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Abstract: The dielectric properties of epoxy/MWCNT (multi-walled carbon nanotubes)/MgO 
hybrid composites with a fixed MWCNT amount of 0.12 vol.% (0.2 wt.%) and varying MgO 
concentrations up to 3 vol.% were investigated in broad frequency (20–40 GHz) and temperature 
(20–500 K) ranges. The composites with up to 2 vol.% MgO nanoparticles concentration showed a 
significant increase of DC conductivity in relation to their non MgO-containing counterparts. The 
optimal content of MgO was found, i.e., 0.46 vol.%, which gave up to 2.5 orders of magnitude 
larger DC conductivity than those of the samples prepared without MgO additives. Using various 
amounts of MgO, it is possible to predictably vary the broadband electromagnetic properties of the 
composites, even entirely eliminating the electrical percolation. Electrical transport at different 
temperatures can be substantially controlled by the addition of given amounts of MgO. The 
broadband properties are discussed in terms of the distribution of relaxation times, which are 
proven to be an effective, noninvasive, and simple tool for checking composite fabrication issues, 
such as the distribution of MWCNT aggregates within the epoxy matrix. 
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1. Introduction 

Multifunctional composites are becoming ever more common and essential in modern 
industrial and commercial applications due to their being lightweight, flexible, and electrically 
conductive polymers for electromagnetic coatings. If an insulating polymer matrix is filled with a 
sufficient concentration of electrically conductive particles, the electrical percolation effect occurs, 
raising the conductivity sharply. Generally, it is desirable that the concentration at which the 
percolation appears is as low as possible, since this makes the composite less expensive and the 
overall mechanical performance better [1,2]. Carbon nanotubes (CNTs) [3] have been identified as a 
suitable filler for composites owing to their unique thermal, electrical, mechanical properties, and 
especially because of their extremely high length:diameter (i.e., aspect) ratio [1]. Commonly reported 
percolation thresholds for composites containing randomly distributed multi-walled CNTs 
(MWCNTs) in an epoxy resin matrix are between 0.01 wt.%–1 wt.%, depending on the preparation 
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method, diameter, and the quality of the MWCNTs, functionalization of the MWCNTs surface, and 
age of the masterbatch among other parameters [1,2,4,5].  

The huge surface area of the CNTs creates strong Van der Walls interactions between 
individual particles. During the preparation of CNT/polymer composites, due to the Van der Walls 
interactions, CNTs form extensive close-packed aggregates inside a low viscosity polymer matrix. 
Solution mixing is the most popular composite preparation method. To achieve the percolation 
threshold below 0.5 vol.% with this method, the perfect dispersion of CNTs is needed. In other 
words, the CNT aggregates have to be broken down with additional processes like ultrasonification, 
which itself might be destructive to the CNTs [2]. Residual aggregation shall remain, however, since 
it is important for providing good interconnection within the percolated network [4]. To achieve the 
lowest percolation threshold, CNTs need to be spaced as far apart as possible, while still being 
interconnected by conductive pathways.  

Nowadays, various porous composites filled with diverse inclusions attract attention due to 
their enhanced electromagnetic absorption, mechanical, and thermal properties [6–10], along with 
their low density. Indeed, huge electromagnetic absorption, as well as improved elastic and thermal 
properties are observed in epoxy composites with 3D copper nanowires and an annealed graphene 
aerogel framework [6]. To further increase performance, one of the appealing possibilities is to 
combine two or more fillers, and to exploit the synergetic effects between them. For example, many 
successful attempts to functionalize CNTs with an MgO coating [11–17], and to insert them into a 
polymer matrix [18–21], have been published. In order to attach MgO nanoparticles to the surface of 
CNTs, hydroxyl or carboxyl groups on the CNT surface are necessary [11–19]. This type of 
functionalization appears naturally if CNTs are in contact with oxygen, and additional extensive 
treatment of CNTs surface is unnecessary. The inorganic MgO nanoparticles can act as a spacer on 
the surface of CNTs which disallows the formation of Van der Walls bonds between CNTs, and they 
have been reported to prohibit the formation of CNT aggregates [13,18,20]. Thus, MgO nanoparticles 
can be used to control the CNT distribution. However, synergistic effects between MgO and CNT 
nanoparticles have not investigated to date. 

