.71 2.92

Mean 5.93 8.73 2.45 5.35 5.03 −1.55 3.38

Inland
2006 5.98 8.71 3.73 6.61 1.61 0.64 2.10
2017 6.99 7.59 5.02 7.18 3.19 −1.22 0.41

Mean 6.08 6.80 4.34 6.30 3.21 −1.48 0.50

Western
2006 4.32 4.12 2.86 3.72 0.81 0.64 0.40
2017 5.45 3.33 2.96 3.33 0.89 1.60 0.00

Mean 4.89 3.06 2.66 3.03 1.16 1.06 0.03

China
2006 17.81 27.92 9.31 18.24 7.88 0.63 9.68
2017 18.42 19.70 11.46 16.38 9.29 −2.33 3.32

Mean 16.89 18.59 9.46 14.68 9.40 −1.97 3.91

Note: as there is only one pollution-generating input and one bad output in the environmental sub-technology, there is no
mix inefficiency associated with the latter sub-technology.

We further look at the trends in the inefficiency across different sources and regions. Figure 3
presents the country-wide dynamics in the economic OI and its decomposition into technical, scale
and mix inefficiencies. Scale and mix inefficiencies followed asymmetric trajectories during 2006–2017
without clear direction. Technical inefficiency generally increased over the same period. Therefore,
for the economic sub-technology, improvements in productivity remain the major objective. Overall
economic inefficiency has kept steadily increasing since 2012.Sustainability 2019, 11, x FOR PEER REVIEW 12 of 18 
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The trends in environmental inefficiency are outlined in Figure 4. Environmental inefficiency
declined during 2006–2007 and remained rather stable afterwards. Technical inefficiency remained the
major contributor towards overall environmental inefficiency throughout 2006–2017. The trends in
technical and scale environmental inefficiency generally coincided during the period covered.
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The regional approach can be taken to ascertain the structural inefficiency in China’s economy.
Indeed, such an approach is highly relevant as structural efficiency deals with the issues of resource
misallocation among the decision making units (which are provinces in our case). Thus, Figures 5
and 6 embark on the region-wise analysis of structural inefficiency in China’s industry. Recall that
structural inefficiency comprises of mix and scale inefficiency in our setting.

The comparison of the dynamics in structural inefficiency related to economic sub-technology
across the regions is presented in Figure 5. Obviously, the western region became less structurally
efficient following the economic crisis of 2008. The eastern region, on the contrary, managed to decrease
structural inefficiency during 2006–2010, and similar results are also found in the whole Chinese
economy by Boussemart et al. [46] and in the agricultural sector by Shen et al. [35]. Throughout
2010–2017, both eastern and western regions maintained rather similar levels (and directions) of
structural inefficiency. The lowest economic structural inefficiency was maintained in the inland region
during 2006–2017. Thus, the eastern and western regions require reallocation of production capacities
in order to reduce the associated structural inefficiency.Sustainability 2019, 11, x FOR PEER REVIEW 13 of 18 
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Figure 5. Economic structural inefficiency among regions, 2006–2017.

The region-wise decomposition of environmental structural inefficiency is given in Figure 6.
The eastern region followed a downward trend in the environmental structural efficiency during
2006–2017, yet remained a region with the highest value among the three regions for the whole period
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covered. As regards to the inland and western regions, their contribution towards environmental
structural inefficiency remained close to zero for 2008–2017. Accordingly, the scale of the operation of
the pollution-generating industries needs to be further optimized in the eastern region (as the latter
type of inefficiency is solely captured by structural inefficiency for the environmental sub-technology
in our setting).
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Figure 6. Environmental structural inefficiency among regions, 2006–2017.

Table 3 aggregates the results regarding the trends in different components of economic and
environmental efficiency across the three regions. The growth rates are based on the stochastic
trends which also allow for statistical inference. Clearly, the eastern region followed a significantly
downward trend in the overall economic inefficiency (−0.2 p.p. annually) with the scale component
being the sole term following a significant trend (−0.35 p.p. annually). The western region followed
a significantly upward trend in overall economic inefficiency (0.15 p.p. annually) which implies the
need for productivity gains in the industry sector there. In this case, the scale component was also
significant (the annual increase of some 0.18 p.p.).

Table 3. Average growth rates in inefficiency scores, 2006–2017.

