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aŠiauliai University
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1 Introduction

In [3], we began to study limit theorems for twisted with Dirichlet character
L-functions of elliptic curves with an increasing modulus of the character, and
obtained a limit theorem of such a type for the modulus of these twists. Let E
be an elliptic curve over the field of rational numbers given by the Weierstrass
equation

y2 = x3 + ax+ b, a, b ∈ Z,

with non-zero discriminant ∆ = −16(4a3 + 27b2). For each prime p, denote
by Ep the reduction of the curve E modulo p which is a curve over the finite
field Fp, and define λ(p) by

|E(Fp)| = p+ 1− λ(p),

where |E(Fp)| is the number of points of Ep. The L-function LE(s), s = σ+ it,
of the elliptic curve E is defined by the Euler product

LE(s) =
∏
p|∆

(
1− λ(p)

ps

)−1∏
p-∆

(
1− λ(p)

ps
+

1

p2s−1

)−1
.
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Since, by the classical Hasse result,

|λ(p)| 6 2
√
p (1.1)

for all primes, the product defining LE(s) converges uniformly on compact
subset of the half-plane {s ∈ C: σ > 3

2} and define there an analytic function
without zeros. Moreover, in [1], the Taniyama–Shimura conjecture has been
proved, therefore, the function LE(s) is analytically continued to an entire
function, and satisfies the functional equation(√

N

2π

)s
Γ (s)LE(s) = w

(√
N

2π

)2−s

Γ (2− s)LE(2− s),

where, as usual, Γ (s) denotes the Euler gamma-function, N is the conductor
of the curve E, and w = ±1.

The twist LE(s, χ) with Dirichlet character χ for the function LE(s) is
defined similarly. For σ > 3

2 , we have that

LE(s, χ) =
∏
p|∆

(
1− λ(p)χ(p)

ps

)−1∏
p-∆

(
1− λ(p)χ(p)

ps
+
χ2(p)

p2s−1

)−1
, (1.2)

and function LE(s, χ) is also analytically continued to an entire function.
Suppose that the modulus q of the character χ is a prime number, and is

not fixed. Denoting by χ0 the principal character modulo q, for Q > 2, define

MQ =
∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

1,

and put

µQ(. . . ) = M−1Q
∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0...

1,

where in place of dots we will write a condition satisfied by a pair (q, χ(mod q)).
Let B(S) stand for the class of Borel sets of the space S. Then in [3], the weak
convergence of the frequency,

P̂Q(A) = µQ(|LE(s, χ)| ∈ A), A ∈ B(R),

as Q → ∞, has been obtained. To state a limit theorem, we need some ad-
ditional notation and definitions. For p - ∆, let α(p) and β(p) be conjugate
complex numbers such that α(p)β(p) = p and α(p) + β(p) = λ(p). Then (1.2),
for σ > 3

2 , can be rewritten in the form

LE(s, χ)=
∏
p|∆

(
1−λ(p)χ(p)

ps

)−1∏
p-∆

(
1−α(p)χ(p)

ps

)−1(
1−β(p)χ(p)

ps

)−1
.

(1.3)
As in [3], we use the notation η = η(τ) = iτ/2, τ ∈ R, and, for primes p and
k ∈ N,

dτ (pk) =
η(η + 1) · · · (η + k − 1)

k!
.

Math. Model. Anal., 17(1):90–99, 2012.
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For p - ∆ and k ∈ N, we set

aτ (pk) =

k∑
l=0

dτ (pl)αl(p)dτ (pk−l)βk−l(p), (1.4)

bτ (pk) =

k∑
l=0

dτ (pl)αl(p)dτ (pk−l)β
k−l

(p), (1.5)

where α(p) and β(p) denote the conjugates of α(p) and β(p), respectively. For
p | ∆ and k ∈ N, we define

aτ (pk) = bτ (pk) = dτ (pk)λk(p). (1.6)

Let aτ (m) and bτ (m), m ∈ N, be multiplicative functions defined by (1.4)–(1.6),
i.e.,

aτ (m) =
∏
pl‖m

aτ (pl), bτ (m) =
∏
pl‖m

bτ (pl),

where pl ‖ m means that pl | m but pl+1 - m.
On (R,B(R)) define the probability measure P̂ by the characteristic trans-

forms [5],

wk(τ) =

∫
R\{0}

|x|iτ sgnk dP̂ =

∞∑
m=1

aτ (m)bτ (m)

m2σ
, τ ∈ R, k = 0, 1.