The aim of this work is to find synergy between MgO nanoparticles and CNTs in the electrical 
properties of epoxy resin composites over a wide frequency range. Epoxy resin has excellent 
compatibility with CNTs owing to its low viscosity, and for this reason it was chosen as a host.  

2. Materials and Methods 

2.1. Materials 

The MWCNTs were grown by the СVD method as described in [21]. The MWCNTs used in this 
work had a diameter of 20–40 nm and length of 0.5–200 µm. Commercially available MgO 
nanoparticles were used for composite preparation (US Research Nanomaterials, Houston, TX, USA) 
[22]. The MgO nanoparticles had a mean particle size of 60 nm, density of 3.58 g/cm3, and specific 
surface area of 45 m2/g. The matrix used was EpikoteTM 828 epoxy resin, which is characterized by 
room temperature viscosity of 10–12 Pa, density of 1.16 g/cm3, and epoxy group content of 5340–5500 
mmol/kg. 

2.2. Preparation 

Firstly, the MWCNTs were dispersed in ethanol for 30 min. The MWCNTs were then 
additionally dispersed using an ultrasonic bath for 1 h. The resulting mixture was combined with 
epoxy resin and underwent ultrasonication by ultrasonic dip for 2 h at 80 °C, whereby the ultrasonic 
power was 80 W. MgO was separately dispersed in ethanol and the solution was treated in an 
ultrasonic bath for 1 h, and then added to the MWCNT/epoxy mixture before being ultrasonificated 
once more by probe for 2 h. Consequently, the mixtures were placed under 50 °C for 2 days, so that 
ethanol would fully evaporate, and then the triethylenetetramine (TETA) hardener [23] was added 
(in a ratio of 1:10 with respect to the epoxy resin), and mechanically mixed for several minutes before 
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the final products were poured into molds and left to harden for 24 h. Finally, the hardened 
composites were heated for 2 h at 100 °C and taken out of the molds. 

Each produced composite had 0.12 vol. % (0.2 wt.%) MWCNTs concentration, which is close to 
the percolation threshold in our investigated MWCNT/epoxy composites (without MgO) (Figure 1).  

 
Figure 1. Frequency dependence of the electrical conductivity for epoxy resin composites with 
MWCNT inclusions. 

Six sets of samples were prepared with different MgO concentrations: 0, 0.25, 0.46, 1, 2, 3 vol.% 
(0, 0.8, 1.4, 3, 5.9, 8.7 wt.%, respectively). The surface morphology and microstructure were studied 
by scanning electron microscopy (SEM) using a Helios NanoLab 650 microscope. Several samples 
were investigated by SEM for the same MgO concentration. 

2.3. Broadband Measurements 

The dielectric properties were measured using an LCR meter HP4284 A in a broad frequency 
range of 20 Hz–1 MHz and in a temperature interval 30–500 K. Silver paint was used to make the 
electrical contact. A closed cycle helium cryostat with constant temperature change rate of 0.5 K/min 
was used for cooling below room temperature, while home-made furnace was used for higher 
temperatures. The dielectric measurements in 1 MHz–3 GHz frequency range were done with the 
coaxial line method using the vector analyzer E8363. The measurements in 26–40 GHz range were 
performed with a waveguide spectrometer which includes the generator Р2-65 and the scalar 
network analyzer R2400. Rectangular shaped samples were investigated in frequency range 20 Hz–3 
GHz, while at microwaves the sample has the form of the thin cylindrical rod with typical cross 
section area about 0.5 mm2. The electrical conductivity (𝜎ᇱ) was calculated using the expression: 𝜎ᇱ = 𝜔𝜀଴𝜀” (1) 

