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Chapter 1

Introduction

1.1 Research topic

Throughout the thesis, the value distribution of the Lerch zeta-function L(λ, α, s),
s = σ + it, is investigated with emphasis to universality of L(λ, α, s), i.e, to
approximation of analytic functions by shifts L(λ, α, s+ iτ), τ ∈ R.
We start with the definition of the function L(λ, α, s). Let λ ∈ R and α, 0 < α 6

1, be fixed parameters. The Lerch zeta-function L(λ, α, s) is defined, for σ > 1,
by the Dirichlet series

L(λ, α, s) =
∞∑
m=0

e2πiλm

(m+ α)s
.

If the parameter λ is an integer, then L(λ, α, s) becomes the Hurwitz zeta-function

ζ(s, α) =

∞∑
m=0

1

(m+ α)s
, σ > 1.

Therefore, with λ ∈ Z the function L(λ, α, s) has analytic continuation to the
whole complex plane, except for a simple pole at the point s = 1 with residue 1.
If λ 6∈ Z, the function L(λ, α, s) is entire [27]. In general, the function L(λ, α, s),
differently from the Riemann zeta-function

ζ(s) =
∞∑
m=1

1

ms
=
∏
p

(
1− 1

ps

)−1

, σ > 1,

has no the Euler product over primes p, except for the cases L(k, 1, s) = ζ(s),

L
(1

2
, 1, s

)
=
(

1− 21−s
)
ζ(s)
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and
L
(
k,

1

2
, s
)

=
(

2s − 1
)
ζ(s),

where k ∈ Z. Thus, the Lerch zeta-function L(λ, α, s) is a generalization of the
classical zeta-functions ζ(s) and ζ(s, α). The function L(λ, α, s) was introduced
independently by M. Lerch [36] and R. Lipschitz [37]. Lerch also obtained the an-
alytic continuation and proved the functional equation for the function L(λ, α, s).
Denote by Γ(s) the Euler gamma-function. Then the function L(λ, α, s) satisfies
the functional equation

L(λ, α, 1− s) =

Γ(s)

(2π)s

(
exp{πis

2
− 2πiαλ}L(−α, λ, s)+

exp{−πis
2

+ 2πiα(1− λ)}L(α, 1− λ, s)
)
,

here 0 < λ 6 1. In general, L(λ, α, s) is an interesting analytic object depending
on two parameters. Analytic theory of the Lerch zeta-function is given in [27].

1.2 Aims and problems

The function L(λ, α, s), as the majority of other zeta and L-functions, is universal
in the sense that its shiftsL(λ, α, s+iτ), τ ∈ R, for some classes of the parameters
α and λ, approximate a wide class of analytic functions. The aim of the thesis is
the extension of the universality for the Lerch zeta-function for other classes of
parameters α and λ. The problems of the thesis are the following:

1. The extension of a continuous universality theorem for the Lerch zeta-function
with transcendental parameter α.

2. The extension of a discrete universality theorem for the Lerch zeta-function
with transcendental parameter.

3. The extension of a joint continuous universality theorem for Lerch zeta-
functions with algebraically independent parameters.

4. A joint discrete universality theorem for Lerch zeta functions.

5. The extension of the functional independence for the Lerch zeta-function
with transcendental parameter α.

6. A joint functional independence theorem for Lerch zeta-functions.

8



1.3 Actuality

Approximation of analytic functions is one of the central problems of the func-
tion theory. By the famous Mergelyan theorem [38], every analytic function can
be approximated uniformly on compact sets with connected complements by a
polynomial. Thus, for each analytic function a polynomial with approximating
property exists. The advantage of universality theorems for zeta-functions as to
compare to the Mergelyan theorem is that the whole class of analytic functions is
approximated by the shifts of the same zeta-function. Zeta-functions, as polynomi-
als , are compatitively simple because, by approximate functional equations, they
are approximated by Dirichlet polynomials. Thus, universality theorems for zeta-
functions is a powerful instrument in the approximation theory. Since the Lerch
zeta-function depends on two parameters, it is possible to choose the most conve-
nient approximations. For this, it is important to extend the classes of parameters
α and λ for which the Lerch zeta-function remains universal.
Universality of zeta-functions, including the Lerch zeta-function, also has serious
theoretical applications. One of these applications comes back to famous Hilbert
problems and is related to the independence of functions, more precisely, uni-
versality theorems imply the functional independence of zeta-functions. More-
over, universality theorems for zeta-functions without Euler product ( the function
L(λ, α, s) has no Euler product ) keep the information on the zero-distribution.
These and other properties of universal zeta-functions make universality one of
the urgent problems of modern analytic number theory.

1.4 Methods

In the thesis, the universal probabilistic method is used for the proof of universality
theorems. This method is based on limit theorems for weakly convergent probabil-
ity measures in the space of analytic functions with explicitly given limit measure.
Proofs of these theorems use elements of Fourier analysis, Dirichlet series and
Prokhorov theory connecting the tightness and relative compactness of families of
probability measures. Universality theorems follow from limit theorems and the
Mergelyan theorem.

1.5 Novelty

The results of the thesis are new. Universality theorems for the Lerch zeta-function
were known only with transcendental parameter α. In the thesis, the transcendence
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of α is replaced by a weaker condition. Joint universality of Lerch zeta-functions
was known only for algebraically independent parameters α1, ..., αr.

1.6 History of the problem and results

The Lerch zeta-function was forgotten for a long time. Some authors only gave
different proofs of the functional equation [1], [2], [4], [5], [39], [47]. Some of
these proofs also can be found in [27]. Moreover, D. Klush obtained [20], [21]
some mean-value results for the function L(λ, α, s). For example, in [20], it was
obtained that

T∫
0

∣∣∣L(λ, α, σ + it)
∣∣∣2 ∼ { T log T if σ = 1

2 ,

T ζ(2σ, α) if 1
2 < σ < 1

as T →∞.
The next progress in the theory of the Lerch zeta-function is related to the names
of R. Garunkštis, M. Katsurada, A. Laurinčikas, K. Matsumoto and J. Steuding.
The first results for the Lerch zeta-function were devoted to probabilistic limit
theorems. Denote by B(X) the Borel σ-field of the space X. Let Pn, n ∈ N, and
P be probability measures on

(
X,B(X)

)
. We recall that, by the definition, Pn

converges weakly to P as n → ∞, if, for every real bounded continuous function
g on X,

lim
n→∞

∫
X

gdPn =

∫
X

gdP.

R. Garunkštis and A. Laurinčikas proved [12] a limit theorem in the sense of weak
convergence of probability measures on the complex plane. For A ∈ B(C), define

PT,σ(A) =
1

T
meas

{
t ∈ [0, T ] : L(λ, α, σ + it) ∈ A

}
.

In [12], the following statement has been obtained.

Theorem A. Suppose that σ > 1
2 is fixed. Then, on

(
C,B(C)

)
, there exists a

probability measure Pσ such that PT,σ converges weakly to Pσ as T →∞.

LetG be a region on the complex plane. Denote byH(G) the space of analytic
functions on G endowed with the topology of uniform convergence on compacta.
In this topology, a sequence {gn(s)} ⊂ H(G) converges to the function g(s) ∈
H(G) if and only if, for every compact set K ⊂ G,

lim
n→∞

sup
s∈K

∣∣∣gn(s)− g(s)
∣∣∣ = 0.
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In [23] , Theorem A was extended to the space of analytic functions for G ={
s ∈ C : σ > 1

2

}
.

B. Bagchi in his thesis [3] proposed a new method how to identify limit measures
in limit theorems for some zeta-functions. In [24], the Bagchi method was applied
for the Lerch zeta-function. Denote by γ the unit circle

{
s ∈ C : |s| = 1

}
on the

complex plane, and define

Ω =
∞∏
m=0

γm,

where γm = γ for all m ∈ N0. With the product topology and pointwise multi-
plication, the infinite-dimensional torus Ω is a compact topological Abelian group.
Therefore, on

(
Ω,B(Ω)

)
, the probability Haar measure mH can be defined. We

recall that the Haar measure mH differs from other probability measures by its
invariance, i.e., for all A ∈ B(Ω) and ω ∈ Ω,

mH(A) = mH(ωA) = mH(Aω).

This gives the probability space
(
Ω,B(Ω),mH

)
. Denote by ω(m) the mth com-

ponent of an element ω ∈ Ω,m ∈ N0, and on the probability space
(
Ω,B(Ω),mH

)
,

define the H(D)-valued random element L(λ, α, s, ω) by

L(λ, α, s, ω) =

∞∑
m=0

e2πiλmω(m)

(m+ α)s
, ω ∈ Ω.

Let PL be the distribution of the random element L(λ, α, s, ω), i.e,

PL(A) = mH

{
ω ∈ Ω : L(λ, α, s, ω) ∈ A

}
, A ∈ B(H(D)).

Then in [24], the identification of the limit measure in Theorem of [23] was given,

namely, the following theorem was proved. We recall that a number α is transcen-
dental if, for any polynomial p(s) 6≡ 0 with rational coefficients, the inequality
p(α) 6= 0 is true.

Theorem B. Let λ 6∈ Z, and α be a transcendental number. Then

PT (A) =
1

T
meas

{
τ ∈ [0, T ] : L(λ, α, s+ iτ) ∈ A

}
, A ∈ B(H(D)),

converges weakly to the measure PL as T →∞.

R. Garunkštis and A. Laurinčikas proved [11] a weighted limit theorem in the
space of analytic functions. Let w(t) be a positive function of bounded variation
on [T0,∞], T0 > 0,such that the variation V b

aw on [a, b] satisfies the inequality
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V b
aw 6 cw(a) with some c > 0 for all [a, b] ⊂ [T0,∞]. Moreover, let

U = U(T,w) =

T∫
T0

w(t)dt,

and lim
T→∞

U(T,w) = +∞. For A ∈ B(H(D)), define

PT,w(A) =
1

U

T∫
T0

w(τ)I
({
τ ∈ [T0, T ] : L

(
λ, α, s+ iτ) ∈ A

})
dτ,

here I(A) denotes the indicator function of the set A. Then a limit theorem on the
complex plane has the following form.

Theorem C. Suppose that λ 6∈ Z and α is a transcendental number. Then, on(
H(D),B(H(D)

)
, there exists a probability measure Pw such that PT,w con-

verges weakly to Pw as T →∞.

In his thesis [10], R. Garunkštis identified the limit measure in Theorem C,
however, under the additional condition on the weight function w(t) that

1

U

T∫
T0

w(τ)X(t+ τ, ω)dt = EX(0, ω) +O(1 + |t|)β, T →∞.

almost surely for all t ∈ R with some β > 0. Here X(τ, ω) is an ergodic process,
E|X(τ, ω)| <∞, with sample paths integrable almost surely in the Riemann sense
over every finite interval.
Now, we pass to universality results which are the subject of our thesis.
The universality of the Riemann zeta-function ζ(s) was discovered by S. M. Voronin
in [53]. He proved that if 0 < r < 1

4 , f(s) is a continuous non-vanishing function
in the disc |s| 6 r, and analytic in |s| < r, then, for every ε > 0, there exists a
number τ = τ(ε) ∈ R such that

max
|s|6r

∣∣∣ζ(s+
3

4
+ iτ)− f(s)

∣∣∣ < ε.

This interesting Voronin’s theorem was observed by number theorists, and slightly
improved. Let D = {s ∈ C : 1

2 < σ < 1}. Denote by K the class of compact
subsets of the strip D with connected complements, and by H0(K) with K ∈
K the class of continuous non-vanishing functions on K that are analytic in the
interior of K. Then the modern version of the Voronin theorem is the following
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statement, see, for example, [22].

Theorem D. Suppose that K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣ζ(s+ iτ)− f(s)
∣∣∣ < ε

}
> 0.

Theorem D shows that there are infinitely many shifts ζ(s+ iτ) approximating
a given function f(s) ∈ H0(K).
The first universality theorem for the Lerch zeta-function was obtained in [25].
Denote by H(K) with K ∈ K the class of continuous functions on K that are
analytic in the interior of K. Thus, H0(K) ⊂ H(K).

Theorem E. Suppose that 0 < λ < 1, and α is a transcendental number. Let
K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣L(λ, α, s+ iτ)− f(s)
∣∣∣ < ε

}
> 0.

Chapter 2 of the thesis is devoted to the extension of Theorem E for a new
class of parameters α. Define the set

L(α) =
{

log(m+ α) : m ∈ N0

}
.

The main result of the chapter is the following continuous universality theorem for
the function L(λ, α, s).

Theorem 2.1. Suppose that the set L(α) is linearly independent over the field of
rational numbers Q, and 0 < λ 6 1. Let K ∈ K and f(s) ∈ H(K). Then, for
every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣L(λ, α, s+ iτ)− f(s)
∣∣∣ < ε

}
> 0.

We observe that if the number α is transcendental, then the set L(α) is lin-
early independent over Q. Actually, suppose that α is transcendental, however,
the set L(α) is linearly dependent over Q. Then there exist m1, ...,mr ∈ N0 and
k1, ..., kr ∈ Z \ {0} such that

k1 log(m1 + α) + ...+ kr log(mr + α) = 0.

Hence,
(m1 + α)k1 ...(mr + α)kr = 1.

Therefore, using the Newton binomial expansions, we find that there exists a poly-
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nomial p(s) 6≡ 0 such that p(α) = 0. However, this contradicts the transcendence
of α. Thus, the set L(α) is linearly independent over Q.

We recall that, by the definition, the number α is algebraic if there exists a
polynomial p(s) 6≡ 0 with rational coefficients such that p(α) = 0. For example,
α = 1

2 and α = 1√
2

are algebraic numbers because they are roots of the polynomi-
als 2s = 1 and 2s2 = 1, respectively.

By the famous Cassels theorem [7], at least 51 percent of elements of the set
L(α) in the sense of density are linearly independent over Q. Therefore, it can
happen that the set L(α) is linearly independent over Q with algebraic irrational α,
thus, Theorem 2.1 can be valid also for algebraic irrational α. On the other hand, at
the moment we do not know any algebraic irrational α such that the setL(α) would
be linearly independent over Q. Theorem 2.1 has the following modification.

Theorem 2.2. Suppose that the set L(α) is linearly independent over Q, and 0 <

λ 6 1. Let K ∈ K and f(s) ∈ H(K). Then the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣L(λ, α, s+ iτ)− f(s)
∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

The proofs of Theorems 2.1 and 2.2 are based on a limit theorem in the space
of analytic functions for the function L(λ, α, s). Let PT and PL be the same as in
Theorem B.

Theorem 2.3. Suppose that the set L(α) is linearly independent over Q, and 0 <

λ 6 1. Then PT converges weakly to PL as T →∞.

Theorems 2.1-2.3 are published in [41].
In place of the shifts L(λ, α, s + iτ), where τ is an arbitrary real number, one
can consider the shifts L(λ, α, s + iϕ(k)), where ϕ(t) is a certain function, and
k runs over non-negative integers. Limit and universality theorems for shifts
L(λ, α, s + iτ) are called continuous, while with shifts L(λ, α, s + iϕ(k)) are
called discrete theorems. The simplest function ϕ(k) is of the type kh, k ∈ N0,
with a fixed h > 0.
Discrete limit theorems for the Lerch zeta-function were obtained by J. Ignatavičiūtė
in her thesis [18]. In [16], a discrete analogue of Theorem A was proved.

Theorem F. Suppose that α is transcendental, the number exp
{

2π
h

}
is rational

and σ > 1
2 is fixed. Then

1

N + 1
#
{

0 6 k 6 N : L(λ, α, σ + ikh) ∈ A
}
, A ∈ B(C),

14



converges weakly to the distribution of the complex-valued random element

∞∑
m=0

e2πiλmω(m)

(m+ α)σ

as N →∞.

Here N runs over non-negative integers, and #A is the cardinality of the set
A.
In [17], Theorem F was extended to the space of analytic and even meromorphic
functions. Let D̂ =

{
s ∈ C : σ > 1

2

}
. Let

Ω1 =
∏
p

γp,

where γp = γ for all primes p. Denote by ω1(p) the p th component of an element
ω1 ∈ Ω, and on the probability space (Ω1,B(Ω1),m1H), where m1H is the Haar
measure on (Ω,B(Ω1)), define the H(D̂) valued random element

L(λ, α, s, ω1) = ω1(b)bse−2πiλa
b

∞∑
m=0;m≡a(modb)

e2πiλmω1(m)

ms
.

Then we have the statement [17].

Theorem G. Suppose that λ 6∈ Z, α is a transcendental number, and h > 0 is
such that exp{2π

h } is a rational number. Then

PN (A) =
1

N + 1
#
{

0 6 h 6 N : L(λ, α, s+ ikh) ∈ A
}
, A ∈ B(H(D̂)),

converges weakly to the measure PL as N → ∞. If α = a
b , a, b ∈ N, 1 6 a 6 b,

(a, b) = 1, and h > 0 is such that exp
{

2πk
h

}
, k ∈ N, is an irrational number, then

PN converges weakly to the distribution of the random element L(λ, α, s, ω1) as
N →∞.

A discrete version of the Voronin universality theorem was proposed by A.
Reich [51], and is of the following form.

Theorem H. Suppose that K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣ζ(s+ ikh)− f(s)
∣∣∣ < ε

}
> 0.

Actually, Reich proved a discrete universality theorem for Dedekind zeta-
functions ζK(s) of algebraic number fields K. If K = Q, then we have the Rie-
mann zeta-function. A different proof from that of Reich was given by Bagchi in
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[3]. Discrete universality theorems are also known for the Hurwitz zeta-function
ζ(s, α) which is the case of the function L(λ, α, s) with λ ∈ Z. The first theorem
of such a type belongs to Bagchi [3].

Theorem I. Suppose that α is a rational number, α 6= 1
2 , α 6= 1. Let K be a

compact simply connected and locally path connected subset of D, and let f(s)

be a continuous function on K that is analytic in the interior of K. Then, for all
ε > 0 and h > 0,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣ζ(s+ ikh, α)− f(s)
∣∣∣ < ε

}
> 0.

Theorem I follows from the representation

ζ(s,
a

b
) = bs

∞∑
m=0;m≡a(modb)

1

ms
, 1 6 a 6 b, (a, b) = 1, b > 3,

and joint properties of the pair of functions

(bs,
∞∑

m=0;m≡a(modb)

1

ms
).

It turns out that the case of transcendental α is more complicated and that of ra-
tional, and an analogue of Theorem I for all h > 0 is not known. For example, in
[28], an analogue of Theorem I with transcendental α was obtained for h > 0 such
that exp

{
2π
h

}
is rational number, and with K ∈ K and f(s) ∈ H(K).

Chapter 3 of the thesis is devoted to discrete universality theorems for the
function L(λ, α, s). Define the set

L(α, h, π) =
{(

log(m+ α) : m ∈ N0

)
,
2π

h

}
, h > 0.

The latter set consists of all logarithms log(m+ α) and the number 2π
h . The main

results of the chapter are the following theorems.

