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Chapter 1

Introduction

1.1 Research topic

Throughout the thesis, the value distribution of the Lerch zeta-function L(\, «, s),
s = o + it, is investigated with emphasis to universality of L(\, a, s), i.e, to
approximation of analytic functions by shifts L(\, a, s +i7), 7 € R.

We start with the definition of the function L(\, o, s). Let A € Rand o, 0 < o <

1, be fixed parameters. The Lerch zeta-function L(\, «, s) is defined, for o > 1,
by the Dirichlet series

27rz)\m

o0
)\as Zm+a

m=0
If the parameter A is an integer, then L(\, «, s) becomes the Hurwitz zeta-function
o0
(s,a) = mz::() (m + o) o> 1.

Therefore, with A € Z the function L(\, «, s) has analytic continuation to the
whole complex plane, except for a simple pole at the point s = 1 with residue 1.
If A\ & Z, the function L(\, «, s) is entire [27]. In general, the function L(\, «, s),
differently from the Riemann zeta-function

<<s>=st—H< =) osl

m=1

has no the Euler product over primes p, except for the cases L(k, 1, s) = ((s),

L(% 1, s) - (1 - 21_S)C(s)
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and
L(k:, %3) - (28 _ 1)g(s),

where k € Z. Thus, the Lerch zeta-function L(\, «, s) is a generalization of the
classical zeta-functions ((s) and ((s, «). The function L(\, c, s) was introduced
independently by M. Lerch [36] and R. Lipschitz [37]. Lerch also obtained the an-
alytic continuation and proved the functional equation for the function L(, «, s).
Denote by I'(s) the Euler gamma-function. Then the function L(\, «, s) satisfies
the functional equation

L\ a,1—s)=

I(s)
R
exp{—%zs + 2mia(l — N)}L(a, 1 — A, s)),

(exp{%s — 2mia\}L(—a, A, 8)+

here 0 < A < 1. In general, L(\, o, $) is an interesting analytic object depending
on two parameters. Analytic theory of the Lerch zeta-function is given in [27].

1.2 Aims and problems

The function L(\, o, s), as the majority of other zeta and L-functions, is universal
in the sense that its shifts L(\, o, s+i7), 7 € R, for some classes of the parameters
« and )\, approximate a wide class of analytic functions. The aim of the thesis is
the extension of the universality for the Lerch zeta-function for other classes of
parameters « and A. The problems of the thesis are the following:

1. The extension of a continuous universality theorem for the Lerch zeta-function

with transcendental parameter c.

2. The extension of a discrete universality theorem for the Lerch zeta-function
with transcendental parameter.

3. The extension of a joint continuous universality theorem for Lerch zeta-
functions with algebraically independent parameters.

4. A joint discrete universality theorem for Lerch zeta functions.

5. The extension of the functional independence for the Lerch zeta-function

with transcendental parameter «.

6. A joint functional independence theorem for Lerch zeta-functions.



1.3 Actuality

Approximation of analytic functions is one of the central problems of the func-
tion theory. By the famous Mergelyan theorem [38], every analytic function can
be approximated uniformly on compact sets with connected complements by a
polynomial. Thus, for each analytic function a polynomial with approximating
property exists. The advantage of universality theorems for zeta-functions as to
compare to the Mergelyan theorem is that the whole class of analytic functions is
approximated by the shifts of the same zeta-function. Zeta-functions, as polynomi-
als , are compatitively simple because, by approximate functional equations, they
are approximated by Dirichlet polynomials. Thus, universality theorems for zeta-
functions is a powerful instrument in the approximation theory. Since the Lerch
zeta-function depends on two parameters, it is possible to choose the most conve-
nient approximations. For this, it is important to extend the classes of parameters
« and A for which the Lerch zeta-function remains universal.

Universality of zeta-functions, including the Lerch zeta-function, also has serious
theoretical applications. One of these applications comes back to famous Hilbert
problems and is related to the independence of functions, more precisely, uni-
versality theorems imply the functional independence of zeta-functions. More-
over, universality theorems for zeta-functions without Euler product ( the function
L(\, «, s) has no Euler product ) keep the information on the zero-distribution.
These and other properties of universal zeta-functions make universality one of
the urgent problems of modern analytic number theory.

1.4 Methods

In the thesis, the universal probabilistic method is used for the proof of universality
theorems. This method is based on limit theorems for weakly convergent probabil-
ity measures in the space of analytic functions with explicitly given limit measure.
Proofs of these theorems use elements of Fourier analysis, Dirichlet series and
Prokhorov theory connecting the tightness and relative compactness of families of
probability measures. Universality theorems follow from limit theorems and the
Mergelyan theorem.

1.5 Novelty

The results of the thesis are new. Universality theorems for the Lerch zeta-function
were known only with transcendental parameter .. In the thesis, the transcendence



of « is replaced by a weaker condition. Joint universality of Lerch zeta-functions
was known only for algebraically independent parameters oy, ..., Q..

1.6 History of the problem and results

The Lerch zeta-function was forgotten for a long time. Some authors only gave
different proofs of the functional equation [1], [2], [4], [5], [39], [47]. Some of
these proofs also can be found in [27]. Moreover, D. Klush obtained [20], [21]
some mean-value results for the function L(\, c, s). For example, in [20], it was
obtained that

T

/’L(A,a,a+it)‘2~{ Tlog T %f?:%

/ T((20,a) if 5 <o <1
as T" — oo.
The next progress in the theory of the Lerch zeta-function is related to the names
of R. Garunkstis, M. Katsurada, A. Laurincikas, K. Matsumoto and J. Steuding.
The first results for the Lerch zeta-function were devoted to probabilistic limit
theorems. Denote by B(X) the Borel o-field of the space X. Let P,,, n € N, and
P be probability measures on (X, B(X)). We recall that, by the definition, P,
converges weakly to P as n — o0, if, for every real bounded continuous function
gon X,

lim [ gdP, = / gdP.
n—00

X X
R. Garunkstis and A. Laurincikas proved [12] a limit theorem in the sense of weak

convergence of probability measures on the complex plane. For A € B(C), define
1 .
Pr,(A) = 7 eas {t €[0,7]: L\, a0 +it) € A}.

In [12], the following statement has been obtained.

Theorem A. Suppose that o > 3 is fixed. Then, on (C,B(C)), there exists a

probability measure P, such that Pr , converges weakly to Py asT' — oo.

Let G be a region on the complex plane. Denote by H (G) the space of analytic
functions on GG endowed with the topology of uniform convergence on compacta.
In this topology, a sequence {g,(s)} C H(G) converges to the function g(s) €
H(G) if and only if, for every compact set K C G,

lim sup |gn(s) — g(s)‘ =0.

n—o0 scK
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In [23] , Theorem A was extended to the space of analytic functions for G =
{s €eC:o> %}
B. Bagchi in his thesis [3] proposed a new method how to identify limit measures
in limit theorems for some zeta-functions. In [24], the Bagchi method was applied
for the Lerch zeta-function. Denote by ~y the unit circle {s eC:|s| = 1} on the
complex plane, and define

0
Q=]
m=0

where v, =  for all m € Ny. With the product topology and pointwise multi-
plication, the infinite-dimensional torus €2 is a compact topological Abelian group.
Therefore, on (Q, B (Q)), the probability Haar measure my can be defined. We
recall that the Haar measure my differs from other probability measures by its
invariance, i.e., for all A € B(Q2) and w € €2,

mp(A) =mpg(wA) = my(Aw).

This gives the probability space (€2, B(2), my). Denote by w(m) the mth com-
ponent of an element w € €}, m € Ny, and on the probability space (Q, B(Q),m H) ,
define the H (D)-valued random element L(\, «, s, w) by

& eQm‘Amw (m)

L()\,a,s,w) = (m+ a)s

m=0

,w € Q.

Let P, be the distribution of the random element L(\, o, s,w), i.e,
Pr(A) = mH{w €Q: L\ a,s,w) e A},A € B(H(D)).

Then in [24], the identification of the limit measure in Theorem of [23] was given,

namely, the following theorem was proved. We recall that a number « is transcen-
dental if, for any polynomial p(s) # 0 with rational coefficients, the inequality
p(a) # 0 is true.

Theorem B. Let A & Z, and « be a transcendental number. Then
1
Pr(A) = 7 meas {7‘ €0,T]: L(\, o, s +i71) € A},A € B(H(D)),

converges weakly to the measure Py, as'T' — oc.

R. Garunkstis and A. Laurincikas proved [11] a weighted limit theorem in the
space of analytic functions. Let w(t) be a positive function of bounded variation
on [Ty, oc], Ty > 0,such that the variation V>w on [a, b] satisfies the inequality

11



VPw < cw(a) with some ¢ > 0 for all [a, b] C [Ty, oo]. Moreover, let

T
U = U(T,w) = /w(t)dt,
To
and Tlim U(T,w) = +o0. For A € B(H(D)), define
—00

1

T
Pr,(A) = i /w(7)[<{7 € [Ty, T : L()\,a,s +iT) € A})dT,
To

here I(A) denotes the indicator function of the set A. Then a limit theorem on the
complex plane has the following form.

Theorem C. Suppose that A\ € 7 and « is a transcendental number. Then, on
(H(D),B(H(D)), there exists a probability measure P,, such that Prp,, con-
verges weakly to Py, as T' — oc.

In his thesis [10], R. Garunkstis identified the limit measure in Theorem C,
however, under the additional condition on the weight function w(t) that

T
/w(T)X(t + 7 w)dt = EX(0,0) + O(1 + [t))%, T — oo,

To

1
U

almost surely for all ¢ € R with some 3 > 0. Here X (7, w) is an ergodic process,
E| X (7,w)| < oo, with sample paths integrable almost surely in the Riemann sense
over every finite interval.

Now, we pass to universality results which are the subject of our thesis.

The universality of the Riemann zeta-function ¢ (s) was discovered by S. M. Voronin
in [53]. He proved that if 0 < r < %, f(s) is a continuous non-vanishing function
in the disc |s| < r, and analytic in |s| < r, then, for every ¢ > 0, there exists a
number 7 = 7(¢) € R such that

max |((s + 3 +i1) — f(s)| < e.

[s|<r 4
This interesting Voronin’s theorem was observed by number theorists, and slightly
improved. Let D = {s € C : % < o < 1}. Denote by K the class of compact
subsets of the strip D with connected complements, and by Hy(K) with K €
IC the class of continuous non-vanishing functions on K that are analytic in the
interior of K. Then the modern version of the Voronin theorem is the following

12



statement, see, for example, [22].

Theorem D. Suppose that K € K and f(s) € Ho(K). Then, for every € > 0,

liminflmeas {T €[0,T] : sup |C(s +iT) — f(s)’ < 5} > 0.
T—oo T s€K
Theorem D shows that there are infinitely many shifts {(s+i7) approximating
a given function f(s) € Ho(K).
The first universality theorem for the Lerch zeta-function was obtained in [25].
Denote by H(K) with K € K the class of continuous functions on K that are
analytic in the interior of K. Thus, Hy(K) C H(K).

Theorem E. Suppose that 0 < \ < 1, and « is a transcendental number. Let

K € Kand f(s) € H(K). Then, for every € > 0,

1
lim inf — meas {7‘ €10,T] : sup |L(\, o, s +iT) — f(s)’ < 5} > 0.
T—o0 T seK

Chapter 2 of the thesis is devoted to the extension of Theorem E for a new
class of parameters a. Define the set

L(a) = {log(m—i—a) tm € NO}.

The main result of the chapter is the following continuous universality theorem for
the function L(\, i, s).

Theorem 2.1. Suppose that the set L(«) is linearly independent over the field of
rational numbers Q, and 0 < A < 1. Let K € K and f(s) € H(K). Then, for
every e > 0,

1
lim inf — meas {7‘ €[0,T] : sup |L(A\, o, s +iT) — f(s)’ < E} > 0.
T—oo T sEK

We observe that if the number « is transcendental, then the set L(«) is lin-
early independent over Q. Actually, suppose that « is transcendental, however,
the set L(«) is linearly dependent over Q. Then there exist myq, ..., m, € Ny and
ki, ....,k, € Z\ {0} such that

ki log(my + «) + ... + k- log(m, + «) = 0.

Hence,
(m1 + @) (m, + ) =1.

Therefore, using the Newton binomial expansions, we find that there exists a poly-

13



nomial p(s) # 0 such that p(a;) = 0. However, this contradicts the transcendence
of cv. Thus, the set L(«) is linearly independent over Q.

We recall that, by the definition, the number « is algebraic if there exists a
polynomial p(s) # 0 with rational coefficients such that p(a)) = 0. For example,
o= % and a = % are algebraic numbers because they are roots of the polynomi-

als 2s = 1 and 2s% = 1, respectively.

By the famous Cassels theorem [7], at least 51 percent of elements of the set
L(«) in the sense of density are linearly independent over Q. Therefore, it can
happen that the set L(«) is linearly independent over QQ with algebraic irrational a,
thus, Theorem 2.1 can be valid also for algebraic irrational cv. On the other hand, at
the moment we do not know any algebraic irrational « such that the set L(«) would
be linearly independent over Q. Theorem 2.1 has the following modification.

Theorem 2.2. Suppose that the set L(«) is linearly independent over Q, and 0 <
A< 1 Let K € K and f(s) € H(K). Then the limit

1
lim — meas {7’ €[0,7] : sup |L(\, e, s +iT) — f(s)’ < 5} >0
T—oo T scK

exists for all but at most countably many € > 0.

The proofs of Theorems 2.1 and 2.2 are based on a limit theorem in the space
of analytic functions for the function L(\, «, s). Let Pr and Py, be the same as in
Theorem B.

Theorem 2.3. Suppose that the set L(«) is linearly independent over Q, and 0 <
A < 1. Then Pr converges weakly to Py, as T — oc.

Theorems 2.1-2.3 are published in [41].
In place of the shifts L(\, «v, s 4+ i7), where 7 is an arbitrary real number, one
can consider the shifts L(\, a, s + ip(k)), where ¢(t) is a certain function, and
k runs over non-negative integers. Limit and universality theorems for shifts
L(\,a, s + iT) are called continuous, while with shifts L(\, «, s + ip(k)) are
called discrete theorems. The simplest function ¢(k) is of the type kh, k € Ny,
with a fixed A > 0.
Discrete limit theorems for the Lerch zeta-function were obtained by J. Ignatavicitité
in her thesis [18]. In [16], a discrete analogue of Theorem A was proved.

Theorem F. Suppose that o is transcendental, the number exp {2%} is rational
and o > % is fixed. Then

1
P <k K : )
N+1#{0\ k<N :L\a,o+ikh) eA},AeB(C),

14



converges weakly to the distribution of the complex-valued random element

o0 627ri>\mw (m)

(m+ a)°

m=0
as N — oo.

Here N runs over non-negative integers, and # A is the cardinality of the set
A.
In [17], Theorem F was extended to the space of analytic and even meromorphic
functions. Let D = {seC:0> %} Let

Ql = H’)/pa
p

where -y, = ~y for all primes p. Denote by wy (p) the p th component of an element
w1 € £, and on the probability space (21, B(£21), m1), where mqy is the Haar

N

measure on (2, B(€2;)), define the H (D) valued random element

a > 2miAm
L\ o, s,w1) = wy(b)b%e 2™ Z ¢

m=0;m=a(modb)

wi(m)

ms

Then we have the statement [17].

Theorem G. Suppose that X\ € 7, « is a transcendental number, and h > 0 is
such that exp{ 2L} is a rational number. Then

1

Py =5

#{o <h<N:L\a,s+ikh) e A},A e B(H(D)),
converges weakly to the measure Pr, as N — oco. If a = %, a,beN, 1 <a<b
(a,b) =1, and h > 0 is such that exp {%} k € N, is an irrational number, then
Py converges weakly to the distribution of the random element L()\, o, s,w1) as
N — cc.

A discrete version of the Voronin universality theorem was proposed by A.
Reich [51], and is of the following form.