3. Results and Discussion 

3.1. Room Temperature Properties 

SEM images of the prepared composites with 0.12 vol.% MWCNT and 0, 0.25, and 3 vol.% MgO 
are presented at Figure 2. The dispersed MWCNTs are clearly visible. MgO nanoparticles can also be 
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seen as aggregates of various diameters in Figure 2b with 0.25 vol.% MgO around 500 nm diameter 
aggregates indicated by red arrows, in Figure 2c with 3 vol.% MgO wherein each aggregate more 
than 2 µm in diameter can be observed. It can be seen that a higher MgO content results in bigger 
MgO aggregates. Concerning MWCNTs, the cross-sectional area of their agglomerates can be 
identified to be the highest in composite with 3 vol.% MgO, and the smallest in the sample with 0.25 
vol.%. Therefore, MgO nanoparticles have an impact on the dispersion of MWCNTs. The addition of 
MgO nanoparticles into epoxy resin decreases the glass transition temperature and makes the 
degree of crosslinking lower [24,25]. Moreover, the viscosity of epoxy resin becomes lowers, which 
increases the CNTs agglomeration during the solution mixing [4]. However, with very small MgO 
concentrations, the opposite effect can be observed. A possible explanation is that MgO 
nanoparticles act as a ‘milling’ agent during the sonification of the composite masterbatch, 
effectively grinding the aggregates into smaller sizes.  

 

 

 

 
Figure 2. SEM micrographs of epoxy resin composites with 0.12 vol.% CNT and 0 (a), 0.25 (b), 3 (c) 
vol. % MgO content. Red arrows indicate small MgO aggregates. 
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In order to see the macroscopic distribution of MWCNTs, the panoramic SEM of composites is 
presented in Figure 3 (MWCNT clusters are observed as black spots, which are confirmed by higher 
resolution SEM pictures). The hierarchical structure is clearly observed in composites with 0.25 
vol.% MgO (Figure 3), in composites with 1 vol.% clusters of MWCNT are uniformly distributed, 
while in composites with 3 vol.% MgO, no macroscopic structure of the MWCNT is observed. This is 
in good agreement with previously reported results that the MWCNT clustering can decrease the 
percolation threshold value [26]. Smaller MgO clusters acts as separators of MWCNT clusters 
(Figure 2b) and support certain macroscopic structures of the MWCNT clusters (Figure 3a,b). 

 

 

 
Figure 3. SEM micrographs (panoramic view) of epoxy resin composites with 0.12 vol.% CNT and 
0.25 (a), 1 (b), 3 (c) vol.% MgO content. Red arrows indicate small MgO aggregates. 
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Frequency spectra of the dielectric permittivity (𝜀′) and the electrical conductivity (𝜎′) at room 
temperature for all the samples are presented in Figure 4. The shape of dielectric permittivity and 
conductivity spectra is strongly dependent on the MgO concentration. The differences in electrical 
properties of composites are clearly expressed at low frequencies (below 1 MHz), while at higher 
frequencies, electrical properties are less dependent on the MgO concentration. At low frequencies 
(below 1 kHz) the highest electrical conductivity is observed for the MgO concentration of 0.12 
vol.%, while the dielectric permittivity is highest for 1 vol. %. Composites with 2% MgO and 
without MgO additions have very similar broadband electrical properties. The values of 𝜀′ and 𝜎′ 
for composites with 3 vol.% MgO inclusions are very small and resemble the dielectric properties of 
pure epoxy resin. 

 
Figure 4. Frequency dependencies of the dielectric permittivity and the electrical conductivity at 
room temperature. 

