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Abstract: We have derived and analyzed the wavefunctions and energy states for an asymmetric double quantum
well (ADQW), broadened due to interdiffusion or other static interface disorder effects, within a known dis-
creet variable representative approach for solving the one-dimensional Schrodinger equation. The main
advantage of this approach is that it yields the energy eigenvalues, and the eigenvectors, in semiconductor
nanostructures of different shapes as well as the strengths of the optical transitions between them. The
behaviour of ADQW states for the different mutual widths of coupled wells, for the different degree of broad-
ening, and under increasing external electric field is investigated. We have found that interface broadening
effects change and shift energy levels, not monotonously, but the resonant conditions near an energy of
sub-band coupling regions do not strongly distort. Also , it is shown that an external electric field may help
to achieve resonant conditions for inter-sub-band inverse population by intrawell emission of LO-phonons
in diffuse ADQW.
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1. Introduction

When a thin (∼100 A layers of one semiconductor (e.g.
GaAs) are sandwiched between layers of another semi-
conductor with a larger band gap (e.g. AlGaAs), carri-
ers are trapped and confined in two dimensions (2D), due
to the potential barriers. As a result of quantum con-
finement, discrete energy states (or ”sub-bands”) occur,
which change dramatically electronic and optical proper-

∗E-mail: v.gavriusinas@cablenet.lt

ties of such structures, known as the quantum wells (QWs).
When the quantum wells are coupled there exist probabil-
ities for the electron tunnel, which can be in either of the
two wells. The novel optical properties of the 2D elec-
tron gas appear associated with the transitions between
quantized sub-bands, so called ”inter-sub-band transi-
tions”, which correspond to the range from mid-infrared
to terahertz (THz) photon energies. They have narrow
line-widths and extremely large dipole moments of tran-
sitions.

In recent years, there has been considerable interest in
asymmetrical multiple-quantum well systems [1], because
many new optical devices based on inter-sub-band tran-
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sitions are being developed (”inter-sub-band optoelec-
tronics” [2]). This feature could fulfill the need for effi-
cient sources of coherent infrared (IR) radiation for sev-
eral applications, such as communications, radar, and op-
toelectronics. Their most spectacular applications are
quantum well IR photodetectors [3] and the quantum cas-
cade (QC) lasers [4], that relies on the cascaded inter-
sub-band transitions and resonant tunneling between ad-
jacent QWs. These devices are made with epitaxially
grown GaAs/AlGaAs, InGaAs/AlInAs, GaN/AlGaN [1, 5]],
and Si/SiGe [6] systems. With the recent development
on semiconductor device growth technology, multi-barrier
quantum well structures are becoming the basic building
blocks of modern semiconductor devices, such as resonant
tunneling diodes (RTD) [7], high-speed light modulators
[8, 9], wavelength tunable lasers [10, 11], far-infrared and
THz lasers [12], quantum cascade (QC) lasers [4, 13], etc.
In an inter-sub-band quantum cascade laser, the popu-
lation inversion must be established by engineering the
lifetimes and oscillator strengths, i.e. by a suitable de-
sign of the active region. Calculations for quantum wells
are often performed in the approximation where the con-
duction and valence band offsets are taken as sharp step
functions. In practice, real QW structures tend to deviate
from the ideal homogeneous heterostructures with perfect
abrupt interfaces due to the fluctuations of the band edges
(Fig. 1), and inter-diffusion which thus is not very well de-
fined. The reasons for this are the stochastic processes of
the crystal growth leading to local variations of chemi-
cal composition, well width, and lattice imperfections to
name a few. Since a QW is generally a heterostructure
formed by a binary semiconductor (AB) and a ternary dis-
ordered alloy (AB1−xCx ), as in GaAs/InGaAs, there are
two types of disorders responsible for the inhomogeneous
broadening: compositional disorder, caused by concen-
tration fluctuations in a ternary component, and random
diffusion across the interface.
Surface segregation during epitaxial growth [14] and ther-
mal annealing [15] processes may result in the symmetric
inter-diffusion at interfaces [15]. Both processes change
the electronic behaviour of a system by narrowing the
QWs and degrading the barriers of QWs. In such inter-
diffused or inter-mixed QW structures with smooth inter-
face profiles, significant changes in the sub-band spacing
and carrier scattering rates in a Si/SiGe QW system [6],
were predicted.
The inter-diffused QW structures such as GaAs/AlGaAs
[16] and InP/InGaAs [17, 18] have been actively investi-
gated for improved inter-sub-band electro-absorptive light
modulation [17, 18], and widely used in several optical
devices, such as electro-absorptive [19] and lateral con-
finement [20] waveguides, light modulators [21, 22], and