Theorem H. Suppose that K € K and f(s) € Ho(K). Then, for every e > 0,

lim inf <kE<N: kh) — ’ .
imin N+1#{0 E<N jg}[; C(s +ikh) f(s)<5}>0

Actually, Reich proved a discrete universality theorem for Dedekind zeta-
functions (x(s) of algebraic number fields K. If K = Q, then we have the Rie-
mann zeta-function. A different proof from that of Reich was given by Bagchi in

15



[3]. Discrete universality theorems are also known for the Hurwitz zeta-function
¢ (s, a) which is the case of the function L(\, c, s) with A € Z. The first theorem
of such a type belongs to Bagchi [3].

Theorem 1. Suppose that « is a rational number, o # % a # 1. Let K be a
compact simply connected and locally path connected subset of D, and let f(s)
be a continuous function on K that is analytic in the interior of K. Then, for all
e>0and h > 0,

lim inf
iy

#{0< k<N sup ’C(s+ikh,a) - f(s)‘ <e}>o0,
seK

Theorem I follows from the representation

oo

1
C(S,%)st > —,1<a<b(ab)=1,b>3,

s )
m=0;m=a(modb)

and joint properties of the pair of functions

v,y %).

m=0;m=a(modb)

It turns out that the case of transcendental « is more complicated and that of ra-
tional, and an analogue of Theorem I for all 2 > 0 is not known. For example, in
[28], an analogue of Theorem I with transcendental o was obtained for h > 0 such
that exp { 2" } is rational number, and with K € K and f(s) € H(K).

Chapter 3 of the thesis is devoted to discrete universality theorems for the
function L(\, «, s). Define the set

2T

L(a, h, ) = {(log(m+a):m€NO),?},h>0.

The latter set consists of all logarithms log(m + «) and the number 27“ The main

results of the chapter are the following theorems.
Theorem 3.1. Suppose that the set L(c, h, ) is linearly independent over Q and

0< A<l Let K € Kand f(s) € H(K). Then, for every ¢ > 0,

it

#{0 <k <N :sup [LO\ a5+ ikh) - f(s)) <e}>o.
seK

Theorem 3.1 admits the following modification.

Theorem 3.2. Suppose that the set L(c, h, ) is linearly independent over Q and

16



0<A< 1l Let K € Kand f(s) € H(K). Then the limit

1
im ——— <k < : ) —
A}E&N_I_l#{o\k\]\f sup [L(\ 5 -+ ikh) f(s)‘<6}>0

exists for all but at most countably many € > 0.

Theorems 3.1 and 3.2 can be generalized for composite functions. In the thesis,
we give one example.

Theorem 3.3. Suppose that the set L(a, h, ) is linearly independent over Q,
0 < A< landthat F : H(D) — H(D) is a continuous operator such that,
for every set G C H(D), the pre-image F~'G is non empty. Let K € K and
f(s) € H(K). Then, for every € > 0,

#{o <k<N:sup|F(LO\,a,s+ikh)) — f(s)’ < g} > 0.
seK

lim inf
N—osco N +1

Theorem 3.3 is an analogue of Theorem 3.2 for the function F/(L(\, «, s +
ikh)). The proofs of universality theorems of Chapter 3 are based on a limit theo-

rem for

1
_— <k : )
i 1#{0 <k<N:L(\a,s+ikh) € A},A e B(H(D)),

as N — oo. They are published in [33].

The first joint value-distribution theorems for Lerch zeta-function were ob-
tained in [29]. The first theorem of the latter paper is a multidimensional general-
ization of Theorem A.

Theorem J. Suppose that 12112 o; > % Then there exists a probability measure
IST

P on (C", B(C")) such that the measure

%meas {t €1[0,77]: (L(Al,a1,01+it), ...,L(/\T,ar,ar—kit)) € A},A € B(C"),

converges weakly to P as T — oo.

In Theorem J, the limit measure P is not explicitly given.
In the second theorem of [31] the latter gap was removed, and a joint limit theorem
for Lerch zeta-function in the space H" (D) was obtained. The further statistical
investigations of the joint value-distribution of Lerch zeta-functions were contin-
ued in [32]. There also some correction of the paper [30] are given. Voronin

also introduced the joint universality of zeta and L-functions: in [54], he ob-
tained the joint universality of Dirichlet L-functions L(s, x1), ..., L(s, x,) with

17



non-equivalent Dirichlet characters (not generated by the same primitive charac-
ter). We recall that the Dirichlet L-function L(s, x) is defined, for o > 1, by the

series

L(s,x) = Z X;TZ>’
m=1

and by analytic continuation elsewhere, and the character x(m) is a periodic with
period ¢ completely multiplicative function (x(mn) = x(m)x(n),m,n € N),
x(m) = 0 for (m,q) > 1, and x(m) # 0 for (m,q) = 1. In the case of
joint universality for Dirichlet L-functions, a collection of analytic functions from
the classes H(K1), ..., H(K,) with K, ..., K, € K are simultaneously approxi-
mated by shifts L(s + i, x1), ..., L(s + 7, x,). The joint universality of Lerch
zeta-functions was considered by various authors. We mention the papers [35],
[42],[45],[46]. In these papers, the algebraic independence over Q of the parame-
ters av, ..., o, was required. We recall that the numbers o7, ..., o, are algebraically
independent over Q if there is no a polynomial p(s1, ..., s,) # 0 with rational co-
efficients such that p(a, ..., a,.) = 0. We recall a joint universality theorem from
[30].

Theorem K. Suppose that oy, ..., «, are algebraically independent numbers over
Q M\ = E, vy Ap = &, (a1,q1) = 1,....(ar,q.) = 1, where q1,...,q, are
distinct posqi}ive integers C?IZd ai, ..., Gy are positive integers with a; < qi, ..., a4, <
qr- Let K1,..., K, € K and fi(s) € H(K4), ..., fr(s) € H(K,). Then, for every
>0,

1
liminf — meas {T €1[0,7]: sup sup |L(\j,aj,s+iT) — fj(s)‘ < E} > 0.
T—oo T 1<j<r s€K;

In [42] and [35], the case of « = o1 = ... = «, with transcendental o was
discussed.

In chapter 4 of the thesis, we prove joint universality theorems for Lerch zeta
functions without using the algebraic independence of the parameters aq, ..., ;.
Also, we do not use any conditions for the parameters Aq, ..., Ay.

Let
L(ay,...,ap) = {(log(m + a1 :m e Ny, ..., (loglm+a,) :m € No)}.

Theorem 4.1. Suppose that the set L(a, ..., ) is linearly independent over Q.
Forj=1,..,r, let Kj € K, fj(s) € H(Kj;), and 0 < \j < 1. Then, for every

18



e >0,

1
lim inf — meas {T €1[0,7]: sup sup |L(\j,j,s+iT) — fj(s)‘ < E} > 0.
T—oo T 1<j<r sekK;

As other universality theorems, Theorem 4.1 has the following modified ver-
sion.

Theorem 4.2. Suppose that the set L(a, ..., o) is linearly independent over Q.
Forj=1,..,rlet K; € K, fj(s) € H(K;), and 0 < \j < 1. Then the limit

1
lim — meas {7’ €[0,7]: sup sup [L(Nj,aj,s+iT) — fj(s)‘ < E} >0
T—oo T 1<j<r s€K;

exists for all but at most countably many € > 0.

It is not difficult to see that the linear independence over Q of the set L(av, ..., o)
is a weaker condition that the algebraic independence of the numbers aq, ..., ;.
Actually, suppose that the numbers «q, ..., o, are algebraically independent over
Q, however, the set L(ay, ..., a, ) is linearly dependent. Then there exists the num-
bers miay, -, Myays oo Miyay s - M0, € No and
Eioys ooy Krags oo Klyays s Ko, € Z\ {0} such that

kloq 1Og(m1a1 + Oél) + ...+ klar log(mlar + Oér) + ...+
ki oq log(my o, + 01) + ... + kiq, log(my,.q, + ar) = 0.

Hence,
(mlal —I—Oél)klal...(mlaT +O<T)k1a’"...(ml1a1 —I—Ozl)kllal...(mlrar —I—Ozr)klra’" =1.

Therefore, using of the Newton binomial theorem gives that there is a polynomial
p(s1, ..., sr) with integers coefficients such that p(«, ..., ;) = 0, i.e., the numbers
azq, ..., a, are algebraically dependent. Thus, the contradiction shows that the set
L(ay, ..., ap) is linearly independent over Q.

Chapter 5 of the thesis contains joint discrete universality theorems for Lerch
zeta-functions. To our knowledge, earlier, the theorems of such a kind were not
known. For h > 0, define the set

2
L(ay,...;ap;hym) = {(log(m—i—al) :m € Nyp), ..., (log(m+a,) : m € N), %}

The main results of the chapter are the following two theorems.
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Theorem 5.1. Suppose that the set L(, ..., a; h, ) is linearly independent over
Q. Forj=1,..,r,let K; € K, fj(s) € H(K;), and 0 < \; < 1. Then, for every
e >0,

lim inf
Noeo N+ 1

#{O <k<N: sup sup L(/\j,aj,s—i—ikh)—fj(s)’ < 5} > 0.

1<y<r seKj

Theorem 5.2. Suppose that the set L(, ..., a5 h, ) is linearly independent over
Q. Forj=1,...,r let K; € K, fij(s) € H(Kj), and 0 < X\j < 1. Then the limit

1
I 4——7{0<k<N: L\, aj, s+ ikh) — ~(< }>0
NgnooN—l—l# 12;2”5611[2 (Aj»aj, s +ikh) — fi(s)| <&

exists for all but at most countably many € > 0.

Theorems 5.1 and 5.2 are published in [34].

We already have mentioned that one of theoretical applications of universal-
ity for zeta-functions is closely related to the functional independence of these
functions, and comes back to Hilbert. It is well known that in the International
Congress of Mathematicians in Paris (1900) Hilbert presented the list [15] of the
most important problems in mathematics that would be solved in the next cen-
tury. In his 18 th problem, Hilbert observed that the Riemann zeta-function ((s)
cannot satisfy any algebraic-differential equation, i.e., there is no any polynomial
p(s1, ..., Sn) # 0 such that

p(C(S)v C/(S)7 e C(nil) (S)) =0,
and that this follows from an analogous result for the Euler gamma-function I'(s)

and the functional equation for the function ((s)

1—s
2

T EL(5)((s) = 7T D(=2)¢(1 - ).

Moreover, Hilbert conjectured that the function

m

G&MZEZE;

m=1

has also an algebraic-differential independence property. This Hilbert conjuncture
was proved by Ostrowski [48]. Similar problems for Dirichlet L-functions were
studied by A.G.Postnikov [49]. Voronin generalized significantly the above results.

In [52], see also [19], he obtained the functional independence of the Riemann
zeta-function. More precisely, he proved the following theorem.
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Theorem L. For j =0,..n, let V} : CF - Cbea continuous function, and let

n

> V(<) ¢(5), 0 CF 0 (5)) = 0

§=0
identically for s. Then V; = 0 for j = 0, ..., n.

In [54], Voronin extended theorem L for Dirichlet L-functions with non-equivalent
Dirichlet characters. In [13], the analogue of Theorem L was obtained for the
Lerch zeta-function L(\, «, s) with transcendental parameter .

In the last chapter of the thesis, the functional independence of the function
L(\, a, s) was proved under a weaker condition than the transcendence of the
parameter «. The following statement is true. We recall that L(«) = { log(m +
@) :m € No}.

Theorem 6.1. Suppose that the set L(«) is linearly independent over Q, and 0 <
AL L Forj=0,...,n,letV;: C* — C be a continuous function , and let

Z sjVj (L()\, a,s), L'\, a,s), ..., L(k_l)()\, Q, s)) =0
=0

identically for s. Then V; = 0 for j =0, ..., n.

In other words, Theorems 6.1 asserts that if V, V7, ..., V}, : Ck — C are con-
tinuous functions not all identically zero, then

Z sjVj (L()\, a,s),L'(\ a,s), ..., L(k_l)()\, a, 5)) # 0
j=0

for some s € C.
The Lerch zeta-function also have a joint functional independence property,
i.e., the following theorem is valid.

Theorem 6.2. Suppose that the set L(a, ..., o) is linearly independent over Q,
and0 < \j < 1. Let Vj : Chkittkr 5 C, j =0, ...,n, be a continuous function,
and let the equality

n

ZsjVj(L()\l,al,s),L’(/\l,al,s), o LD ag,s),
j=0
L(A\r, ap, s), L/()\m Qry 8),ens L(kr‘_l)()\ra Qp, 5)> =0
hold identically for s. Then V; =0 for j =0, ..., n.
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For the proof of Theorems 6.1 and 6.2, the universality theorems ( Theorems
2.1 and 4.1 ) are applied.
Theorems 6.1 and 6.2 are published in [41] and [40], respectively.

1.7 Approbation

The results of the thesis were presented at the International MMA (Mathematical
Modelling and Analysis) conferences (MMA2016, June 1-4, 2016, Tartu, Estonia),
(MMA2017, May 30 — June 2, 2017, Druskininkai), (MMA2018, May 29 — June
1, 2018, Sigulda, Latvia), at the 16th International Conference ( May 13-18, 2019,
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Chapter 2

Continuous universality theorems
for the Lerch zeta-function

In this chapter, we consider the approximation of analytic function defined on the
strip D = {s € C : 3 < o < 1} by continuous shifts of the Lerch zeta-function
L(\, a, s + iT), where 7 is an arbitrary real number. We recall that

L(a) = {log(m—i—a) tm € No}.

In some sense, the set L () controls the dependence of the terms e2™ ™ (m+ ) ~*
of Dirichlet series from the definition of the function L(\, o, s). K is the class of
compact subsets of the strip D with connected complements, and H(K), K € K,
is the class of continuous functions on K that are analytic in the interior of K.

2.1 Statements of the theorems

We will prove the following two universally theorems.

Theorem 2.1. Suppose that the set L(«) is linearly independent over the field of
rational numbers Q, and 0 < A < 1. Let K € K and f(s) € H(K). Then, for
every e > 0,

1
liminf — meas {7‘ €[0,T] : sup |L(\, o, s +iT) — f(s)’ < 5} > 0.
T—oo T s€K

The inequality of the theorem means that the set of shifts L(\, v, s + i7) sat-
isfying the inequality

sup L(/\,a,s+i7')—f(s)) <e 2.1
seK
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has a positive lower density. Hence, we have that the above set of shifts L(\, o, s+
i7) is infinite.

On the other hand, deeper results on the properties of sets are usually related to
their density. In the next theorem, the universality of the function L(\, «, s) is
described by terms of the density of shifts L(\, «, s + ¢7) satisfying (2.1).

Theorem 2.2. Suppose that the set L(«) is linearly independent over Q, and 0 <
A< 1l Let K € Kand f(s) € H(K). Then the limit

1
lim — meas {7’ € [0,T] : sup |L(\, oy s + i) — f(s)‘ < 5} >0
T—00 T seK

exists for all but at most countably many € > 0.

Unfortunately, the inequality of the theorem is true not for all € > 0. However,
a countable set of values of ¢ is narrow, thus, it remains sufficiently many values
of ¢ that can be used in Theorem 2.1.
Proofs of Theorems 2.1 and 2.2 use probabilistic limit the theorems for probability
measures in the space of analytic function.

2.2 A continuous limit theorem

Denote by H (D) the space of analytic functions on the strip D equipped with the
topology of uniform convergence on compacta. Recall that 5(X) denotes the Borel
o-field of the space X, and, for A € B(H (D)), define

1
Pr(A) = T neas {T €[0,7T]: L(\,a, s +i7) € A}.

This section is devoted to the weak convergence of Pr as T' — oo. Proofs of

universality theorems require the explicit form of the limit measure. For this, the
following topological structure is applied. Let v = {s eC: sl = 1}, and

00
Q= H TYm,
m=0

where v, = y for all m € Ny. By the definition of the Cartesian product, the set
Q) consists of all functions w : Ny — ~. With the product topology and pointwise
multiplication, the torus {2 is a compact topological Abelian group. Hence, on
(Q, B (Q)), the probability Haar measure m g exists, and we have the probability
space (2, B(2), my). Denote by w(m) the mth component of an element w € Q,
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m € Ny, and, for s € D, define

27rz)\m )

o
L()\,a,s,w) Z ¢ n
(m+ a)®

m=0

Lemma 2.1. For all « and )\, L(\, a, s,w) is an H(D)-valued random element
defined on the probability space (Q, B(Q), mg).