At low frequencies the frequency-independent conductivity, which coincides with the DC 
conductivity (𝜎஽஼ ), is visible for all samples, except the one containing 3 vol.% MgO. The 
conductivity in such cases can be approximated using the Almond–West type power law: 𝜎′ = 𝜎஽஼ + 𝐴𝜔௦ (2) 

where 𝐴 and 𝑠 are parameters (0 < 𝑠 ≤ 1) shown together with fitting errors in Table 1. The 
fitting curves are presented in Figure 4 as solid lines. The appearance of 𝜎஽஼ is an indication that 
an electrical percolation network is presented in the sample. The frequency at which the value of the 
conductivity 𝜎ሺ𝜔ሻ deviates from the DC plateau is called the critical frequency 𝑓௖௥. Close to the 
percolation threshold 𝑝௖, the critical frequency 𝑓௖௥ is a function of the filler concentration 𝑝 and a 
characterizing parameter 𝑡: 𝑓௖௥~(𝑝 − 𝑝௖)ି௧ (3) 
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From the observed 𝑓௖௥ values, it can be determined that the use of MgO (concentrations from 
0.25 vol.% to 2 vol.%) during the preparation, together with 0.12 vol.% MWCNTs, decreases the 
critical percolation concentration 𝑝௖. The electrical percolation threshold is the lowest for composites 
with 0.46 vol.% MgO inclusions because, for this particular case, the DC conductivity and critical 
frequency have the highest values. Further increasing the MgO concentration above 0.46 vol.% led to 
a decrease of 𝜎஽஼, while the sample with 3 vol.% MgO didn’t exhibit electrical percolation at all. The 
SEM micrographs in Figures 2 and 3 can be used to explain these results. In composites with 0.25 
vol.% MgO inclusions (which had a very similar 𝜎஽஼ to that of 0.46 vol.% MgO), the MWCNTs are 
better dispersed than in composites with 3 vol.% MgO inclusions because of the smaller aggregate 
sizes. This results in a much higher level of interconnectivity, and consequently electrical 
conductivity. The average distances between clusters and stand-alone MWCNTs in composites with 
3 vol.% MgO inclusions are too high to achieve percolation, with huge aggregates also containing 
fewer and shorter splintered MWCNTs, which is important to achieve good interconnection. 
Additionally, huge MgO aggregates presented in high MgO content samples form an obstacle to 
prohibiting the formation of a percolation network. 

Table 1. Approximations according to Almond–West type power law. 

MgO content (vol. %) σDC (S/m) A (S) s 
0 1.54 × 10−6 1.55 × 10−8 0.67 

0.25 2.45 × 10−4 5.96 × 10−9 0.73 
0.46 3.93 × 10−4 6.99 × 10−8 0.64 

1 9.18 × 10−5 8.23 × 10−8 0.63 
2 3.54 × 10−6 1.36 × 10−8 0.69 

3.2. Electrical Transport at Different Temperatures 

To observe how the DC conductivity changes with temperature, electrical measurements over a 
broad temperature range of 30–500 K were performed. The temperature dependence of the DC 
conductivity is presented in Figure 5. Three different temperature regions can be separated: a) 
below 250 K, the electrical conductivity increases with the temperature; b) in a temperature range of 
250–350 K, the electrical conductivity decreases when the temperature increases, and c) above 350 K 
temperature the electrical conductivity again increases with temperature. Moreover, after 
annealing, the electrical conductivity exhibits pronounced hysteresis. 

In a non-homogenous system of the polymer matrix and conductive filler, the main method of 
charge transfer is variable-range hopping and/or tunneling through an energy barrier when mean 
distances between conductive nanoparticles are up to several nanometers [27,28]. In the latter case, 
the DC conductivity can be expressed through temperature using the tunneling model [29]: 𝜎ௗ௖ = 𝜎଴exp ൬ −𝑇ଵ𝑇 + 𝑇଴൰ (4) 