Theorem 3.1. Suppose that the set L(α, h, π) is linearly independent over Q and
0 < λ 6 1. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣L(λ, α, s+ ikh)− f(s)
∣∣∣ < ε

}
> 0.

Theorem 3.1 admits the following modification.

Theorem 3.2. Suppose that the set L(α, h, π) is linearly independent over Q and
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0 < λ 6 1. Let K ∈ K and f(s) ∈ H(K). Then the limit

lim
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣L(λ, α, s+ ikh)− f(s)
∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

Theorems 3.1 and 3.2 can be generalized for composite functions. In the thesis,
we give one example.

Theorem 3.3. Suppose that the set L(α, h, π) is linearly independent over Q,
0 < λ 6 1 and that F : H(D) → H(D) is a continuous operator such that,
for every set G ⊂ H(D), the pre-image F−1G is non empty. Let K ∈ K and
f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣F (L(λ, α, s+ ikh))− f(s)
∣∣∣ < ε

}
> 0.

Theorem 3.3 is an analogue of Theorem 3.2 for the function F (L(λ, α, s +

ikh)). The proofs of universality theorems of Chapter 3 are based on a limit theo-
rem for

1

N + 1
#
{

0 6 k 6 N : L(λ, α, s+ ikh) ∈ A
}
, A ∈ B(H(D)),

as N →∞. They are published in [33].

The first joint value-distribution theorems for Lerch zeta-function were ob-
tained in [29]. The first theorem of the latter paper is a multidimensional general-
ization of Theorem A.

Theorem J. Suppose that min
16j6r

σj >
1
2 . Then there exists a probability measure

P on
(
Cr,B(Cr)

)
such that the measure

1

T
meas

{
t ∈ [0, T ] :

(
L(λ1, α1, σ1+it), ..., L(λr, αr, σr+it)

)
∈ A

}
, A ∈ B(Cr),

converges weakly to P as T →∞.

In Theorem J, the limit measure P is not explicitly given.
In the second theorem of [31] the latter gap was removed, and a joint limit theorem
for Lerch zeta-function in the space Hr(D) was obtained. The further statistical
investigations of the joint value-distribution of Lerch zeta-functions were contin-
ued in [32]. There also some correction of the paper [30] are given. Voronin

also introduced the joint universality of zeta and L-functions: in [54], he ob-
tained the joint universality of Dirichlet L-functions L(s, χ1), ..., L(s, χr) with
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non-equivalent Dirichlet characters (not generated by the same primitive charac-
ter). We recall that the Dirichlet L-function L(s, χ) is defined, for σ > 1, by the
series

L(s, χ) =
∞∑
m=1

χ(m)

ms
,

and by analytic continuation elsewhere, and the character χ(m) is a periodic with
period q completely multiplicative function

(
χ(mn) = χ(m)χ(n),m, n ∈ N

)
,

χ(m) = 0 for (m, q) > 1, and χ(m) 6= 0 for (m, q) = 1. In the case of
joint universality for Dirichlet L-functions, a collection of analytic functions from
the classes H(K1), ...,H(Kr) with K1, ...,Kr ∈ K are simultaneously approxi-
mated by shifts L(s + iτ, χ1), ..., L(s + iτ, χr). The joint universality of Lerch
zeta-functions was considered by various authors. We mention the papers [35],
[42],[45],[46]. In these papers, the algebraic independence over Q of the parame-
ters α1, ..., αr was required. We recall that the numbers α1, ..., αr are algebraically
independent over Q if there is no a polynomial p(s1, ..., sr) 6≡ 0 with rational co-
efficients such that p(α1, ..., αr) = 0. We recall a joint universality theorem from
[30].

Theorem K. Suppose that α1, ..., αr are algebraically independent numbers over
Q, λ1 =

a1

q1
, ..., λn =

ar
qr

, (a1, q1) = 1, ..., (ar, qr) = 1, where q1, ..., qr are

distinct positive integers and a1, ..., ar are positive integers with a1 < q1, ..., ar <

qr. Let K1, ...,Kr ∈ K and f1(s) ∈ H(K1), ..., fr(s) ∈ H(Kr). Then, for every
ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

16j6r
sup
s∈Kj

∣∣∣L(λj , αj , s+ iτ)− fj(s)
∣∣∣ < ε

}
> 0.

In [42] and [35], the case of α = α1 = ... = αr with transcendental α was
discussed.

In chapter 4 of the thesis, we prove joint universality theorems for Lerch zeta
functions without using the algebraic independence of the parameters α1, ..., αr.
Also, we do not use any conditions for the parameters λ1, ..., λr.

Let

L(α1, ..., αr) =
{

(log(m+ α1 : m ∈ N0), ..., (log(m+ αr) : m ∈ N0)
}
.

Theorem 4.1. Suppose that the set L(α1, ..., αr) is linearly independent over Q.
For j = 1, ..., r, let Kj ∈ K, fj(s) ∈ H(Kj), and 0 < λj 6 1. Then, for every
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ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

16j6r
sup
s∈Kj

∣∣∣L(λj , αj , s+ iτ)− fj(s)
∣∣∣ < ε

}
> 0.

As other universality theorems, Theorem 4.1 has the following modified ver-
sion.

Theorem 4.2. Suppose that the set L(α1, ..., αr) is linearly independent over Q.
For j = 1, ..., r, let Kj ∈ K, fj(s) ∈ H(Kj), and 0 < λj 6 1. Then the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

16j6r
sup
s∈Kj

∣∣∣L(λj , αj , s+ iτ)− fj(s)
∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

It is not difficult to see that the linear independence over Q of the setL(α1, ..., αr)

is a weaker condition that the algebraic independence of the numbers α1, ..., αr.
Actually, suppose that the numbers α1, ..., αr are algebraically independent over
Q, however, the set L(α1, ..., αr) is linearly dependent. Then there exists the num-
bers m1α1 , ...,mrαr , ...,ml1α1 , ...,mlrαr ∈ N0 and
k1α1 , ..., krαr , ..., kl1α1 , ..., klrαr ∈ Z \ {0} such that

k1α1 log(m1α1 + α1) + ...+ k1αr log(m1αr + αr) + ...+

kl1α1 log(ml1α1 + α1) + ...+ klrαr log(mlrαr + αr) = 0.

Hence,

(m1α1 +α1)k1α1 ...(m1αr +αr)
k1αr ...(ml1α1 +α1)kl1α1 ...(mlrαr +αr)

klrαr = 1.

Therefore, using of the Newton binomial theorem gives that there is a polynomial
p(s1, ..., sr) with integers coefficients such that p(α1, ..., αr) = 0, i.e., the numbers
α1, ..., αr are algebraically dependent. Thus, the contradiction shows that the set
L(α1, ..., αr) is linearly independent over Q.

Chapter 5 of the thesis contains joint discrete universality theorems for Lerch
zeta-functions. To our knowledge, earlier, the theorems of such a kind were not
known. For h > 0, define the set

L(α1, ..., αr;h, π) =
{

(log(m+α1) : m ∈ N0), ..., (log(m+αr) : m ∈ N),
2π

h

}
.

The main results of the chapter are the following two theorems.
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Theorem 5.1. Suppose that the set L(α1, ..., αr;h, π) is linearly independent over
Q. For j = 1, ..., r, let Kj ∈ K, fj(s) ∈ H(Kj), and 0 < λj 6 1. Then, for every
ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
16j6r

sup
s∈Kj

∣∣∣L(λj , αj , s+ikh)−fj(s)
∣∣∣ < ε

}
> 0.

Theorem 5.2. Suppose that the set L(α1, ..., αr;h, π) is linearly independent over
Q. For j = 1, ..., r, let Kj ∈ K, fj(s) ∈ H(Kj), and 0 < λj 6 1. Then the limit

lim
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
16j6r

sup
s∈Kj

∣∣∣L(λj , αj , s+ ikh)− fj(s)
∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

Theorems 5.1 and 5.2 are published in [34].

We already have mentioned that one of theoretical applications of universal-
ity for zeta-functions is closely related to the functional independence of these
functions, and comes back to Hilbert. It is well known that in the International
Congress of Mathematicians in Paris (1900) Hilbert presented the list [15] of the
most important problems in mathematics that would be solved in the next cen-
tury. In his 18 th problem, Hilbert observed that the Riemann zeta-function ζ(s)

cannot satisfy any algebraic-differential equation, i.e., there is no any polynomial
p(s1, ..., sn) 6≡ 0 such that

p(ζ(s), ζ ′(s), ..., ζ(n−1)(s)) = 0,

and that this follows from an analogous result for the Euler gamma-function Γ(s)

and the functional equation for the function ζ(s)

π−
s
2 Γ(

s

2
)ζ(s) = π−

1−s
2 Γ(

1− s
2

)ζ(1− s).

Moreover, Hilbert conjectured that the function

ζ(s, χ) =

∞∑
m=1

xm

ms

has also an algebraic-differential independence property. This Hilbert conjuncture
was proved by Ostrowski [48]. Similar problems for Dirichlet L-functions were
studied by A.G.Postnikov [49]. Voronin generalized significantly the above results.

In [52], see also [19], he obtained the functional independence of the Riemann
zeta-function. More precisely, he proved the following theorem.
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Theorem L. For j = 0, ..n, let Vj : Ck → C be a continuous function, and let

n∑
j=0

sjVj

(
ζ(s), ζ ′(s), ..., ζ(k−1)(s)

)
= 0

identically for s. Then Vj ≡ 0 for j = 0, ..., n.

In [54], Voronin extended theorem L for DirichletL-functions with non-equivalent
Dirichlet characters. In [13], the analogue of Theorem L was obtained for the
Lerch zeta-function L(λ, α, s) with transcendental parameter α.

In the last chapter of the thesis, the functional independence of the function
L(λ, α, s) was proved under a weaker condition than the transcendence of the
parameter α. The following statement is true. We recall that L(α) =

{
log(m +

α) : m ∈ N0

}
.

Theorem 6.1. Suppose that the set L(α) is linearly independent over Q, and 0 <

λ 6 1. For j = 0, ..., n, let Vj : Ck → C be a continuous function , and let

n∑
j=0

sjVj

(
L(λ, α, s), L′(λ, α, s), ..., L(k−1)(λ, α, s)

)
= 0

identically for s. Then Vj ≡ 0 for j = 0, ..., n.

In other words, Theorems 6.1 asserts that if V0, V1, ..., Vn : Ck → C are con-
tinuous functions not all identically zero, then

n∑
j=0

sjVj

(
L(λ, α, s), L′(λ, α, s), ..., L(k−1)(λ, α, s)

)
6= 0

for some s ∈ C.
The Lerch zeta-function also have a joint functional independence property,

i.e., the following theorem is valid.

Theorem 6.2. Suppose that the set L(α1, ..., αr) is linearly independent over Q,
and 0 < λj 6 1. Let Vj : Ck1+...+kr → C, j = 0, ..., n, be a continuous function,
and let the equality

n∑
j=0

sjVj

(
L(λ1, α1, s), L

′(λ1, α1, s), ..., L
(k1−1)(λ1, α1, s), ...,

L(λr, αr, s), L
′(λr, αr, s), ..., L

(kr−1)(λr, αr, s)
)

= 0

hold identically for s. Then Vj ≡ 0 for j = 0, ..., n.
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For the proof of Theorems 6.1 and 6.2, the universality theorems ( Theorems
2.1 and 4.1 ) are applied.
Theorems 6.1 and 6.2 are published in [41] and [40], respectively.
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Chapter 2

Continuous universality theorems
for the Lerch zeta-function

In this chapter, we consider the approximation of analytic function defined on the
strip D = {s ∈ C : 1

2 < σ < 1} by continuous shifts of the Lerch zeta-function
L(λ, α, s+ iτ), where τ is an arbitrary real number. We recall that

L(α) =
{

log(m+ α) : m ∈ N0

}
.

In some sense, the set L(α) controls the dependence of the terms e2πiλm(m+α)−s

of Dirichlet series from the definition of the function L(λ, α, s). K is the class of
compact subsets of the strip D with connected complements, and H(K), K ∈ K,
is the class of continuous functions on K that are analytic in the interior of K.

2.1 Statements of the theorems

We will prove the following two universally theorems.

Theorem 2.1. Suppose that the set L(α) is linearly independent over the field of
rational numbers Q, and 0 < λ 6 1. Let K ∈ K and f(s) ∈ H(K). Then, for
every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣L(λ, α, s+ iτ)− f(s)
∣∣∣ < ε

}
> 0.

The inequality of the theorem means that the set of shifts L(λ, α, s + iτ) sat-
isfying the inequality

sup
s∈K

∣∣∣L(λ, α, s+ iτ)− f(s)
∣∣∣ < ε (2.1)
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has a positive lower density. Hence, we have that the above set of shifts L(λ, α, s+

iτ) is infinite.
On the other hand, deeper results on the properties of sets are usually related to
their density. In the next theorem, the universality of the function L(λ, α, s) is
described by terms of the density of shifts L(λ, α, s+ iτ) satisfying (2.1).

Theorem 2.2. Suppose that the set L(α) is linearly independent over Q, and 0 <

λ 6 1. Let K ∈ K and f(s) ∈ H(K). Then the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣L(λ, α, s+ iτ)− f(s)
∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

Unfortunately, the inequality of the theorem is true not for all ε > 0. However,
a countable set of values of ε is narrow, thus, it remains sufficiently many values
of ε that can be used in Theorem 2.1.
Proofs of Theorems 2.1 and 2.2 use probabilistic limit the theorems for probability
measures in the space of analytic function.

2.2 A continuous limit theorem

Denote by H(D) the space of analytic functions on the strip D equipped with the
topology of uniform convergence on compacta. Recall that B(X) denotes the Borel
σ-field of the space X, and, for A ∈ B(H(D)), define

PT (A) =
1

T
meas

{
τ ∈ [0, T ] : L(λ, α, s+ iτ) ∈ A

}
.

This section is devoted to the weak convergence of PT as T → ∞. Proofs of

universality theorems require the explicit form of the limit measure. For this, the
following topological structure is applied. Let γ =

{
s ∈ C : |s| = 1

}
, and

Ω =
∞∏
m=0

γm,

where γm = γ for all m ∈ N0. By the definition of the Cartesian product, the set
Ω consists of all functions ω : N0 → γ. With the product topology and pointwise
multiplication, the torus Ω is a compact topological Abelian group. Hence, on(
Ω,B(Ω)

)
, the probability Haar measure mH exists, and we have the probability

space
(
Ω,B(Ω),mH

)
. Denote by ω(m) themth component of an element ω ∈ Ω,
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m ∈ N0, and, for s ∈ D, define

L
(
λ, α, s, ω

)
=
∞∑
m=0

e2πiλmω(m)

(m+ α)s
.

Lemma 2.1. For all α and λ, L(λ, α, s, ω) is an H(D)-valued random element
defined on the probability space

(
Ω,B(Ω),mH

)
.

The lemma is Lemma 5.2.1 of [27]. Its proof is based on the orthogonality of
the random variables ω(m), that is, that

Eω(m)ω(n) =

{
1 if m = n,

0 if m 6= n,

and on the Rademacher theorem (Theorem 1.2.9 of [22]). The latter theorem im-
plies that the series

∞∑
m=0

e2πiλmω(m)

(m+ α)s

is almost surely convergent with respect to mH uniformly on compact subsets of
the strip D. From this the lemma follows.
LetPL be the distribution of the random elementL(λ, α, s, ω) i.e., forA ∈ B(H(D)),

PL(A) = mH

{
ω ∈ Ω : L(λ, α, s, ω) ∈ A

}
.

Now, we are ready to state a limit theorem for PT .

Theorem 2.3. Suppose that the set L(α) is linearly independent over Q, and 0 <

λ 6 1. Then PT converges weakly to PL as T →∞.

We start the proof of Theorem 2.3 with a limit theorem for probability mea-
sures on

(
Ω,B(Ω)

)
. Before that, we recall some classical result on probabil-

ity measures on compact groups. Thus, let G be a compact group. A charac-
ter χ of the group G is a function χ : G → γ which is multiplicative, i.e.,
χ(g1, g2) = χ(g1)χ(g2) for all g1, g2 ∈ G. All characters of the group G form
the group D which is called dual (or character) group of G. Let P be a probability
measure on

(
G,B(G)

)
. The Fourier transform gP (χ) of P is defined by

gP (χ) =

∫
G
χ(})dP, χ ∈ D.

For probability measures on
(
G,B(G)

)
, the following theorem is valid [14].
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Lemma 2.2. Let Pn, n ∈ N0, be probability measures on
(
G,B(G)

)
, and gPn(χ)

be the corresponding Fourier transforms. Suppose that gPn(χ) converges to a
certain continuous function g(χ) as n → ∞. Then, on

(
G,B(G)

)
, there exists a

probability measure P such that Pn converges weakly to P . Moreover, g(χ) is the
Fourier transform of the measure P .

Now, we return to the group Ω. It is well known that the dual group of Ω is
isomorphic to

D =
∞⊕
m=0

Zm,

where Zm = Z for all m ∈ N0. An element k1 = (km : km ∈ Z,m ∈ N0) acts on
Ω by

ω → ωk =

∞∏′

m=0

ωkm(m),

where `′“ means that only a finite number of integers km are distinct from zero.
Therefore, the characters of the group Ω are of the form

∞∏′

m=0

ωkm(m),

and the Fourier transform gP (k) of the measure P on
(

Ω,B(Ω)
)

is defined by

gP (k) =

∫
Ω

( ∞∏′

m=0

ωkm(m)
)
dP. (2.2)

Now, we apply the above remarks for

QT =
1

T
meas

{
τ ∈ [0, T ] : ((m+ α)−iτ : m ∈ N0) ∈ A

}
, A ∈ B(Ω).

Lemma 2.3. On
(

Ω,B(Ω)
)

, there exists a probability measure Q such that QT
converges weakly to Q as T →∞.

Proof. We will apply Lemma 2.2. Let gT (k) be the Fourier transform of QT .
Then, in view of (2.2),

gT (k) =

∫
Ω

( ∞∏′

m=0

ωkm(m)
)
dQT ,
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and, by the definition of QT , we obtain that

gT (k) =
1

T

T∫
0

∞∏′

m=0

(m+ α)−ikmτdτ =
1

T

T∫
0

exp{−iτ
∞∑′

m=0

km log(m+ α)}dτ.

(2.3)
If

∞∑′

m=0

km log(m+ α) = 0,

then, obviously,

gT (k) =
1

T

T∫
0

dτ = 1. (2.4)

If
∞∑′

m=0

km log(m+ α) 6= 0,

then, after integration in (2.3), we find that

gT (k) =

exp{−iτ
∞∑′

m=0

km log(m+ α)}

−iT
∞∑′

m=0

km log(m+ α)

∣∣∣∣∣
T

0

=

1− exp{−iT
∞∑′

m=0

km log(m+ α)}

iT

∞∑′

m=0

km log(m+ α)

.

Hence, in this case,
lim
T→∞

gT (k) = 0.