The lemma is Lemma 5.2.1 of [27]. Its proof is based on the orthogonality of
the random variables w(m), that is, that

— 1 if m = n,
Ew(m)w(n) = { 0 P

and on the Rademacher theorem (Theorem 1.2.9 of [22]). The latter theorem im-

plies that the series

ZWiAmw(m)

(m+ «a)®

m=0
is almost surely convergent with respect to m g uniformly on compact subsets of
the strip D. From this the lemma follows.
Let Py, be the distribution of the random element L(\, o, s, w) i.e., for A € B(H (D)),

Pr(A) = mH{w €Q: L\ a,s,w) € A}.

Now, we are ready to state a limit theorem for Pr.

Theorem 2.3. Suppose that the set L(«) is linearly independent over Q, and 0 <
A < 1. Then Pr converges weakly to Pr, as T — oo.

We start the proof of Theorem 2.3 with a limit theorem for probability mea-
sures on (Q, B(Q)) Before that, we recall some classical result on probabil-
ity measures on compact groups. Thus, let G be a compact group. A charac-
ter y of the group G is a function x : G — + which is multiplicative, i.e.,
x(91,92) = x(g1)x(g2) for all g1,g92 € G. All characters of the group G form
the group D which is called dual (or character) group of G. Let P be a probability
measure on (g, B(G )) The Fourier transform gp () of P is defined by

gp(x) Z/gx(})dP, x €D.

For probability measures on (Q ,B(G )) , the following theorem is valid [14].
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Lemma 2.2. Let P, n € Ny, be probability measures on (g ,B (g)) and gp, (x)
be the corresponding Fourier transforms. Suppose that gp, (x) converges to a
certain continuous function g(x) as n — oo. Then, on | G,B(G) ), there exists a
probability measure P such that P,, converges weakly to P. Moreover, g(x) is the
Fourier transform of the measure P.

Now, we return to the group €2. It is well known that the dual group of €2 is
isomorphic to

where Z,,, = Z for all m € Ny. An element k1 = (ky, : kp, € Z,m € Np) acts on
Q) by

OO/
w— wk = H whm (m),
m=0

where " /“ means that only a finite number of integers k,, are distinct from zero.
Therefore, the characters of the group 2 are of the form

o0

[T & (m),
m=0

and the Fourier transform gp (k) of the measure P on (Q, B (Q)) is defined by

gp(k) = /Q (ﬁ' whm (m)>dP. (2.2)
m=0

Now, we apply the above remarks for
1 .
Qr = 7 meas {T €0,T]: (m+a)™ :meNy) e A},A € B(Q).
Lemma 2.3. On (Q, B(Q)), there exists a probability measure Q such that Qr

converges weakly to Q as T — oo.

Proof. We will apply Lemma 2.2. Let gp(k) be the Fourier transform of Q7.
Then, in view of (2.2),

o0

or() = | (T] wtnm)acr.
m=0
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and, by the definition of ()7, we obtain that

T o T oo

1 1

/ H/ (m + )T dr = T /exp{—ir E /k’m log(m + «) }dr.
o m=0 0 m=0

’ﬂ

(2.3)
If

Z/ km log(m + «) =0,
m=0
T
/ dr = (2.4)
0

S ki log(m + a) £ 0,

m=0

then, obviously,

’ﬂ\~

If

then, after integration in (2.3), we find that

exp{—it ZI kmlog(m+a)} v 1 —exp{—iT Z/ km log(m + o) }

gT(E) _ 07::0 _ _ m=0
/ /
—iT E kmlog(m +a) '° iT E kpm log(m + «)

Hence, in this case,
lim gr(k)=0.
T—00

This equality together with (2.4) shows that

oo
L it >k log(m+a) =0,

lim gr(k) = "
T—o0 /
0 if Y kpylog(m +a) #0.
m=0
O]
The function
1 if Z/ km log(m + ) = 0,
g(k) = m;O/ (2.5)
0 ifz km log(m + ) # 0
m=0
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is continuous in the discrete topology. Therefore, by Lemma 2.2, we obtain that
Qr,as T — oo, converges weakly to the measure () defined by the Fourier trans-
form g(k).

Lemma 2.3 is valid for all «, however, the limit measure () is not given explic-
itly. To have the explicit form of the measure (), we must use a certain restriction
for the parameter «, and this restriction is the linear independence of the set L(«).

Lemma 2.4. Suppose that the set L(«) is linearly independent over Q. Then Qr

converges weakly to the Haar measure miyy.

Proof. If the set L(«) is linearly independent over Q, then

Z/ km log(m 4+ o) =0

m=0

if and only if k,, = 0 for all m. Thus, in view of (2.5), the Fourier transform of
the measure () is of the form

1 ifk=0,
g(k) = N
0 if £ #£ 0.

Since the latter function is the Fourier transform of the Haar measure mpg, the
lemma follows from Lemmas 2.2 and 2.3. L]

We continue with a limit theorem in the space of analytic functions. We note
that, differently from [27], we deduce this theorem directly from Lemma 2.4, while
in [27], first a limit theorem in the space of analytic functions is proved for a
Dirichlet polynomial, and then for absolutely convergent Dirichlet series. Thus,
we start with the definition of absolutely convergent Dirichlet series.

Leto > % be a fixed number, and, form € Ngandn € N,

Up(m, ) = exp{ - (m+ a)[r}.

n—+ o

Define the series
o eQm’)\m

L,(\ a,s) = Z

m=0

Up(m, o)
(m+ a)®

Moreover, let, forn € N,



Lemma 2.5. The Dirichlet series for Ly, (), «, s) converges absolutely for o > %
Moreover, the integral representation

1 o-+i00 d
L,(\ a,s) = 9 / L\ a,s+ z)ln(a,z)—z
z

T
F—100

holds.

Proof. First we observe that

21
O—1i00

vn(m,a):i / Z<ln(a’z)dz. (2.6)

Actually, applying the well-known formula

a+100

1

5 [(s)b~%ds = e’ a,b>0,
a—100

we find

141200

1 m+ a\ ~z0
vn(mja)—% F(z)<n+a> dz =
1—i00

G+ico

| TG A5 -

G—100

64100 6+1i00
1 / ZF<Z> (n+ ) dz 1 / ln(a, z) J
— Tz )]———=— ————dz.
2mi 6 \¢/(m+wa)? z 2m z(m + «)?
6—ioco 6—ioco
Therefore, by (2.6) and the definition of ,,(«, z),
+00

vp(m,a) <, (m+a)~? / D(6 +it)dt <, (m+a)~? (2.7)

—00

because of the estimate I'(o + it) <, exp{—c|t
o9. From (2.7), it follows that

}, ¢ > 0, uniform for oy < 0 <

eZwiAmvn(m7 Oé) 1

< —.
" (m+ «a)ote

(m+ «a)°
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Since & > %, hence, we have that the series

X 2midm

vn(m, a)

S
m=0 (m + Oé)
is absolutely convergent for o > %
The series

is absolutely convergent for o >
obtain that

X 2mwidm
e Up (M, a)
Ly(A = —_— =
n( ) Oy S) mE:Q (m + a)s
G+1ico
i e2midm | / ln(Oé, Z) J
B St e/ PONS
(m + a)® 2mi z(m + a)?
m:O F—1i00
G+ico .

1 / (ln (Oé, Z) i e2miAm )d
- z =
2mi z (m+ a)st=

6—100 m=0
G+i00 )
1
— (A, a, s+ 2) n(a,z)d%
mi z
G—100
and the lemma is proved. O

Additionally to L, (), «, s), define

2L 2T (m) vy, (m, «)

(m+ a)s

Ln(>\7 a? 87 (JJ) =

m=0

, we.

2wiAm

Obviously, the latter series also converges absolutely for o > 3, because |e w(m)| =

1.

In what follows, we will consider the measures defined by means of L,, (), «, s)
and L, (\, @, s,w). Let, for A € B(H (D)) and w € 2,

Prn(4) = %meas {rel0.1]: La(ha,s +i7) € A}

and
Pr,(A) = %meas {7‘ €0,T]: Lp(\, o0, s + iT,0) € A}.
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For the proof of the weak convergence for Pr;, and PT,H, we will apply Lemma 2.4
and one property of weak convergence of probability measures involving certain
mappings. For convenience, we recall some notions. Suppose that X; and Xy are
two spaces, and v : X; — Xs. Then the mapping u is called (B(Xl), B(Xg)) -

measurable if u=1A C B(X;) for every A € B(Xp). If u is (B(Xl),B(Xg)) -
measurable, then every probability measure P on the space (Xl, B(Xl)) define
the unique probability measure Pu~! on <X2, B (Xg)), where

Pul(A) = P(utA)

for all A € B(Xs), and u~!A is the pre-image of the set A.

Lemma 2.6. Suppose that P,, n € N, and P are probability measures on (Xl, B(X; ))
u : X1 — Xy is a continuous mapping, and Py, converges weakly to P as n — oc.
Then P,u~"' converges weakly to Pu~" as u — oc.

Proof. The lemma is proved in [6]. We only remark that every continuous mapping
u:X; — Xois (B(Xl), B(Xg))—measurable, thus P,u~! and Pu~"! are correctly
defined. O]

Now, we state a lemma for Pr, and PTm. Define the function u,, : 2 —
H (D) by the formula
up(w) = L\, o, 8,w), w €.
Since the series for L, (A, «, s, w) is absolutely convergent for o > %, the function
uy, is continuous. Define, on (H (D), B(H (D))> the measure V/, “n guyt

n -

Lemma 2.7. Suppose that the set L(«) is linearly independent over Q. Then Pr,,
and pT,n both converge weakly to the measure V,, as 'T' — oc.

Proof. The definitions of L, (), «, s) and u,, show that

un((m +a) " ime NO)) =L\, a, s +1iT1).
Therefore, in view of the definition of Pr,,, we have that, for A € B(H (D)),
Pr,(A4) = %meas {7‘ € [0,7] : (m+a)™,m e Ny) € u_lA} = Qr(utA),
where Q)7 is the measure of Lemma 2.4. In other words, the equality Pr, =

Qru~!is true. By Lemma 2.4, Q7 converges weakly to the Haar measure m; as

T — oo. Therefore, Lemma 2.7 implies that Pr , converges weakly to m gul =

32



Vo,asT — oo.
It remains to prove the same for PTm. For this, we use the mapping @ : @ — H (D)
defined by the formula

Un(w) = L\, o, 8,wd), w € Q.

Then, repeating the arguments used in the case of Pr,, we obtain that me con-

verges weakly to the measure Vi démeﬂn as T' — oo. We must prove that
V,, = V,,. For this, we use an auxiliary mapping u : 2 — 2 defined by

From these definitions, it follows that @,, = u,(u). At this moment, we apply the
invariance of the Haar measure my with respect to translations by points from (2,
and obtain that

mpty," =mpg(un(u) ™" = (mpu " )u,' = myu;,

Thus, Vn = V,,, and the lemma is proved. ]

The pass from the function L, (), «, s) to the function L()\, «v, ) requires a
certain approximate result. For this, we need a metric of the space H (D).
It is known [8] that there exists a sequence {K 1l eN } C D of compact subsets

such that
o0
D=|JK,
=1

K; C Ky foralll € N, and if K C D is a compact set, then K lies in some K.
Let for g1,92 € H(D),

(o)
L1 SUPek; |91(8) — g2(s)]|
o(91,92) = 2 .
(61,2) ZZ L+ Subsere, 191(5) — 92(5)]

Then p is the metric of the space H (D) that induces the topology of uniform
convergence on compacta.

Lemma 2.8. For all \ and «, the equality

1 [T
lim lim sup T / o(L(A\, ey s +1i7), Lp(A\, o, s +i7))dT = 0
0

n—o0 T—00

is true.

Proof. From the definition of the metric g, it follows that it is sufficient to prove
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the equality

T
lim lim sup — / sup [(L(A, o, s +i7) — Lpy(A\, s +i7))|[dT =0 (2.8)
n—o0 70 L) sek

for an arbitrary compact set K C D.

We use the integral representation of Lemma 2.5, i.e., for o > %,

o+ico
1 d 1
L,(\ a,s) = 5 / (LN, oy s+ z)ln(a,z))g, 6> 7 (2.9)

F—1i00

Suppose that K C D is a fixed compact set, £ > 0 is such that % + 2e < Rez <
1 — ¢ for points z € K. We take § > 0. Then, by (2.9) and the residue theorem,
—0+ico

Ln(A,a,s)—L()\,a,s)zﬁ / (L()\,a,s—l—z)ln(oz,z))%—i—Rn(s), (2.10)

—0—1i00
where
0 if0O< A<,
R, (s) = —
n(5) (w1=8) ey,

1—s

For convenience, denote the points of the set K by s = o + iv, and take

0= 1>0 ”—1+
=0 —¢ B s 0‘0—2 E.

Then in view of (2.10),

|Ln()‘7 «, S) - L()‘a «, S)| <

1 o
2/|L()"O‘v5+i79+it)||l®é’9+u)|
7

dt + |Ry, )
— o+ + |Rn(s + i7)|

Now, in the latter integral, we replace ¢ + v by ¢. This gives the inequality

|Ln(X\ o, s) — L(A, o, 8)| <

o
1 1 In(a, 2 +e—s+it
o [ 1E0va gy +e ittt e =t D)
—00

dt + |Rp(s 4+ i7)]|.
12 +e—s+it [Bin )
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Then,

T
1
/sup| (N a,s+it) — Ly(\, o, s +i7))|dT < 11 + 12, (2.11)
T seK
where
N, 1 (v, 3+ +it)|
a,s+e—s+i
I = — (/‘L()\,a,+8+i<t+7’)> sup ——~"2 dt
1= on T 2 SEE ‘%—I—E—S—I—Zﬂ
—00 0
and

/sup|R (s +i7)|dT.
seK

It is well known that, for the gamma-function, the estimate
F<a + it) < exp{—clt|}, >0,

holds uniformly in o, 01 < 0 < o9, for all 01 < 3. Therefore, for s € K, by the
definition of /,,(«, s), we obtain

|1 (cx ,;+€—s+zt)|
3 +e—s+it]

(n+ a)%“_"

< 2.12)

1 .
,_|_ — t_

F(2 - U+Z(A U))‘<<
g g0

(n+a) “exp {Aﬁ|t - v[} <k
a0
(n + )" exp{—clt[}.

For the Lerch zeta-function, for o > % the mean square estimate

T
/ L\, a,0 +it)|?dt <, T
0
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is true. Therefore, an application of the Cauchy inequality gives

T
1 1
— [ LA\ o, = +e+i(t+7))|dt <
T 2
0
A 1
1 1 . 2 2
(T LOva, 5 +e+i(t+1)) dt) <147

0

This and estimates (2.12) and (2.11) show that

I < (n+ )< / (1+ [t]) exp{—clt]}dt <, (n+ )5 (2.13)

—0o0
Similarly, using the definition of /,,(«, s), we find that, for s € K,

|ln(a, 1 — s —iT)]

R, (s +i1) < <k (n+ )77 exp{—c|7|}.

|1 —s— it
Hence,

T
1
I < (n+ a)é_sz/eXp\ — |7|dT <
0

(n+ a)%*%
T

Therefore, in view of (2.13) and (2.11),

[ 1

! 5—2¢

/Sup [(L(A, @, 8 +i7) = L (A, @, s +1i7)) [dT <5, (n+a)*€+M_

T seK T
0

Taking T' — oo, and then n — oo, we obtain that

T

1
lim limsup — / sup |(L(\, a, s +i7) — Lp(A, o, s +i7))|dT = 0.
n=00 700 T’ ) seK

The lemma is proved. 0

We also need the analogue of Lemma 2.8 for the functions L(\, o, s,w) and
L, (X, ,s,w). This case is more complicated than that of Lemma 2.8 because
we have not the mean square estimate for the function L(\, o, s,w). To obtain
that estimate, the ergodic theory on the torus € is applied. We consider the family
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{¢r.a : T € R} of transformation on (2 defined by
Vra(w) =arow, weQ,

where
Uro = {(m—i— oz)fiT im € Ng}.