where 𝑇ଵ represents the energy required for an electron to cross the insulator gap between the 
conductive particle aggregates, 𝑇଴ is the temperature above which thermally activated conduction 
over the barriers begins to occur, and 𝜎଴ is the pre-exponential factor. Equation (4) describes the 
temperature dependence of DC conductivity below 250 K for all composites very well, as can be seen 
in Figure 5. The parameters are listed in Table 2 together with fitting errors. Parameters 𝑇଴ and 𝑇ଵ 
can be expressed by: 𝑇ଵ = 8𝜀଴ 𝑤𝐴𝛽଴ଶ 𝑘⁄  (5) 𝑇଴ = 2𝑇ଵ 𝜋χw⁄  (6) 

where 𝜒 = (2𝑚𝑉଴)଴.ହ ħ⁄  and 𝛽଴ = 4𝑉଴/𝑒𝑤 , 𝑚  and 𝑒 being the electron mass and charge, 
respectively, 𝜀଴  is the vacuum permittivity, 𝑉଴  is the potential barrier height, 𝑤  is the 
interparticle distance (gap width), and 𝐴 is the area of capacitance formed by the junction. If we 
assume that 𝐴 is the cross-sectional of a MWCNT with diameter values between 20 and 40 nm, the 
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values of 𝑉଴ and 𝑤 are calculated according to Equations (5) and (6), and these are presented in 
Table 2. The values of 𝑉଴ can be seen as quite similar for all samples. The interparticle distance 𝑤 
mainly increases with MgO concentration, however, the minimal value occurs for 0.25 vol.%. While 
the increase of 𝑤 has a negative impact on electrical conductivity, the experimental measurements 
with up to 2 vol.% MgO content shows a substantial increase of electrical conductivity. This might 
be explained as a higher level of interconnectivity becomes present between the MWCNTs inside 
the samples with up to 2 vol.% MgO characterized by a higher number of contact areas between 
MWCNTs, which would lead to an increase in the electrical conductivity.  

 
Figure 5. Temperature dependence of the DC conductivity. Arrows indicate the direction of heating 
and cooling. Solid lines are approximations according to Equations (4) and (7), and parameters are 
presented in Tables 2 and 3, respectively. 

Table 2. Approximation parameters according to the tunneling model (4). 

MgO (vol.%) σ0 (S/m) T1 (K) T0 (K) 𝑽𝟎 (meV) w (nm) 
0 2.5 × 10−6 34.8 10.3 7.6 4.9 

0.25 2.6 × 10−4 57.4 22.1 8.3 3.7 
0.46 6.1 × 10−4 45.7 9.3 9.9 6.4 

1 1.5 × 10−4 30.6 5.4 8.9 7.8 
2 5.3 × 10−6 33.5 4.7 10.1 9.2 

 
In a temperature range of 250–300 K, the DC conductivity decreases as temperature increases 

due to the heat-induced stretching and increase in the volume of the polymer matrix [28]. At high 
temperatures (above 400 K), the DC conductivity begins to increase again, which is the result of an 
onset of electrical conductivity in the polymer matrix. Therefore, above 400 K, DC conductivity is 
observed, even in the composite with 3 vol.% MgO, which is below percolation threshold. In the 
high temperature region, the Arrhenius equation is valid for DC conductivity [30]: 𝜎 = 𝜎଴exp (−𝐸௔ 𝑘𝑇)⁄  (7) 

where 𝜎଴ is the pre-exponential factor and 𝐸௔ is the activation energy. The obtained parameters 
are listed in Table 3, wherein the activation energy of pure epoxy resin DC conductivity is 1.28 eV 
according to [28]. The total conductivity is the sum of the electrical conductivity inside the matrix 
and in the percolation network, since both of the ‘resistors’ are connected in parallel. However, this 
means that the activation energy of total conductivity and the matrix are not equal to each other. 
With up to 0.46 vol. % MgO, low activation energy values are observed, comparable to the potential 
barrier 𝑉଴ seen previously (see Table 2). This implies that the governing method of transport is 
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electron tunneling, while in all other cases with much higher energy, it is mostly the conductance 
through the polymer matrix.  

Table 3. Approximation coefficients according to the Arrhenius Equation (7). 