wavelength tunable lasers [10, 11]. The improved quan-
tum confinement and a higher tunneling rate achieved in
the inter-diffused QW’s cannot be fulfilled by a rectangu-
lar QW structure simultaneously. The extensively inter-
diffused QW reduces the required bias or increases the
tunneling rate for EA modulation. Therefore, the diffused
QW structure is potentially attractive for developing high-
speed modulators. The effect of inter-diffusion has been
simulated and investigated below.

The genius of the QW heterostructure concept—and the
quantum cascade in particular—lies in its innate engi-
neerability. In order to design new devices or optimize
the device performance, and thus properly predict their
behavior, one needs to know the detailed information of
quasi-bound levels in real disordered multi-barrier quan-
tum well structures. Theoretical studies of the influence of
the compositional and interface disorder on the motion of
free carriers in nanostructures have a long history [23–25].
There have been calculations for phenomena like exciton
localization at lateral fluctuations of the well width and
band tails [26, 27] as shown in Fig. 1c due to fluctuations
in impurity concentration.

To understand the physical properties of the heterostruc-
ture devices, one needs to solve the eigenvalue problem
of carriers in QWs. It is well known that exact analytical
solutions to such problems are only available for simple
structures such as a square or parabolic well [28], and even
in these structures, in general, in the presence of perturba-
tions such as external fields, disorder effects [29], etc., the
problem cannot be solved exactly. There have been vari-
ous numerical methods used to calculate the band profiles
in QWs: the matrix approach (MA) [30, 31], the transfer
matrix (TM) method [32, 33], the finite difference method
(FDM) [34, 35], the ”shooting method” (SM) [34, 36], the fi-
nite element (FE) technique [37, 38], discreet variable rep-
resentation (DVR) approach [39], envelope function (EF)
method [40], Wentzel–Kramers–Brillouin (WKB) approxi-
mation [41], variational method (VM) [42], and Monte Carlo
(MC) simulations [43]. Among them, the WKB and EF
methods adopt approximations, thus giving unreliable re-
sults; the VM only works well at simple QWs and weak
fields; the MC and FE methods are highly computer-
orientated approaches; the MA usually require wave func-
tion to be well behaved; the SM’s speed comes at the
cost of stability. The DVR and TM methods overcome all
the shortcomings listed above and could be easily applied
to any potential profiles of biased/unbiased multi-barrier
quantum well structures.
In this paper, we describe a numerical technique based on
the DVR approach, as a grid-point representation (grid
discretisation method) of a Hamiltonian matrix element
[29, 39, 44] which is capable of solving the eigenvalue and
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Figure 1. a) Characteristic length scales describing the interface roughness of a QW. (b) Spatially locally fluctuating band edges caused by random
distribution of impurities [46]. (c) Resulting densities of states in the conduction with tail states extending into the forbidden gap. The
dashed lines show the parabolic densities of states in undoped semiconductors.

eigenfunction problems in an arbitrary QW under arbitrary
perturbation. Calculation results for energy levels and
wave functions of an asymmetric double quantum well with
sharp interfaces and inter-diffused interfaces with gradual
variation of the potential, are presented and compared.