Theorem 1 [see [3]]. Suppose that σ > 3
2 . Then P̂Q converges weakly to P̂ as

Q→∞.

The other results for L-functions with increasing modulus of the character
are shortly discussed in [3].

The aim of this paper is to prove a limit theorem for the argument of
the function LE(s, χ). The estimate (1.1) and (1.3) show that LE(s, χ) 6= 0
for σ > 3

2 . Thus, for σ > 3
2 , argLE(s, χ) is well defined. For k ∈ Z, let

θ = θ(k) = k
2 , for primes p and l ∈ N,

dk(pl) =
θ(θ + 1) · · · (θ + l − 1)

l!
,

and dk(1) = 1. Now similarly to (1.4) and (1.5), for p - ∆ and l ∈ N, we define

ak(pl) =

l∑
j=0

dk(pj)αj(p)dk(pl−j)βl−j(p),

bk(pl) =

l∑
j=0

d−k(pj)αj(p)d−k(pl−j)β
l−j

(p).

If p | ∆, then, for l ∈ N, we set

ak(pl) = dk(pl)λl(p), bk(pl) = d−k(pl)λl(p).
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Moreover, for m ∈ N, we set

ak(m) =
∏
pl‖m

ak(pl), bk(m) =
∏
pl‖m

bk(pl).

Thus, ak(m) and bk(m) are multiplicative functions. Denote by γ the unit
circle on the complex plane. Furthermore, let P be a probability measure on
(γ,B(γ)) defined by the Fourier transform

g(k)
def
=

∫
γ

xk dP =
∞∑
m=1

ak(m)bk(m)

m2σ
, k ∈ Z, σ >

3

2
.

The main result of this paper is the following statement.

Theorem 2. Suppose that σ > 3
2 . Then

PQ(A)
def
= µQ

(
exp{i argLE(s, χ)} ∈ A

)
, A ∈ B(γ),

converges weakly to P as Q→∞.

We recall that a distribution function F (x) is said to be a distribution
function mod 1 if

F (x) =

{
1, if x > 1,
0, if x < 0.

Let Fn(x), n ∈ N, and F (x) be distribution functions mod 1. We say that
Fn(x), as n → ∞, converges weakly mod 1 to F (x), if at all continuity points
x1, x2, 0 6 x1 6 x2 < 1, of F (x)

lim
n→∞

(Fn(x2)− Fn(x1)) = F (x2)− F (x1).

Denote by L(s, χ) the Dirichlet L-functions. Elliott in [2], for σ > 1
2 ,

obtained the weak convergence mod 1, as Q→∞, for

µQ

(
1

2π
argL(s, χ) 6 x(mod 1)

)
.

From Theorem 2, the following corollary follows.

Corollary 1. Suppose that σ > 3
2 . Then

µQ

(
1

2π
argLE(s, χ) 6 x(mod 1)

)
converges weakly mod 1 to the distribution function mod 1 defined by the
Fourier transform g(k) as Q→∞.

Differently from Dirichlet L-functions, we do not have any information on
the convergence of the series defining the function LE(s, χ), χ 6= χ0, in the
region σ > 1. Therefore, we can prove Theorem 2 only in the half-plane of
absolute convergence of the mentioned series. Of course, we have a conjecture
that the statement of Theorem 2 remains also true for σ > 1, however, at the
moment we can not prove this.

Math. Model. Anal., 17(1):90–99, 2012.
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2 Fourier Transform

Let gQ(k), k ∈ Z, denote the Fourier transform of PQ i.e., gQ(k) =
∫
γ
xk dP .

Then the definition of PQ implies the equality

gQ(k) =
1

MQ

∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

eik argLE(s,χ). (2.1)

For the proof of Theorem 2, we need the asymptotics of gQ(k) as Q→∞.
In this section, we give an expression for gQ(k) convenient for the investigation
of its asymptotics.