Region China Eastern Inland Western

Coefficient t-Value Coefficient t-Value Coefficient t-Value Coefficient t-Value

OIEco −0.01 −0.049 −0.20 −2.338 0.05 0.972 0.15 2.980
OIEnv −0.18 −0.643 −0.20 −1.191 0.03 0.322 0.00 −0.044
TIEco 0.10 1.205 0.05 1.314 0.08 2.299 −0.03 −1.225
TIEnv 0.12 0.807 0.00 −0.048 0.11 1.947 0.01 0.497

MIXEco 0.16 1.036 0.09 1.018 0.07 0.795 0.00 −0.057
SCALEEco −0.27 −1.438 −0.35 −3.080 −0.11 −1.085 0.18 2.793
SCALEEnv −0.30 −2.072 −0.20 −1.948 −0.08 −2.132 −0.02 −1.732

Note: growth rates are based on the log-linear trends; coefficients significant at the level of 5% are boldfaced.

The inland region experienced technical efficiency losses as represented by significantly positive
rates of growth in the inefficiencies associated with both economic and environmental sub-technologies
(0.08 p.p. and 0.11 p.p. respectively). The scale component associated with the environmental
sub-technology was significantly changing for the whole of China and the three regions. In all instances,
significantly negative coefficients indicated improvements in environmental efficiency due to the
re-allocation of pollution-generating activities. In general, one can note a substantial degree of disparity
in terms of inefficiency levels among Chinese regions. Specifically, eastern regions exhibit a steeper
decline in inefficiencies if compared to inland and western areas (where an increase can be observed).
This pattern is consistent with studies by Sun et al. [58], Wu et al. [12], and Zhou et al. [59].
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5. Conclusions and Implications

In this paper, we evaluated performance in the Chinese industry sector across 30 provinces
from 2006 to 2017. Based on the by-production model, performance in the Chinese industry sector
was measured by taking economic and environmental dimensions into consideration simultaneously.
At the aggregate level, overall inefficiency scores in the Chinese industry sector was decomposed
into three elements: technical, scale and mix inefficiency. The empirical results indicate that
economic and environmental performance plays almost the same role for Chinese industry inefficiency
during the period covered. Compared with economic sub-technology, overall inefficiency is higher
for environmental sub-technology. Correspondingly, the technical and scale inefficiencies for
environmental sub-technology are also higher if compared to those for the economic sub-technology.
The results illustrate that environmental performance in the Chinese industry sector still requires further
improvement. While promoting the development of the industrial sector, the Chinese government
needs to pay more attention to improving environmental efficiency there. This firstly relies on the
creation of more environment-friendly energy systems. In this regard, the creation of smart grids
would allow a transition towards cleaner energy and, thus, lower environmental inefficiency. Modern
technologies, e.g., blockchain, may allow for the creation of micro-grids allowing Chinese industry
to reduce the environmental pressures. The government could support investment into equipment
related to the construction of smart grids in the inland and eastern regions as these regions showed the
highest mean overall environmental inefficiency for 2006–2017.

Innovative decomposition allowed for the isolation of structural inefficiency (i.e., mix and scale
inefficiency). The results suggest that economic structural inefficiency remains important in the
developed western region. The eastern region requires a reduction in structural inefficiency related to
both economic and environmental sub-technologies. The central government could initiate support
and regulatory measures inducing spatial shifts of production capacities to approach a more productive
structure. Measures such as emissions trading are important for the eastern region in order to reduce
structural environmental inefficiency. As regards to scale and environmental economic inefficiency
prevailing in both western and eastern regions, support measures should be developed to introduce
modern production facilities, whereas backward facilities should be discouraged by applying restrictive
fiscal measures.
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Appendix A

Table A1. Depreciation rate for the provinces.

Province Depreciation Rate (%)

Beijing 9.83
Tianjin 10.47
Hebei 11.02
Shanxi 10.7

Inner Mongolia 10.28
Liaoning 10.62

Jilin 10.81
Heilongjiang 10.66

Shanghai 10.47
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Table A1. Cont.

Province Depreciation Rate (%)

Jiangsu 11.19
Zhejiang 10.7

Anhui 10.34
Fujian 10.54
Jiangxi 10.48

Shandong 11.02
Henan 10.25
Hubei 10.56
Hunan 10.12

Guangdong 10.4
Guangxi 10.32
Hainan 10.49

Chongqing 9.81
Sichuan 10.25
Guizhou 10.39
Yunnan 9.78

Tibet 8.86
Shaanxi 9.93
Gansu 10.21

Qinghai 9.67
Ningxia 10.59
Xinjiang 10.22
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