2. Calculation details
2.1. A model of the interface disorder effects
Randomly distributed charged dopants, or composition x
in mixed crystals AxB1−x , lead to unavoidable fluctuations
of the doping impurities concentration on a microscopic
scale. Semiconductor heterostructures possess a certain
degree of disorder due to their alloy structure and/or im-
perfect interfaces. Two things influence interface disor-
der effects: coordinate fluctuations of interface position
(Fig 1a), and gap energy Eg(x) fluctuations (Fig. 1b,c)
due to the randomly distributed dopants. These fluctua-
tions result in potential fluctuations giving rise to band
tails composed from localized states. This situation is
schematically shown in Fig. 1. The magnitude of band-
edge energy fluctuations (Fig. 1b,c) caused by the random
distribution of charged donors and acceptors was first cal-
culated by Kane [45]. States with energy below the un-
perturbed conduction band edge or above the unperturbed
valence band edge are called tail states, which signifi-
cantly change the density of states in the vicinity of the
band edge.
Particularly simple 1D models of an electron moving in a
random or diffused potential are possible. If the fluctu-
ations are not too large, good approximation is obtained
by calculating spectra for slightly different configurations
and adding them up using some broadening weight factor.

Inhomogeneous broadening, due to site variation produced
by a random distribution of local crystal fields, results in
a Gaussian type broadening [45]. Homogeneous broad-
ening, from dynamic perturbations on energy levels and
equally on all ions, leads to a Lorentzian type broadening.
So, a QW’s barrier interface roughness may be approxi-
mated [29] by the convolution of Heaviside step function
Φ(x − x0) with an area normalized, a moving Gaussian
broadening envelope function of width σG [45]:

HG(z, z0, σ ) = 1√
2πσG

∞∫

0

exp
[
− (z − x)2

2σ 2
G

]
Φ(x − z0)dx,

(1)
or with the Lorentzian broadening envelope function of
width Γ :

HL(z, z0, Γ ) = Γπ

∞∫

0

1
(z − x)2 + Γ 2 Φ(x − z0)dx. (2)

A convolution (smoothing) procedure [47] is an integral
that expresses the amount of overlap of envelope function
(i.e. Gaussian or Lorentzian) as it is shifted over another
function Φ. Instead of the ∞ limit usually used in inte-
gration, we take any value big enough for the resultant
convergence.
The barrier steps may also be broadened in an extremely
simple analytical way, - by applying of the phenomeno-
logical atan(x) function against the Heaviside step func-
tion Φ(x), usual for an ideal heterostructure with perfect
interfaces:

Φ(z − zi)⇒
π
2 + arctan z − ziΓi

, (3)
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Figure 2. Comparison of convolution broadenings of the Heavi-
side step-function with different broadening functions: 1
– Gaussian broadened step; 2 – Gaussian envelope; 3
– Lorentzian broadened step; 4 - Lorentzian envelope; 5
– Analytical arctan(x) approximation curve (3); Analytical
error function profile (4) is fully overlapped with curve 1.
Broadening parameter Γ = 0.05 nm.

where Γi is the broadening parameter of the interfaces
at zi. This function with zero mean zi, characterises the
deviation of the ith interface from its average position. The
inter-diffusion of the QW composition profile is described,
usually, by an error function erf(x) [6, 15, 48]:

Φ(z − zi)⇒
1
2

[
1 + erf

(
z − zi√

2Ld

)]
. (4)

The extent of the inter-diffusion process is characterised
by a diffusion length Ld . Examples of calculated functions
(1)-(4) are presented in Figure 2. An analytical error
function profile (4) is fully overlapped with the Gaussian
broadened step (curve 1). As we see in Figure 2, function
(3) (red dots) may be a good approximation for convolution
of Heaviside function by Lorentzian envelope (2) (curve 3).
To our knowledge, any attempts to use the Lorentzian
type broadening or interdiffusion modeling have been pub-
lished, so annealed QW interfaces were simulated below
in such a kind.