For any fixed δ > 0, denote by R the region {s ∈ C: σ > 3
2 + δ}. For s ∈ R,

we have that

(LE(s, χ))
1
2
(
LE(s, χ)

)− 1
2 =

(
LE(s, χ)

) 1
2
(
LE(s, χ)

)− 1
2

=
∣∣LE(s, χ)

∣∣ 12 e
1
2 i argL(s,χ)

∣∣LE(s, χ)
∣∣− 1

2 e−
1
2 i argL(s,χ)

= ei argL(s,χ).

Therefore, for s ∈ R and k ∈ Z \ {0}, formula (1.3) yields

eik argLE(s,χ) = exp

{
−k

2

∑
p|∆

(
log

(
1− λ(p)χ(p)

ps

)
− log

(
1− λ(p)χ(p)

ps

))

− k

2

∑
p-∆

(
log

(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))

+
k

2

∑
p-∆

(
log

(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}

=
∏
p|∆

exp

{
− θ log

(
1− λ(p)χ(p)

ps

)}

×
∏
p-∆

exp

{
− θ
(

log

(
1− α(p)χ(p)

ps

)
+ log

(
1−β(p)χ(p)

ps

))}

×
∏
p|∆

exp

{
θ log

(
1− λ(p)χ(p)

ps

)}

×
∏
p-∆

exp

{
θ

(
log

(
1− α(p)χ(p)

ps

)
+ log

(
1− β(p)χ(p)

ps

))}

=
∏
p|∆

(
1− λ(p)χ(p)

ps

)−θ∏
p|∆

(
1− λ(p)χ(p)

ps

)θ

×
∏
p-∆

(
1− α(p)χ(p)

ps

)−θ (
1− β(p)χ(p)

ps

)−θ
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×
∏
p-∆

(
1− α(p)χ(p)

ps

)θ (
1− β(p)χ(p)

ps

)θ
. (2.2)

Here the multi-valued functions log(1− z) and (1− z)±θ in the region |z| < 1
are defined by continuous variation along any path lying in this region from
the values log(1− z)|z=0 = 0 and (1− z)±θ|z=0 = 1, respectively.

In the disc |z| < 1, by the definition of dk(pl) we have that

(1− z)±θ =

∞∑
l=0

d∓k(pl)zl.

Therefore, (2.2) implies that, for s ∈ R,

eik argLE(s,χ) =
∏
p|∆

∞∑
j=0

dk(pj)λj(p)χj(p)

pjs

∏
p-∆

∞∑
l=0

dk(pl)αl(p)χl(p)

pls

×
∞∑
v=0

dk(pv)βv(p)χv(p)

pvs

∏
p|∆

∞∑
j=0

d−k(pj)λj(p)χj(p)

pjs

×
∏
p-∆

∞∑
l=0

d−k(pl)αl(p)χl(p)

pls

∞∑
v=0

d−k(pv)β
v
(p)χv(p)

pvs
. (2.3)

Let âk(m) and b̂k(m) be multiplicative functions with respect to m defined, for
primes p - ∆ and l ∈ N, by

âk(pl) =

l∑
j=0

dk(pj)αj(p)χ(pj)dk(pl−j)βl−j(p)χ(pl−j), (2.4)

b̂k(pl) =

k∑
j=0

d−k(pj)αj(p)χ(pj)d−k(pl−j)β
l−j

(p)χ(pl−j), (2.5)

and, for primes p | ∆ and l ∈ N, by

âk(pl) = dk(pl)λl(p)χ(pl), b̂k(pl) = d−k(pl)λl(p)χ(pl). (2.6)

For l ∈ N, we have that

|d±k(pl)| 6 |θ|(|θ|+ 1) · · · (|θ|+ l − 1)

l!
= θ

l∏
j=2

(
1 +
|θ| − 1

j

)

6 |θ|
l∏

j=1

(
1 +
|θ|
j

)
6 |θ| exp

{
|θ|

l∑
j=1

1

j

}
6 (l + 1)c, (2.7)

where the constant c depends on k, only. By the definition of α(p) and β(p),
we have that |α(p)| = |β(p)| =

√
p. Therefore, for p - ∆ and l ∈ N, (2.4) and

(2.5) imply the bounds

|âk(pl)| 6 p
l
2

l∑
j=0

(j + 1)c(l − j + 1)c 6 p
l
2 (l + 1)2c+1 (2.8)