Since the Haar measure mg is invariant, we have that {goT,a : 7 € R} is the
one-parameter group of measurable measure preserving transformations on the
probability space (Q, B(2),m H) We recall the notion of ergodicity. A set A €
B(€) is called invariant with respect to the group {¢- o : 7 € R} if the sets A and
A; = ¢r,4(A) can differ one from another by at most a set of zero m y-measure.
The group {¢ro : 7 € R} is called ergodic if the o-field of its invariant sets
consists only from the sets of m -measure zero or one.

Lemma 2.9. Suppose that the set L(«) is linearly independent over Q. Then the
group {¢rqo : T € R} is ergodic.

The proof of the lemma is given in [26] (r = 1) and in [27].
Also, we will use the Birkhoff-Khintchine ergodic theorem. We recall that a
strongly stationary process ( all finite dimensional distributions are invariant with
respect to translations ) is called ergodic if its o-field of invariant sets consists only
of the sets of the measure, defined by finite-dimensional distributions, zero or one.

Lemma 2.10. (Birkhoff-Khintchine theorem) Suppose that X (t,w) is an ergodic
process, E| X (t,w)| < oo, having the sample paths integrable almost surely in the
Riemann sense over every finite interval. Then, for almost all w, the equality

T

) 1

jlg%OT/X(t,w)dt—EX(O,w)
0

holds.

Proof of the lemma can be found in [9].
Now we are in position to prove the mean square estimate for the function L(\, a, s, w).

Lemma 2.11. Suppose that the set L(«) is linearly independent over Q, and that
o> % Then, for almost all w € ) with respect to the Haar measure m,

T
/ L\, o, 0 + it,w)|2dt <o T.
0
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Proof. From the definition of the random variables w(m), their orthogonality fol-

lows [27], i.e
[ wtmpataydng - { Lo meEn

0 if m # n.
Q
Therefore,
27ri>\m & 27rz)\m’2 o 1
el 5 g <
Z (m+ «a)° Z (m+ «a)? (m+ a)?° >
=0 m:D m=0

1 . .
because o > 5 Moreover, by the definition of the transformation ¢; .,

- 2miAm e2midm ) 2

00
‘Ze(mf;a ‘ ’Z m+aa+zt

m=0 m:[)

‘ 2

= ‘L(/\, a, 0 +it,w)

2
Lemma 2.9 implies the ergodicity of the random process )L()\, a,0 + it,w)‘

Therefore, in view of Lemma 2.10 and (2.14), we have that, for almost all w € (,

27rz)\m 2
lim /‘L)\aa—kztw)‘ dt = ]E‘ w‘ < 0.
T—oo T (m+ a)?
Thus,
T
2

/ ‘L()\, a,0 + it,w)‘ dt < T o

0
for almost all w € €. O

Using Lemma 2.11 and repeating the proof of Lemma 2.8, we obtain the ana-
logue of Lemma 2.8 for the functions L(\, «, s,w) and L, (\, a, s, w).

Lemma 2.12. Suppose that the set L(«) is linearly independent over Q. Then, for
all \, the equality

T
1
lim limsup T /p(L(/\, a,s+it,w), Ln(\, o, s + iT,w))dT =0

n—oo T—00

holds for almost all w € ).

We see that, differently from Lemma 2.8, in Lemma 2.12 we need the linear
independence over Q of the set L(«).
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Lemmas 2.8 and 2.12 are important ingredients for the proof of Theorem 2.3.
Before to do that, we recall some notions and auxiliary probabilistic results. The
family of probability measures { P} on (X, B(X)) is called tight if, for every
e > 0, there exists a compact set X = K (¢) C X such that

P(K)>1—-¢

forall P € {P}, and the family { P} is called relatively compact if every sequence
of elements of { P} contains a weakly convergent subsequence to a certain proba-
bility measure on (X, B (X))

The following statement proved by Prohkorov [50], see also [6], plays an important
role in the theory of weak convergence of probability measures.

Lemma 2.13. [f the family of probability measures is tight, then it is relatively
compact. If the space X is complete and separable, and the family is relatively
compact, then it is tight.

D e
Denote by — the convergence of random elements in distribution. Then
the following statement is valid.

Lemma 2.14. Suppose that (X, d) is a separable metric space, X, and Y,, n €
N, k € N, are X-valued random elements defined on the same probability space
with the measure P. Let, for every k € N,

X -2 X,

n—oo

and

D
k—o0

If, for every € > (),

lim lim supP(d(X;m,Yn) > 5) —0,

k—00 n—oo

then

D
Y, — X.
n—o0

Proof of the lemma can be found in [6]. Theorem 4.2.
Together with Pr, we will consider

Pr(A) = %meas {7’ €[0,7]: L\, o, s + iT,w) € A}, A€ B(H(D)).

The next lemma gives actually the weak convergence for Pr, however, the limit
measure is not given explicitly.
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Lemma 2.15. Suppose that the set L(«) is linearly independent over Q. Then the

measures Pr and Pp both converge weakly to the same probability measure P on

(H(D), B(H(D))) as T — co.

Proof. We will consider the sequence of probability measure {V}, : n € N}, where
V,, is the limit measure in Lemma 2.7, and prove that this sequence is relatively
compact. In virtue of Lemma 2.13, it is sufficient to prove the tightness of {V/,}.
Let a random variable £ be distributed uniformly in the interval [0, 1], and defined
on a probability space with the measure v. Define

Xrpn = Xrn(s) = Ln(\, a, s +4T€).

Moreover, let Y, be the H (D)-valued random element having the distribution V/,,
n € N. Then the assertion of Lemma 2.7 can be written in form

D
Xrn oo Y. (2.15)

Since the series for the function L,,(\, «, s) is absolutely convergent for o > % in

the latter half-plane
lim /|L (N a, 0 +it)|*dt = (2.16)
T—oo T
[e.e] o0
> B <> <G
(m —I- a)? (m+ )
m=0 =0

Let K;, I € N, be compact sets from the definition of the metric o. Then an
application of the Cauchy integral formula implies the estimate

T

1
sup lim sup — / sup |Ln(\, a, s +i7)|dT < (2.17)
neN T—oo seK;

)\
sup lim sup — / ‘ / @z +ir) dz|dT,
neN T—soo 2m J, (z—s)

where L; is a closed contour lying in D and enclosing the set K;. Then we deduce
from (2.16) and (2.17) that

T

1
sup lim sup / sup |Ln (A, a, s +i7)|dT < Roy < 00. (2.18)
neN T—oo 9 seK;
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We fix ¢ > 0, and define M; = M, (c) = Ra’l2l5_1. Then, we obtain by (2.18)
that

limsupy< sup |X7,(s)| > Ml) =

T—o0 seK;

1
lim sup — meas {T €[0,T]: sup |Lp(\, a,s+ ’LT)‘ > Ml} <

T—o0 sEK]
T
£

2

1
limsup —— [ sup |Lp(\, o, s+ i) ’dT <

T—o0 lTO seK;

for all l € N and n € N. Therefore, by the continuity of probability measures and
(2.15), we find that

Yn(s)‘ > Ml) <= (2.19)

V( sup ol

seK;

foralll € Nandn € N. Let

K =K(e) = {g € H(D): sup|g(s)] < May(e), 1 €N].

Since the set is uniformly bounded on compact sets of D, by the compactness
principle, see, for example, [22], it is a compact set of the space H (D). Moreover,
by (2.19),

o0
V(YnEK) >1-cY 2!=1-¢
=1
for all n € N. In other words,
Va(K)>1—¢

for all n € N, and this shows that the sequence {Vn :n €N } is tight, thus,
relatively compact.

By the relative compactness of {Vn}, there exists a subsequence {Vm} such

that V,,, converges weakly to a certain probability measure P on (H (D),B(H(D) ))
as r — oo. This also can be written in the form

Y, =P (2.20)

T—00

Let
Zp = Zp(s) = LA\, a, s +iT€).
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Then Lemma 2.8 shows that with every € > 0

1
lim limsup — meas {7’ €1[0,77: p(L(/\7 a, s +17), Lp(\ a, s + ZT)) > 5} <
n—oo oo T

T

1
lim limsupT— p<L()\,a,s+ir),Ln()\,a,8—|—z'7)>d7‘ =0.

n—=00 T 500 €Jo

This, and relations (2.15) and (2.20) together with Lemma 2.14 lead to the relation

Zr 2. P (2.21)

T—o00

In view of the definition of Zr, this means that Pr converges weakly to P as T —
oo. Also, (2.21) shows that the measure P does not depend of the subsequence
Vp,.. This remark together with relative compactness of {Vn}, gives the relation

v, 2P (2.22)
n—oo
Now consider the measure P}. Analogically to the case of Pr, define, for w € (2,
two H (D)-valued random elements

X1 = X1n(8) = Ln(\, o, 5 + iT€, w)

and
ZT,n = ZT,H(S) - L()‘v Q, s+ Zva LU)-

Then, similarly as in the case of Pr, we obtain by using Lemma 2.12 and (2.22)
that Pr also converges weakly to the measure P as T' — oo. The lemma is
completely proved. O

Proof of Theorem 2.3. In view of Lemma 2.15, it remains to identify the limit
measure P, i.e., to prove that P coincides with the measure P;. For this, we
recall the equivalent of weak convergence of probability measures in terms of con-
tinuity sets. A set A € B(X) is a continuity set of the measure P on (X, B (X)) if
P(0A) = 0, where 0A is the boundary of A.

Lemma 2.16. Suppose that P,, n € N, and P are probability measures on
(X, B(X)). Then P, converges weakly to P as n — oo if and only if, for ev-
ery continuity set A of P, the equality

lim P, = P(A)

n—0o0

holds.
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The lemma is a part of Theorem 2.1 from [6].
Let A be a fixed continuity set of the limit measure P in Lemma 2.15. On the
probability space (Q, B(Q),m H) , define the random variable X by the formula

X(w) =

1 if L(\, a,s,w) € A,
0 otherwise.

By Lemmas 2.15 and 2.16, we have that

1
lim 7 meas {7‘ €0, 7): L\, a, s + iT,w) € A} = P(A). (2.23)

T—oo

The definition of the random variable X implies the equality
EX = / Xdmyg = mH{w eQ: L\ a,sw)E A} = Pr(A), (2.24)
Q

where P, is the distribution of the random element L(\, «, s, w).
Now, we return to ergodic theory. In view of Lemma 2.9, the random process
X (ngﬂ(w)), 7 € R, is ergodic. Thus, by Lemma 2.10, we have that

lim — / " x (%a(w))dT —EX (2.25)
0

T—o00

for almost all w € 2. Moreover, by the definitions of X and ¢, 4,

1 [T 1
/ X(@Ta(w)>d7' = — meas {7‘ €0, 7): L\, s,w) € A}.
T /o ’ T

Therefore, this equality together with (2.24) and (2.25) yields

lim %meas {7’ €10,T): L\, o, s,w) € A} = Pr(A).

T—00

Hence, in virtue of (2.23), we have that P(A) = Pr(A) for all continuity sets
A of P. Since all continuity sets form a determining class [6], this shows that
P(A) = Pr(A)forall A € B(H(D)) in other words, P coincides with Pr,. The
theorem is proved. ]

2.3 Support

For the proof of universality theorems, we additionaly need the support of the mea-
sure Pr,. Since the space H (D) is separable, the support of Py, by the definition,
is a minimal closed set S C H (D) such that Pr,(S) = 1. The set .S consists of all
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elements g € H(D) such that, for every open neighbourhood G of g, the inequal-
ity P,(G) > 0 is true.

Theorem 2.4. The support of the measure Py, is the whole of H(D).

Before the proof of Theorem 2.4, we present some auxiliary probabilistic and
exponential function results. We recall that the support Sx of the random element
is the support of the distribution of X.

Lemma 2.17. Let {Xn 'n € N} be a sequence of independent H(D)-valued
random elements such that the series

9]
> x,
n=1

is almost surely convergent. Then the support of the sum of the latter series is the
closure of the set of all g € H(D) which may be written as a convergent series

oo
g=ng g € Sx,-

n=1
Proof of lemma is given in [22], Theorem 1.7.10.
Now, we recall the definition of an entire function of exponential type. Let 0 <

0y < 7. A function g(s) analytic in the closed region |arg s| < 6 is called of

exponential type if

1 0
Jim sup 1BWE
r—00 r

uniformly in 6, |0] < 6.

Lemma 2.18. Suppose that g(s) is an entire function of exponential type and

I
limsup 2890
T

r—00

Then
> lg(log p)| = oc.
p

The lemma is Theorem 6.4.14 from [22].

Lemma 2.19. Suppose that 1 is a complex Borel measure on (C, B(C)> with
compact support contained in the half-plane o > o, and

a(s) = /C e du(z) # 0.
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Then

1
lim sup M > 0.
r—00 r

The lemma is Lemma 6.4.10 from [22].
The next lemma gives sufficient conditions for the denseness of some series in
H(D).

Lemma 2.20. Let {g, : n € N} C H(D) satisfy the conditions:
1. If p is a complex Borel measure on | C, B (C)) with compact support in D such

that
D
| [ gua] <<,
n=1 C

then

/C s"du(s) = 0

forall r € Ny;
2. The series

9
3 on
n=1

is convergent in H(D);
3. For any compact set K C D,

Z sup }gn(s)}Q < 0.

ne1 S€EK

Then the set of all convergent series

00
E angn
n=1

with |ay| = 1, n € N, is dense in H(D).

The lemma is Theorem 6.3.10 from [22].

Proof of Theorem 2.4. By the definition of {2, we have the {w(m) : m € Ny} is a
sequence of independent random variables on the probability space ( 2, B(Q2), my ).

Therefore,
2miAm
{6*w(m> m € o
(m+a)s
is a sequence of independent H (D)-valued random elements on the probability

space (Q, B(£2), mH>. The support of each random element w(m) is the unit
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circle . Therefore, the support of the H (D)-valued random element
eQm'/\m w (m>

“mtay 0 MENo

is the set
2wiAm

e a
e HD): = —, = 1}.
{ge D)o = 5l
Thus, in view of Lemma 2.17, the support of the random element

L\ a,s,w) =

m=0

eQﬂiAmw(m)

(m+a)s
is the closure of all convergent series

[e'S)
627r1/\m

Z iTa)r (2.26)

=0

with |a,,| =1, m € Ny. Now, let i be a complex Borel measure on (C, B(C))
with compact support lying in D such that

27rz)\m
Z‘/ T )’<oo, 2.27)

For z € C, define

Then (2.27) is equivalent to

i )g(log (m + a))‘ 0. (2.28)

m=0

Let v = ph~!, where the function h : C — C is defined by h(s) = —s. Then v is
again a complex measure on (C, B (C)) with support lying in the strip —1 < 0 <
—%. Moreover,
g(z) = /eszdy(s).
C

Since the function g(z) is of exponential type, by Lemma 2.19 we have that if
g(z) # 0, then

lim sup > 1.

r—00

log |g(r)]
T
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Therefore, Lemma 2.19 shows that

> lg(logp)| = oo, (2.29)
p

where p runs over prime numbers. Clearly,

log(m + «) :logm(1+%> = logm + log (1—}—%) zlogm—l—O(%).

Thus, for m > 2,
g(log(m + a)) =

/e“ogmdu(s) + <‘/ 751°gm0<m>du( )D :g(logm> +O<m*%)

C C

because o > % This estimate together with (2.28) shows that

Z ’g(logm)’ < 00.
m=2

However, this gives a contradiction to (2 29). Hence, we obtain that g(z) = 0.
Differentiating 7 times the equality g(s f e **du(s) in s and then taking z =

0, we find that
/ s"du(s) =0, r e Np.
C

This shows that condition 1 of Lemma 2.20 is fulfilled. Obviously, for every com-
pactset K C D,

>

—0 seK

27rz)\m

(m+a)* Zsup (m + a)? =00

Moreover, we have mentioned below Lemma 2.1 that the series

o0 62m’>\mw (m)

(m+a)s

m=0

is almost surely convergent uniformly on compact subsets of D, i.e., the series is
convergent in H (D). Therefore, all conditions of Lemma 2.20 are fulfilled. Hence,
the set of all convergent series (2.26) is dence in H (D). Thus, the closure of that
set coincides with H (D). The theorem is proved because Py, is the distribution of
the random element L(\, o, s, w).
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O

We observe that, in the proof of Theorem 2.4, the linear independence of the
L(«) is not used.