MgO content (vol. %) 𝒍𝒏ሼ𝝈𝟎,𝑺/𝒎ሽ 𝑬𝒂/𝒌, K, (eV 
0 1.038 6751 (0.58) 

0.25 7.391 713 (0.06) 
0.46 4.737 1168 (0.1) 

1 2.75 5417 (0.47) 
2 1.904 6631 (0.57) 
3 3.348 8090 (0.7) 

 
Samples with up to 2 vol.% MgO showed hysteresis during a heating–cooling cycle, with 

slightly higher 𝜎ௗ௖ after annealing. However, for the sample without MgO a sharp break down of 𝜎஽஼ appears around 400 K during heating, indicating a destruction of the percolation network. 
After annealing at 500 K, the structure of these composites was permanently damaged, the value of 
σ became similar to that of the sample with 3 vol.% MgO, which had no percolation network. The 
composites became electrically nonconductive at room temperature after annealing.  

After annealing, the electrical conductivity also decreases for composites with 3 vol.% MgO 
inclusions. The impact of MgO inclusions on the temperature dependence of the conductivity can be 
explained by the significantly lowered threshold of the electrical percolation in hybrid 
MgO/MWCNT composites with up to 2 vol.% MgO. This is expected to be lower for composites with 
0.46% MgO. Composites close to the percolation threshold are mostly unstable and their percolation 
network can be easily destroyed by annealing, while the properties of composites far above the 
percolation threshold are stable [31,32]. In the intermediate case, enhancement of the electrical 
properties is observed. In order to analyze the gradual percolation network breakdown, composites 
without MgO were annealed only up to 380 K, and a significant nonreversible decrease of DC 
conductivity was observed, although in this case the network did not break down entirely, as in the 
case of annealing up to 500 K.  

The results of 𝜎ௗ௖ and 𝜀′ at 500 Hz at room temperature for all composites are presented in 
Figure 6. The electrical conductivity was maximal at 0.5 vol.% MgO, while the dielectric 
permittivity at 500 Hz was minimal at 1 vol.% MgO before annealing and 0.5 vol.% after annealing. 

 
Figure 6. Electrical conductivity of composites with different MgO vol.% concentrations at room 
temperature, 129 Hz before, and after annealing at 500 K. 
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To obtain more information from the dielectric measurements before and after annealing at 500 
K, we calculated the complex impedance, in which real (𝑍′) and imaginary (𝑍”) parts can be 
expressed as: 𝑍′ = 𝜀”𝜀′ଶ + 𝜀”ଶ 1𝜀଴𝜔 (8) 

𝑍” = 𝜀′𝜀′ଶ + 𝜀”ଶ 1𝜀଴𝜔 (9) 

The results at room temperature are presented in Figure 7. The real part of the impedance 
shows frequency independent values at the same frequencies at which 𝜎ௗ௖  is visible. The 
imaginary part shows maxima at various frequencies depending on the sample (except the sample 
with 3 vol.% MgO). After annealing at 500 K, the maxima for some samples shift to higher 
frequencies, except in the case composites with 0.25 vol.% of MgO, whereby the electrical properties 
remain stable after annealing. The frequency dependence of complex impedance is related to 
Maxwell–Wagner relaxation [33] and can be modeled with an equivalent circuit, for example, as the 
infinite circuit of RC connected in serial. The corresponding distribution of relaxation times ൫𝑓(𝜏)൯ 
was obtained by the method described in [34] and resolves the integral equation when 𝜏 = 𝑅𝐶: 

𝑍∗(ν) = 𝑍∞ + 𝛥𝑍 න 𝑓(𝜏)𝑑 log 𝜏1 + 𝑖𝜔𝜏∞

ିஶ  (10) 

 
Figure 7. Frequency dependence of the complex impedance before and after annealing at 500 K. 