2.2. Method of discrete variable representa-
tion (DVR)
Analytical solutions for asymmetrical double and triple
quantum-wells are possible only for unbiased sharp rect-
angular QWs [49]. We select discrete variable represen-
tation (DVR) as a numerical method [39, 50] for our Math-
CAD calculations of a stationary 1D Schrodinger equation
for confined eigenstates. Different types of DVR methods
have found wide applications in different fields of prob-

lems [51, 52]. We also carried out DVR calculations for
QWs and unharmonic Morse potential [29, 44].
The DVR is a numerical grid-point method in which the
matrix elements of the local potential energy operator V(r)
is approximated as a diagonal matrix (mnemonic: DVR -
diagonal V(r), or Discrete Variable Representation): Vik
= 〈φi|V |φk〉 = δikV (xi) [53], and the kinetic energy matrix
is full, but it has a simple analytic form, as a sum of 1D
matrices. DVR method is selected since it avoids having
to evaluate integrals in order to obtain the Hamiltonian
matrix and since an energy truncation procedure allows
the DVR grid points to be adapted naturally to the shape
of any given potential energy surface. The DVR method
greatly simplifies the evaluation of Hamiltonian matrix el-
ements Hik = 〈φi|H|φk〉 and obtains the eigenstates and
eigenvalues by using standard numerical diagonalization
methods of MathCAD or Mathematica.
If we choose an equally spaced grid, xi = iΔx, (i =
0, ±1, ±2, ... ±N), then the DVR gives an extremely sim-
ple grid-point representation of the kinetic energy matrix
T̂i,k = h̄2k2

i,k
/

2m∗ within the conditional formulation [39]:

�
T i,k = g

{
π2/

3, i = k
2 (−1)i−k

(i−k)2 , i �= k

}
. (5)

The only parameter involved being the grid spacing Δx
via an energetically weighted grid parameter g (“energy
quantum of the grid”):

g = h̄2

2m∗

(
1

Δx

)2

, (6)

where m∗ is the electron effective mass. So, if the grid
points are uniformly spaced then numerical solutions of a
matrices elements of the full energy Hamiltonian operator

Ĥ =
�
T + V̂ = − h̄

2

2m∗
d2

dx2 + V (x)

is as [39]:

Ĥi,k =
�
T i,k + V̂i,k = h̄2

2m(Δx)2 (−1)i−k×

×
(
π2

3 δi,k + 2
(i − k)2 (1− δi,k )

)
+ V (xi) δi,k (7)

when the δ-functions are placed on a grid that extends
over the interval x = (-∞,∞). First term in parenthesis is
a value of second term in the limit N → ∞ [39].
In our calculations the potentials of an ideal and of a
broadened biased/unbiased double QW are used as [29]:

V1(xi) = U1 [ 1 + Φ(xi − R1)− Φ(xi)] + Vbias(xi),
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Figure 3. Unbroadened ideal ADQWs case. Dependencies of the positions of the five lowest subbands B0 – B4 (in eV) as a function of the narrower
well width R1 (= 3, 5, 7, 10, 12, 15 nm) for fixed values Rb = 2 nm and R2 = 15 nm. Broken lines are the same dependencies of the A
states for a single quantum well of R1 width. The insets around show the model band diagrams with energy levels and corresponding
wavefunctions of an asymmetric double quantum well heterostructures. The wavy arrow indicates the stimulating light-emitting transition,
assisted by the fast resonant optical-phonon emission (arrow between states n = 1 and n = 0) in the heterostructure. Calculated region:
-30 nm ÷ +30 nm with 500 grids.