This equality together with (2.4) shows that

lim
T→∞

gT (k) =


1 if

∞∑′

m=0

km log(m+ α) = 0,

0 if
∞∑′

m=0

km log(m+ α) 6= 0.

The function

g(k) =


1 if

∞∑′

m=0

km log(m+ α) = 0,

0 if
∞∑′

m=0

km log(m+ α) 6= 0

(2.5)
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is continuous in the discrete topology. Therefore, by Lemma 2.2, we obtain that
QT , as T →∞, converges weakly to the measure Q defined by the Fourier trans-
form g(k).

Lemma 2.3 is valid for all α, however, the limit measure Q is not given explic-
itly. To have the explicit form of the measure Q, we must use a certain restriction
for the parameter α, and this restriction is the linear independence of the set L(α).

Lemma 2.4. Suppose that the set L(α) is linearly independent over Q. Then QT
converges weakly to the Haar measure mH .

Proof. If the set L(α) is linearly independent over Q, then

∞∑′

m=0

km log(m+ α) = 0

if and only if km = 0 for all m. Thus, in view of (2.5), the Fourier transform of
the measure Q is of the form

g(k) =

{
1 if k = 0,

0 if k 6= 0.

Since the latter function is the Fourier transform of the Haar measure mH , the
lemma follows from Lemmas 2.2 and 2.3.

We continue with a limit theorem in the space of analytic functions. We note
that, differently from [27], we deduce this theorem directly from Lemma 2.4, while
in [27], first a limit theorem in the space of analytic functions is proved for a
Dirichlet polynomial, and then for absolutely convergent Dirichlet series. Thus,
we start with the definition of absolutely convergent Dirichlet series.

Let σ̂ > 1
2 be a fixed number, and, for m ∈ N0 and n ∈ N,

vn(m,α) = exp
{
−
(m+ α

n+ α

)σ̂}
.

Define the series

Ln(λ, α, s) =
∞∑
m=0

e2πiλmvn(m,α)

(m+ α)s
.

Moreover, let, for n ∈ N,

ln(α, s) =
s

σ̂
Γ

(
s

σ̂

)(
n+ α

)s
.
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Lemma 2.5. The Dirichlet series for Ln(λ, α, s) converges absolutely for σ > 1
2 .

Moreover, the integral representation

Ln(λ, α, s) =
1

2πi

σ̂+i∞∫
σ̂−i∞

L(λ, α, s+ z)ln(α, z)
dz

z

holds.

Proof. First we observe that

vn(m,α) =
1

2πi

σ̂+i∞∫
σ̂−i∞

ln(α, z)

z(m+ α)z
dz. (2.6)

Actually, applying the well-known formula

1

2πi

a+i∞∫
a−i∞

Γ(s)b−sds = e−b, a, b > 0,

we find

vn(m,α) =
1

2πi

1+i∞∫
1−i∞

Γ(z)
(m+ α

n+ α

)−zσ̂
dz =

1

2πi

σ̂+i∞∫
σ̂−i∞

Γ
( z
σ̂

)(m+ α

n+ α

)−z
d
( z
σ̂

)
=

1

2πi

σ̂+i∞∫
σ̂−i∞

z

σ̂
Γ
( z
σ̂

) (n+ α)z

(m+ α)z
dz

z
=

1

2πi

σ̂+i∞∫
σ̂−i∞

ln(α, z)

z(m+ α)z
dz.

Therefore, by (2.6) and the definition of ln(α, z),

vn(m,α)�n (m+ α)−σ̂
+∞∫
−∞

Γ(σ̂ + it)dt�n (m+ α)−σ̂ (2.7)

because of the estimate Γ(σ + it) �n exp{−c|t|}, c > 0, uniform for σ1 6 σ 6

σ2. From (2.7), it follows that

e2πiλmvn(m,α)

(m+ α)σ
�n

1

(m+ α)σ+σ̂
.
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Since σ̂ > 1
2 , hence, we have that the series

∞∑
m=0

e2πiλmvn(m,α)

(m+ α)s

is absolutely convergent for σ > 1
2 .

The series
∞∑
m=0

e2πiλm

(m+ α)s+z

is absolutely convergent for σ > 1
2 and Rez = σ̂. Therefore, using (2.6), we

obtain that

Ln(λ, α, s) =
∞∑
m=0

e2πiλmvn(m,α)

(m+ α)s
=

∞∑
m=0

e2πiλm

(m+ α)s
1

2πi

σ̂+i∞∫
σ̂−i∞

ln(α, z)

z(m+ α)z
dz =

1

2πi

σ̂+i∞∫
σ̂−i∞

( ln(α, z)

z

∞∑
m=0

e2πiλm

(m+ α)s+z

)
dz =

1

2πi

σ̂+i∞∫
σ̂−i∞

L(λ, α, s+ z)
ln(α, z)

z
dz,

and the lemma is proved.

Additionally to Ln(λ, α, s), define

Ln(λ, α, s, ω) =

∞∑
m=0

e2πiλmω(m)vn(m,α)

(m+ α)s
, ω ∈ Ω.

Obviously, the latter series also converges absolutely for σ > 1
2 , because |e2πiλmω(m)| =

1.

In what follows, we will consider the measures defined by means ofLn(λ, α, s)

and Ln(λ, α, s, ω). Let, for A ∈ B(H(D)) and ω̂ ∈ Ω,

PT,n(A) =
1

T
meas

{
τ ∈ [0, T ] : Ln(λ, α, s+ iτ) ∈ A

}
and

P̂T,n(A) =
1

T
meas

{
τ ∈ [0, T ] : Ln(λ, α, s+ iτ, ω̂) ∈ A

}
.
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For the proof of the weak convergence for PT,n and P̂T,n, we will apply Lemma 2.4
and one property of weak convergence of probability measures involving certain
mappings. For convenience, we recall some notions. Suppose that X1 and X2 are
two spaces, and u : X1 → X2. Then the mapping u is called

(
B(X1),B(X2)

)
-

measurable if u−1A ⊂ B(X1) for every A ∈ B(X2). If u is
(
B(X1),B(X2)

)
-

measurable, then every probability measure P on the space
(
X1,B(X1)

)
define

the unique probability measure Pu−1 on
(
X2,B(X2)

)
, where

Pu−1(A) = P (u−1A)

for all A ∈ B(X2), and u−1A is the pre-image of the set A.

Lemma 2.6. Suppose thatPn, n ∈ N, andP are probability measures on
(
X1,B(X1)

)
,

u : X1 → X2 is a continuous mapping, and Pn converges weakly to P as n→∞.
Then Pnu−1 converges weakly to Pu−1 as u→∞.

Proof. The lemma is proved in [6]. We only remark that every continuous mapping
u : X1 → X2 is

(
B(X1),B(X2)

)
-measurable, thus Pnu−1 and Pu−1 are correctly

defined.

Now, we state a lemma for PT,n and P̂T,n. Define the function un : Ω →
H(D) by the formula

un(ω) = Ln(λ, α, s, ω), ω ∈ Ω.

Since the series for Ln(λ, α, s, ω) is absolutely convergent for σ > 1
2 , the function

un is continuous. Define, on
(
H(D),B(H(D))

)
, the measure Vn

def
=mHu

−1
n .

Lemma 2.7. Suppose that the set L(α) is linearly independent over Q. Then PT,n
and P̂T,n both converge weakly to the measure Vn as T →∞.

Proof. The definitions of Ln(λ, α, s) and un show that

un

(
(m+ α)−iτ : m ∈ N0)

)
= Ln(λ, α, s+ iτ).

Therefore, in view of the definition of PT,n, we have that, for A ∈ B(H(D)),

PT,n(A) =
1

T
meas

{
τ ∈ [0, T ] : ((m+α)−iτ ,m ∈ N0) ∈ u−1A

}
= QT (u−1A),

where QT is the measure of Lemma 2.4. In other words, the equality PT,n =

QTu
−1 is true. By Lemma 2.4, QT converges weakly to the Haar measure mH as

T →∞. Therefore, Lemma 2.7 implies that PT,n converges weakly to mHu
−1 =
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Vn as T →∞.
It remains to prove the same for P̂T,n. For this, we use the mapping û : Ω→ H(D)

defined by the formula

ûn(ω) = Ln(λ, α, s, ωω̂), ω ∈ Ω.

Then, repeating the arguments used in the case of PT,n, we obtain that P̂T,n con-

verges weakly to the measure V̂n
def
=mH ûn as T → ∞. We must prove that

V̂n = Vn. For this, we use an auxiliary mapping u : Ω→ Ω defined by

u(ω) = ωω̂, ω ∈ Ω.

From these definitions, it follows that ûn = un(u). At this moment, we apply the
invariance of the Haar measure mH with respect to translations by points from Ω,
and obtain that

mH û
−1
n = mH(un(u))−1 = (mHu

−1)u−1
n = mHu

−1
n .

Thus, V̂n = Vn, and the lemma is proved.

The pass from the function Ln(λ, α, s) to the function L(λ, α, s) requires a
certain approximate result. For this, we need a metric of the space H(D).
It is known [8] that there exists a sequence

{
Kl : l ∈ N

}
⊂ D of compact subsets

such that

D =
∞⋃
l=1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ D is a compact set, then K lies in some Kl.
Let for g1, g2 ∈ H(D),

%(g1, g2) =

∞∑
l=1

2−l
sups∈Kl |g1(s)− g2(s)|

1 + sups∈Kl |g1(s)− g2(s)|
.

Then % is the metric of the space H(D) that induces the topology of uniform
convergence on compacta.

Lemma 2.8. For all λ and α, the equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0
%(L(λ, α, s+ iτ), Ln(λ, α, s+ iτ))dτ = 0

is true.

Proof. From the definition of the metric %, it follows that it is sufficient to prove
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the equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0
sup
s∈K
|(L(λ, α, s+ iτ)− Ln(λ, α, s+ iτ))|dτ = 0 (2.8)

for an arbitrary compact set K ⊂ D.

We use the integral representation of Lemma 2.5, i.e., for σ > 1
2 ,

Ln(λ, α, s) =
1

2πi

σ̂+i∞∫
σ̂−i∞

(L(λ, α, s+ z)ln(α, z))
dz

z
, σ̂ >

1

2
. (2.9)

Suppose that K ⊂ D is a fixed compact set, ε > 0 is such that 1
2 + 2ε 6 Rez 6

1− ε for points z ∈ K. We take θ > 0. Then, by (2.9) and the residue theorem,

Ln(λ, α, s)−L(λ, α, s) =
1

2πi

−θ+i∞∫
−θ−i∞

(L(λ, α, s+z)ln(α, z))
dz

z
+Rn(s), (2.10)

where

Rn(s) =

 0 if 0 < λ < 1,
ln(α, 1− s)

1− s
if λ = 1.

For convenience, denote the points of the set K by s = σ + iv, and take

θ = σ − ε− 1

2
> 0, σ̂0 =

1

2
+ ε.

Then in view of (2.10),

|Ln(λ, α, s)− L(λ, α, s)| 6

1

2π

∞∫
−∞

|L(λ, α, s+ iτ − θ + it)| |ln(α,−θ + it)|
| − θ + it|

dt+ |Rn(s+ iτ)|.

Now, in the latter integral, we replace t+ v by t. This gives the inequality

|Ln(λ, α, s)− L(λ, α, s)| 6

1

2π

∞∫
−∞

|L(λ, α,
1

2
+ ε+ i(t+ τ))|

|ln(α, 1
2 + ε− s+ it)|

|12 + ε− s+ it|
dt+ |Rn(s+ iτ)|.
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Then,

1

T

T∫
0

sup
s∈K
|(L(λ, α, s+ iτ)− Ln(λ, α, s+ iτ))|dτ 6 I1 + I2, (2.11)

where

I1 =
1

2π

∞∫
−∞

( 1

T

T∫
0

∣∣∣L(λ, α, 1

2
+ ε+ i

(
t+ τ

))∣∣∣ sup
s∈K

|ln(α, 1
2 + ε− s+ it)|

|12 + ε− s+ it|
dt

and

I2 =
1

T

T∫
0

sup
s∈K
|Rn(s+ iτ)|dτ.

It is well known that, for the gamma-function, the estimate

Γ
(
σ + it

)
� exp{−c|t|}, c > 0,

holds uniformly in σ, σ1 6 σ 6 σ2, for all σ1 < σ2. Therefore, for s ∈ K, by the
definition of ln(α, s), we obtain

|ln(α, 1
2 + ε− s+ it)|

|12 + ε− s+ it|
� (2.12)

(n+ α)
1
2

+ε−σ

σ̂

∣∣∣Γ( 1
2 + ε− σ

σ̂
+
i(t− v)

σ̂0

)∣∣∣�
(n+ α)−ε exp

{ c

σ̂0
|t− v|

}
�k

(n+ α)−ε exp{−c|t|}.

For the Lerch zeta-function, for σ > 1
2 , the mean square estimate

T∫
0

|L(λ, α, σ + it)|2dt�σ T
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is true. Therefore, an application of the Cauchy inequality gives

1

T

T∫
0

|L(λ, α,
1

2
+ ε+ i(t+ τ))|dt�

( 1

T

T∫
0

|L(λ, α,
1

2
+ ε+ i(t+ τ))|2dt

) 1
2 � 1 + |τ |.

This and estimates (2.12) and (2.11) show that

I1 �k (n+ α)−ε
∞∫
−∞

(1 + |t|) exp{−c|t|}dt�k (n+ α)−ε. (2.13)

Similarly, using the definition of ln(α, s), we find that, for s ∈ K,

Rn(s+ iτ)� |ln(α, 1− s− iτ)|
|1− s− iτ |

�k (n+ α)1−σ exp{−c|τ |}.

Hence,

I2 �k (n+ α)
1
2
−2ε 1

T

T∫
0

exp | − c|τ |dτ �k
(n+ α)

1
2
−2ε

T
.

Therefore, in view of (2.13) and (2.11),

1

T

T∫
0

sup
s∈K
|(L(λ, α, s+ iτ)−Ln(λ, α, s+ iτ))|dτ �k (n+α)−ε+

(n+ α)
1
2
−2ε

T
.

Taking T →∞, and then n→∞, we obtain that

lim
n→∞

lim sup
T→∞

1

T

T∫
0

sup
s∈K
|(L(λ, α, s+ iτ)− Ln(λ, α, s+ iτ))|dτ = 0.

The lemma is proved.

We also need the analogue of Lemma 2.8 for the functions L(λ, α, s, ω) and
Ln(λ, α, s, ω). This case is more complicated than that of Lemma 2.8 because
we have not the mean square estimate for the function L(λ, α, s, ω). To obtain
that estimate, the ergodic theory on the torus Ω is applied. We consider the family
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{ϕτ,α : τ ∈ R} of transformation on Ω defined by

ϕτ,α(ω) = aτ,αω, ω ∈ Ω,

where
aτ,α =

{
(m+ α)−iτ : m ∈ N0

}
.

Since the Haar measure mH is invariant, we have that {ϕτ,α : τ ∈ R} is the
one-parameter group of measurable measure preserving transformations on the
probability space

(
Ω,B(Ω),mH

)
. We recall the notion of ergodicity. A set A ∈

B(Ω) is called invariant with respect to the group {ϕτ,α : τ ∈ R} if the sets A and
Aτ = ϕτ,α(A) can differ one from another by at most a set of zero mH -measure.
The group {ϕτ,α : τ ∈ R} is called ergodic if the σ-field of its invariant sets
consists only from the sets of mH -measure zero or one.

Lemma 2.9. Suppose that the set L(α) is linearly independent over Q. Then the
group {ϕτ,α : τ ∈ R} is ergodic.

The proof of the lemma is given in [26] (r = 1) and in [27].
Also, we will use the Birkhoff-Khintchine ergodic theorem. We recall that a
strongly stationary process ( all finite dimensional distributions are invariant with
respect to translations ) is called ergodic if its σ-field of invariant sets consists only
of the sets of the measure, defined by finite-dimensional distributions, zero or one.

Lemma 2.10. (Birkhoff-Khintchine theorem) Suppose that X(t, ω) is an ergodic
process, E|X(t, ω)| <∞, having the sample paths integrable almost surely in the
Riemann sense over every finite interval. Then, for almost all ω, the equality

lim
T→∞

1

T

T∫
0

X(t, ω)dt = EX(0, ω)

holds.

Proof of the lemma can be found in [9].
Now we are in position to prove the mean square estimate for the functionL(λ, α, s, ω).

Lemma 2.11. Suppose that the set L(α) is linearly independent over Q, and that
σ > 1

2 . Then, for almost all ω ∈ Ω with respect to the Haar measure mH ,

T∫
0

|L(λ, α, σ + it, ω)|2dt�α,σ T.

37



Proof. From the definition of the random variables ω(m), their orthogonality fol-
lows [27], i.e., ∫

Ω

ω(m)ω(n)dmH =

{
1 if m = n,

0 if m 6= n.

Therefore,

E
∣∣∣ ∞∑
m=0

e2πiλmω(m)

(m+ α)σ

∣∣∣2 =

∞∑
m=0

|e2πiλm|2

(m+ α)2σ
=

∞∑
m=0

1

(m+ α)2σ
<∞,

because σ >
1

2
. Moreover, by the definition of the transformation ϕτ,α,

∣∣∣ ∞∑
m=0

e2πiλmϕτ,α(ω)

(m+ α)σ

∣∣∣2 =
∣∣∣ ∞∑
m=0

e2πiλmω(m)

(m+ α)σ+it

∣∣∣2 =
∣∣∣L(λ, α, σ + it, ω)

∣∣∣2.
Lemma 2.9 implies the ergodicity of the random process

∣∣∣L(λ, α, σ + it, ω)
∣∣∣2.

Therefore, in view of Lemma 2.10 and (2.14), we have that, for almost all ω ∈ Ω,

lim
T→∞

1

T

T∫
0

∣∣∣L(λ, α, σ + it, ω)
∣∣∣2dt = E

∣∣∣ ∞∑
m=0

e2πiλmω(m)

(m+ α)σ

∣∣∣2 <∞.
Thus,

T∫
0

∣∣∣L(λ, α, σ + it, ω)
∣∣∣2dt� Tα,σ

for almost all ω ∈ Ω.

Using Lemma 2.11 and repeating the proof of Lemma 2.8, we obtain the ana-
logue of Lemma 2.8 for the functions L(λ, α, s, ω) and Ln(λ, α, s, ω).

Lemma 2.12. Suppose that the set L(α) is linearly independent over Q. Then, for
all λ, the equality

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρ
(
L(λ, α, s+ iτ, ω), Ln(λ, α, s+ iτ, ω)

)
dτ = 0

holds for almost all ω ∈ Ω.

We see that, differently from Lemma 2.8, in Lemma 2.12 we need the linear
independence over Q of the set L(α).
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Lemmas 2.8 and 2.12 are important ingredients for the proof of Theorem 2.3.
Before to do that, we recall some notions and auxiliary probabilistic results. The
family of probability measures {P} on

(
X,B(X)

)
is called tight if, for every

ε > 0, there exists a compact set K = K(ε) ⊂ X such that

P (K) > 1− ε

for all P ∈ {P}, and the family {P} is called relatively compact if every sequence
of elements of {P} contains a weakly convergent subsequence to a certain proba-
bility measure on

(
X,B(X)

)
.