2.4 Proofs of universality theorems

The proofs of Theorems 2.1 and 2.2 are based on Theorems 2.3 and 2.4 as well as
on the Mergelyan theorem on the approximation of analytic functions by polyno-
mials. For convenience, we present it as the next lemma.

Lemma 2.21. Suppose that K C C is a compact set with connected complement,
and f(s) is a continuous function on K and analytic in the interior of K. Then,

for every € > 0, there exists a polynomial p(s) such that

sup |f(s) —g(s)| <e.
seK

Proof of the lemma can be found in [38]. Examples show that the conditions
of the lemma can’t be replaced by weaker ones. The set K can’t be, for example,
aring, because the complement of a ring is not connected.

For the proof of Theorem 2.1, we also need the equivalent of weak convergence of

probability measures in terms of open sets.

Lemma 2.22. Suppose that P,, n € N, and P are probability measures on
(X, B(X)). Then P, converges weakly to P as n — oo if and only if, for every
open set G C X, the inequality

liminf P,(G) > P(G)
n—o0o
holds.

The lemma is a part of Theorem 2.1 from [6].

Proof of Theorem 2.1. Define the set

Ge={g € H(D): sup lg(s) — p(s)| < 5.

where p(s) is a polynomial such that

sup ‘f(s) - p(s)‘ < % (2.30)
seK
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The existence of the polynomial p(s) follows from Lemma 2.21. The set G, is
open in the space H (D). Therefore, by Theorem 2.3 and Lemma 2.2,

liminf Pr(G.) > PL(G.). 2.31)
T—o00

In view of Theorem 2.4, the polynomial p(s) is an element of the support of the
measure Pr,. Hence, G. is an open neighbourhood of an element of the support of
Pr.. Therefore, by properties of the support,

Pr(Ge) > 0. (2.32)
This, (2.31) and definitions of Py and GG, show that

1

lim inf — meas {7’ €[0,7T] : sup |L(\, «, s + i7) —p(s)‘ < E} >0. (2.33)
T—oo T sEK 2

It remains to replace p(s) by f(s) in the above inequality. If 7 € R satisfies the

inequality

sup |L(A\, o, s +41) — p(s)
seK

<

e
27

then, in virtue of (2.30), we find that

sup |L(\, o, s + i7) —f(s)) <

seK
sup |L(\, a, s + i7) —p(s)‘ + sup [L(\, a, s +i7) —p(s)’ <S4t
seK seK 2 2
This shows that
{7‘ € [0, 7] : sup |L(\, «, 8 +iT) —p(s)‘ <
seK
E} C {7’ €10, 7] : sup |L(\, a0, s + iT) — f(s)‘ < 5}.
2 seK
From this and (2.33), the inequality of the theorem
| .
lim inf — meas {7- €[0,7T] : sup |L(\, o, s +iT) — f(s)’ < E} >0
T—oo T sE€K
follows. 0

Proof of Theorem 2.2. Define the set

G. = {g € HD): Sgg‘g(s) - f(s)’ < E}.

49



The boundary 8C¥5 of the set GE lies in the set

{9€ H(D): sup|gls) — 1(5)| = =}

seK

Therefore, the boundaries aéal and 8652 do not intersect for different positive
€1 and 9. From this remark, it follows that the set GE is a continuity set of the
measure Py, for all but at most countably many € > 0. Therefore, Theorem 2.3
together with Lemma 2.16 shows that the limit

lim Pr(G.) = PL(G.) (2.34)
T—o0

exists for all but at most countably many € > 0. It remains to prove that PL(GQ) >
0. Suppose that g € H (D) satisfies the inequality

sup [g(s) —p(s)| < .

seK

where the polynomial p(s) is from (2.30). Then we find that, for this g,

sup |g(s) = ()| < sup |g(s) = p(s)| + sup|g(s) = f(s)| < S +5 ==
seK seK seK

This shows that G. C G, Therefore, in view of (2.31), we have that PL(G‘E) > 0.
Therefore, by (2.33), the limit

lim Pr(G.) >0

T—o0

exists for all but at most countably many ¢ > 0. It remains to use the definition of
Pr and @E to obtain that the limit

1
lim — meas {7- €[0,7] : sup |L(\, o, s + iT) — f(s)’ < E} >0
T—oo T scK

exists for all but at most countably many € > 0. The theorem is proved. U

The results of Chapter 2 are published in [40].
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Chapter 3

Discrete universality theorems
for the Lerch zeta-function

In this chapter, we prove the discrete versions of Theorems 2.1 and 2.2. Thus, we
will consider the approximation of analytic functions defined on the strip D by
discrete shifts of the Lerch zeta-function L(\, o, s + ikh), k € No, h > 0.
We will deal with the set

2

L(a,h,m) = {(log(m—l—a):meNo),f}, h > 0.

3.1 Statements of the discrete theorems

We recall that # A means the cardinality of the set A C Ng,and N runs over the
set Np.
In the chapter, we will prove the following discrete universality theorems.

Theorem 3.1. Suppose that the set L(«, h, ) is linearly independent over Q and
0< A<l Let K € Kand f(s) € H(K). Then, for every ¢ > 0,

lim inf
N N+ 1

#{0 < k< N :sup |L(\ a,s+ ikh) —f(s)) < 5} > 0.
seK

The inequality of the theorem shows that the set of discrete shifts L(\, a, s +

ikh) satisfying the inequality

sup | L\, @, s + ikh) — f(s)‘ <e 3.1)
seK

has a positive lover density in the set Ny. From this, we have that the set of the
above shifts is infinite.
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Theorem 3.1 admits a modification in which the positivity of the lower density of
the set of shifts L(\, «, s + ikh) satisfying (3.1) is replaced by a density, however,
with some exception for € > 0.

Theorem 3.2. Suppose that the set L(«, h, ) is linearly independent over Q and
0<A< 1 Let K € Kand f(s) € H(K). Then the limit

1
im ——— <k N: ) —
7}1_I>I;ON+1#{O\k\N 5161}3 L(\ o, s + ikh) f(s)‘ <€}>0

exists for all but at most countably many € > 0.

Proofs of Theorems 3.1 and 3.2 are based on probabilistic discrete limit theo-
rems for probability measures in the space of analytic functions H (D).
We observe that proofs of discrete theorems 3.1 and 3.2 in a certain sense are more
complicated than those of Theorems 2.1 and 2.2.

3.2 A discrete limit theorem

For A € B(H (D)), define

1

Py p(A) = N+l

#{ogng;uxms+mmeA}

In this section, we will study the weak convergence for Py j, as N — oo.

We preserve the notation of Section 2.2 for €2 and for the H (D)-valued random
element L(\, «, s,w). Moreover, Py, is the distribution of the random element
L\ o, s,w).

The main result of this section is the following discrete limit theorem for Py p,.

Theorem 3.3. Suppose that the set L(«, h, ) is linearly independent over Q.Then
Py 1, converges weakly to Pr, as N — oo.

As in section 2.2, we start with a limit theorem for probability measures on the
space (2, B(2)). For A € B({2), define

1

Qnnp(A) = N1

#@<k<N30m+arW%meNQeA}

Lemma 3.1. Suppose that the set L(«, h, ) is linearly independent over Q. Then
Qn,, converges weakly to the Haar measure my as N — oo.
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Proof. We consider the Fourier transform gy 1, (k) of Q. We have by (2.2) that

gnn(k /(Hw >dQNh

Thus, by the definition of Qx 5,

N o0
aval) = 5 kZOmHO (m+ ) = 62
N+1 Zexp{ zkh% kpm log m—i—a)}

Suppose that £ = 0. Then

Z/ km log(m + o) = 0,

m=0
and it is easily seen that
;X
gva(k) = g doi=1. (3.3)
k=0
Now, let k& = 0. Then
exp { —ih Z/ km log(m + ) # 1. (3.4)

m=0

Actually, if the latter inequality is not true, then

exp { —ih Z/ ke log(m + ) = 2™

with some | € Z. Hence, we find that

2rly

Zk log(m + a) — 5 =0

m=0

with some [; € Z. However, this equality contradicts the linear independence
of the set L(«, h, ) because not all k,,, = 0. Thus, in the case k£ # 0, inequality
(3.4) is true. Therefore, the application of the formula for the sum of the geometric
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progression, in view of 3.2, yields

1 — exp { —h(N + 1) i ki log(m + a)}

m=0

(N + 1)(1 —exp{ - ihi/kmlog(m+a)}).
m=0

gn.n(k) =

This and (3.3) show that

1 ifk=0
I k) = TS
Mm g (k) { 0 ifk#£0.

The right-hand side of the latter equality is the Fourier transform of the Haar mea-
sure mg. Therefore, by a continuity theorem for probability measures on compact
groups (Lemma 2.2), we find that ()5, converges weakly to the Haar measure
mp as N — oo. We see that the limit measure is independent of h. O

As in Chapter 2, we proceed with a limit theorem for absolutely convergent
Dirichlet series Ly, (A, «, ) and L, (A, o, s,w). For A € B(H(D)) and @ € Q,
define

1

N+1#{O\k\N Lo(\ a, s+ ikh) eA}

Py nn(A)
Let the function u,, : Q — H(D) be the same as in Lemma 2.7, i.e.,
up(w) = Lo\, a,s,w), we Q.

Lemma 3.2. Suppose that the set L(«, h, ) is linearly independent over Q. Then
Py 1, converges weakly to the measure V,, = mgu,, Las N — .

Proof. We have seen in Chapter 2 that the function w,, is continuous. Moreover,

by the definitions of L, (A, «, s) and u,,, we have that

un(<m + a) M me NO) = Lo(\ a, s + ikh).

Therefore, we find that, for all A € B(H (D)),
1
~N+1

ﬁ#{o <SESN: ((m+a) ™ meN) € u' A} = Qualuy' ),

Pyn(A) #{0 <k <N:Ly\a,s+ikh) € A} -

where Qp , is from Lemma 3.1. Thus, the equality Py, = Qnu;, ' holds.
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This, Lemmas 3.1 and 2.6 show that Py, ; converges weakly to the measures
_1 def

MEU, . O

Next, we will approximate the function L(\, a, s) by Ly (A, «, s) in discrete
sense. For this, we will use a discrete mean square estimate for the function
L(\, a, s). To obtain this estimate, we will apply the following Gallagher lemma
connecting continuous and discrete mean squares of some functions.

Lemma 3.3. Let Ty, T > 6 > 0 be real numbers, and T be a finite non-empty
set lying in the interval [Ty + g, To+T — g] Define

Ns(z)= > L
teT
[t—xz|<d

Suppose that S(x) is a complex-valued continuous function on [Ty, Ty + T having
a continuous derivative in (T, To + T'). Then

1 To+T To+T To+T i
SN oser < [ Iserd ([ is@ra [ isopa)’
teT TO TO TO

Proof of the lemma can be found in [44, Lemma 1.4].
Lemma 3.4. Suppose that % < o < 1. Then, forall o, \,a,h > 0andt € R,
N
S IL(A a,0 +ikh+it)[P < N(1+ [t]),
k=0

where implied constant in < depends on o, \, a and h.

Proof. For % < 0 < 1, the estimates

T
| 1Lvao+ inPar <ona T
0

and

T
/ |IL'(\, o, 0 + iT)|2d7' <ora T
0

are valid. These estimates imply the bounds

T
/ L\, 0 + i+ it) 2dr <gp0 T(1+ [t])
0
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and -
/ I\, o, 0 + i 4 it) |2 dT <gaa T(1+ |t]).
0
Now, the application of Lemma 3.3 with 6 = & and the above estimates, give
Nh

N
1
Y LA o, 0 + ikh + i) < ’ / |LO\, a, 0 + 7 + it)|*dT+
k=0
h

N Nh
1
(/|L()\,a,a+i7+it)2dr/L’(/\,a,a+ir+it)|2dr)2 < N(1+]t))
0

with constant in < depending on o, A, & and h. O

The next lemma consider a discrete approximation in the mean of the functions
L(\, a,s) by L, (A a, s). The lemma is a discrete version of Lemma 2.8.

Lemma 3.5. For all A\, « and h > 0, the equality

lim lim sup
n=00 N0

fj( L(\ a,s +ikh), L ()\,a,s+ikzh)):

holds.

Proof. As in the continuous case (Lemma 2.8 ), it suffices to show that

lim lim sup Zsup L\, o, s+ ikh) — Ly(\ a, s + ikh)| =0 (3.5)

n—=00 N0 N + SGK

for every compact subset K C D.
Thus, let K C D be an arbitrary compact subset. We fix € > 0 such that & 7 t2<
< 1 — ¢ for all points s = 0 + v € K, and take

1
f=0—c—->0.
g 3 2

Then, using (2.10), we obtain that, for all s = 0 + v € K,

Lu(\ s +ikh) — L(\ a, s + ikh)’ <

1 B .
77'( / ’L()‘aaa5+lkh—9+zt) |ln(@, 0+Zt>‘

St ‘Rn(s—irikh)’

in the notation used in the proof of Lemma 2.8. This, after a shift ¢t +v — ¢, yields
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the inequality

Ln(A,a,s—%ikh)——L(A,a,s—%ikh)’<

ln(a, 5 +&— s+ it)]

t/’L, 4—a+zu-+kh» dt+)Rns+¢khy

|3 +e—s+it]
Hence, we find that
L X
— S su L&aﬁ+Mh—L+nLaﬁ+Mh‘<S+S, 3.6
N+1kzose£ ( ) ( ) 1+ 52, (3.6)
where
D
si= L [ (b e it )
Y=o | INT1 Lo TeTe
e k=0
In(o, 2+ — it
s€EK 5 +e—s+it
and
1
Sy = sup | R, s—l—zkh‘
2 N+1Zs€£ ( )

In the definition of the function /,,(, s), the gamma-function I'(s) occurs. There-
fore, applying the estimate

I'(o+it) < exp{ — c\t\}, c>0,
we find, as in Chapter 2, that for s € K,

(o, 3 +&—s+it)

<k (n+ a) ¢ exp{—clt|}.
P o) el

Now, this and Lemma 3.4 show that

51<K(n+a)E/(Lutmmﬂﬂﬁuﬁ<qwn+a)é 3.7)

—0o0
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Moreover, for s € K,

Ra(s +ikh) < (n + a)= exp { — o|kh — vy} <K
(n + a)'=7 exp{—ckh}.

Therefore,

So <K (n + a 2 ( Z Z ) exp{—ckh} <K,h
0<k<log N k>log N

1_9, <log N l 1o log N
(n+a)2 B +Nexp{ chlog N} <pp (n+ )2 N

Thus, by (3.6) and (3.7),

1
sup |L(\, a, s + ikh A a,s+ikh)| <
N+1ZS€£ )s L )| <Kh

log N
(n+a)F+(n+ a)i_%&.

N
From this, we obtain the equality (3.5). The lemma is proved. O

Now, we are in position to prove Theorem 3.3.

Proof of Theorem 3.3. We will prove that the measure Py, as N — 00, con-
verges weakly to the limit measure P of the measure V,, (V,, is the limit measure
in Lemma 3.2) as n — oco. We have seen in the proof of Lemma 2.15 that the
sequence of probability measures {Vn :n€eN } is relatively compact. For this,
the linear independence over Q for the set L(«) was applied. However, the lin-
ear independence of the set L(«, h, ) implies that for the set L(a). Hence, the
set {Vn n e N} remains also relatively compact under hypothesis of the the-

orem. Therefore, there exists a subsequence. {Vm} C {Vn} such that {Vnr}

converges weakly to a certain probability measure P on (H (D),B(H (D))) as
r — oo. The latter fact can be written also as

Y. 2, P, (3.8)

r—00

where Y, is the H(D)-valued random element having the distribution V/,.

Now, let {5, be a random variable defined on a certain probability space with
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the measure p, and having the distribution

=kh)= ——, k=0,1,...,N.
,U,(gN ) N+17 » ’

Define
XNmh =XNnn(s) = Lo\ a,s+iEnp)

Then, in view of Lemma 3.2, we have that
X 2, y, (3.9)
N,n,h Noao 1 .
Define one more H (D)-valued random element
ZN,h = ZN7h(S) = L()\, a, s+ Z'fNJL).