V2(xi) = V1(xi) + U2×

× [−Φ(xi − Rb − R1) + Φ(xi − Rb − R1 − R2)], (8)

and
V1(xi) = U1

[
1 + 1
πa tan

(
xi − R1

Γ

)

− 1
π a tan

( xi
Γ

)]
+ Vbias(xi),

V2(xi) = V1(xi) + U2

[
− 1
π a tan

(
xi − Rb − R1

Γ

)

− 1
π a tan

(
xi − Rb − R1 − R2

Γ

)]
, (9)

correspondingly. Here Φ(x) is a Heaviside step function;
U1(2) are the depths of potential wells (differences in the
offset band energies) for the 1st and 2nd QW of the widths
R1(2); and Rb is the barrier width. The applied bias po-
tential here

Vbias(xi) =
∣∣∣∣∣
Vcont, if xi < Rcont
Ef · xi, otherwise (10)

Vcont = U1 [ 1− Φ(R1 −Rcont ) + Φ(Rcont )] + Ef · Rcont ,

is used when an electric field Ef perpendicular to the
quantum well is applied in calculations.

3. Results and discussion
Inter-well optical-phonon-assisted transitions are studied
in an asymmetric double-quantum-well heterostructures
[53] comprising one narrow and one wide coupled quan-
tum wells (QWs). It is shown that the depopulation rate
of the lower sub-band states in the narrow QW can be
significantly enhanced thus facilitating the inter-sub-band
inverse population, if the depopulated sub-band is aligned
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Figure 4. Broadened ADQWs with interdiffused interfaces. Dependencies of the positions of the five lowest sub-bands B0 – B4 (in eV) as a
function of the narrower well width R1 (= 3, 5, 7, 10, 12, 15 nm) for fixed values Rb = 2 nm and R2 = 15 nm. Broken lines are the
same dependencies of the three Ai states for a single QW with the width R1. For comparison, thin black lines presents the case of
ideally rectangle shaped ADQWs as in Fig. 3. The insets around shows the model band diagrams with energy levels and corresponding
wavefunctions. Interface roughness parameter Γ = 0.2 nm. Calculated region: -30 nm ÷ +30 nm with 500 grids.

with the second sub-band of the wider QW, while the en-
ergy separation from the first sub-band is tuned to the
energy of optical phonon mode. Such mentioned structure
under applied bias is working as a ”resonant-phonon type”
active region of stimulated emission in the far-infrared
quantum cascade lasers (QCL) [54]. Laser operation [4] is
based on stimulated radiative transitions between inverse
populated states (wavy arrows at Fig. 7a). Depopula-
tion of lower state is achieved by setting the sub-band
separation between 1st and 2nd levels to the LO-phonon
resonance energy, which causes electrons to quickly relax
from level 2 via electron-phonon scattering (bold arrow at
Fig. 7a). An overview of QCL physics, including devel-
opment and applications, are given in the review papers
[55, 56].
Seeking to reproduce mentioned effects, the eigenvalues
(stationary energy states En) and the eigenvectors (wave-
functions ψn) for a quantum number n, as the solutions of
the Schrodinger equation Ĥψn(r) = Enψn(r), were calcu-

lated using standard numerical diagonalization methods
(eigenvals(H) and eigenvec(H) commands in MathCAD)
for the DVR Hamiltonian (7).
Results of our DVR calculations of such a laser structure,
as in [53], are depicted in Fig. 3 as the eigenstates, to-
gether with the corresponding wavefunctions, for the cou-
pled asymmetric square quantum wells with the potentials
of the form (8). The states over the dissociation energy
U are unbound and delocalised. Dependencies of the po-
sitions of the five lowest sub-bands Bi as a function of
the narrow well width values R1 = 3, 5, 7, 10, 12, 15 nm
for the fixed values of barrier width Rb = 2 nm and of
the second QW width R2 = 15 nm are shown in Fig. 3.
Broken lines are the same dependencies for the Ai states
of a 1st , but single, quantum well with the same width
R1. Comparing the fans of dependencies for Ai and Bi
states for single and double QW’s, we can resolve the
doublet nature of the states and especial coupling (anti-
crossing) regions of the levels in double QW. The insets
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Figure 5. Conduction band potential, confined electron states and wavefunctions shown schematically for varying degrees of interdiffusion [Γ =
0.2, 0.5, 1, and 2 nm] for ADQW, same as in Figure 4. Left QWs width is R1 = 7 nm; right QWs width is R2 = 15 nm; barrier width is 2
nm. Middle fan represents the subband spacing as a function of broadening factor Γ .