The following statement proved by Prohkorov [50], see also [6], plays an important
role in the theory of weak convergence of probability measures.

Lemma 2.13. If the family of probability measures is tight, then it is relatively
compact. If the space X is complete and separable, and the family is relatively
compact, then it is tight.

Denote by D−→ the convergence of random elements in distribution. Then
the following statement is valid.

Lemma 2.14. Suppose that
(
X, d

)
is a separable metric space, Xkn and Yn, n ∈

N, k ∈ N, are X-valued random elements defined on the same probability space
with the measure P . Let, for every k ∈ N,

Xkn
D−→

n→∞
Xk

and
Xk

D−→
k→∞

X.

If, for every ε > 0,

lim
k→∞

lim sup
n→∞

P
(
d(Xkn, Yn) > ε

)
= 0,

then
Yn

D−→
n→∞

X.

Proof of the lemma can be found in [6]. Theorem 4.2.
Together with PT , we will consider

P̂T (A) =
1

T
meas

{
τ ∈ [0, T ] : L(λ, α, s+ iτ, ω) ∈ A

}
, A ∈ B(H(D)).

The next lemma gives actually the weak convergence for PT , however, the limit
measure is not given explicitly.
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Lemma 2.15. Suppose that the set L(α) is linearly independent over Q. Then the
measures PT and P̂T both converge weakly to the same probability measure P on(
H(D),B(H(D))

)
as T →∞.

Proof. We will consider the sequence of probability measure {Vn : n ∈ N}, where
Vn is the limit measure in Lemma 2.7, and prove that this sequence is relatively
compact. In virtue of Lemma 2.13, it is sufficient to prove the tightness of {Vn}.
Let a random variable ξ be distributed uniformly in the interval [0, 1], and defined
on a probability space with the measure ν. Define

XT,n = XT,n(s) = Ln(λ, α, s+ iT ξ).

Moreover, let Yn be the H(D)-valued random element having the distribution Vn,
n ∈ N. Then the assertion of Lemma 2.7 can be written in form

XT,n
D−→

T→∞
Yn. (2.15)

Since the series for the function Ln(λ, α, s) is absolutely convergent for σ > 1
2 , in

the latter half-plane

lim
T→∞

1

T

T∫
0

|Ln(λ, α, σ + it)|2dt = (2.16)

∞∑
m=0

v2
n(m,α)

(m+ α)2σ
6
∞∑
m=0

1

(m+ α)2σ
6 Cσ <∞.

Let Kl, l ∈ N, be compact sets from the definition of the metric %. Then an
application of the Cauchy integral formula implies the estimate

sup
n∈N

lim sup
T→∞

1

T

T∫
0

sup
s∈Kl
|Ln(λ, α, s+ iτ)|dτ � (2.17)

sup
n∈N

lim sup
T→∞

1

T

T∫
0

∣∣∣ 1

2π

∫
Ll

Ln(λ, α, z + iτ)

(z − s)
dz
∣∣∣dτ,

where Ll is a closed contour lying in D and enclosing the set Kl. Then we deduce
from (2.16) and (2.17) that

sup
n∈N

lim sup
T→∞

1

T

T∫
0

sup
s∈Kl
|Ln(λ, α, s+ iτ)|dτ 6 Rα,l <∞. (2.18)
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We fix ε > 0, and define Ml = Mα,l(ε) = Rα,l2
lε−1. Then, we obtain by (2.18)

that

lim sup
T→∞

ν
(

sup
s∈Kl

∣∣∣XT,n(s)| > Ml

)
=

lim sup
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈Kl

∣∣∣Ln(λ, α, s+ iτ)
∣∣∣ > Ml

}
6

lim sup
T→∞

1

MlT

T∫
0

sup
s∈Kl

∣∣∣Ln(λ, α, s+ iτ)
∣∣∣dτ 6

ε

2l

for all l ∈ N and n ∈ N. Therefore, by the continuity of probability measures and
(2.15), we find that

ν
(

sup
s∈Kl

∣∣∣Yn(s)
∣∣∣ > Ml

)
6

ε

2l
(2.19)

for all l ∈ N and n ∈ N. Let

K = K(ε) =
{
g ∈ H(D) : sup

s∈Kl
|g(s)| 6Mα,l(ε), l ∈ N

}
.

Since the set is uniformly bounded on compact sets of D, by the compactness
principle, see, for example, [22], it is a compact set of the space H(D). Moreover,
by (2.19),

ν
(
Yn ∈ K

)
> 1− ε

∞∑
l=1

2−l = 1− ε

for all n ∈ N. In other words,

Vn(K) > 1− ε

for all n ∈ N, and this shows that the sequence
{
Vn : n ∈ N

}
is tight, thus,

relatively compact.

By the relative compactness of
{
Vn

}
, there exists a subsequence

{
Vnr

}
such

that Vnr converges weakly to a certain probability measureP on
(
H(D),B(H(D))

)
as r →∞. This also can be written in the form

Ynr
D−→

r→∞
P. (2.20)

Let
ZT = ZT (s) = L(λ, α, s+ iT ξ).

41



Then Lemma 2.8 shows that with every ε > 0

lim
n→∞

lim sup
T→∞

1

T
meas

{
τ ∈ [0, T ] : ρ

(
L(λ, α, s+ iτ), Ln(λ, α, s+ iτ)

)
> ε
}
6

lim
n→∞

lim sup
T→∞

1

Tε

∫ T

0
ρ
(
L(λ, α, s+ iτ), Ln(λ, α, s+ iτ)

)
dτ = 0.

This, and relations (2.15) and (2.20) together with Lemma 2.14 lead to the relation

ZT
D−→

T→∞
P. (2.21)

In view of the definition of ZT , this means that PT converges weakly to P as T →
∞. Also, (2.21) shows that the measure P does not depend of the subsequence
Vnr . This remark together with relative compactness of

{
Vn

}
, gives the relation

Yn
D−→

n→∞
P. (2.22)

Now consider the measure P̂T . Analogically to the case of PT , define, for ω ∈ Ω,
two H(D)-valued random elements

X̂T,n = X̂T,n(s) = Ln(λ, α, s+ iT ξ, ω)

and
ẐT,n = ẐT,n(s) = L(λ, α, s+ iT ξ, ω).

Then, similarly as in the case of PT , we obtain by using Lemma 2.12 and (2.22)
that P̂T also converges weakly to the measure P as T → ∞. The lemma is
completely proved.

Proof of Theorem 2.3. In view of Lemma 2.15, it remains to identify the limit
measure P , i.e., to prove that P coincides with the measure PL. For this, we
recall the equivalent of weak convergence of probability measures in terms of con-
tinuity sets. A set A ∈ B(X) is a continuity set of the measure P on

(
X,B(X)

)
if

P (∂A) = 0, where ∂A is the boundary of A.

Lemma 2.16. Suppose that Pn, n ∈ N, and P are probability measures on(
X,B(X)

)
. Then Pn converges weakly to P as n → ∞ if and only if, for ev-

ery continuity set A of P , the equality

lim
n→∞

Pn = P (A)

holds.

42



The lemma is a part of Theorem 2.1 from [6].
Let A be a fixed continuity set of the limit measure P in Lemma 2.15. On the
probability space

(
Ω,B(Ω),mH

)
, define the random variable X by the formula

X(ω) =

{
1 if L(λ, α, s, ω) ∈ A,
0 otherwise.

By Lemmas 2.15 and 2.16, we have that

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : L(λ, α, s+ iτ, ω) ∈ A

}
= P (A). (2.23)

The definition of the random variable X implies the equality

EX =

∫
Ω
XdmH = mH

{
ω ∈ Ω : L(λ, α, s, ω) ∈ A

}
= PL(A), (2.24)

where PL is the distribution of the random element L(λ, α, s, ω).
Now, we return to ergodic theory. In view of Lemma 2.9, the random process
X
(
ϕτ,α(ω)

)
, τ ∈ R, is ergodic. Thus, by Lemma 2.10, we have that

lim
T→∞

1

T

∫ σ

0
X
(
ϕτ,α(ω)

)
dτ = EX (2.25)

for almost all ω ∈ Ω. Moreover, by the definitions of X and ϕτ,α,

1

T

∫ T

0
X
(
ϕτ,α(ω)

)
dτ =

1

T
meas

{
τ ∈ [0, T ] : L(λ, α, s, ω) ∈ A

}
.

Therefore, this equality together with (2.24) and (2.25) yields

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : L(λ, α, s, ω) ∈ A

}
= PL(A).

Hence, in virtue of (2.23), we have that P (A) = PL(A) for all continuity sets
A of P . Since all continuity sets form a determining class [6], this shows that
P (A) = PL(A) for all A ∈ B

(
H(D)

)
, in other words, P coincides with PL. The

theorem is proved.

2.3 Support

For the proof of universality theorems, we additionaly need the support of the mea-
sure PL. Since the space H(D) is separable, the support of PL, by the definition,
is a minimal closed set S ⊂ H(D) such that PL(S) = 1. The set S consists of all
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elements g ∈ H(D) such that, for every open neighbourhood G of g, the inequal-
ity PL(G) > 0 is true.

Theorem 2.4. The support of the measure PL is the whole of H(D).

Before the proof of Theorem 2.4, we present some auxiliary probabilistic and
exponential function results. We recall that the support SX of the random element
is the support of the distribution of X .

Lemma 2.17. Let
{
Xn : n ∈ N

}
be a sequence of independent H(D)-valued

random elements such that the series

∞∑
n=1

Xn

is almost surely convergent. Then the support of the sum of the latter series is the
closure of the set of all g ∈ H(D) which may be written as a convergent series

g =
∞∑
n=1

gn, g ∈ SXn .

Proof of lemma is given in [22], Theorem 1.7.10.
Now, we recall the definition of an entire function of exponential type. Let 0 <

θ0 6 π. A function g(s) analytic in the closed region | arg s| 6 θ0 is called of
exponential type if

lim sup
r→∞

| log(g(reiθ))|
r

<∞

uniformly in θ, |θ| 6 θ0.

Lemma 2.18. Suppose that g(s) is an entire function of exponential type and

lim sup
r→∞

log |g(r)|
r

> −1.

Then ∑
p

|g(log p)| =∞.

The lemma is Theorem 6.4.14 from [22].

Lemma 2.19. Suppose that µ is a complex Borel measure on
(
C,B(C)

)
with

compact support contained in the half-plane σ > σ0, and

g(s) =

∫
C
eszdµ(z) 6≡ 0.
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Then

lim sup
r→∞

log |g(r)|
r

> σ0.

The lemma is Lemma 6.4.10 from [22].
The next lemma gives sufficient conditions for the denseness of some series in
H(D).

Lemma 2.20. Let {gn : n ∈ N} ⊂ H(D) satisfy the conditions:
1. If µ is a complex Borel measure on

(
C,B(C)

)
with compact support in D such

that
∞∑
n=1

∣∣∣ ∫
C
gndµ

∣∣∣ <∞,
then ∫

C
srdµ(s) = 0

for all r ∈ N0;
2. The series

∞∑
n=1

gn

is convergent in H(D);
3. For any compact set K ⊂ D,

∞∑
n=1

sup
s∈K

∣∣gn(s)
∣∣2 <∞.

Then the set of all convergent series

∞∑
n=1

angn

with |an| = 1, n ∈ N, is dense in H(D).

The lemma is Theorem 6.3.10 from [22].

Proof of Theorem 2.4. By the definition of Ω, we have the {ω(m) : m ∈ N0} is a
sequence of independent random variables on the probability space

(
Ω,B(Ω),mH

)
.

Therefore, {e2πiλmω(m)

(m+ α)s
: m ∈ N0

}
is a sequence of independent H(D)-valued random elements on the probability
space

(
Ω,B(Ω),mH

)
. The support of each random element ω(m) is the unit
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circle γ. Therefore, the support of the H(D)-valued random element

e2πiλmω(m)

(m+ α)s
, m ∈ N0,

is the set {
g ∈ H(D) : g(s) =

e2πiλma

(m+ α)s
, |a| = 1

}
.

Thus, in view of Lemma 2.17, the support of the random element

L(λ, α, s, ω) =
∞∑
m=0

e2πiλmω(m)

(m+ α)s

is the closure of all convergent series

∞∑
m=0

e2πiλmam
(m+ α)s

(2.26)

with |am| = 1, m ∈ N0. Now, let µ be a complex Borel measure on
(
C,B(C)

)
with compact support lying in D such that

∞∑
m=0

∣∣∣ ∫
C

e2πiλm

(m+ α)s
dµ(s)

∣∣∣ <∞, (2.27)

For z ∈ C, define

g(z) =

∫
C

e−szdµ(s).

Then (2.27) is equivalent to

∞∑
m=0

∣∣∣g( log(m+ α)
)∣∣∣ <∞. (2.28)

Let ν = µh−1, where the function h : C→ C is defined by h(s) = −s. Then ν is
again a complex measure on

(
C,B(C)

)
with support lying in the strip −1 < σ <

−1
2 . Moreover,

g(z) =

∫
C

eszdν(s).

Since the function g(z) is of exponential type, by Lemma 2.19 we have that if
g(z) 6≡ 0, then

lim sup
r→∞

log |g(r)|
r

> 1.
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Therefore, Lemma 2.19 shows that∑
p

|g(log p)| =∞, (2.29)

where p runs over prime numbers. Clearly,

log(m+ α) = logm
(

1 +
α

m

)
= logm+ log

(
1 +

α

m

)
= logm+O

( 1

m

)
.

Thus, for m > 2,

g
(

log(m+ α)
)

=∫
C

e−s logmdµ(s) +
(∣∣∣ ∫

C

e−s logmO
( 1

m

)
dµ(s)

∣∣∣) = g
(

logm
)

+O
(
m−

3
2

)

because σ > 1
2 . This estimate together with (2.28) shows that

∞∑
m=2

∣∣∣g(logm)
∣∣∣ <∞.

However, this gives a contradiction to (2.29). Hence, we obtain that g(z) ≡ 0.
Differentiating r times the equality g(s) =

∫
C
e−szdµ(s) in s and then taking z =

0, we find that ∫
C
srdµ(s) = 0, r ∈ N0.

This shows that condition 1 of Lemma 2.20 is fulfilled. Obviously, for every com-
pact set K ⊂ D,

∞∑
m=0

sup
s∈K

∣∣∣ e2πiλm

(m+ α)s

∣∣∣2 =

∞∑
m=0

sup
s∈K

1

(m+ α)2σ
<∞.

Moreover, we have mentioned below Lemma 2.1 that the series

∞∑
m=0

e2πiλmω(m)

(m+ α)s

is almost surely convergent uniformly on compact subsets of D, i.e., the series is
convergent inH(D). Therefore, all conditions of Lemma 2.20 are fulfilled. Hence,
the set of all convergent series (2.26) is dence in H(D). Thus, the closure of that
set coincides with H(D). The theorem is proved because PL is the distribution of
the random element L(λ, α, s, ω).
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We observe that, in the proof of Theorem 2.4, the linear independence of the
L(α) is not used.

2.4 Proofs of universality theorems

The proofs of Theorems 2.1 and 2.2 are based on Theorems 2.3 and 2.4 as well as
on the Mergelyan theorem on the approximation of analytic functions by polyno-
mials. For convenience, we present it as the next lemma.

Lemma 2.21. Suppose that K ⊂ C is a compact set with connected complement,
and f(s) is a continuous function on K and analytic in the interior of K. Then,
for every ε > 0, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− g(s)| < ε.

Proof of the lemma can be found in [38]. Examples show that the conditions
of the lemma can’t be replaced by weaker ones. The set K can’t be, for example,
a ring, because the complement of a ring is not connected.
For the proof of Theorem 2.1, we also need the equivalent of weak convergence of
probability measures in terms of open sets.

Lemma 2.22. Suppose that Pn, n ∈ N, and P are probability measures on(
X,B(X)

)
. Then Pn converges weakly to P as n → ∞ if and only if, for every

open set G ⊂ X, the inequality

lim inf
n→∞

Pn(G) > P (G)

holds.

The lemma is a part of Theorem 2.1 from [6].

Proof of Theorem 2.1. Define the set

Gε =
{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
,

where p(s) is a polynomial such that

sup
s∈K

∣∣∣f(s)− p(s)
∣∣∣ < ε

2
. (2.30)
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The existence of the polynomial p(s) follows from Lemma 2.21. The set Gε is
open in the space H(D). Therefore, by Theorem 2.3 and Lemma 2.2,

lim inf
T→∞

PT (Gε) > PL(Gε). (2.31)

In view of Theorem 2.4, the polynomial p(s) is an element of the support of the
measure PL. Hence, Gε is an open neighbourhood of an element of the support of
PL. Therefore, by properties of the support,

PL(Gε) > 0. (2.32)

This, (2.31) and definitions of PT and Gε show that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣L(λ, α, s+ iτ)− p(s)
∣∣∣ < ε

2

}
> 0. (2.33)

It remains to replace p(s) by f(s) in the above inequality. If τ ∈ R satisfies the
inequality

sup
s∈K

∣∣∣L(λ, α, s+ iτ)− p(s)
∣∣∣ < ε

2
,

then, in virtue of (2.30), we find that

sup
s∈K

∣∣∣L(λ, α, s+ iτ)− f(s)
∣∣∣ 6

sup
s∈K

∣∣∣L(λ, α, s+ iτ)− p(s)
∣∣∣+ sup

s∈K

∣∣∣L(λ, α, s+ iτ)− p(s)
∣∣∣ < ε

2
+
ε

2
= ε.

This shows that {
τ ∈ [0, T ] : sup

s∈K

∣∣∣L(λ, α, s+ iτ)− p(s)
∣∣∣ <

ε

2

}
⊂
{
τ ∈ [0, T ] : sup

s∈K

∣∣∣L(λ, α, s+ iτ)− f(s)
∣∣∣ < ε

}
.

From this and (2.33), the inequality of the theorem

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣L(λ, α, s+ iτ)− f(s)
∣∣∣ < ε

}
> 0

follows.

Proof of Theorem 2.2. Define the set

Ĝε =
{
g ∈ H(D) : sup

s∈K

∣∣∣g(s)− f(s)
∣∣∣ < ε

}
.
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The boundary ∂Ĝε of the set Ĝε lies in the set{
g ∈ H(D) : sup

s∈K

∣∣∣g(s)− f(s)
∣∣∣ = ε

}
.

Therefore, the boundaries ∂Ĝε1 and ∂Ĝε2 do not intersect for different positive
ε1 and ε2. From this remark, it follows that the set Ĝε is a continuity set of the
measure PL for all but at most countably many ε > 0. Therefore, Theorem 2.3
together with Lemma 2.16 shows that the limit

lim
T→∞

PT (Ĝε) = PL(Ĝε) (2.34)

exists for all but at most countably many ε > 0. It remains to prove that PL(Ĝε) >

0. Suppose that g ∈ H(D) satisfies the inequality

sup
s∈K

∣∣∣g(s)− p(s)
∣∣∣ < ε

2
,

where the polynomial p(s) is from (2.30). Then we find that, for this g,

sup
s∈K

∣∣∣g(s)− f(s)
∣∣∣ 6 sup

s∈K

∣∣∣g(s)− p(s)
∣∣∣+ sup

s∈K

∣∣∣g(s)− f(s)
∣∣∣ < ε

2
+
ε

2
= ε.