Math. Model. Anal., 17(1):90–99, 2012.
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and
|b̂k(pl)| 6 p

l
2 (l + 1)2c+1. (2.9)

It is known [4] that, for p | ∆, the numbers λ(p) are equal to 1 or 0. Thus, by
(2.6)–(2.7) we have that, for p | ∆,

|âk(pl)| 6 (l + 1)c, |b̂k(pl)| 6 (l + 1)c. (2.10)

Now the multiplicativity of âk(m) and b̂k(m), and the estimates (2.8)–(2.10)
show that

âk(m) =
∏
pl‖m

|âk(pl)| 6 m
1
2

∏
pl‖m

(l + 1)2c+1 = m
1
2 d2c+1(m), (2.11)

|b̂k(m)| 6 m
1
2 d2c+1(m), (2.12)

where d(m) is the divisor function. Since

d(m) = Oε(m
ε) (2.13)

with every ε > 0, the latter estimates imply, for every fixed k ∈ Z \ {0} and
s ∈ R, the absolute convergence of the series

∞∑
m=1

âk(m)

ms
and

∞∑
m=1

b̂k(m)

ms
.

Therefore, in view of (2.3), we conclude that, for every fixed k ∈ Z \ {0} and
and s ∈ R,

eik argLE(s,χ) =
∏
p|∆

∞∑
j=0

dk(pj)λj(p)χj(p)

pjs

∏
p-∆

∞∑
l=0

âk(pl)

pls

×
∏
p|∆

∞∑
j=0

d−k(pj)λj(p)χj(p)

pjs

∏
p-∆

∞∑
l=0

b̂k(pl)

pls

=
∏
p

∞∑
l=0

âk(pj)

pjs

∏
p

∞∑
l=0

b̂k(pl)

pls
=

∞∑
m=1

âk(m)

ms

∞∑
n=1

b̂k(n)

ns
.

This and (2.1) give an expresion for the Fourier transform

gQ(k) =
1

MQ

∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

∞∑
m=1

âk(m)

ms

∞∑
n=1

b̂k(n)

ns
. (2.14)

3 Proof of Theorem 2

Having (2.14), we are in position to obtain the asymptotics for gQ(k) asQ→∞.
First we modify the right-hand side of (2.14). Let c1 = 2c + 1. Then, using
(2.11)–(2.13), we find that, for s ∈ R, any fixed k ∈ Z \ {0} and N ∈ N,∑

m>N

âk(m)

ms
= O

( ∑
m>N

dc1(m)

m1+δ

)
= Oε

( ∑
m>N

1

m1+δ−ε

)
= Oε(N

−δ+ε),
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and ∑
m>N

b̂k(m)

ms
= Oε(N

−δ+ε).

Therefore, for any fixed k ∈ Z \ {0} and s ∈ R, (2.14) can be rewritten as

gQ(k) =
1

MQ

∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

(( ∑
m6N

âk(m)

ms
+ Oε(N

−δ+ε)

)

×
( ∑
n6N

b̂k(n)

ns
+ Oε(N

−δ+ε)

))

=
1

MQ

∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

( ∑
m6N

âk(m)

ms

∑
n6N

b̂k(n)

ns

)

+ Oε

(
N−δ+ε

1

MQ

∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

(∣∣∣∣ ∑
m6N

âk(m)

ms

∣∣∣∣+

∣∣∣∣∑
n6N

b̂k(n)

ns

∣∣∣∣))
+ Oε(N

−δ+ε). (3.1)

Since, in view of (2.11)–(2.13), for any fixed k ∈ Z \ {0} and s ∈ R,

∑
m6N

âk(m)

ms
= O

( ∞∑
m=1

dc1(m)

m1+δ

)
= O(1),

∑
n6N

b̂k(n)

ns
= O(1),

we find that

1

MQ

∑
q6Q

(∣∣∣∣ ∑
χ=χ(mod q)

χ 6=χ0

âk(m)

ms

∣∣∣∣+

∣∣∣∣∑
n6N

b̂k(n)

ns

∣∣∣∣) = O(1).