around in Fig. 3 show the model band diagrams with en-
ergy levels and corresponding wavefunctions of an ADQW
heterostructures (AlGaAs/GaAs).
It is useful also to have some indication of how many grid
points are necessary for this DVR procedure to provide an
accurate description of a quantum system. Convergence of
the calculation can be checked by decreasing the number
of grid used in the calculation. For full convergence of
the calculation results, we found that a big enough grid
number is N ≥ 50, however we have used the number of
calculus points N = 500 for the better shaping of calcu-
lated wavefunctions.
All states in double QWs are split doublets, because the
degeneracy is unmounted by different parity properties.
When the barrier thickness becomes smaller, quantum
coupling due to the tunneling between the wells is domi-
nant. As a consequence, an energy splitting (anticrossing)
occurs (coupling regions indicated in Fig. 3 and Fig. 4)
and the respective electron states, the so-called binding
(symmetric) and anti-binding (antisymmetric) states, are
delocalised over both wells. The minimum energy split-
ting or tunnel coupling ΔE (anticrossing gap) is deter-
mined by the barrier thickness Rb and height. The lowest
coupled state is mainly localised in the wide well and the
other state is mainly localised in the narrow well. Due to
the coupling of the two wells the two states have nonzero
probability density in both wells.
One embodiment of THz laser structure is depicted in
Fig. 3 and Fig. 4 where the energy levels in coupling re-
gion are separated by energy equal to the optical phonon
energy. The wavy arrow corresponds to the stimulated
light-emitting transition, assisted by the fast resonant
optical-phonon emission (arrow between states n = 1 and

n = 0). Phonon-assisted transitions between the coupled
levels depend strongly on the phonon energy involved in
the transition.
Even with the sophisticated growth technologies used in
current structures, the presence of interface and alloy
disorder induces noticeable effects. The results of DVR
calculations of the same family of ADQWs as in Fig. 3,
but with broadened interfaces with the potentials approx-
imated by (9), using interface smoothing Γ = 0.2 nm, are
depicted in Fig. 4. In the central part of Fig. 4, for com-
parison, both energy fans for ideal rectangular interfaces
(as in Fig. 3), and for broadened ones, are presented to-
gether. Here the thin black lines represent the case of
sharp rectangular shaped ADQWs. As we see, interface
broadening changes shift energy levels to the higher ener-
gies, but the resonant conditions near an energy coupling
region are not strongly distorted. The blue shift is as a
sequence of an effective narrowing of the distorted QWs,
and the changes seen in the coupling regions are caused
from the different inter-well barrier profile.
Such modest one-dimensional modeling results for QWs
may correspond to the mean effects from the lateral fluc-
tuations in the plane of QWs. Interface roughness as 3D
problem affects in general the dynamics of confined exciton
states [26, 27] or scattering processes [57]. The ambigu-
ity is due to the continuous spatial variation of interface
from alloy composition. It is usually assumed that the 3D
interface roughness parameters are independent of inter-
diffusion. In reality, however, annealing-like diffusion pro-
cesses may reduce the interface roughness height.
Similar calculations, but for a single heterojunction with
transition layer, were performed in [58], where also was
shown that interface smoothing gave small effects to the
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Figure 6. Confined electron states and wavefunctions dependence on an electric field [E = 0,1.4,2.7,5.4 meV/nm] applied perpendicular to the
diffused (Γ = 0.2 nm) ADQW layer plane, same as in Figure 4. Left QW width R1 = 7 nm; right QW width R2 = 15 nm; barrier width is 2
nm. Zero external field, or metal contact position Rcont is selected at -7 nm.

energy level differences, - they are relatively insensitive
to the interface profile. Inter-sub-band carrier scattering
in Si/SiGe quantum wells with diffuse interfaces was in-
vestigated in [6].