This shows that Gε ⊂ Ĝε, Therefore, in view of (2.31), we have that PL(Ĝε) > 0.
Therefore, by (2.33), the limit

lim
T→∞

PT (Ĝε) > 0

exists for all but at most countably many ε > 0. It remains to use the definition of
PT and Ĝε to obtain that the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣L(λ, α, s+ iτ)− f(s)
∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0. The theorem is proved.

The results of Chapter 2 are published in [40].

50



Chapter 3

Discrete universality theorems
for the Lerch zeta-function

In this chapter, we prove the discrete versions of Theorems 2.1 and 2.2. Thus, we
will consider the approximation of analytic functions defined on the strip D by
discrete shifts of the Lerch zeta-function L(λ, α, s + ikh), k ∈ N0, h > 0.
We will deal with the set

L(α, h, π) =
{(

log(m+ α) : m ∈ N0

)
,
2π

h

}
, h > 0.

3.1 Statements of the discrete theorems

We recall that #A means the cardinality of the set A ⊂ N0,and N runs over the
set N0.
In the chapter, we will prove the following discrete universality theorems.

Theorem 3.1. Suppose that the set L(α, h, π) is linearly independent over Q and
0 < λ 6 1. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣L(λ, α, s+ ikh)− f(s)
∣∣∣ < ε

}
> 0.

The inequality of the theorem shows that the set of discrete shifts L(λ, α, s +

ikh) satisfying the inequality

sup
s∈K

∣∣∣L(λ, α, s+ ikh)− f(s)
∣∣∣ < ε (3.1)

has a positive lover density in the set N0. From this, we have that the set of the
above shifts is infinite.
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Theorem 3.1 admits a modification in which the positivity of the lower density of
the set of shifts L(λ, α, s+ ikh) satisfying (3.1) is replaced by a density, however,
with some exception for ε > 0.

Theorem 3.2. Suppose that the set L(α, h, π) is linearly independent over Q and
0 < λ 6 1. Let K ∈ K and f(s) ∈ H(K). Then the limit

lim
T→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣L(λ, α, s+ ikh)− f(s)
∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

Proofs of Theorems 3.1 and 3.2 are based on probabilistic discrete limit theo-
rems for probability measures in the space of analytic functions H(D).
We observe that proofs of discrete theorems 3.1 and 3.2 in a certain sense are more
complicated than those of Theorems 2.1 and 2.2.

3.2 A discrete limit theorem

For A ∈ B(H(D)), define

PN,h(A) =
1

N + 1
#
{

0 6 k 6 N : L(λ, α, s+ ikh) ∈ A
}
.

In this section, we will study the weak convergence for PN,h as N →∞.
We preserve the notation of Section 2.2 for Ω and for the H(D)-valued random
element L(λ, α, s, ω). Moreover, PL is the distribution of the random element
L(λ, α, s, ω).

The main result of this section is the following discrete limit theorem for PN,h.

Theorem 3.3. Suppose that the set L(α, h, π) is linearly independent over Q.Then
PN,h converges weakly to PL as N →∞.

As in section 2.2, we start with a limit theorem for probability measures on the
space (Ω,B(Ω)). For A ∈ B(Ω), define

QN,h(A) =
1

N + 1
#
{

0 6 k 6 N :
(

(m+ α)−ikh : m ∈ N0

)
∈ A

}
.

Lemma 3.1. Suppose that the set L(α, h, π) is linearly independent over Q. Then
QN,h converges weakly to the Haar measure mH as N →∞.
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Proof. We consider the Fourier transform gN,h(k) of QN,h. We have by (2.2) that

gN,h(k) =

∫
Ω

( ∞∏′

m=0

ωkm(m)
)
dQN,h.

Thus, by the definition of QN,h,

gN,h(k) =
1

N + 1

N∑
k=0

∞∏′

m=0

(m+ α)−ikh = (3.2)

1

N + 1

N∑
k=0

exp
{
− ikh

∞∑′

m=0

km log(m+ α)
}
.

Suppose that k = 0. Then

∞∑′

m=0

km log(m+ α) = 0,

and it is easily seen that

gN,h(k) =
1

N + 1

N∑
k=0

1 = 1. (3.3)

Now, let k 6= 0. Then

exp
{
− ih

∞∑′

m=0

km log(m+ α) 6= 1. (3.4)

Actually, if the latter inequality is not true, then

exp
{
− ih

∞∑′

m=0

km log(m+ α) = e2πil

with some l ∈ Z. Hence, we find that

∞∑′

m=0

km log(m+ α)− 2πl1
h

= 0

with some l1 ∈ Z. However, this equality contradicts the linear independence
of the set L(α, h, π) because not all km = 0. Thus, in the case k 6= 0, inequality
(3.4) is true. Therefore, the application of the formula for the sum of the geometric
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progression, in view of 3.2, yields

gN,h(k) =

1− exp
{
− ih(N + 1)

∞∑′

m=0

km log(m+ α)
}

(N + 1)
(

1− exp
{
− ih

∞∑′

m=0

km log(m+ α)
}) .

This and (3.3) show that

lim
N→∞

gN,h(k) =

{
1 if k = 0,

0 if k 6= 0.

The right-hand side of the latter equality is the Fourier transform of the Haar mea-
sure mH . Therefore, by a continuity theorem for probability measures on compact
groups (Lemma 2.2), we find that QN,h converges weakly to the Haar measure
mH as N →∞. We see that the limit measure is independent of h.

As in Chapter 2, we proceed with a limit theorem for absolutely convergent
Dirichlet series Ln(λ, α, s) and Ln(λ, α, s, ω). For A ∈ B

(
H(D)

)
and ω̂ ∈ Ω,

define

PN,n,h(A) =
1

N + 1
#
{

0 6 k 6 N : Ln(λ, α, s+ ikh) ∈ A
}
.

Let the function un : Ω→ H(D) be the same as in Lemma 2.7, i.e.,

un(ω) = Ln(λ, α, s, ω), ω ∈ Ω.

Lemma 3.2. Suppose that the set L(α, h, π) is linearly independent over Q. Then
PN,n,h converges weakly to the measure Vn = mHu

−1
n as N →∞.

Proof. We have seen in Chapter 2 that the function un is continuous. Moreover,
by the definitions of Ln(λ, α, s) and un, we have that

un

((
m+ α

)−ikh
: m ∈ N0

)
= Ln(λ, α, s+ ikh).

Therefore, we find that, for all A ∈ B(H(D)),

PN,n,h(A) =
1

N + 1
#
{

0 6 k 6 N : Ln(λ, α, s+ ikh) ∈ A
}

=

1

N + 1
#
{

0 6 k 6 N :
(

(m+ α)−ikh : m ∈ N0

)
∈ u−1

n A
}

= QN,h(u−1
n A),

where QN,h is from Lemma 3.1. Thus, the equality PN,n,h = QN,hu
−1
n holds.
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This, Lemmas 3.1 and 2.6 show that PN,n,h converges weakly to the measures

mHu
−1
n

def
= Vn.

Next, we will approximate the function L(λ, α, s) by Ln(λ, α, s) in discrete
sense. For this, we will use a discrete mean square estimate for the function
L(λ, α, s). To obtain this estimate, we will apply the following Gallagher lemma
connecting continuous and discrete mean squares of some functions.

Lemma 3.3. Let T0, T > δ > 0 be real numbers, and T be a finite non-empty
set lying in the interval [T0 + δ

2 , T0 + T − δ
2 ]. Define

Nδ(x) =
∑
t∈T
|t−x|<δ

1.

Suppose that S(x) is a complex-valued continuous function on [T0, T0 + T ] having
a continuous derivative in (T0, T0 + T ). Then

∑
t∈T

N−1
δ (t)|S(t)|2 6

1

δ

T0+T∫
T0

|S(t)|2dt+
( T0+T∫

T0

|S(t)|2dt
T0+T∫
T0

|S′(t)|2dt
) 1

2
.

Proof of the lemma can be found in [44, Lemma 1.4].

Lemma 3.4. Suppose that 1
2 < σ < 1. Then, for all σ, λ, α, h > 0 and t ∈ R,

N∑
k=0

|L(λ, α, σ + ikh+ it)|2 � N(1 + |t|),

where implied constant in� depends on σ, λ, α and h.

Proof. For 1
2 < σ < 1, the estimates∫ T

0
|L(λ, α, σ + iτ)|2dτ �σ,λ,α T

and ∫ T

0
|L′(λ, α, σ + iτ)|2dτ �σ,λ,α T

are valid. These estimates imply the bounds∫ T

0
|L(λ, α, σ + iτ + it)|2dτ �σ,λ,α T (1 + |t|)
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and ∫ T

0
|L′(λ, α, σ + iτ + it)|2dτ �σ,λ,α T (1 + |t|).

Now, the application of Lemma 3.3 with δ = h and the above estimates, give

N∑
k=0

|L(λ, α, σ + ikh+ it)|2 � 1

h

Nh∫
0

|L(λ, α, σ + iτ + it)|2dτ+

( Nh∫
0

|L(λ, α, σ + iτ + it)|2dτ
Nh∫
0

|L′(λ, α, σ + iτ + it)|2dτ
) 1

2 � N(1 + |t|)

with constant in� depending on σ, λ, α and h.

The next lemma consider a discrete approximation in the mean of the functions
L(λ, α, s) by Ln(λ, α, s). The lemma is a discrete version of Lemma 2.8.

Lemma 3.5. For all λ, α and h > 0, the equality

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

%
(
L(λ, α, s+ ikh), Ln(λ, α, s+ ikh)

)
= 0

holds.

Proof. As in the continuous case (Lemma 2.8 ), it suffices to show that

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈K

∣∣∣L(λ, α, s+ ikh)− Ln(λ, α, s+ ikh)
∣∣∣ = 0 (3.5)

for every compact subset K ⊂ D.
Thus, let K ⊂ D be an arbitrary compact subset. We fix ε > 0 such that 1

2 + 2ε 6

σ 6 1− ε for all points s = σ + iv ∈ K, and take

θ = σ − ε− 1

2
> 0.

Then, using (2.10), we obtain that, for all s = σ + iv ∈ K,∣∣∣Ln(λ, α, s+ ikh)− L(λ, α, s+ ikh)
∣∣∣ 6

1

2π

∞∫
−∞

∣∣∣L(λ, α, s+ ikh− θ + it)
∣∣∣ |ln(α,−θ + it)|
| − θ + it|

+
∣∣∣Rn(s+ ikh)

∣∣∣
in the notation used in the proof of Lemma 2.8. This, after a shift t+v → t, yields
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the inequality ∣∣∣Ln(λ, α, s+ ikh)− L(λ, α, s+ ikh)
∣∣∣ 6

1

2π

∞∫
−∞

∣∣∣L(λ, α,
1

2
+ ε+ i(t+ kh))

∣∣∣ |ln(α, 1
2 + ε− s+ it)|

|12 + ε− s+ it|
dt+

∣∣∣Rns+ ikh
∣∣∣.

Hence, we find that

1

N + 1

N∑
k=0

sup
s∈K

∣∣∣L(λ, α, s+ ikh)− L+ n(λ, α, s+ ikh)
∣∣∣ 6 S1 + S2, (3.6)

where

S1 =
1

2π

∞∫
−∞

∣∣∣ 1

N + 1

N∑
k=0

(
L
(
λ, α,

1

2
+ ε+ i(t+ kh)

))∣∣∣
sup
s∈K

∣∣∣ |ln(α, 1
2 + ε− s+ it)|

|12 + ε− s+ it|
dt

and

S2 =
1

N + 1

N∑
k=0

sup
s∈K

∣∣∣Rn(s+ ikh)
∣∣∣.

In the definition of the function ln(α, s), the gamma-function Γ(s) occurs. There-
fore, applying the estimate

Γ(σ + it)� exp
{
− c|t|

}
, c > 0,

we find, as in Chapter 2, that for s ∈ K,

ln(α, 1
2 + ε− s+ it)

1
2 + ε− s+ it

�K (n+ α)−ε exp{−c|t|}.

Now, this and Lemma 3.4 show that

S1 �K (n+ α)−ε
∞∫
−∞

(1 + |t|) exp{−c|t|}dt�K (n+ α)−ε. (3.7)
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Moreover, for s ∈ K,

Rn(s+ ikh)� (n+ α)1−σ exp
{
− c|kh− v|

}
�K

(n+ α)1−σ exp{−ckh}.

Therefore,

S2 �K (n+ α)
1
2
−2ε 1

N

( ∑
06k6logN

+
∑

k>logN

)
exp{−ckh} �K,h

(n+ α)
1
2
−2ε
( logN

N
+

1

N
exp{−ch logN} �k,h (n+ α)

1
2
−2ε logN

N
.

Thus, by (3.6) and (3.7),

1

N + 1

N∑
k=0

sup
s∈K

∣∣∣L(λ, α, s+ ikh), Ln(λ, α, s+ ikh)
∣∣∣�K,h

(n+ α)−ε + (n+ α)
1
2
−2ε logN

N
.

From this, we obtain the equality (3.5). The lemma is proved.

Now, we are in position to prove Theorem 3.3.

Proof of Theorem 3.3. We will prove that the measure PN,h, as N → ∞, con-
verges weakly to the limit measure P of the measure Vn (Vn is the limit measure
in Lemma 3.2) as n → ∞. We have seen in the proof of Lemma 2.15 that the
sequence of probability measures

{
Vn : n ∈ N

}
is relatively compact. For this,

the linear independence over Q for the set L(α) was applied. However, the lin-
ear independence of the set L(α, h, π) implies that for the set L(α). Hence, the
set
{
Vn : n ∈ N

}
remains also relatively compact under hypothesis of the the-

orem. Therefore, there exists a subsequence.
{
Vnr

}
⊂
{
Vn

}
such that

{
Vnr

}
converges weakly to a certain probability measure P on

(
H(D),B(H(D))

)
as

r →∞. The latter fact can be written also as

Ynr
D−→

r→∞
P, (3.8)

where Yn is the H(D)-valued random element having the distribution Vn.

Now, let ξN,h be a random variable defined on a certain probability space with

58



the measure µ, and having the distribution

µ(ξN = kh) =
1

N + 1
, k = 0, 1, ..., N.

Define
XN,n,h = XN,n,h(s) = Ln(λ, α, s+ iξN,h)

Then, in view of Lemma 3.2, we have that

XN,n,h
D−→

N→∞
Yn. (3.9)

Define one more H(D)-valued random element

ZN,h = ZN,h(s) = L(λ, α, s+ iξN,h).

Then, Lemma 3.5 and the definition of ξN,h imply that, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ
(
%
(
XN,n,h, ZN,h

)
> ε
)

=

lim
n→∞

lim sup
N→∞

1

N + 1
#
{

0 6 k 6 N :

%
(
L(λ, α, s+ ikh), Ln(λ, α, s+ ikh)

)
> ε
}
6

lim
n→∞

lim sup
N→∞

1

(N + 1)ε

N∑
k=0

∣∣∣%(L(λ, α, s+ ikh), Ln(λ, α, s+ ikh)
)∣∣∣ = 0.

This, (3.8) and (3.9) show that all conditions of Lemma 2.14 are satisfied. There-
fore, we obtain that

ZN,h
D−→

N→∞
P. (3.10)

The latter relation is equivalent to the weak convergence of PN,h to P as N →
∞. Moreover, the relation (3.10) shows that the measure P is independent of the
choice of the subsequence

{
Vnr

}
. Since the sequence

{
Vn

}
is relatively compact,

we obtain from this that
Yn

D−→
n→∞

P.

Thus, we have that the measure PN,h, as N → ∞, converges weakly to the limit
measure P of Vn, as n → ∞. This observation allows us to identify the limit
measure P . Actually, in the proof of Lemma 2.15 it was obtained that the measure
P coincides with PL, where PL is the distribution of the random element

L(λ, α, s, ω) =
∞∑
m=0

e2πiλmω(m)

(m+ α)s
, s ∈ D.
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The theorem is proved.

3.3 Proofs of Theorem 3.1 and 3.2

Proofs of Theorems 3.1 and 3.2 are based on Theorem 3.3 and Lemma 2.21.

Proof of Theorem 3.1. By Theorem 2.4, the support of the measurePL is the whole
of H(D). For the proof of this results, the linear independence of the set L(α) is
applied. In the case of theorem 3.1, the set L(λ, α, π) is linearly independent over
Q. Clearly, the linear independence of the set L(α, h, π) implies that of L(α).
Therefore, under hypothesis that the set L(α, h, π) is linearly independent over Q,
the support of the measure PL also is the whole of H(D).

In view of Lemma 2.21, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (3.11)

Define the set

Gε = {g ∈ H(D) : sup
s∈K
|g(s)− p(s)|} < ε

2
.

We have that Gε is an open set of the space H(D). Therefore, Theorem 3.3 and
Lemma 2.22 imply the inequality

lim inf
N→∞

PN,h(Gε) > PL(Gε). (3.12)

Clearly, the polynomial p(s) is an element of H(D). Therefore, by the above
remark, p(s) belongs to the support of the measure PL. Hence, we have the in-
equality

PL(Gε) > 0. (3.13)

This and (3.12) show that

lim inf
N→∞

PN,h(Gε) > 0,

and, by the definitions of PN,h and G, we obtain

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣L(λ, α, s+ ikh)−p(s)
∣∣∣ < ε

2

}
> 0. (3.14)

Now, we will replace the polynomial p(s) by f(s) in (3.14). Let k ∈ N0 satisfy
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the inequality
sup
s∈K

∣∣∣L(λ, α, s+ ikh)− p(s)
∣∣∣ < ε

2
.

Then, for these k, we find using (3.11) that

sup
s∈K

∣∣∣L(λ, α, s+ ikh)− f(s)
∣∣∣ 6

sup
s∈K

∣∣∣L(λ, α, s+ ikh)− p(s)
∣∣∣+ sup

s∈K

∣∣∣f(s)− p(s)
∣∣∣ < ε

2
+
ε

2
= ε.

Hence, {
0 6 k 6 N : sup

s∈K

∣∣∣L(λ, α, s+ ikh)− p(s)
∣∣∣ < ε

2

}
⊂{

0 6 k 6 N : sup
s∈K

∣∣∣L(λ, α, s+ ikh)− p(s)
∣∣∣ < ε

}
.

Therefore,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣L(λ, α, s+ ikh)− p(s)
∣∣∣ < ε

2

}
6

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣L(λ, α, s+ ikh)− f(s)
∣∣∣ < ε

}
.

The latter inequality together with (3.13) show that

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣∣L(λ, α, s+ ikh)− f(s)
∣∣∣ < ε

}
> 0.