Then, Lemma 3.5 and the definition of £ ; imply that, for every € > 0,
lim limsup p (Q(XN,n,ha ZN,h> > 5) =
n—=00 N_oo

lim limsu
n—o00 Naoop +1

o( LA a5+ ikh), Lu(A, a5 + ikh) ) > 2} <

#{ogkgzv;

N
1
lim i L ’(L)\, s +ikh), Ln(), 'kh)(:o.
Jim 1]{7nj;10p(N+1)€kZ:0 ol L(\, e, s + ikh), Lp,(\, o, s + ikh)
This, (3.8) and (3.9) show that all conditions of Lemma 2.14 are satisfied. There-
fore, we obtain that

Znn s P. (3.10)

N—o0
The latter relation is equivalent to the weak convergence of Py j to P as N —
oo. Moreover, the relation (3.10) shows that the measure P is independent of the
choice of the subsequence {Vn,. } Since the sequence {Vn} is relatively compact,
we obtain from this that
v, 2P

n—oo
Thus, we have that the measure Py j, as N — oo, converges weakly to the limit
measure P of V,,, as n — oo. This observation allows us to identify the limit
measure P. Actually, in the proof of Lemma 2.15 it was obtained that the measure
P coincides with Py, where Py, is the distribution of the random element

L\ a,s,w) = i

m=0

eQWiAmw(m)

—_— D.
(m+a)s ’ €
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The theorem is proved. 0

3.3 Proofs of Theorem 3.1 and 3.2

Proofs of Theorems 3.1 and 3.2 are based on Theorem 3.3 and Lemma 2.21.

Proof of Theorem 3.1. By Theorem 2.4, the support of the measure Py, is the whole
of H(D). For the proof of this results, the linear independence of the set L(«) is
applied. In the case of theorem 3.1, the set L(\, «, ) is linearly independent over
Q. Clearly, the linear independence of the set L(«, h, ) implies that of L(«).
Therefore, under hypothesis that the set L(«, h, 7) is linearly independent over Q,
the support of the measure P, also is the whole of H (D).

In view of Lemma 2.21, there exists a polynomial p(s) such that

sup |(s) = p(s)| < 5. (3.11)
seK

Define the set
€
Ge={g € H(D) :sup|g(s) —p(s)|} < 5.
seK 2

We have that G is an open set of the space H (D). Therefore, Theorem 3.3 and
Lemma 2.22 imply the inequality

liminf Py 5 (Ge) = Pr(Ge). (3.12)
N—oo

Clearly, the polynomial p(s) is an element of H (D). Therefore, by the above
remark, p(s) belongs to the support of the measure Pr,. Hence, we have the in-
equality

Pr(G:) > 0. (3.13)

This and (3.12) show that

liminf Py 4(Ge) > 0,

N—oo

and, by the definitions of Py j and GG, we obtain

lim inf 1#{0 <K< N:sup L(A,a,erikh)—p(s)‘ < g} > 0. 3.14)

Now, we will replace the polynomial p(s) by f(s) in (3.14). Let k € Ny satisfy
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the inequality

sup |L(\, a, s + ikh) —p(s)) <=
seK 2
Then, for these k, we find using (3.11) that
sup |L(\, a, s + ikh) — f(s)| <
seK
sup |L(\, o, s + ikh) — p( —|—sup’f )‘<§+£:£.
seK seK 2 2
Hence,
{0 < k< N :sup|L(\ a,s+ikh) —p(s)‘ < E} C
seK 2
0<k<N:sup|L(\a,s+ikh) —p(s)’ < 6}.
seK
Therefore,
lim inf #{o<k<N~ L\ +'kh)—()‘<§}<
Moo N 41710 SES AR AL Qs IR =P = 91 S
lim inf #{ngéN:sup L()\,a,s—i—ikh)—f(s)‘ <6}.
N—o00 +1

seK

The latter inequality together with (3.13) show that

lim inf { <k <N:sup|LO\ s+ ikh) — ) } .
imin N+1# 0<k ngg (N, a, s +ikh) — f(s)| <ep >0
The theorem is proved. O

Proof of Theorem 3.2. We preserve the notation of the set G from the proof of
Theorem 3.1, and, additionally, define a new set

<%={g€HUﬂ:$yﬂ@—f®N<e}

Then we have that the boundary dG, of G, belongs the set

{9€ HD) :suplg(s) - f(s) =<}.

seK

Hence, it follows that 8@51 N 8@52 = @& for e1 # €9, €1,&9 > 0. From this, we
obtain that the set G- is a continuity set of the measure Py, (P (0G:) = 0) for all
but at most countably many € > 0. Therefore, using of Theorem 3.3 and Lemma
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2.16 implies the existence of the limit

lim Py, (G.) = PL(G.) (3.15)

N—o0

for all but at most countably many € > 0. It remains to show the positivity of
Pr(G.).

We take g € H (D) such that

g
sup [g(s) — p(s)| < 2
seK

where p(s) is the polynomial from (3.11). Then, in view of (3.11), for these g,

sup |g(s) = f(s)| < sup lg(s) = p(s)| +suplg(s) = f(s)| < 5+ = = <.
seK seK seK

Thus, we have the inclusion G, C G’e. Hence, in view of (3.13), PL(@g) > 0.
This and (3.15) give that the limit

lim Py;(Ge) >0
N—oo

exists for all but at most countably many ¢ > 0. Using the definitions of Py j, and
G. completes the proof of Theorem 3.2. O

The results of Chapter 3 are published in [33].
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Chapter 4

Joint continuous universality
theorems for Lerch zeta-functions

Forj=1,...,r,leta;, 0 < a; < 1,and \j, 0 < A\j < 1, be fixed parameters,
and let L(\j, aj,s) be the corresponding Lerch zeta-function. This chapter is
devoted to the simultaneous approximation of a given collection (fi(s), ..., fr(s))
of analytic functions by a collection of shifts (L(\1, a1, s + i7), ..., L(A\r, v, s +
iT)), 7 € R. The results of the chapter are multidimensional generalizations of
the theorems obtained in Chapter 2.

4.1 Statements of the theorems

We recall that
Lo, ...,00) = {(log(m + 1) : m € Np), ..., (log(m + ) : m € Ny)}.

Thus, the set L(ay, ..., ;) consists of all logarithms log(m +«;), m € Ng, j =

1.7

Theorem 4.1. Suppose that the set L(a, ..., o) is linearly independent over Q.
Forj=1,..,r, let K; € K, fj(s) € H(K}), and 0 < \j < 1. Then, for every
>0,

1
lim inf — meas {7’ €1[0,7]: sup sup |L(\j,aj,s+iT) — fj(s)‘ < 5} > 0.
T—oo T 1<j<r seK;

Theorem 4.1 has the following modification.

Theorem 4.2. Suppose that the set L(a, ..., o) is linearly independent over Q.
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Forj=1,..,rlet K; € K, fj(s) € H(K;), and 0 < \j < 1. Then the limit

1
lim 7 meas {7’ €[0,T7): sup sup |L(\j,j,s+iT) — fj(s)‘ < 8} > 0.

T—o0 1<j<r s€Kj
exists for all but at most countably many € > 0.

Theorem 4.1 shows that the set of shifts (L(A1,aq,$ + i7), ..., L(\r, py s +
iT)) satisfying the inequality

sup sup |L(\j, o ,s+17) — fi(s)| <e
1§j<r SEKj

has a positive lower density. Theorem 4.2 is stronger than theorem 4.1 because it
shows that the above collection of shifts has a positive density, however, with an
possible exception of ,,small* set of values of positive €.

Theorems 4.1 and 4.2 will be derived from a joint continuous limit theorem for
probability measures in the multidimensional space of analytic functions.

4.2 A joint continuous limit theorem

In this section, we will prove a multidimensional generalization of Theorem 2.3.
Let, as above, H (D) be the space of analytic functions on D. Denote

and, for A € B(H" (D)), define
1 .
Pr(A) = T neas {T €[0,7]: L\, a, s +iT) € A},

where
L(Aa o, S) - (L()\lu aq, S)a "'7L(A7”7 Qr, S))

with A = (A1, ..., A,) and @ = (ay, ..., ;). For the statement of a limit theorem
for Py as T' — oo, we need some definitions.
The torus €2 is the same as in Section 2.2. Define

Q"= x ... xQ,,

where €2; = € forall j = 1,...,7. Since ) is a compact topological group,
by the Tikhonov theorem, we have that 2" is a compact topological group as well.
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Therefore, on (2", B(€2")), the probability Haar measure m’; exists, and this gives
the probability space (2", B(£2"), m};). Denote by w;(m) the m th component of
an element w; € Qj, m € Ng, j = 1,...,r, and by w = (w1, ..., w,) the elements
of (2". Now, on the probability space (2", B(§2"), mY;), define the H"(D)-valued
element

L\ a,s,w) = (L(A1,a1,8,w1), ..., L(Ar, iy 8,07)),

where
00 i\
627rz)\]m im

L(Aj, a5, 8,w5m) = mta)y

j=1,..,r

m=0

The main result of this section is the following functional limit theorem.

Theorem 4.3. Suppose that the set L(au, ..., ) is linearly independent over
Q. Then, P converges weakly to the distribution P of the random element
L(\ a,s,w) as T — oco. Moreover, the support of the measure Py is the whole of
H" (D).

We remind that

}ﬂAﬁwﬁ%weW:gL%&MGA} A€ B(H"(D)).

We divide the proof of Theorem 4.3 into lemmas.
We start with a limit theorem on 2". For A € B(2"), define

Qr(A) = %meas {7‘ €1[0,7]:

mm+angmewmm«m+aJ%:mem»eA}

Lemma 4.1. Suppose, that the set L(av, ..., «) is linearly independent over Q.

Then Q7 converges weakly to the Haar measure m'y; as T' — oc.

Proof. We consider the Fourier transform g7, (ky, ..., k), k;j = (kjm : kjm €

cey Nupe

Z, m € Ng, j = 1,...,r), of the measure Q7.. The dual group of Q" is
isomorphic to
T [e.e]
DD zm.
j=1 j=1
where Z;,,, = Z for all m € Ng and j = 1, ..., 7. Therefore, the characters of the
group 2" are of the form

11T & (m),

7j=1m=0

where the sign ,, ” “ means that only a finite number of integers k,,; are distinct
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from zero. Hence, we have that

ortir ) = [ (TTTT b o) aci

j=1m=0
Thus, the definition of (7. shows that
gTr(k k) = 4.1
/ HH m+ a;) Zk““)dT—
j=1m=0
/ exp{—mz Z kjm log(m + ;) }dr.
j=1 m=0

Since the set L(ay, ..., ) is linearly independent over @, we have that
T o ,
Z Z Ejmlog(m +a;) =0
j=1m=0

if and only if all kj,,, = 0. Therefore, in view of (4.1),
grr(ky, .0 k) =1 (4.2)

for (ky,...,k,) = (0,...,0). If (ky,...,k,) # (0O,...,0), then integrating in (4.1)
gives
l—exp{ zTZJ 12 jmlog m—i-a])}

gT,T(E17”'7ET) =
A Z ]mlog (m + a;)

This and (4.2) show that

(=)

Th—I)I;O gT,T’(E17 "'7&7‘) -

1 if (k.. k) = (0,...,0),
0 if (Ela'“a&r) 75 (QaaQ)

Since the right-hand side of the latter equality is the Fourier transform of the Haar
measure m'’;, Lemma 2.2 proves the lemma.

Lemma 4.1 implies a joint limit theorem in the space H" (D) for absolutely
convergent Dirichlet series. For a fixed 6 > %, and m € Ny, n € N, define

.\ 0
) = esp{ — (P9
J
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and
Ln(évga S) - (Ln(Al) Oél, 8)7 ceey LTL()\T) ar7 S))a

where
(o)

Ln(Aj,a,8) =

m=0

e27ri)\jm,un (m, aj)

(m+ «aj)*

, g=1,..r
Moreover, for w = (wi, ...,w,) € Q7, we put
Ln(A;Qasaw) = (Ln()\1>a1787w1)7 -~-aLn()\raara5>wT))a

where
oo I\
2™ Ay, (m, a;)

(m +aj)*

Ln(Nj, 0, 8,wj) = , 7=1,...,r1

m=0
By Lemma 2.5, we have that the series for L,, (), o, s) and Ly, (A, o5, s,w;) are

1
absolutely convergent for o > —.
Now, for A € B(H" (D)), define

1
Pr,.(A) = Tmeas{T €[0,7): L, (A a,s+iT) € A},
and, for a fixed @ = (W, ...,y ),
1
P%,n,@(A) = T meaS{T € [07 T] : Ln(&a a, s+ iTvd)) € A}

O]

Lemma 4.2. Suppose that the set L(a, ..., o) is linearly independent over Q.
Then, on (H"(D),B(H"(D))), there exists a probability measure V,| such that
both the measures Pﬁn and Pr, ¢, converge weakly to V,; as T" — oo.

Proof. We apply the same arguments as in the proof of Lemma 2.7. Define the
function u! : Q" — H"(D) by the formula

up (W) = L,(A, @, 5,w), weQ"

Since the series L, (), o, s,w;), j = 1,...,r, are absolutely convergent for
o> % we have that the function w/], is continuous. Moreover, by the definitions
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of Pr,, and Qr,

Pr,(A) = %meaS{T €10,7]:
(((m+a1)™ :m € No)y oo, (M +ar) ™7 :m € Np)) € (ul,) 1A} =
Q7 ((up) ™' A)

for every A € B(H"(D)). Thus, the equality Pr., = Q% (ul)~t is true. This,
the continuity of the function w;,, Lemmas 4.1 and 2.6 show that Py, , converges

weakly to V" difm’"H(ug)*1 as T — oc. In the case of Py

T n.c» WE apply the same

arguments as for P, . Define the function 4, : 2" — H" (D) by the formula

ar (W) = Ln(A,Q,S,W(IJ), w € QT,

n

which is continuous as well. Therefore, similarly as above, we obtain that Pf. .

~. de ~
converges weakly to the measure V) :fqu(u;"l

prove that V! = VT’[ . We have, by the definitions of ], and 4., that, for all

we O, 4 (w) = ul(u(w)), where the function v : " — Q" is given by

)"l as T — oo. It remains to

u(w) = w. Since the Haar measure mf; is invariant with respect to translations
by point from 2", we find that

)7t =mp(anu) = (miu ) (uy) T = my (un) T =V

Le., P, , as’T" — o0, also converges weakly to the same probability measure V,’

as Pr, .. Thus, we have that both the measures P, and Py, . converges weakly

de _
to the measure V,” :fm’}{un las T — oc. O

The next step of the proof of Theorem 4.3 includes the approximation of
LA a,s) by L, (A a,s), and of L(\, a,s,w) by L, (A a,s,w). Let o be the
metric in (D) which is used in Lemma 2.8. For g, = (g11,---,91r), g, =
(921, .-, 92r) € H"(D), define

2(g;9,) = max e(g1j, 2;)-

Then we have that g is a metric in the space H" (D) inducing its product topology.

Lemma 4.3. For all \ and o, the equality

T
1
i timsup . [ o(L(h avs+i7), Ly (h s +ir))dr =0

=00 T_y50
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holds.
Suppose that the set L(ay, ..., «) is linearly independent over Q. Then, for all A
and almost all w € Q)7, the equality

T
1
im tisup 7. [ (L5 + i7,0), Ly( a5 + i w))dr =0

n—o0 T—00

holds.

Proof. From the definition of the metric g, it follows that the equalities of the
lemma are implied by the equalities

T
1
lim 1imsupT/Q(L()\j,aj,s+i7),Ln()\j,ozj,s+iT))dT =0, j=1,..,rm,

n—o0 T_yso

and, for almost all w;,

T
1
lim limsup T / o(L(Nj, a5, s +iT,w;), Ln(Xj, aj, s +iT,w;))dT = 0,

n—oo T—00

4.3)

where j = 1, ..., 7. However, the first equalities are contained in Lemma 2.8, while
the second equalities follows from Lemma 2.12. Actually, the linear indepen-
dence of the set L(a1, ..., ;) over Q implies that of the sets L(«;), j=1,...,7.
Moreover, the Haar measure m/; is the product of the Haar measures m;g on
(24,B(85)), Jj=1,...,r. Thus, if (4.3) are true for A; C Q;, then we have that
m;n(A;) =1, j=1,..,r. Hence, for A = Ay x ... X A,, it follows that

m%(A) = m1H<A1) X ... X mTH(AT) =1.