3.1. Effect of the Interdiffusion degree to the
states of ADQW

To estimate the effect of inter-diffusion upon barrier degra-
dation [6], same pairs of QWs separated by a thin bar-
rier were considered. Figure 5 shows the results for the
coupled diffuse double quantum well, resolving the ef-
fect of inter-diffusion degree Γ on the sub-band spacing
ΔEnn′ . As the broadening factor Γ increases, the bottom
of the wells narrow and the top widens. Sub-bands, which
are nominally near the bottom of the well, are therefore
pushed up in energy as inter-diffusion increases, while
those at the top drop relatively in energy. Conversely,
the effect is small in sub-bands near the middle of the
QW depth.
The lower energy electrons are strongly confined in the
wider well, and the higher energy electrons in both wells.
In the “weak coupling” regime, the sub-band spacing in-
creases to a peak shift. At greater inter-diffusion lengths,
the sub-band spacing decreases. Inter-diffusion degrades
the barrier between wells. Right-bottom inset of Fig-
ure 5 shows the “single well” regime, in which large inter-
diffusion merges the wells.
Three distinct regimes can be identified, as inter-diffusion
increases. For low inter-diffusion the interfaces are almost
abrupt, and the barrier is well defined. This effectively un-
couples the wells, resulting in very small overlap between

the lowest pair of sub-bands. As inter-diffusion increases,
the barrier degrades and the wells become weakly cou-
pled, leading to an increased overlap between sub-bands.
The bottoms of the wells narrow, leading to increased sub-
band spacing. At very large inter-diffusion lengths, the
barrier potential is substantially reduced, and the system
resembles a single quantum well with the nominal “bar-
rier” region acting as a perturbation. The region of over-
lap between sub-bands now extends across the entire sys-
tem, and the energy spacing between sub-bands is deter-
mined approximately by the width of the wide, single well
and is hence lower than the nominal value. A blue shift
in the inter-mini-band emission frequency for GaAs/AlAs
superlattices was observed as the inter-diffusion length
increased in [59].

3.2. Electric field effect to ADQW states

The resonant situation can be obtained for asymmetric
coupled double quantum wells with applied bias [4, 53, 54].
We have performed the same calculations for the diffused
ADQW as one of geometry from Figure 4 including the
influence of an external electric field Ef . Results were
shown at Fig. 6. When an external bias perpendicular
to the quantum well is applied, indicated in the Fig. 6
by the changed constant slope, electrons are pushed to
one side of the well, thus the effective well width is re-
duced. At the chosen bias Ef potential tilts downwards
from right to left. The middle fan shows how it is possible
to change the resonant conditions of longitudinal optical
(LO) phonon emission (breaked arrow) to achieve the in-
version population at 3rd state for laser effect with FIR
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Figure 7. a) Scheme of confined electron states, wavefunctions, and laser transitions at applied external bias 5.44 meV/nm perpendicular to the
diffused (Γ = 0.2 nm) ADQW layer plane. (b) The sub-band electron lifetime (inverted horizontal axis) due to optical phonon scattering
as a function of inter-sub-band transition energy in a square QW. (c) Engineering a population inversion using the longitudinal optical
(LO) phonon resonance. In a ladder of three states, where the two lower ones are spaced by LO-phonon energy, E3 state’s lifetime will
naturally be longer than the E2 because of the smaller (k12 ≈ 0) exchanged wavevector for LO-phonon emission between the 2nd and
1st states. Small vertical arrows show a resonant inter-sub-band LO-phonon scattering. (b,c - adopted from [2])