The theorem is proved.

Proof of Theorem 3.2. We preserve the notation of the set Gε from the proof of
Theorem 3.1, and, additionally, define a new set

Ĝε =
{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
.

Then we have that the boundary ∂Ĝε of Ĝε belongs the set{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| = ε

}
.

Hence, it follows that ∂Ĝε1
⋂
∂Ĝε2 = ∅ for ε1 6= ε2, ε1, ε2 > 0. From this, we

obtain that the set Ĝε is a continuity set of the measure PL (PL(∂Ĝε) = 0) for all
but at most countably many ε > 0. Therefore, using of Theorem 3.3 and Lemma
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2.16 implies the existence of the limit

lim
N→∞

PN,h(Ĝε) = PL(Ĝε) (3.15)

for all but at most countably many ε > 0. It remains to show the positivity of
PL(Ĝε).

We take g ∈ H(D) such that

sup
s∈K
|g(s)− p(s)| < ε

2
,

where p(s) is the polynomial from (3.11). Then, in view of (3.11), for these g,

sup
s∈K
|g(s)− f(s)| 6 sup

s∈K
|g(s)− p(s)|+ sup

s∈K
|g(s)− f(s)| < ε

2
+
ε

2
= ε.

Thus, we have the inclusion Gε ⊂ Ĝε. Hence, in view of (3.13), PL(Ĝε) > 0.
This and (3.15) give that the limit

lim
N→∞

PN,h(Ĝε) > 0

exists for all but at most countably many ε > 0. Using the definitions of PN,h and
Ĝε completes the proof of Theorem 3.2.

The results of Chapter 3 are published in [33].
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Chapter 4

Joint continuous universality
theorems for Lerch zeta-functions

For j = 1, ..., r, let αj , 0 < αj 6 1, and λj , 0 < λj 6 1, be fixed parameters,
and let L(λj , αj , s) be the corresponding Lerch zeta-function. This chapter is
devoted to the simultaneous approximation of a given collection (f1(s), ..., fr(s))

of analytic functions by a collection of shifts (L(λ1, α1, s+ iτ), ..., L(λr, αr, s+

iτ)), τ ∈ R. The results of the chapter are multidimensional generalizations of
the theorems obtained in Chapter 2.

4.1 Statements of the theorems

We recall that

L(α1, ..., αr) = {(log(m+ α1) : m ∈ N0), ..., (log(m+ αr) : m ∈ N0)}.

Thus, the set L(α1, ..., αr) consists of all logarithms log(m+αj), m ∈ N0, j =

1, ..., r.

Theorem 4.1. Suppose that the set L(α1, ..., αr) is linearly independent over Q.
For j = 1, ..., r, let Kj ∈ K, fj(s) ∈ H(Kj), and 0 < λj 6 1. Then, for every
ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

16j6r
sup
s∈Kj

∣∣∣L(λj , αj , s+ iτ)− fj(s)
∣∣∣ < ε

}
> 0.

Theorem 4.1 has the following modification.

Theorem 4.2. Suppose that the set L(α1, ..., αr) is linearly independent over Q.
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For j = 1, ..., r, let Kj ∈ K, fj(s) ∈ H(Kj), and 0 < λj 6 1. Then the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

16j6r
sup
s∈Kj

∣∣∣L(λj , αj , s+ iτ)− fj(s)
∣∣∣ < ε

}
> 0.

exists for all but at most countably many ε > 0.

Theorem 4.1 shows that the set of shifts (L(λ1, α1, s + iτ), ..., L(λr, αr, s +

iτ)) satisfying the inequality

sup
16j6r

sup
s∈Kj

∣∣∣L(λj , αj , s+ iτ)− fj(s)
∣∣∣ < ε

has a positive lower density. Theorem 4.2 is stronger than theorem 4.1 because it
shows that the above collection of shifts has a positive density, however, with an
possible exception of „small“ set of values of positive ε.

Theorems 4.1 and 4.2 will be derived from a joint continuous limit theorem for
probability measures in the multidimensional space of analytic functions.

4.2 A joint continuous limit theorem

In this section, we will prove a multidimensional generalization of Theorem 2.3.
Let, as above, H(D) be the space of analytic functions on D. Denote

Hr(D) = H(D)× ...×H(D)︸ ︷︷ ︸
r

,

and, for A ∈ B(Hr(D)), define

P rT (A) =
1

T
meas

{
τ ∈ [0, T ] : L(λ, α, s+ iτ) ∈ A

}
,

where
L(λ, α, s) = (L(λ1, α1, s), ..., L(λr, αr, s))

with λ = (λ1, ..., λr) and α = (α1, ..., αr). For the statement of a limit theorem
for P rT as T →∞, we need some definitions.
The torus Ω is the same as in Section 2.2. Define

Ωr = Ω1 × ...× Ωr,

where Ωj = Ω for all j = 1, ..., r. Since Ω is a compact topological group,
by the Tikhonov theorem, we have that Ωr is a compact topological group as well.

64



Therefore, on (Ωr,B(Ωr)), the probability Haar measuremr
H exists, and this gives

the probability space (Ωr,B(Ωr),mr
H). Denote by ωj(m) the m th component of

an element ωj ∈ Ωj , m ∈ N0, j = 1, ..., r, and by ω = (ω1, ..., ωr) the elements
of Ωr. Now, on the probability space (Ωr,B(Ωr),mr

H), define the Hr(D)-valued
element

L(λ, α, s, ω) = (L(λ1, α1, s, ω1), ..., L(λr, αr, s, ωr)),

where

L(λj , αj , s, ωjm) =
∞∑
m=0

e2πiλjmωjm

(m+ α)s
, j = 1, ..., r.

The main result of this section is the following functional limit theorem.

Theorem 4.3. Suppose that the set L(α1, ..., αr) is linearly independent over
Q. Then, P rT converges weakly to the distribution P rL of the random element
L(λ, α, s, ω) as T →∞. Moreover, the support of the measure P rL is the whole of
Hr(D).

We remind that

P rL(A) = mH
r

{
ω ∈ Ωr : L(λ, α, s, ω) ∈ A

}
, A ∈ B(Hr(D)).

We divide the proof of Theorem 4.3 into lemmas.
We start with a limit theorem on Ωr. For A ∈ B(Ωr), define

QrT (A) =
1

T
meas

{
τ ∈ [0, T ] :

(((m+ α1)−iτ : m ∈ N0), ..., ((m+ αr)
−iτ : m ∈ N0)) ∈ A

}
.

Lemma 4.1. Suppose, that the set L(α1, ..., αr) is linearly independent over Q.
Then QrT converges weakly to the Haar measure mr

H as T →∞.

Proof. We consider the Fourier transform gT,r(k1, ..., kr), kj = (kjm : kjm ∈
Z, m ∈ N0, j = 1, ..., r), of the measure QrT . The dual group of Ωr is
isomorphic to

r⊕
j=1

∞⊕
j=1

Zjm,

where Zjm = Z for all m ∈ N0 and j = 1, ..., r. Therefore, the characters of the
group Ωr are of the form

r∏
j=1

∞∏′

m=0

ωkjm(m),

where the sign „ ’ “ means that only a finite number of integers kmj are distinct
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from zero. Hence, we have that

gT,r(k1, ..., kr) =

∫
Ωr

( r∏
j=1

∞∏′

m=0

ωkjm(m)
)
dQrT .

Thus, the definition of QrT shows that

gT,r(k1, ..., kr) = (4.1)

1

T

∫ T

0

( r∏
j=1

∞∏′

m=0

(m+ αj)
−ikjmτ

)
dτ =

1

T

∫ T

0
exp{−iτ

r∑
j=1

∞∑′

m=0

kjm log(m+ αj)}dτ.

Since the set L(α1, ..., αr) is linearly independent over Q, we have that

r∑
j=1

∞∑′

m=0

kjm log(m+ αj) = 0

if and only if all kjm = 0. Therefore, in view of (4.1),

gT,r(k1, ..., kr) = 1 (4.2)

for (k1, ..., kr) = (0, ..., 0). If (k1, ..., kr) 6= (0, ..., 0), then integrating in (4.1)
gives

gT,r(k1, ..., kr) =
1− exp

{
− iT

∑r
j=1

∑′∞

m=0
kjm log(m+ αj)

}
iT
∑r

j=1

∑′∞

m=0
kjm log(m+ αj)

.

This and (4.2) show that

lim
T→∞

gT,r(k1, ..., kr) =

{
1 if (k1, ..., kr) = (0, ..., 0),

0 if (k1, ..., kr) 6= (0, ..., 0).

Since the right-hand side of the latter equality is the Fourier transform of the Haar
measure mr

H , Lemma 2.2 proves the lemma.

Lemma 4.1 implies a joint limit theorem in the space Hr(D) for absolutely
convergent Dirichlet series. For a fixed θ > 1

2 , and m ∈ N0, n ∈ N, define

vn(m,αj) = exp
{
−
(m+ αj
n+ αj

)θ}
, j = 1, ..., r,
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and
Ln(λ, α, s) =

(
Ln(λ1, α1, s), ..., Ln(λr, αr, s)

)
,

where

Ln(λj , αj , s) =
∞∑
m=0

e2πiλjmvn(m,αj)

(m+ αj)s
, j = 1, ..., r.

Moreover, for ω = (ω1, ..., ωr) ∈ Ωr, we put

Ln(λ, α, s, ω) =
(
Ln(λ1, α1, s, ω1), ..., Ln(λr, αr, s, ωr)

)
,

where

Ln(λj , αj , s, ωj) =
∞∑
m=0

e2πiλjmvn(m,αj)

(m+ αj)s
, j = 1, ..., r.

By Lemma 2.5, we have that the series for Ln(λj , αj , s) and Ln(λj , αj , s, ωj) are

absolutely convergent for σ >
1

2
.

Now, for A ∈ B(Hr(D)), define

P rT,n(A) =
1

T
meas{τ ∈ [0, T ] : Ln(λ, α, s+ iτ) ∈ A},

and, for a fixed ω̂ = (ω̂1, ..., ω̂r),

P rT,n,ω̂(A) =
1

T
meas{τ ∈ [0, T ] : Ln(λ, α, s+ iτ, ω̂) ∈ A}.

Lemma 4.2. Suppose that the set L(α1, ..., αr) is linearly independent over Q.
Then, on (Hr(D),B(Hr(D))), there exists a probability measure V r

n such that
both the measures P rT,n and PT,n,ω̂ converge weakly to V r

n as T →∞.

Proof. We apply the same arguments as in the proof of Lemma 2.7. Define the
function urn : Ωr → Hr(D) by the formula

urn(ω) = Ln(λ, α, s, ω), ω ∈ Ωr.

Since the series Ln(λj , αj , s, ωj), j = 1, ..., r, are absolutely convergent for
σ > 1

2 , we have that the function urn is continuous. Moreover, by the definitions
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of P rT,n and QrT ,

P rT,n(A) =
1

T
meas{τ ∈ [0, T ] :

(((m+ α1)−iτ : m ∈ N0), ..., ((m+ αr)
−iτ : m ∈ N0)) ∈ (urn)−1A} =

QrT ((urn)−1A)

for every A ∈ B(Hr(D)). Thus, the equality P rT,n = QrT (urn)−1 is true. This,
the continuity of the function urn, Lemmas 4.1 and 2.6 show that P rT,n converges

weakly to V r
n
def
=mr

H(urn)−1 as T →∞. In the case of P rT,n,ω̂, we apply the same
arguments as for P rT,n. Define the function ûrn : Ωr → Hr(D) by the formula

ûrn(ω) = Ln(λ, α, s, ωω̂), ω ∈ Ωr,

which is continuous as well. Therefore, similarly as above, we obtain that P rT,n,ω̂
converges weakly to the measure V̂ r

n
def
=mr

H(ûrn)−1 as T → ∞. It remains to
prove that V r

n = V̂ r
n . We have, by the definitions of urn and ûrn, that, for all

ω ∈ Ωr, ûrn(ω) = urn(u(ω)), where the function u : Ωr → Ωr is given by
u(ω) = ωω̂. Since the Haar measure mr

H is invariant with respect to translations
by point from Ωr, we find that

V̂ r
n = mr

H(ûrn)−1 = mr
H(ûrnu)−1 = (mr

Hu
−1)(urn)−1 = mr

H(urn)−1 = V r
n ,

i.e., P rT,n,ω̂ as T →∞, also converges weakly to the same probability measure V r
n

as P rT,n. Thus, we have that both the measures P rT,n and P rT,n,ω̂ converges weakly

to the measure V r
n
def
=mr

Hu
−1
n as T →∞.

The next step of the proof of Theorem 4.3 includes the approximation of
L(λ, α, s) by Ln(λ, α, s), and of L(λ, α, s, ω) by Ln(λ, α, s, ω). Let % be the
metric in H(D) which is used in Lemma 2.8. For g

1
= (g11, ..., g1r), g

2
=

(g21, ..., g2r) ∈ Hr(D), define

%(g
1
, g

2
) = max

16j6r
%(g1j , g2j).

Then we have that % is a metric in the space Hr(D) inducing its product topology.

Lemma 4.3. For all λ and α, the equality

lim
n→∞

lim sup
T→∞

1

T

T∫
0

%(L(λ, α, s+ iτ), Ln(λ, α, s+ iτ))dτ = 0
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holds.
Suppose that the set L(α1, ..., αr) is linearly independent over Q. Then, for all λ
and almost all ω ∈ Ωr, the equality

lim
n→∞

lim sup
T→∞

1

T

T∫
0

%(L(λ, α, s+ iτ, ω), Ln(λ, α, s+ iτ, ω))dτ = 0

holds.

Proof. From the definition of the metric %, it follows that the equalities of the
lemma are implied by the equalities

lim
n→∞

lim sup
T→∞

1

T

T∫
0

%(L(λj , αj , s+ iτ), Ln(λj , αj , s+ iτ))dτ = 0, j = 1, ..., r,

and, for almost all ωj ,

lim
n→∞

lim sup
T→∞

1

T

T∫
0

%(L(λj , αj , s+ iτ, ωj), Ln(λj , αj , s+ iτ, ωj))dτ = 0,

(4.3)

where j = 1, ..., r. However, the first equalities are contained in Lemma 2.8, while
the second equalities follows from Lemma 2.12. Actually, the linear indepen-
dence of the set L(α1, ..., αr) over Q implies that of the sets L(αj), j = 1, ..., r.
Moreover, the Haar measure mr

H is the product of the Haar measures mjH on
(Ωj ,B(Ωj)), j = 1, ..., r. Thus, if (4.3) are true for Aj ⊂ Ωj , then we have that
mjH(Aj) = 1, j = 1, ..., r. Hence, for A = A1 × ...×Ar, it follows that

mr
H(A) = m1H(A1)× ...×mrH(Ar) = 1.

The lemma is proved.

For A ∈ B(Hr(D)) and ω ∈ Ωr satisfying the second part of Lemma 4.3,
define

P rT,ω(A) =
1

T
meas{τ ∈ [0, T ] : L(λ, α, s+ iτ, ω) ∈ A}.

Then the following statement is true.

Lemma 4.4. Suppose that the set L(α1, ..., αr) is linearly independent over Q.
Then, on

(
Hr(D),B(Hr(D))

)
, then exists a probability measure P r such that

both the measure P rT and P rT,ω converge weakly to P r as T →∞.
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Proof. We start with the measure P rT . Let, as in the proof of Lemma 2.15, ξ be a
random variable uniformly distributed in the interval [0, 1], and defined on a certain
probability space with the measure ν. Define the Hr(D)-valued random element

Xr
T,n = Xr

T,n(s) = Ln(λ, α, s+ iξT ).

Then, in view of Lemma 4.2, we have that

Xr
T,n

D−→
T→∞

Y r
n , (4.4)

where Y r
n = Y r

n (s) is the Hr(D)-valued random element having the distribution
V r
n (V r

n is the limit measure in Lemma 4.2).
Now, we will prove that the family of probability measures {V r

n : n ∈ N} is tight,
i.e., for every ε > 0, there exists a compact set Kr = Kr(ε) ⊂ Hr(D) such that

V r
n (Kr) > 1− ε

for all n ∈ N. For this, we will apply the properties of the marginal measures

V r
j,n(A) = V r

n (H(D)× ...×H(D)︸ ︷︷ ︸
j−1

×A×H(D)×...×H(D)), A ∈ B(H(D)),

where j = 1, ..., r, of the measure V r
n . Under hypotheses of the lemma ( the set

L(α1, ..., αr) is linearly independent over Q), the sets L(α1), ..., L(αr) are lin-
early independent over Q. Therefore, by the proof of Lemma 2.15, V r

j,n converges
weakly to a certain probability measure V r

j as n → ∞, j = 1, ..., r. Hence,
the family {V r

j,n : n ∈ N} is relatively compact, j = 1, ..., r. The space H(D) is
complete and separable. Therefore, by the second part of Lemma 2.13 ( the inverse
Prokhorov theorem ), the family {V r

j,n : n ∈ N} is tight, j = 1, ..., r. Hence, for
every ε > 0, there exists a compact set Kj = Kj(ε) ⊂ H(D) such that

V r
j,n(Kj) > 1− ε

r
, j = 1, ..., r, (4.5)

for all n ∈ N. Let Kr = K1 × ...×Kr. Then the set Kr is compact in the space
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H(D), and, in view of (4.5),

V r
n (Hr(D) \Kr) = V r

n (∪rj=1H(D) \Kj)) 6
r∑
j=1

V r
n (H(D)× ...×H(D)︸ ︷︷ ︸

j−1

×A×H(D)× ...×H(D)) =

r∑
j=1

V r
j,n(H(D) \Kj) <

r∑
j=1

(1− (1− ε

r
)) =

ε

r

r∑
j=1

= ε

for all n ∈ N. Thus, the family of probability measures {V r
n : n ∈ N} is tight.

By the first part of Lemma 2.13 (the Prokhorov theorem), the family of probability
measures {V r

n : n ∈ N} is relatively compact. Therefore, every subsequence of
{V r

n } contains a subsequence {V r
nk
} weakly convergent to a certain probability

measure P r on (Hr(D),B(Hr(D))) as k → ∞. In other words, we have the
relation

Y r
nk

D−→
k→∞

P r. (4.6)

Define one more Hr(D)-valued random element

Xr
T = Xr

T (s) = L(λ, α, s+ iξT ).

Then, by the first part of Lemma 4.3, we obtain that, for every ε > 0,

lim
n→∞

lim sup
T→∞

ν
(
%(Xr

T,n, X
r
T ) > ε

)
=

lim
n→∞

lim sup
T→∞

1

T
meas

{
τ ∈ [0, T ] : %(L(λ, α, s+ iτ), Ln(λ, α, s+ iτ)) > ε

}
6

lim
n→∞

lim sup
T→∞

1

Tε

∫ T

0
%(L(λ, α, s+ iτ), Ln(λ, α, s+ iτ))dτ = 0.