The lemma is proved. O

For A € B(H"(D)) and w € " satisfying the second part of Lemma 4.3,
define )
Pr (A) = TmeaS{T €[0,T]: L\, o, s +iT,w) € A}.

Then the following statement is true.

Lemma 4.4. Suppose that the set L(aq, ..., o) is linearly independent over Q.
Then, on (H’”(D), B(H’”(D))), then exists a probability measure P" such that
both the measure P and P},w converge weakly to P" as T — oo.

69



Proof. We start with the measure Pr.. Let, as in the proof of Lemma 2.15, £ be a
random variable uniformly distributed in the interval [0, 1], and defined on a certain
probability space with the measure v. Define the H" (D)-valued random element

T = X1n(8) = Ln(A @, 5 +i€T).

Then, in view of Lemma 4.2, we have that

2y, (4.4)

T
=Tn p g

where Y, = Y,/ (s) is the H"(D)-valued random element having the distribution
V7 (V,y is the limit measure in Lemma 4.2).

Now, we will prove that the family of probability measures {V, : n € N} is tight,
i.e., for every € > 0, there exists a compact set K" = K" (¢) C H"(D) such that

ViI(K')>1—¢
for all n € N. For this, we will apply the properties of the marginal measures

VI (A) =V (H(D) X ...x HD) xAxH(D)x..xH(D)), Ae€B(H(D)),

]7”

where j = 1,...,7, of the measure V,]. Under hypotheses of the lemma ( the set
L(ay, ..., ap) is linearly independent over Q), the sets L(«1), ..., L(«,) are lin-
early independent over Q. Therefore, by the proof of Lemma 2.15, V', converges
weakly to a certain probability measure Vj?" asn — oo, j = 1,...,r. Hence,
the family {V", : n € N} is relatively compact, j = 1,...,r. The space H(D) is
complete and separable. Therefore, by the second part of Lemma 2.13 ( the inverse
Prokhorov theorem ), the family {an : n € N} is tight, j = 1,...,r. Hence, for
every € > 0, there exists a compact set K; = K;(¢) C H(D) such that

3

VilEp) >1—— j=1..n (4.5)

foralln € N. Let K" = K X ... X K. Then the set K" is compact in the space
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H(D), and, in view of (4.5),

Vo (H'(D)\ K7) = V(Ui H(D) \ Kj)) <

iVJ(H(D) X ..x HD)xAx H(D) x ... x HD)) =
J=1 e

S VI HD)\E) <Y (1-(1- 2)) _
j=1 .

j=1 j=1

=&

ST

for all n € N. Thus, the family of probability measures {V,! : n € N} is tight.
By the first part of Lemma 2.13 (the Prokhorov theorem), the family of probability
measures {V," : n € N} is relatively compact. Therefore, every subsequence of
{V,y'} contains a subsequence {V,; } weakly convergent to a certain probability
measure P on (H"(D),B(H"(D))) as k — oo. In other words, we have the
relation

yr 2, pr. (4.6)

Mk k—oo

Define one more H" (D)-valued random element
X7 =X7(s) = LA o, s +i€T).
Then, by the first part of Lemma 4.3, we obtain that, for every € > 0,

lim lim supy<g(7§«’n,l§) > 5) =

n—o0 T—00

1
lim limsup — meas {T € (0,77 : o(L(A, a, 8 +1i7), L, (A, i, s +17)) = e} <
n—00 Ty T

T

1

lim lim Sup —— Q(L(A? Q, s + iT), L’IL(AJ Q, s + ZT))dT =0.
n—o00 7,00 1€ Jo —

This equality, and relations (4.4) and (4.6) show that all conditions of Lemma 2.14

are satisfied. Therefore, we have that

X5 o P 4.7)

—00

or, in other words, P7. converges weakly to the measure P as T' — 0o. Moreover,
the relation (4.7) shows that the limit measure P does not depend of the subse-
quence {V,; }. This and the relative compactness of the family {V; : n € N}
imply the relation

Yr — P (4.8)

It remains to prove that Py also converges weakly to P" as T" — oo. For this
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purpose, we define two H" (D)-valued random elements
7TT,n7w =L, (A7 a, s+ €T, w)

and
l’;’,w = L(A) o, S + /LgT, (,U)

Then Lemma 4.2, the second part of Lemma 4.3, relation (4.8) and repeating of
the above arguments for X7, , and X7, , show that Pr. , also converges weakly
to the measure P" as T' — oco. The lemma is proved. O

For the identification of the limit measure P" in the previous lemma, we will
apply Lemma 2.10 (the Birckhoff-Khintchine ergodic theorem). For brevity, let,
for 7 € R,

al = ((m+a1)™7 :m €Ny, ..., (m + a,) " : m € Ny)).

T

Define the family of transformations {¢! : 7 € R} of Q" by

() = dlw.

Then the family {¢} : 7 € R} is a group. Obviously, the transformations ¢
are continuous, hence, they are measurable. Moreover, in virtue of the invariance
of the Haar measure m/;, the transformations ! are measure preserving. Thus,
on the probability space (Q", B(Q2"), m’;), we have the group {¢. : 7 € R} of
measurable measure preserving transformations.

Lemma 4.5. Suppose that the set L(a, ..., o) is linearly independent over Q.
Then the transformation group {¢~. : 7 € R} is ergodic.

Proof. The lemma is proved in [26], Lemma 10, by the Fourier transform method.
We only observe that the linear independence of the set L(ay, ..., a) is used to
show that if y is a non-trivial character of the group Q, then, for (ki,...,k,) #
0, ...,0),

S 3 kmloa(m +a) £0,

j=1 m=0

hence, there exists 79 # 0 such that

x(ar,) = exp{—irg Z Z/ kjmlog(m + a)} # 1.

7j=1 m=0

Here the notation of Lemma 4.1 is used. O
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Proof of Theorem 4.3. We start with the identification of the measure P” in Lemma
4.4. On the probability space (2", B(2"), m};), define the random variable

1 if L(A, a,s,w) € A,
n(w) = { L :

0 ifL(Aagasaw) ¢A7

where A is a fixed continuity set of the measure P". Then using of Lemmas 4.4
and 2.16 yields the equality

1
lim 7 meas {T €[0,T]: L\, a, s +iT,w) € A} = P"(A). (4.9)

T—o0 T

Lemma 4.5 implies the ergodicity of the random process n(” (w)). Therefore, by
Lemma 2.10,

R B P
TlggoT/o (7 (w))dr = En (4.10)

for almost all w € 2". From the definition of the random variable 7, it follows that
En = / ndmiy =mpy ={w e Q" : L(A a,5,w) € A} = PL(A).  (4.11)

Moreover, by the definitions of 1 and ¢, we find that

e 1
/ n(pl(w))dr = = meas {7‘ €[0,T]: L\, o, s +iT,w) € A}.
T /)y T

Therefore, (4.10) and (4.11) imply the equality

lim meas l{7‘ €0,T]: L\, o, s + iT,w) € A} = P;(A).
T—oo T L
The latter equality together with (4.9) shows that P"(A) = P;(A). Since A is an
arbitrary continuity set of the measure P", we have that PT(Z) = P;(A) for all
continuity sets A of P". However, all continuity sets constitute the aetermining
class. Hence, P"(A) = Pj(A) forall A € B(H"(D)), i.e., P" = Pj. The first
part of the theorem is provgd. -

It remains to find the support of the measure P;. The space H (D) is separable.
Therefore, it is known [6] that

B(H"(D)) = B(H(D)) x ... x B(H(D)).

r

This shows that it is sufficient to consider the measure P; on the sets of the form
A=A x..x A,
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with Ay,..., A, € B(H(D)). Moreover, the Haar measure m/; is the product of
the Haar measures m;p on (£2;,B(€;)), j = 1,...,r. By the definition of the
measure P7, we have that

Pi(A)=my{w e Q" : L\ a,s,w) € A} = (4.12)
Hij{wj € Qj: L\, a4, 8,wj) € Aj}.
j=1

Since the sets L(av), ..., L(ay.) are linearly independent over Q, by Theorem 2.4,
the support of the measure

ij{wj S Qj : L()\j,aj,s,wj) S Aj}, j=1..r

is the whole of H (D). Obviously, P; (H"(D)) = 1. Moreover, if A; € B(H (D))
and A; # H(D) for some j = 1, ..., r, then we have that

ij{wj S Qj : L()\j,aj,s,wj) S Aj} < 1.

Therefore, in view of (4.12), we find that PE(A) < 1. Therefore, we obtain that
Aj = H(D)forall j =1,...,r, and the support of P/ is the whole of H"(D). [

4.3 Proofs of joint universality theorems

Theorem 4.1 and 4.2 are consequences of Theorem 4.3, Lemma 2.21(the Mergelyan
theorem), and properties of the weak convergence of probability measures.

Proof of Theorem 4.1. By Lemma 2.21, there exist polynomials p;(s), ..., pr(s)
such that

sup sup |fj(s) —p;(s)| < = (4.13)

1<j<r s€ K 2
Define the set

e
G2 = {(g1,9:) € H'(D): sup sup |g;(s) ~ ps(s)| < 5 }.
1<j<r se K

Then, by the second part of Theorem 4.3, G7 is an open neighbourhood of an ele-
ment (pi(s), ..., pr(s)) of the support of the measure P;. Thus, by the properties
of the support, B

PL(GE) > 0. (4.14)
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By the first part of Theorem 4.3 and Lemma 2.22,
liminf P1(GL) > P;(GL).
T—o0 =
Therefore, the definitions of P; and G together with (4.14) give the inequality

1
lim inf — meas {7’ €[0,7]: sup sup |L(\j,j,s+1iT) _Pj(s)‘ < E} > 0.
T—oo T 1<j<r seK; 2

Combining this with (4.13) gives the assertion of the theorem. O

Proof of Theorem 4.2. Define the set

Gl = {(gl,...,gr) € H'(D): sup sup |g;(s) — fi(s)] < 5}'

1<j<r seK
The set G; is open in the space H" (D). Moreover, its boundary 8@2 lies in the set

{(91,9) € H'(D): sup sup |g;(s) — f(s)] =¢}.

1§] <r SEKj
Therefore, 8@21 HE)GQQ = @ for positive £; # 5. Hence, we have that PE(@G;) >
0 for at most countably many € > 0. Therefore, by the first part of Theorem 4.3
and Lemma 2.16, we have that
lim Pr(GT) = Py (GT) (4.15)
T—o0 -
for all but at most countably many € > 0. It remains to show that Pﬁ(@g) > 0.

Suppose that (g1, ..., g») € G~, where GZ is the set defined in the proof of Theorem
4.1. Then, using (4.13), we find that

sup sup |g;(s) — fj(s)| <
1<j<r SEKj

sup sup |g;(s) —p;(s)|+ sup sup |gj(s) — fi(s)| <
1<y<r se K 1<y<r se K

This show that (g1, ..., gr) € G; Hence, GT C Gg Therefore, by monotonicity of
Py and (4.14), the inequality Pi(ég) > ( is true. This together with (4.15) proves
the theorem. O
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Chapter 5

Joint discrete universality
theorems for Lerch zeta-functions

Let, as in Chapter 4, L(A1, 1, S), ..., L(Ar, a;, 8) be the Lerch zeta-functions. In
this chapter, we will prove discrete versions of Theorems 4.1 and 4.2 that are joint
generalizations of theorems obtained in Chapter 3.

5.1 Statements of the theorems

For h > 0, define the set

2
L(a, ..., ap; hy ) = {(log(m+a1) : m € Np), ..., (log(m+ay) : m € Np), %}.

2
Thus, all logarithms log(m + o), m € Ng, j =1,...,r, and the element %
form the set

L(aq, ..., a5 hy ), its elements are not necessarily different.

Theorem 5.1. Suppose that the set L(, ..., a; h, ) is linearly independent over
Q. Forj=1,..,r,let Kj € K, fj(s) € H(K;), and 0 < \; < 1. Then, for every
e >0,

lim inf
T—o00 +1

#{O <k<N: sup sup L()\j,aj,s—l—ikh)—fj(s)’ < 5} > 0.

1<j<r s€K;
In the next theorem, ,,liminf* is replaced by ,,Jim*.

Theorem 5.2. Suppose that the set L(a, ..., a5 h, ) is linearly independent over
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Q. Forj=1,..,r let K; € K, fj(s) € H(K}), and 0 < X\j < 1. Then the limit

1

i <k<N: Lo ikh) — f
]\}gnooN+1#{0\k\N sup sup |L(\j, o, s+ ikh) f](s)‘<5}>0

1 g] <’I‘ SEKJ‘
exists for all but at most countably many € > 0.

Thus, as in Chapter 4, we see that Theorem 5.2, is stronger that Theorem 5.1
because in Theorem 5.2, the set of shifts (L(A\1, a1, s + tkh), ..., L(A\r, cp, 8 +
ikh)) approximating a given collection ( f1(s), ..., f-(s)) of analytic functions has
a positive density for ,,almost all“ ¢ > 0, while, in Theorem 5.1, this set has a
positive lower density, however, for all € > 0.

The proofs of Theorems 5.1 and 5.2 are based on joint statistical properties of
Lerch zeta-functions, more precisely, on joint discrete limit theorems of weakly
convergent probability measures in the r-dimensional space of analytic functions.

5.2 A joint discrete limit theorem

This section is devoted to a multidimensional generalization of Theorem 3.3.
For A € B(H" (D)), define

1

) =577

#{0<k<N:L(a,s+ikh) € A},

where L(), a, s) is the same as in Section 4.2. Also, we preserve the notation of
Section 4.2 for the r-dimensional torus " and the H" (D)-valued random element
LA a, s,w).

Theorem 5.3. Suppose that the set L(a, ...cr; h, ) is linearly independent over
Q. Then Py converges weakly to the distributions P of the random element
L\ a,s,w)as N — oo

We begin the proof of Theorem 5.3 with a discrete limit theorem on the torus
2" For A € B(Q"), define

1
Qn(A) = N1

(m+a1)™* :meNy),...,(m+ o) " :m e Ny)) e A}.

#{0<k<N:

In the next lemma, the linear independence of the set L(«y, ..., a; h, w) plays the
crucial role.

Lemma 5.1. Suppose that the set L(ay, ..., a,; h, ) is linearly independent over
Q. Then Q' converges weakly to the Haar measure my; as N — oo.
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Proof. Let gy r(kq, ..., k,), k; = (kjm : kjm € Z,m € Ng,j =1,...,r), be the
Fourier transform of the measure ()'y.. Then, as in Section 4.2, we have that

gNT(k:I,...i) /([[Ml_[owm )dQN

Therefore, by the definition of Q)'y,
gNr(k17 k) = (5.1)

ZHH m 4 )~ hkim —

kOjlmO

N
ivj p{- ik:hz i'kjmlog(m+aj)}.

7=1 m=0

Obviously,
N (0, ..., 0) = 1. (5.2)
Since the set L(ay, ..., a,; h, ) is linearly independent over Q, we have that
T oo ,
exp{ - ihz Z Ejm log(m + ozj)} #1
j=1 m=0
for (ky,...,k,) # (0, ...,0). Actually, if the latter inequality is not true, then
T 0 ,
exp { - ihz Z kjm log(m + ozj)} = e2mil
j=1m=0
with some [ € R. Hence,
27l
sz‘jmlogm+aj) hlzo
7=1 m=0

with some [; € Z, and this contradicts the linear independence of the set
L(ay,...;ap; hy). Thus, in the case (kq,...,k,) # (0,...,0), we find by (5.1)

s Lug

78



using the formula for the sum of the geometrical progression that

r J =
gN(Eh ”'7Er) =

(N + 1) (1 - exp{ —ih Zl g’ kjm log(m + aj)}> .