The calculated distributions of relaxation times are presented in Figure 8. For the composite 
without MgO, the distribution could not be calculated since the imaginary part’s maximum position 
appears below the considered low frequency limit, however, the maximum can be reliably expected 
at the longest 𝜏 value seen in Figure 8. The distributions are symmetrical for all presented samples, 
except for composites with 1 vol.% and 2 vol.% MgO before annealing, which have ‘tails’ stretching 
into shorter relaxation times. After annealing, these ‘tails’ disappear and the distributions shift into 
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shortest relaxation times. For composites with 0.25 vol.% MgO, there is almost no change after 
annealing, and the distribution of the composite with 0.46 vol.% MgO shifts into the shortest times 
only very slightly. It is known that smaller conductive clusters have shorter relaxation times, since 
relaxation is dependent on the capacitance, which is directly proportional to the cluster size. Shorter 
distances between conductive clusters also increases the conductivity, and consequently results in a 
shorter relaxation time. As a result, the shift to shorter relaxation times can be explained as a 
breakdown of conductive clusters into smaller ones, resulting in better dispersion inside the matrix. 
With increasing concentrations of MgO, there are more MWCNT aggregates, which can be broken 
down after annealing. 

 
Figure 8. Distributions of relaxation times obtained from Equation (10) before and after annealing at 
500 K. 

Considering the dielectric properties of percolative composites, the complex dielectric 
permittivity is related to the complex impedance  𝜀∗ = 𝑖𝜔𝜀଴𝑍∗  OR (11) 

𝜀′ = 𝑍”𝜀଴𝜔(𝑍′ଶ + 𝑍′′ଶ) (12) 

𝜀′′ = 𝑍′𝜀଴𝜔(𝑍′ଶ + 𝑍′′ଶ) (13) 

Thus, the dielectric permittivity ε’ decreases with frequency at higher frequencies at which Z” 
> Z’ (ω > 1/τmax (τmax is the relaxation time at which f(τ) has the maximum).  

At low frequencies (Z” << Z’ and (or) ω < 1/τmax): 𝜀′′ = 1𝜀଴𝜔𝑍′ ൎ 𝜎஽஼𝜀଴ఠ (14) 

𝜀′ ൎ 𝑍”𝜎஽஼ଶ𝜀଴ఠ  (15) 
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In this case, the behaviour of the dielectric permittivity at a fixed frequency, ωfix, correlates 
with the behaviour of the DC electrical conductivity only if Z” at low frequencies or f(τ) at long 
relaxation times remain the same (Figures 6, 7, 8). The dielectric permittivity can be frequency 
independent also only at low frequencies and if Z”~ω. 

4. Conclusions 

The dielectric properties of epoxy/MWCNT/MgO hybrid composites with a fixed MWCNTs 
amount of 0.12 vol.% and varying MgO concentrations up to 3 vol.% were investigated over broad 
frequency and temperature ranges. The composites with up to 2 vol.% MgO nanoparticles 
concentration showed a significant increase of electrical conductivity values over their 
non-MgO-containing counterparts. This proves that MgO nanoparticles work as agents, which up to 
2 vol.% MgO promote better dispersion of MWCNTs inside the matrix during the simple 
preparation process via the solution mixing. Composites with the optimal 0.46 vol.% MgO 
concentration demonstrated up to 2.5 orders of magnitude larger electrical conductivity than 
samples prepared without MgO. Using 0 vol.%–3 vol.% of MgO, it is possible to predictably vary the 
dielectric properties of the samples, even entirely eliminating the electrical percolation for 
composites with 3 vol.% MgO inclusions. Furthermore, samples which were enhanced with MgO 
showed resistance to high temperature percolation network degradation, and even benefited from 
second annealing at up to 500 K, while in the case of pure MWCNT composites without MgO 
additives, a complete percolation network breakdown was observed at this temperature. The 
dielectric analysis was also found to be an effective tool for studying the distribution of 
nanoparticles in hybrid MWCNT/MgO epoxy composites, i.e., the shift to shorter relaxation times is 
a sign of the breakdown of conductive clusters into smaller ones, and thus a better dispersion inside 
the polymer matrix. 
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