This equality, and relations (4.4) and (4.6) show that all conditions of Lemma 2.14
are satisfied. Therefore, we have that

Xr
T

D−→
T→∞

P r, (4.7)

or, in other words, P rT converges weakly to the measure P as T →∞. Moreover,
the relation (4.7) shows that the limit measure P does not depend of the subse-
quence {V r

nk
}. This and the relative compactness of the family {V r

n : n ∈ N}
imply the relation

Y r
n

D−→
n→∞

P r. (4.8)

It remains to prove that P rT,ω also converges weakly to P r as T → ∞. For this
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purpose, we define two Hr(D)-valued random elements

Xr
T,n,ω = Ln(λ, α, s+ iξT, ω)

and
Xr
T,ω = L(λ, α, s+ iξT, ω).

Then Lemma 4.2, the second part of Lemma 4.3, relation (4.8) and repeating of
the above arguments for Xr

T,n,ω and Xr
T,ω show that P rT,ω also converges weakly

to the measure P r as T →∞. The lemma is proved.

For the identification of the limit measure P r in the previous lemma, we will
apply Lemma 2.10 (the Birckhoff-Khintchine ergodic theorem). For brevity, let,
for τ ∈ R,

arτ = (((m+ α1)−iτ : m ∈ N0), ..., ((m+ αr)
−iτ : m ∈ N0)).

Define the family of transformations {ϕrτ : τ ∈ R} of Ωr by

ϕrτ (ω) = arτω.

Then the family {ϕrτ : τ ∈ R} is a group. Obviously, the transformations ϕrτ
are continuous, hence, they are measurable. Moreover, in virtue of the invariance
of the Haar measure mr

H , the transformations ϕrτ are measure preserving. Thus,
on the probability space (Ωr,B(Ωr),mr

H), we have the group {ϕrτ : τ ∈ R} of
measurable measure preserving transformations.

Lemma 4.5. Suppose that the set L(α1, ..., αr) is linearly independent over Q.
Then the transformation group {ϕrτ : τ ∈ R} is ergodic.

Proof. The lemma is proved in [26], Lemma 10, by the Fourier transform method.
We only observe that the linear independence of the set L(α1, ..., αr) is used to
show that if χ is a non-trivial character of the group Ωr, then, for (k1, ..., kr) 6=
(0, ..., 0),

r∑
j=1

∞∑′

m=0

kjm log(m+ α) 6= 0,

hence, there exists τ0 6= 0 such that

χ(arτ0) = exp{−iτ0

r∑
j=1

∞∑′

m=0

kjm log(m+ α)} 6= 1.

Here the notation of Lemma 4.1 is used.
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Proof of Theorem 4.3. We start with the identification of the measureP r in Lemma
4.4. On the probability space (Ωr,B(Ωr),mr

H), define the random variable

η(ω) =

{
1 if L(λ, α, s, ω) ∈ A,
0 if L(λ, α, s, ω) 6∈ A,

where A is a fixed continuity set of the measure P r. Then using of Lemmas 4.4
and 2.16 yields the equality

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : L(λ, α, s+ iτ, ω) ∈ A

}
= P r(A). (4.9)

Lemma 4.5 implies the ergodicity of the random process η(ϕrτ (ω)). Therefore, by
Lemma 2.10,

lim
T→∞

1

T

∫ T

0
η(ϕrτ (ω))dτ = Eη (4.10)

for almost all ω ∈ Ωr. From the definition of the random variable η, it follows that

Eη =

∫
Ωr
ηdmr

H = mr
H = {ω ∈ Ωr : L(λ, α, s, ω) ∈ A} = P rL(A). (4.11)

Moreover, by the definitions of η and ϕrτ , we find that

1

T

∫ T

0
η(ϕrτ (ω))dτ =

1

T
meas

{
τ ∈ [0, T ] : L(λ, α, s+ iτ, ω) ∈ A

}
.

Therefore, (4.10) and (4.11) imply the equality

lim
T→∞

meas
1

T

{
τ ∈ [0, T ] : L(λ, α, s+ iτ, ω) ∈ A

}
= P rL(A).

The latter equality together with (4.9) shows that P r(A) = P rL(A). Since A is an
arbitrary continuity set of the measure P r, we have that P r(A) = P rL(A) for all
continuity sets A of P r. However, all continuity sets constitute the determining
class. Hence, P r(A) = P rL(A) for all A ∈ B(Hr(D)), i.e., P r = P rL. The first
part of the theorem is proved.
It remains to find the support of the measure P rL. The space H(D) is separable.
Therefore, it is known [6] that

B(Hr(D)) = B(H(D))× ...× B(H(D))︸ ︷︷ ︸
r

.

This shows that it is sufficient to consider the measure P rL on the sets of the form

A = A1 × ...×Ar
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with A1, ..., Ar ∈ B(H(D)). Moreover, the Haar measure mr
H is the product of

the Haar measures mjH on (Ωj ,B(Ωj)), j = 1, ..., r. By the definition of the
measure P rL, we have that

P rL(A) = mr
H{ω ∈ Ωr : L(λ, α, s, ω) ∈ A} = (4.12)

r∏
j=1

mjH{ωj ∈ Ωj : L(λj , αj , s, ωj) ∈ Aj}.

Since the sets L(α1), ..., L(αr) are linearly independent over Q, by Theorem 2.4,
the support of the measure

mjH{ωj ∈ Ωj : L(λj , αj , s, ωj) ∈ Aj}, j = 1, ..., r,

is the whole of H(D). Obviously, P rL(Hr(D)) = 1. Moreover, if Aj ∈ B(H(D))

and Aj 6= H(D) for some j = 1, ..., r, then we have that

mjH{ωj ∈ Ωj : L(λj , αj , s, ωj) ∈ Aj} < 1.

Therefore, in view of (4.12), we find that P rP (A) < 1. Therefore, we obtain that
Aj = H(D) for all j = 1, ..., r, and the support of P rL is the whole ofHr(D).

4.3 Proofs of joint universality theorems

Theorem 4.1 and 4.2 are consequences of Theorem 4.3, Lemma 2.21(the Mergelyan
theorem), and properties of the weak convergence of probability measures.

Proof of Theorem 4.1. By Lemma 2.21, there exist polynomials p1(s), ..., pr(s)

such that
sup

16j6r
sup
s∈Kj

|fj(s)− pj(s)| <
ε

2
. (4.13)

Define the set

Grε =
{

(g1, ..., gr) ∈ Hr(D) : sup
16j6r

sup
s∈Kj

|gj(s)− pj(s)| <
ε

2

}
.

Then, by the second part of Theorem 4.3, Grε is an open neighbourhood of an ele-
ment (p1(s), ..., pr(s)) of the support of the measure P rL. Thus, by the properties
of the support,

P rL(Grε) > 0. (4.14)
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By the first part of Theorem 4.3 and Lemma 2.22,

lim inf
T→∞

P rT (Grε) > P rL(Grε).

Therefore, the definitions of P rT and Grε together with (4.14) give the inequality

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

16j6r
sup
s∈Kj

∣∣∣L(λj , αj , s+ iτ)− pj(s)
∣∣∣ < ε

2

}
> 0.

Combining this with (4.13) gives the assertion of the theorem.

Proof of Theorem 4.2. Define the set

Ĝrε =
{

(g1, ..., gr) ∈ Hr(D) : sup
16j6r

sup
s∈Kj

|gj(s)− fj(s)| < ε
}
.

The set Ĝrε is open in the space Hr(D). Moreover, its boundary ∂Ĝrε lies in the set{
(g1, ..., gr) ∈ Hr(D) : sup

16j6r
sup
s∈Kj

|gj(s)− fj(s)| = ε
}
.

Therefore, ∂Ĝrε1∩∂Ĝ
r
ε2 = ∅ for positive ε1 6= ε2. Hence, we have thatP rL(∂Ĝrε) >

0 for at most countably many ε > 0. Therefore, by the first part of Theorem 4.3
and Lemma 2.16, we have that

lim
T→∞

P rT (Ĝrε) = P rL(Ĝrε) (4.15)

for all but at most countably many ε > 0. It remains to show that P rL(Ĝrε) > 0.
Suppose that (g1, ..., gr) ∈ Grε, whereGrε is the set defined in the proof of Theorem
4.1. Then, using (4.13), we find that

sup
16j6r

sup
s∈Kj

|gj(s)− fj(s)| 6

sup
16j6r

sup
s∈Kj

|gj(s)− pj(s)|+ sup
16j6r

sup
s∈Kj

|gj(s)− fj(s)| <

ε

2
+
ε

2
= ε.

This show that (g1, ..., gr) ∈ Ĝrε. Hence, Grε ⊂ Ĝrε. Therefore, by monotonicity of
P rL and (4.14), the inequality P rL(Ĝrε) > 0 is true. This together with (4.15) proves
the theorem.
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Chapter 5

Joint discrete universality
theorems for Lerch zeta-functions

Let, as in Chapter 4, L(λ1, α1, s), ..., L(λr, αr, s) be the Lerch zeta-functions. In
this chapter, we will prove discrete versions of Theorems 4.1 and 4.2 that are joint
generalizations of theorems obtained in Chapter 3.

5.1 Statements of the theorems

For h > 0, define the set

L(α1, ..., αr;h, π) = {(log(m+α1) : m ∈ N0), ..., (log(m+αr) : m ∈ N0),
2π

h
}.

Thus, all logarithms log(m+ αj), m ∈ N0, j = 1, ..., r, and the element
2π

h
form the set
L(α1, ..., αr;h, π), its elements are not necessarily different.

Theorem 5.1. Suppose that the set L(α1, ..., αr;h, π) is linearly independent over
Q. For j = 1, ..., r, let Kj ∈ K, fj(s) ∈ H(Kj), and 0 < λj 6 1. Then, for every
ε > 0,

lim inf
T→∞

1

N + 1
#
{

0 6 k 6 N : sup
16j6r

sup
s∈Kj

∣∣∣L(λj , αj , s+ikh)−fj(s)
∣∣∣ < ε

}
> 0.

In the next theorem, „liminf“ is replaced by „lim“.

Theorem 5.2. Suppose that the set L(α1, ..., αr;h, π) is linearly independent over
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Q. For j = 1, ..., r, let Kj ∈ K, fj(s) ∈ H(Kj), and 0 < λj 6 1. Then the limit

lim
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
16j6r

sup
s∈Kj

∣∣∣L(λj , αj , s+ ikh)− fj(s)
∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

Thus, as in Chapter 4, we see that Theorem 5.2, is stronger that Theorem 5.1
because in Theorem 5.2, the set of shifts (L(λ1, α1, s + ikh), ..., L(λr, αr, s +

ikh)) approximating a given collection (f1(s), ..., fr(s)) of analytic functions has
a positive density for „almost all“ ε > 0, while, in Theorem 5.1, this set has a
positive lower density, however, for all ε > 0.
The proofs of Theorems 5.1 and 5.2 are based on joint statistical properties of
Lerch zeta-functions, more precisely, on joint discrete limit theorems of weakly
convergent probability measures in the r-dimensional space of analytic functions.

5.2 A joint discrete limit theorem

This section is devoted to a multidimensional generalization of Theorem 3.3.
For A ∈ B(Hr(D)), define

P rN (A) =
1

N + 1
#
{

0 6 k 6 N : L(λ, α, s+ ikh) ∈ A
}
,

where L(λ, α, s) is the same as in Section 4.2. Also, we preserve the notation of
Section 4.2 for the r-dimensional torus Ωr and theHr(D)-valued random element
L(λ, α, s, ω).

Theorem 5.3. Suppose that the set L(α1, ...αr;h, π) is linearly independent over
Q. Then P rN converges weakly to the distributions P rL of the random element
L(λ, α, s, ω) as N →∞.

We begin the proof of Theorem 5.3 with a discrete limit theorem on the torus
Ωr. For A ∈ B(Ωr), define

QrN (A) =
1

N + 1
#
{

0 6 k 6 N :

((m+ α1)−ikh : m ∈ N0), ..., (m+ αr)
−ikh : m ∈ N0)) ∈ A

}
.

In the next lemma, the linear independence of the set L(α1, ..., αr;h, π) plays the
crucial role.

Lemma 5.1. Suppose that the set L(α1, ..., αr;h, π) is linearly independent over
Q. Then QrN converges weakly to the Haar measure mr

H as N →∞.
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Proof. Let gN,r(k1, ..., kr), kj = (kjm : kjm ∈ Z,m ∈ N0, j = 1, ..., r), be the
Fourier transform of the measure QrN . Then, as in Section 4.2, we have that

gN,r

(
k1, ..., kr

)
=

∫
Ωr

( r∏
j=1

∞∏′

m=0

ω
kjm
j (m)

)
dQrN .

Therefore, by the definition of QrN ,

gN,r(k1, ..., kr) = (5.1)

1

N + 1

N∑
k=0

r∏
j=1

∞∏′

m=0

(m+ αj)
−ikhkjm =

1

N + 1

N∑
k=0

exp
{
− ikh

r∑
j=1

∞∑′

m=0

kjm log(m+ αj)
}
.

Obviously,

gN,r(0, ..., 0) = 1. (5.2)

Since the set L(α1, ..., αr;h, π) is linearly independent over Q, we have that

exp
{
− ih

r∑
j=1

∞∑′

m=0

kjm log(m+ αj)
}
6= 1

for (k1, ..., kr) 6= (0, ..., 0). Actually, if the latter inequality is not true, then

exp
{
− ih

r∑
j=1

∞∑′

m=0

kjm log(m+ αj)
}

= e2πil

with some l ∈ R. Hence,

r∑
j=1

∞∑′

m=0

kjm log(m+ αj)−
2πl1
h

= 0

with some l1 ∈ Z, and this contradicts the linear independence of the set
L(α1, ..., αr;h, π). Thus, in the case (k1, ..., kr) 6= (0, ..., 0), we find by (5.1)
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using the formula for the sum of the geometrical progression that

grN (k1, ..., kr) =

1− exp
{
− (N + 1)ih

r∑
j=1

∞∑′

m=0

kjm log(m+ αj)
}

(
N + 1

)(
1− exp

{
− ih

r∑
j=1

∞∑′

m=0

kjm log(m+ αj)
}) .

This together with (5.2) shows that

lim
N→∞

gN,r(k1, ..., kr) =

{
1 if (k1, ..., kr) = (0, ..., 0),

0 if (k1, ..., kr) 6= (0, ..., 0).

Since the right-hand side of the latter equality is the Fourier transform of the Haar
measure mr

H , the lemma follows by Lemma 2.2.

Lemma 5.1 leads to a joint discrete limit theorem for absolutely convergent
Dirichlet series. We preserve the notation of Section 4.2 for Ln(λ, α, s) and
Ln(λ, α, s, ω). For A ∈ B(Hr(D)), define

P rN,n(A) =
1

N + 1
#
{

0 6 k 6 N : Ln(λ, α, s+ ikh) ∈ A
}
,

Moreover, define the function urn : Ωr → Hr(D) by the formula

urn(ω) = Ln(λ, α, s, ω), ω ∈ Ωr.

We have seen in Section 4.2 that the function urn is continuous. Moreover, by the
definitions of P rN,r and QrN , for all A ∈ B(Hr(D)), the equality

P rN,n(A) =
1

N + 1
#
{

0 6 k 6 N :(
(m+ α1)−ikh : m ∈ N0

)
, ...,

(
(m+ αr)

−ikh : m ∈ N0

)
∈ (urn)−1A

}
=

QrN (urn)−1A).

holds. Thus, we obtain that P rN,n = QrN (urn)−1. This equality, the continuity of
urn, and Lemmas 5.1 and 2.6 prove the following lemma.

Lemma 5.2. Suppose that the set L(α1, ..., αr;h, π) is linearly independent over

Q. Then P rN,n converges weakly to the measure V r
n
def
=mr

Hu
−1
n as N →∞.

The next lemma is devoted to the approximation in the mean of L(λ, α, s) by
Ln(λ, α, s).
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Lemma 5.3. For all λ, α and h > 0, the equality

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

%(L(λ, α, s+ ikh), Ln(λ, α, s+ ikh)) = 0

holds.

Proof. The definition of the metric % shows that the equality of the lemma follows
from the equalities

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

%(L(λj , αj , s+ ikh), Ln(λj , αj , s+ ikh)) = 0,

j = 1, ..., r. However, these equalities are true in view of Lemma 3.5. This proves
the lemma.

Now, we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. We observe that the linear independence over Q of the set
L(α1, ..., αr;h, π) implies that of the set L(α1, ..., αr). Therefore, by the proof of
Lemma 4.4, we have that the family of probability measures {V r

n : n ∈ N} (V r
n

is the limit measure in Lemma 5.2) is tight. Hence, in virtue of Lemma 2.13, the
family {Vn : n ∈ N} is relatively compact. Therefore, there exists a subsequence
{V r

nk
} ⊂ {V r

n } such that V r
nk

converges weakly to a certain probability measure
Pr on (Hr(D),B(Hr(D))) as k → ∞. Hence, denoting by Y r

n = Y r
n (s) the

Hr(D)-valued random element having the distribution V r
n , we obtain that

Y r
nk

D−→
k→∞

P r. (5.3)

Now, on a certain probability space with measure ν, define a random variable ξN
by the formula

ν(ξN = kh) =
1

N + 1
, k = 0, 1, ..., N.

Next, define the Hr(D)-valued random element

Xr
N,n = Xr

N,n(s) = Ln(λ, α, s+ iξN ).

Then, by Lemma 5.2,
Xr
N,n

D−→
N→∞

Y r
n. (5.4)

80



Define one more Hr(D)-valued random element

Xr
N = Xr

N (s) = L(λ, α, s+ iξN ).

Then, in view of Lemma 5.3, we have that, for every ε > 0,

lim
n→∞

lim sup
N→∞

ν(%(Xr
N,n, X

r
N ) > ε) = lim

n→∞
lim sup
N→∞

1

N + 1
#{0 6 k 6 N :

%(L(λ, α, s+ ikh), Ln(λ, α, s+ ikh)) > ε} 6

lim
n→∞

lim sup
N→∞

1

(N + 1)ε

N∑
k=0

%(L(λ, α, s+ ikh), Ln(λ, α, s+ ikh)) = 0.

This equality together with relations (5.3) and (5.4) shows that all hypotheses of
Lemma 2.14 are satisfied. Therefore, we obtain the relation

Xr
N

D−→
N→∞

P r. (5.5)

Thus, we have that P rN converges weakly to P r asN →∞. Moreover, the relation
(5.5) shows that the measure P r is independent of the choice of the subsequence
{V r

nk
}. Since the sequence {V r

n } is relatively compact, hence we obtain that

Y r
n

D−→
n→∞

P r.

This means that V r
n converges weakly to P r as n → ∞. The latter remark allows

to identify easily the measure P r. Actually, in Section 4.2, it was obtained that,
under hypothesis that the set L(α1, ..., αr) is linearly independent over Q,

1

T
meas

{
τ ∈ [0, T ] : L(λ, α, s+ iτ) ∈ A

}
, A ∈ B(Hr(D)),

also converges weakly to the limit measure P r of V r
n as n → ∞, and that P r co-

incides P rL. Clearly, the linear independence of the set L(α1, ..., αr;h, π) implies
that of the set L(α1, ..., αr). Therefore, P rN also converges weakly to P rL which is
the limit measure of V r

n . The theorem is proved.