photon generation (wiggly arrow). Here, once more, we
may see an anticrossing situation caused by bias for the
levels n = 0 and n = 1 around the 2-3 meV/nm region of
electric field strength.
Investigating structure may work as an electroabsorptive
light modulator [17, 18] or as an active stimulated emis-
sion region in the far/mid-infrared quantum cascade (QC)
lasers [54]. The schematic for this laser operation [4]
shown at Fig. 7c is based on a stimulated and cascaded
radiative transition from E3 to a lower sub-band E2. De-
population of lower sub-band is achieved by external bias,
setting the sub-band separation between levels 2 and 1 to
the LO-phonon resonance energy, which causes electrons
to quickly relax from level 2 via resonant electron-LO-
phonon scattering.
For QC lasers the lifetimes are ultimately limited by LO-
phonon emission. The computed [2] inter-sub-band life-
time due to optical phonon emission, is plotted as a func-
tion of transition energy for a square QW in Fig. 7b (zero
initial kinetic energy in the upper sub-band and zero tem-
perature were assumed). As shown in Fig. 7b, a strong re-
duction of the lifetime is predicted when the two states are
spaced resonantly with the optical phonon energy hωLO .
This increase in scattering rate appears when Δkscatt ap-
proaches zero at resonance (k21 = 0 in Fig. 7c).
A strong reduction of an inter-sub-band lifetime (up to
≈ 0.2 ps at Fig 7b) may be obtained by using resonant
conditions (electric field tunable) for LO-phonon emission
process, when the transition 2→1 approaches the LO-
phonon energy value. Consider the structure shown in
Fig 7c. In this three-level system, the first two states
are separated by optical phonon energy [≈34(36) meV

in InGaAs(GaAs)]. Resonant optical phonon emission be-
tween these two states will reduce the lifetime of the state
n = 2 to about τ21 ≈ 250 fs. LO-phonon scatter-
ing is also the dominant non-radiative relaxation mech-
anism from level 3, but is reduced (τ32 ≈ 1.3 ps) due
to the large in-plane momentum k23

|| exchange necessary.
In other words, 3→2 transitions will proceed with large
wavevectors, whereas 2→1 transitions proceed at nearly
zero exchanged wavevectors over a whole sub-band (see
Fig 7c).
The ”resonant-phonon-de-population” design for QCLs
was developed in [4, 60]. This design uses combination of
resonant tunneling and direct electron-LO-phonon scat-
tering. Electrons are injected by tunneling into the n = 3
excited state efficiently filling it. The population inversion
(its requirement is simply that τ32 > τ21) is achieved
between the two excited states n = 3 and 2 (wavy arrow in
Fig 7a,c - as 3→2 laser transition). Strong relaxation by
emission of optical phonons occurs between the strongly
overlapped and closely spaced 2nd and 1st sub-bands.

4. Conclusions
The discreet variable representation approach for solving
the Schrodinger equation are performed to calculate the
electronic properties of asymmetric double quantum wells
with interfaces broadened due to static inter-diffusion ef-
fects. Seeking to exploit the inherent flexibility in QW
structures, we have presented our results, simulating an-
nealed interfaces with Lorentzian type broadened shapes,
as an attempt to model real systems more accurately than
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the abrupt rectangular QW approximation. The wave func-
tions and energy states of ADQWs were derived and ana-
lyzed in their changes: due to the different mutual widths
of coupled wells, for different degree of the broadening,
and under increasing external electric field. Our calcu-
lations, however, are simulating the behavior of diffused
electroabsorptive light modulators [17, 18] and the light-
emitter regions of some types of quantum cascade lasers
[54].
Perhaps the main conclusion of this work is that the
key features for sharp interfaces are preserved, but in-
terface broadening effects change and shift energy levels,
but not monotonously. The resonant conditions near the
energy of sub-band coupling (anticrossing) regions are
not strongly distorted, but anticrossing energy is slightly
growing when the interfaces are made smooth. We found,
that electric field tunable inter-sub-band energy separa-
tions (controlling quantum cascade laser work) were not
changed monotonously on the inter-diffusion level, and
therefore are important for inter-sub-band optoelectron-
ics technology predictions [2]. It is shown how external
bias may help to achieve resonant conditions for inverse
population by intra-well emission of LO-phonons.
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