Substituting this in (3.1), we obtain that, for any fixed k ∈ Z \ {0} and s ∈ R,

gQ(k) =
1

MQ

∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

( ∑
m6N

âk(m)

ms

∑
n6N

b̂k(n)

ns

)
+ O

(
N−δ+ε

)
. (3.2)

From the multiplicativity of the functions âk(m) and b̂k(m), and the complete
multiplicativity of Dirichlet characters we deduce that

âk(m) =
∏
pl‖m

âk(pl) =
∏
pl‖m
p-∆

(
l∑

j=0

dk(pj)αj(p)χ(pj)dk(pl−j)βl−j(p)χ(pl−j)

)

×
∏
pl‖m
p|∆

dk(pl)λl(p)χ(pl)

=

( ∏
pl‖m

χ(pl)

) ∏
pl‖m
p-∆

(
l∑

j=0

dk(pj)αj(p)dk(pl−j)βl−j(p)

)

Math. Model. Anal., 17(1):90–99, 2012.



98 V. Garbaliauskienė and A. Laurinčikas

×
∏
pl‖m
p|∆

dk(pl)λl(p) = ak(m)χ(m),

and similarly b̂k(m) = bk(m)χ(m), where the multiplicative functions ak(m)
and bk(m) are defined in Section 1. Thus, (3.2) becomes

gQ(k) =
∑
m6N

ak(m)

ms

∑
n6N

bk(n)

ns
1

MQ

∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

χ(m)χ(n). (3.3)

If m = n, then we have that∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

χ(m)χ(n) =
∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

|χ(m)|2 = MQ −
∑
q|m
q6N

(q − 2)

= MQ + O

(∑
q6N

q

)
= MQ + O

(
N2
)
.

Therefore, taking N = logQ, and using the estimate [3]

MQ =
Q2

2 logQ
+ O

(
Q2

log2Q

)
as well as (2.11) and (2.12) type estimates for ak(m) and bk(m), we find that,
for any fixed k ∈ Z \ {0} and s ∈ R,

∑
m6N

∑
n6N

m=n

ak(m)

ms

bk(n)

ns
1

MQ

∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

χ(m)χ(n)

=
∑
m6N

ak(m)bk(m)

m2σ
(1 + o(1)) =

∞∑
m=1

ak(m)bk(m)

m2σ
+ o(1) (3.4)

as Q→∞. It remains to consider the case m 6= n. For this, we will apply the
relation ∑

χ=χ(mod q)

χ(m)χ(n) =

{
q − 1 if m ≡ n(mod q),

0 if m 6≡ n(mod q),

provided that (m, q) = 1. So, for m 6= n and m,n 6 N , we have that∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

χ(m)χ(n) =
∑
q6Q

∑
χ=χ(mod q)

χ(m)χ(n)−
∑
q6Q

∑
χ=χ0(mod q)

χ(m)χ(n)

=
∑
q6Q

∑
χ=χ(mod q)
q|(m−n)

χ(m)χ(n) +
∑
q6Q

∑
χ=χ(mod q)
q-(m−n)

χ(m)χ(n) + O

(∑
q6Q

1

)

= O

(∑
q6N

q

)
+ O

(
Q

logQ

)
= O

(
Q

logQ

)
.
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Therefore, we obtain that, for any fixed k ∈ Z \ {0} and s ∈ R,∑
m6N

∑
n6N

m 6=n

ak(m)bk(n)

msns
1

MQ

∑
q6Q

∑
χ=χ(mod q)

χ 6=χ0

χ(m)χ(n)

= O

(
1

Q

∑
m6N

|ak(m)|
m

3
2+δ

∑
m6N

|bk(m)|
m

3
2+δ

)

= O

(
1

Q

( ∑
m6N

dc1(m)

m1+δ

)2)
= o(1)

as Q→∞. Now this, (3.4) and (3.3) show that, for any fixed k ∈ Z, uniformly
in s ∈ R,

gQ(k) =

∞∑
m=1

ak(m)bk(m)

m2σ
+ o(1)

as Q → ∞. The last relation implies the weak convergence of PQ to the
probability measure defined the Fourier transform

∞∑
m=1

ak(m)bk(m)

m2σ

as Q→∞. The same arguments also prove Corollary 1.
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