5.3 Proofs of universality

The proofs of Theorems 5.1 and 5.2 are analogical to those of Theorems 4.1 and
4.2.

Proof of Theorem 5.1. Using Lemma 2.21, we find polynomials p1(s), ..., pr(s)
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such that
sup

16j6r
sup
s∈Kj

|fj(s)− pj(s)| <
ε

2
. (5.6)

Now, define the set

Grε =
{

(g1, ..., gr) ∈ Hr(D) : sup
16j6r

sup
s∈Kj

|gj(s)− pj(s)| <
ε

2

}
.

By Theorem 4.3, the support of the measure P rL is the whole of Hr(D). There-
fore, the set Grε is an open neighbourhood of the element (p1(s), ..., pr(s)) of the
support of the measure P rL. Thus,

P rL(Grε) > 0. (5.7)

Therefore, by Theorem 5.3 and Lemma 2.22,

lim inf
N→∞

P rN (Grε) > P rL(Grε) > 0.

Hence, by the definitions of P rN and Grε, we find that

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : (5.8)

sup
16j6r

sup
s∈Kj

|L(λj , αj , s+ ikh)− pj(s)| <
ε

2

}
> 0.

Suppose that k ∈ N0 satisfies the inequality

sup
16j6r

sup
s∈Kj

|L(λj , αj , s+ ikh)− pj(s)| <
ε

2
.

Then, taking into account (5.6), for those k we find that

sup
16j6r

sup
s∈Kj

|L(λj , αj , s+ ikh)− fj(s)| 6

sup
16j6r

sup
s∈Kj

|L(λj , αj , s+ ikh)− pj(s)|+ sup
16j6r

sup
s∈Kj

|fj(s)− pj(s)| <

ε

2
+
ε

2
= ε.

This shows that

{0 6 k 6 N : sup
16j6r

sup
s∈Kj

|L(λj , αj , s+ ikh)− pj(s)| <
ε

2
} ⊂

{0 6 k 6 N : sup
16j6r

sup
s∈Kj

|L(λj , αj , s+ ikh)− fj(s)| < ε}.
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Therefore, (5.8) implies the inequality

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
16j6r

sup
s∈Kj

|L(λj , αj , s+ikh)−fj(s)| < ε
}
> 0.

The theorem is proved.

Proof of Theorem 5.2. Consider the set

Ĝrε = {(g1, ..., gr) ∈ Hr(D) : sup
16j6r

sup
s∈Kj

|gj(s)− fj(s)| < ε}.

Clearly, Ĝrε is an open set in Hr(D), thus Ĝε ∈ B(Hr(D)). Since the boundary
∂Ĝr belongs to the set

{(g1, ..., gr) ∈ Hr(D) : sup
16j6r

sup
s∈Kj

|gj(s)− fj(s)| = ε},

we have that the boundaries ∂Ĝrε1 and ∂Ĝrε2 do not intersect for different positive
ε1 and ε2. Thus, P rL(∂Ĝrε) > 0 for at most countably many ε > 0. Therefore,
the set Ĝrε is a continuity set of the measure P rL for all but at most countably many
ε > 0. Hence, in virtue of Theorem 5.3 and Lemma 2.16, Hence, by the definitions
of P rN and Grε, we find that

lim
N→∞

P rN (Ĝrε) = P rL(Ĝrε) (5.9)

for all but at most countably many ε > 0. It is not difficult to see that Grε ⊂ Ĝrε,
where Grε was used in the proof of Theorem 5.1. Actually, if (g1, ..., gr) ∈ Grε,
then, in virtue of (5.6), we obtain that

sup
16j6r

sup
s∈Kj

|gj(s)− fj(s)| 6

sup
16j6r

sup
s∈Kj

|gj(s)− pj(s)|+ sup
16j6r

sup
s∈Kj

|fj(s)− pj(s)| <
ε

2
+
ε

2
= ε.

Thus, (g1, ..., gr) ∈ Ĝrε. Now, the inclusion Grε ⊂ Ĝrε and (5.7) show that
P rL(Ĝε) > 0. Therefore, (5.9) implies that the limit

lim
N→∞

P rN (Ĝrε) > 0

exists for all but at most countably ε > 0. Taking into account the definitions of
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P rN and Ĝrε, hence we obtain that the limit

lim
T→∞

1

N + 1
#
{

0 6 k 6 N : sup
16j6r

sup
s∈Kj

∣∣∣L(λj , αj , s+ ikh)− fj(s)
∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.
The theorem is proved.
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Chapter 6

Functional independence of the
Lerch zeta-function

In this chapter, we will prove one of corollaries of the universality-theorems on the
functional independence of the Lerch zeta-function.

6.1 Denseness lemmas

Define the mapping u : R→ Ck by the formula

u(t) = (L(λ, α, σ + it), L′(λ, α, σ + it), ..., L(k−1)(λ, α, σ + it)),

where σ, 1
2 < σ < 1, is a fixed number.

Lemma 6.1. Suppose that the set L(α) is linearly independent over Q, and 0 <

λ 6 1. Then the image of u is everywhere dense in Ck.

Proof. We fix ε > 0, and take an arbitrary point

a = (a0, a1, ..., ak−1) ∈ Ck.

We have to show that there exists t ∈ R such that

|u(t)− a|Ck < ε,

where |.|Ck is the distance in Ck. For this, it suffices to obtain that

|L(j)(λ, α, σ + it)− aj | <
ε

k
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for all j = 0, 1, ..., k − 1. Consider the polynomial

pk(s) =
k−1∑
l=0

als
l

l!
.

Clearly,
p

(j)
l (0) = aj , j = 0, ..., k − 1. (6.1)

We take σ̂, 1
2 < σ̂ < 1. LetK ∈ K be such that σ̂ is an interior point ofK. Denote

by δ the distance of σ̂ from the boundary of K. In virtue of Theorem 2.1, there
exists a sequence {τn} ⊂ R, limn→∞ τn, such that

sup
s∈K
|L(λ, α, s+ iτn)− p(s− σ̂)| < εδk−1

2k−1(k − 1)!k

Therefore, the application of the Cauchy integral formula and (6.1) shows that, for
j = 0, 1, ..., k − 1,

|Lj(λ, α, σ̂ + iτn)− aj | =
j!

2π

∣∣∣ ∫
|z−σ̂|= δ

2

L(λ, α, z + iτn)− pk(z − σ̂)

(z − σ̂j+1)
dz
∣∣∣ < ε

k

and the lemma is proved.

The next lemma is a multidimensional analogue of Lemma 6.1. Define the
mapping u : R→ Ck1+...+kr by the formula

ur(t) = (L(λ1, α1, σ + it), L′(λ1, α1, σ + it), ..., L(k1−1)(λ1, α1, σ + it), ...,

L(λr, αr, σ + it), L′(λr, αr, σ + it), ..., L(kr−1)(λr, αr, σ + it)),

where σ, 1
2 < σ < 1, is a fixed number.

Lemma 6.2. Suppose that the set L(α1, ..., αr) is linearly independent over Q,
and 0 < λj 6 1, j = 1, ..., r. Then the image of ur is everywhere dense in
Ck1+...+kr .

Proof. We fix ε > 0 and

ar = (a10, a11, ..., a1,k1−1, ..., ar0, ar1, ..., ar,kr−1) ∈ Ck1+...+kr .

We will prove that there exists a sequence {τn} ⊂ R, limn→∞ τk = +∞, such
that

|ur(τn − ar)|Ck1+...+kr < ε.
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For this, we will show that there exists a sequence {τn} such that∣∣∣L(lj)(λj , αj , σ + iτn)− ajlj
∣∣∣ < ε

k1 + ...+ kr

for j = 1, ..., r, lj = 0, 1, ..., kj − 1. Define the polynomials

pkj (s) =

kj−1∑
l=0

ajls
l

l!
, j = 1, ..., r.

Then we have that

p
(l)
kj

(0) = ajl, j = 1, ..., r, l = 0, 1, ..., kj − 1.

We fix σ̂, 1
2 < σ̂ < 1, and take a compact set K ∈ K such that σ̂ is an interior

point of K. Let δ be the distance of σ̂ from the boundary of K. Then Theorem 4.1
implies the existence of τn →∞ such that

sup
16j6r

sup
s∈K

∣∣∣L(λj , αj , s+ iτn)− plj (s− σ0)
∣∣∣ < εδk−1

2k−1(k − 1)!(k1 + ...+ kr)
,

where k = max
16j6r

kj . Then, by the Cauchy integral formula,

∣∣∣L(lj)(λj , αj , σ̂ + iτn)− ajl
∣∣∣ =

lj !

2π

∣∣∣ ∫
|z−σ̂|= δ

2

L(λj , αj , s+ iτn)− pj(z − σ̂)

(z − σ̂)lj+1
dz
∣∣∣ <

ε

k1 + ...+ kr.

The lemma is proved.

6.2 Theorems on the functional independence

In this section, we will apply Lemmas 6.1 and 6.2 for the proof of the following
theorems.

Theorem 6.1. Suppose that the set L(α) is linearly independent over Q, and 0 <

λ 6 1. For j = 0, ..., n, let Vj : Ck → C be a continuous function , and let

n∑
j=0

sjVj

(
L(λ, α, s), L′(λ, α, s), ..., L(k−1)(λ, α, s)

)
= 0
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identically for s. Then Vj ≡ 0 for j = 0, ..., n.

Proof. Let V : Ck → C be a continuous function such that

V
(
L(λ, α, σ − it), L′(λ, α, σ + it), ..., L(k−1)(λ, α, σ + it)

)
≡ 0. (6.2)

Then V ≡ 0. Actually, this follows easily from the continuity of V and Lemma
6.1. Suppose, on the contrary, that V 6≡ 0. Then these exists (s0, s1, ..., sk−1) ∈
Ck such that V (s0, s1, ..., sk−1) 6= 0. By the continuity of V , these exists a
bounded region G ⊂ Ck containing (s0, s1, ..., sk−1) such that

|V (a)| > C > 0

for all points a ∈ G, and in view of Lemma 6.1, we obtain the contradiction to
(6.2).

Let l 6 n be the greatest number such that

sup
a∈G
|Vl(a)| 6= 0.

If l = 0, then the theorem follows by the above remark on the function V . If l > 0,
then there exists a region G1 ⊂ G such that

inf
a∈G1

|Vl(a)| > C1 > 0. (6.3)

By the proof of Lemma 6.1, we can find a sequence {tm}, limm→∞ tm = +∞,
such that(

L(λ, α, σ + itm), L′(λ, α, σ + itm), ..., L(k−1)(λ, α, σ + itm)
)
∈ G1.

This together with (6.3) shows that

lim
n→∞

(σ + itm)l
∣∣∣Vl(L(λ, α, σ + itm),

L′(λ, α, σ + itm), ..., L(k−1)(λ, α, σ + itm))
∣∣∣ = +∞.

This gives contradiction to the equality of the theorem.

Theorem 6.2. Suppose that the set L(α1, ..., αr) is linearly independent over Q,
and 0 < λj 6 1. Let Vj : Ck1+...+kr → C, j = 0, ..., n, be a continuous function,
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and let the equality

n∑
j=0

sjVj

(
L(λ1, α1, s), L

′(λ1, α1, s), ..., L
(k1−1)(λ1, α1, s), ...,

L(λr, αr, s), L
′(λr, αr, s), ..., L

(kr−1)(λr, αr, s)
)

= 0

holds identically for s. Then Vj ≡ 0 for j = 0, ..., n.

Proof. We apply similar arguments to those used in the proof of Theorem 1.
Let V : Cn1+...+nr → C be a continuous function. We will prove that if the
equality

V
(
L(λ1, α1, s), L

′(λ1, α1, s), ..., L
(k1−1)(λ1, α1, s), ..., (6.4)

L(λr, αr, s), L
′(λr, αr, s), ..., L

(kr−1)(λr, αr, s)
)

= 0

is satisfied for all s, then V ≡ 0. On the contrary, suppose that these exists a
point a ∈ Ck1+...kr such that V (a) 6= 0. From the continuity of V , there exists a
bounded region G ⊂ Ck containing the point a such that

|V (b)| > C < 0 (6.5)

for all points b ∈ G. Then, in view of Lemma 6.2, these exists t ∈ R such that, for
fixed σ, 1

2 < σ < 1,(
L(λ1, α1, σ + it), L′(λ1, α1, σ + it)), ..., L(k1−1)(λ1, α1, σ + it)), ...,

L(λr, αr, σ + it)), L′(λr, αr, σ + it)), ..., L(kr−1)(λr, αr, σ + it)
)
∈ G

and this together with (6.5) contradicts (6.4).

Without loss of generality, we suppose that V0 6≡ 0. Then, by the above remark,
there exists a bounded region G ⊂ Ck1+...+kr such that

|V0(b)| > C > 0

for all b ∈ G. Let j0 be the greatest non-negative integer 6 n such that

sup
b∈G
|Vj0(b)| 6= 0.

If j0 = 0, then, by the above remark, the theorem is proved. Therefore, suppose
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that j0 > 0. Then we find a region Ĝ ⊂ G such that

inf
b∈Ĝ
|Vj0(b)| > C < 0. (6.6)

However, by Lemma 6.2, there exists a sequence {tm} ⊂ R, limm→∞ tn = +∞
such that(

L(λ1, α1, σ + itm), L′(λ1, α1, σ + itm)), ..., L(k1−1)(λ1, α1, σ + itm)), ...,

L(λr, αr, σ + itm)), L′(λr, αr, σ + itm)), ..., L(kr−1)(λr, αr, σ + itm)
)
∈ Ĝ

for fixed σ, 1
2 < σ < 1. From this and (6.6), we obtain that

|σ + itm|j0
∣∣∣Vj0(L(λ1, α1, σ + itm), L′(λ1, α1, σ + itm)), ...,

L(k1−1)(λ1, α1, σ + itm)), ..., L(λr, αr, σ + itm)), L′(λr, αr, σ + itm)), ...,

L(kr−1)(λr, αr, σ + itm)
)∣∣∣→ +∞

as m → ∞. This contradicts the hypothesis of the theorem. The theorem is
proved.
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Conclusions

1. The Lerch zeta-functionL(λ, α, s) with parameterα such that the set {log(m+

α) : m ∈ N0} is linearly independent over Q has a continuous universality
property on the approximation of analytic functions by shiftsL(λ, α, s+iτ).

2. The Lerch zeta-functionL(λ, α, s) with parameterα such that the set {(log(m+

α) : m ∈ N0), 2π
h } is linearly independent over Q, for all λ, 0 < λ 6 1, has

a discrete universality property on the approximation of analytic functions
by shifts L(λ, α, s+ ikh).

3. The Lerch zeta-functionsL(λ1, α1, s), ..., L(λr, αr, s) with parametersα1, ..., αr

such that the set {log(m + αj) : m ∈ N0, k = 1, ..., r} is linearly inde-
pendent over Q for all 0 < λj 6 1, have a joint continuous universality
property on the approximation of collections of analytic functions by shifts
(L(λ1, α1, s+ iτ), ..., L(λr, αr, s+ iτ))

4. The Lerch zeta-functionsL(λ1, α1, s), ..., L(λr, αr, s) with parametersα1, ..., αr

such that the set {(log(m+α1) : m ∈ N0), ..., (log(m+αr) : m ∈ N0),
2π

h
}

is linearly independent over Q, for all 0 < λj 6 1, have a joint discrete
universality property on the simultaneous approximation of collections of
analytic functions by shifts (L(λ1, α1, s+ ikh), ..., L(λr, αr, s+ ikh)).

5. The Lerch zeta-functionL(λ, α, s) with parameterα such that the set {log(m+

α) : m ∈ N0} is linearly independent over Q is functionally independent.

6. The Lerch zeta-functionsL(λ1, α1, s), ..., L(λr, αr, s) with parametersα1, ..., αr

such that the set {(log(m+α1) : m ∈ N0), ..., (log(m+αr) : m ∈ N0)} is
linearly independent over Q are functionally independent.

91



Bibliography

[1] T. M. Apostol, On the Lerch zeta-function, Pacific J. Math. 1 (1951), 161-
167.

[2] T. M. Apostol, Addentum to „On the Lerch zeta-function“, Pacific J. Math. 2
(1952), 10.

[3] B. Bagchi, The statistical behaviour and universality properties of the Rie-
mann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian
Statistical Institute, Calcutta, 1981.

[4] B. C. Berndt, Two new proofs of Lerch’s functional equation, Proc. Amer.
Math. Soc., 32(2)(1972), 403–408.

[5] B. C. Berndt and L. Schoenfeld, Periodic analogues of the Euler- Maclaurin
and Poisson summation formulas with applications to number theory, Acta
Arithmetica, 28(1)(1975/76), 23–68.

[6] P. Billingsley, Convergence of Probability Measures, Willey, New York,
1968.

[7] J. W. S. Cassels, Footnote to a note of Davenport and Heilbronn, J. London
Math. Soc. 36 (1961), 177-189.

[8] J. B. Conway, Functions of One Complex Variable, Springer-Verlag, Berlin
1978.

[9] H. Cramér and M. R. Leadbetter, Stationary and Related Processes, Wiley,
New York, 1967.

[10] R. Garunkštis, Value-distribution of the Lerch zeta-function, Doctoral thesis,
Vilnius University, Vilnius, 1998,
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[23] A. Laurinčikas, A limit theorem for the Lerch zeta-function in the space of
analytic functions, Lith. Math. J. 37(1997),146-155.
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Notation

k, l,m, n, r integer integers
p prime number
Z set of all integer numbers
Q set of all rational numbers
N set of all positive integers
N0 set of all non-negative integers
R set of all real numbers
C set of all complex numbers
s = σ + it, σ, t ∈ R, i =

√
−1 complex number

ζ(s) Rieman zeta-function defined for σ > 1,

by the series ζ(s) =
∞∑
m=0

1
ms ,

and by analytic continuation elsewhere
L(s, χ) Dirichle L-function defined, for

σ > 1, by the series L(s, χ) =
∞∑
m=0

χ(m)
ms ,

and by analytic continuation elsewhere
ζ(s, α) Hurwitz zeta-function defined, for σ > 1,

by the series ζ(s, α) =
∞∑
m=0

1

(m+ α)s
,

and by analytic continuation elsewhere
L(λ, α, s) Lerch zeta-function defined, for σ > 1,

by the series L(λ, α, s) =
∞∑
m=0

e2πiλm

(m+ α)s
,

and by analytic continuation elsewhere
EX expectation of a random element X

Xn
D−→

n→∞
X convergence in distribution

measA Lebesgue measure of a set A
#A cardinality of a set A
f(x)�λ g(x), g(x) > 0, x ∈ X there exists a constant C(λ) > 0 such that,

for all x ∈ X , |f(x)| 6 Cg(x)
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