1-— exp{ — (N + l)ih i:l Z/ kjm log(m + Oéj)}
~m=0

=

This together with (5.2) shows that

N—oo

lim (k k ) — 1 if (Ela "-aEr) = (Q; ...,Q),
gN (ks k) = 0 if (kq,...,k,) # (0,...,0).

Since the right-hand side of the latter equality is the Fourier transform of the Haar

measure m'y, the lemma follows by Lemma 2.2. 0

Lemma 5.1 leads to a joint discrete limit theorem for absolutely convergent
Dirichlet series. We preserve the notation of Section 4.2 for L, (), «,s) and
L,(\ a,s,w). For A € B(H"(D)), define

1

Py n(A) = Nl

#{0 <k<N:L,(\a,s+ikh) e A},
Moreover, define the function ] : " — H"(D) by the formula
uy (w) =L, (A a, s,w), weQ".

We have seen in Section 4.2 that the function ], is continuous. Moreover, by the
definitions of Py, and QY, for all A € B(H" (D)), the equality

1
PhnlA) = o7
((m + al)_ikh im € NO),..., ((m + ar)_ikh im € NO) € (u;)_lA} =

Qv (up) "1 A).

#{ogkgzv;

holds. Thus, we obtain that Py, . = Q' (u%)~'. This equality, the continuity of
u; , and Lemmas 5.1 and 2.6 prove the following lemma.

Lemma 5.2. Suppose that the set L(ay, ..., a5 h, ) is linearly independent over

d
Q. Then Py ,, converges weakly to the measure V., éfmTHu; Las N — oo.

The next lemma is devoted to the approximation in the mean of L(), «, s) by
L,(Aq;s).
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Lemma 5.3. Forall A\, a and h > 0, the equality

N

1

1 D (LA a5 4 ikh), Ly (A s + ikR) = 0
k=0

lim lim sup
n—00 N_sso IV

holds.

Proof. The definition of the metric ¢ shows that the equality of the lemma follows
from the equalities

N

1

1 E o(L(Nj, o, 8 +ikh), Lp(Nj, o, s + ikh)) = 0,
k=0

lim limsup
n—=00 N0 N

j =1,...,r. However, these equalities are true in view of Lemma 3.5. This proves
the lemma.
O

Now, we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. We observe that the linear independence over Q of the set
L(ay, ..., ap; by m) implies that of the set L(ay, ..., o). Therefore, by the proof of
Lemma 4.4, we have that the family of probability measures {V,) : n € N} (V7
is the limit measure in Lemma 5.2) is tight. Hence, in virtue of Lemma 2.13, the
family {V, : n € N} is relatively compact. Therefore, there exists a subsequence
{Vi.} € {V,} such that VI converges weakly to a certain probability measure
P.on (H"(D),B(H"(D))) as k — oco. Hence, denoting by Y,) = Y, (s) the
H"(D)-valued random element having the distribution V', we obtain that

Yy 2y P (5.3)

k—o0

Now, on a certain probability space with measure v, define a random variable &

by the formula
1

SN
Next, define the H" (D)-valued random element

v(En = kh) =0,1,...,N.

—?V,n - X?V,n(s) = Ln(Av Q, s+ ’LEN)

Then, by Lemma 5.2,
D
Xin o Yo (5.4)
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Define one more H" (D)-valued random element

Then, in view of Lemma 5.3, we have that, for every € > 0,

1

- N che N
Jim_lim sup V(0 Xy, X) =€) = lim. lim sup - THOSESN
o(L(A, a, s +ikh), L, (A, o, s +ikh)) > e} <

N
e

This equality together with relations (5.3) and (5.4) shows that all hypotheses of
Lemma 2.14 are satisfied. Therefore, we obtain the relation

X7 N%o P (5.5)

Thus, we have that Py, converges weakly to P" as N — oco. Moreover, the relation
(5.5) shows that the measure P" is independent of the choice of the subsequence
{V,,}- Since the sequence {V];'} is relatively compact, hence we obtain that
vy 2 pr
n—oo
This means that V,]' converges weakly to P" as n — oo. The latter remark allows

to identify easily the measure P". Actually, in Section 4.2, it was obtained that,
under hypothesis that the set L(«, ..., «;) is linearly independent over Q,

%meas {7’ €10, 7): L\, a,s+1iT) € A}, A e B(H"(D)),

also converges weakly to the limit measure P" of V] as n — oo, and that P" co-
incides P} . Clearly, the linear independence of the set L(cv, ..., ay; h, m) implies
that of the set L(au, ..., o). Therefore, Py, also converges weakly to P; which is
the limit measure of V,;. The theorem is proved. B Ul

5.3 Proofs of universality

The proofs of Theorems 5.1 and 5.2 are analogical to those of Theorems 4.1 and
4.2.

Proof of Theorem 5.1. Using Lemma 2.21, we find polynomials p;(s), ..., pr(s)
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such that

€
sup sup |f;(s) —p;(s)] < 5 (5.6)
1<j<r seK

Now, define the set

£
Gz = {(g1s90) € H'(D) 5 sup_sup [g;(s) ~ py(s)| < 5 }-
1<j<r seK;

By Theorem 4.3, the support of the measure Pj is the whole of H"(D). There-
fore, the set G~ is an open neighbourhood of the element (p;(s), ..., pr(s)) of the
support of the measure Py. Thus,

Pﬁ(Gg) > 0. 5.7)
Therefore, by Theorem 5.3 and Lemma 2.22,
lim inf Py (GL) > Pr(GL) > 0.
N—o0 =

Hence, by the definitions of Py; and G, we find that

lim inf <k<N: .
Py 59
sup sup |L(Aj, oy, s +ikh) — p;(s)] < E} > 0.

1<j<r s€Kj 2

Suppose that k € Ny satisfies the inequality

13
sup sup |L(A;j, aj, s + ikh) —p;(s)] < 5.
1<j<r seKj 2

Then, taking into account (5.6), for those k we find that
sup sup |L(Aj, aj, s +ikh) — fi(s)] <
1<j<r seKj

sup sup |L(Aj, oy, s +ikh) — p;(s)| + sup sup |f;(s) — p;j(s)] <
1<j<r seK; 1<j<r s€eK;

This shows that
{0< k< N: sup sup |[L()\j,aj,s+ikh) —p;(s)| < %} C

1<j<r se K

{0< k<N : sup sup |[L(Aj, 5,5+ ikh) — fi(s)] < e}

1<j<r SEKj
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Therefore, (5.8) implies the inequality

1
lim inf {ogng: sup sup |L(\;, o, s+ikh)— fi(s <€}>0.
unin N—l—l# 1<j2rsell()j’ (Ajy o )—£5(s)]
The theorem is proved. O

Proof of Theorem 5.2. Consider the set

A~

Gz ={(91,-,9,) € H'(D) : sup sup [g;(s) — fi(s)| < e}
1<j<7’S€Kj

Clearly, G” is an open set in H" (D), thus G. € B(H"(D)). Since the boundary
oG" belongs to the set

{(g1,-,9,) € H'(D) : sup sup |g;(s) — f;(s)| = &},

lgjg’l‘ SGKJ‘

we have that the boundaries 8@; , and 8@;2 do not intersect for different positive
€1 and 9. Thus, Pﬁ(aég) > (0 for at most countably many € > 0. Therefore,
the set C?g is a continuity set of the measure Py for all but at most countably many
€ > 0. Hence, in virtue of Theorem 5.3 and Lemma 2.16, Hence, by the definitions
of Py and G7, we find that

lim Py (G7) = Py(GT) (5.9)

N—o00 -

for all but at most countably many ¢ > 0. It is not difficult to see that G C ég,

where G was used in the proof of Theorem 5.1. Actually, if (¢1,...,9-) € GL,
then, in virtue of (5.6), we obtain that

sup sup |g;(s) — f;(s)] <
1<j<r se K

c
2

€
sup sup |g;(s) —p;(s)|+ sup sup |fj(s) —pj(s)] < 3 + - =c.

1<jsr s€K; 1<jsr s€K;

Thus, (g1,...,9r) € G’g Now, the inclusion G C G’g and (5.7) show that

PE(GE) > 0. Therefore, (5.9) implies that the limit
lim Py (GT) >0
N—o0

exists for all but at most countably € > 0. Taking into account the definitions of
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Py and Gg, hence we obtain that the limit

1

im — <k<N: o ikh) — fi
Th—rgoN—i—l#{O\k\N sup sup |L(\j,aj,s +ikh) f](s)‘<€}>0

1<j<r seK;

exists for all but at most countably many £ > 0.
The theorem is proved. O
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Chapter 6

Functional independence of the
Lerch zeta-function

In this chapter, we will prove one of corollaries of the universality-theorems on the
functional independence of the Lerch zeta-function.

6.1 Denseness lemmas
Define the mapping v : R — CF by the formula
u(t) = (LA, o, 0 +it), L'\, o, 0 + it), ..., LE"D (X, @, 0 + it)),

where o, % < o < 1, 1s a fixed number.

Lemma 6.1. Suppose that the set L(«) is linearly independent over Q, and 0 <
A < 1. Then the image of u is everywhere dense in CF.

Proof. We fix € > 0, and take an arbitrary point
a = (ag, a1, ...,a,_1) € CF.
We have to show that there exists ¢ € R such that
u(t) — alcr <e,

where |.|cx is the distance in C¥. For this, it suffices to obtain that

3

1LY\, a,0 +it) — aj] < ’
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forall j =0,1,...,k — 1. Consider the polynomial

N
—

l
as
P(s) =2

l

I
=)

Clearly, ‘
p0)=aj, j=0,. k-1 6.1)

We take &, % < 6 < 1. Let K € K be such that ¢ is an interior point of /. Denote
by 0 the distance of & from the boundary of K. In virtue of Theorem 2.1, there
exists a sequence {7, } C R, lim,,_,o0 7y, such that

gok—1
L(A i) —p(s — )| < = ————
5‘3}3‘ (Ao, s +1im,) — p(s U)’<2k—1(k—1)!k

Therefore, the application of the Cauchy integral formula and (6.1) shows that, for
j=0,1,..,k—1,

L\ o,z +i1,) — pp(z — ) 5

A, —aj| = ‘ d e
LI\, o, 6 +iTy) — aj] = /|Z s (- 67 ) 2| <
and the lemma is proved. O

The next lemma is a multidimensional analogue of Lemma 6.1. Define the
mapping u : R — CF1+FFr by the formula

up(t) = (LA, a1, 0 +it), L' (A, a1, 0+ it), ..., LED (A o, 0 +it), .
Ly ary o +it), L' (A, ap, 0 4 it), oo, LE D (N, a0+ it)),
where o, % < 0 < 1, 1s a fixed number.

Lemma 6.2. Suppose that the set L(ay, ..., o) is linearly independent over Q,

and 0 < X\; < 1, 5 = 1,...,r. Then the image of u, is everywhere dense in
Ck1+...+kr‘

Proof. We fix € > 0 and

— ki+...+kr
a, = (alo,an, vy Q1 Ky —15 -+ Ar0, Qrl, ...,ankr_l) c C*t T

We will prove that there exists a sequence {7,} C R, lim, o 7x = 400, such
that

‘Ur(Tn - QT)‘(Ck1+.4.+kT < €.
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For this, we will show that there exists a sequence {7, } such that

. .
L (N, a,0 + imy) — ajlj‘ Shtotk
forj =1,..,r,1; =0,1,..., k; — 1. Define the polynomials

kj—1

l
a;is ,
pkj(s)zz ]l' , J=1,.,r
=0

Then we have that
V) =an, j=1 L= 0,1,k — 1
pkj( )=aj, j=1,..,r, =0,1,....kj )

We fix &, % < 6 < 1, and take a compact set K € K such that & is an interior
point of K. Let J be the distance of & from the boundary of K. Then Theorem 4.1
implies the existence of 7, — co such that

65k71
sup sup |L(A\j, @i, s+ i7,) — pr.(s — o ‘< ,
(2R, S [ g i) = (5 = 00)| < e T 5 )
where k = max k;. Then, by the Cauchy integral formula,
IIT
‘L(lj)()\j, og,& + iTn) — ajl‘ =
ZL" / L(Aj,aj,s—l—éin).—pj(z—6)d2’ -
27 (z —6)latl
lo—51=3%
<
/‘Jl + ...+ kr.
The lemma is proved. 0

6.2 Theorems on the functional independence

In this section, we will apply Lemmas 6.1 and 6.2 for the proof of the following
theorems.

Theorem 6.1. Suppose that the set L(«) is linearly independent over Q, and 0 <
A< L Forj=0,..,n,letV;: Ck = Cbhea continuous function , and let

Z sjVj (L()\, a,s), L'\ a,s), ..., L(k_l)()\, a, 5)) =0
j=0
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identically for s. Then V; = 0 for j =0, ...,n.

Proof. Let V : C* — C be a continuous function such that
V(L(/\, a,0 —it), '\ a, 0+ it), s LEV (N, 0 + z't)) =0 (62)

Then V' = 0. Actually, this follows easily from the continuity of V' and Lemma
6.1. Suppose, on the contrary, that V' # 0. Then these exists (s, $1, ..., Sk—1) €
CF such that V(sg, s1,...,5._1) # 0. By the continuity of V, these exists a
bounded region G' C CF containing (sg, 1, ..., Sx_1) such that

V(a)|>C >0

for all points ¢ € G, and in view of Lemma 6.1, we obtain the contradiction to
(6.2).

Let [ < n be the greatest number such that

sup [Vi(a)| # 0.
aceG

If I = 0, then the theorem follows by the above remark on the function V. If [ > 0,
then there exists a region G; C G such that

inf |V . 6.3
glenG1’ 1(a) >C1 >0 (6.3)

By the proof of Lemma 6.1, we can find a sequence {t,, }, lim,;, o0 tm = 400,
such that

<L()\, a,0 +ity), L'\, a, 0 +ity,), ..., L(k_l)()\, a,0 + Ztm)> € Gq.
This together with (6.3) shows that

lim (0 + iem)' | VI(L(A, @, 0 + it),

L'\ a,0+itm), . LF"V(\, 0,0 + ity))| = +oo.

This gives contradiction to the equality of the theorem. O

Theorem 6.2. Suppose that the set L(a, ..., o) is linearly independent over Q,
and0 < \j < 1. Let V; : Chkittkr 5 C, j =0, ...,n, be a continuous function,
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and let the equality

A% (L(/\l, a1, 8), L', an, 8), s LE“D (1 0, 8), oo,
Jj=0
L,y 8), L' ( Ay iy 8), .o, L(kr_l)()\r, a, s)) =0

holds identically for s. Then V; =0 for j =0, ..., n.

Proof. We apply similar arguments to those used in the proof of Theorem 1.
Let V : Cmt+nr _ C be a continuous function. We will prove that if the
equality

V<L()\1, ar,s), L'\, a1, 8), o LFD (0 ag, 5), ..o, (6.4)

L, ap, 8), L' (M, ey 8), ...,L(kr_l)()\r,a,«,s» =0

is satisfied for all s, then V' = 0. On the contrary, suppose that these exists a
point a € Ck1t--kr guch that V(a) # 0. From the continuity of V, there exists a
bounded region G C C* containing the point a such that

V(b)|>C <0 (6.5)

for all points b € GG. Then, in view of Lemma 6.2, these exists ¢ € R such that, for
fixed o, % <o<l1,

(L()\l, ar,o+it), (A, a1, 0+ it)), s LBV (A, a1, 0 +it)), ...,

LOv, 0+ i), L' O, Qpy 0 4 08)), s LED (O @y, 0 + it)) €G

and this together with (6.5) contradicts (6.4).

Without loss of generality, we suppose that V) # 0. Then, by the above remark,
there exists a bounded region G C C*1+++*r such that

[Vo(b)| > C >0
for all b € G. Let jp be the greatest non-negative integer < n such that

sup |V, (b)] # 0.
beG

If 5o = 0, then, by the above remark, the theorem is proved. Therefore, suppose
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that jo > 0. Then we find a region G C G such that

inf [V}, (b)| > C < 0. (6.6)
beG

However, by Lemma 6.2, there exists a sequence {¢,,} C R, limy, o0 t, = +00
such that

(L(Al,al,a —i—itm),L/()\l,Oq,O' +itm)), ...,L(klfl)()\l,oél,(f—i- itm)>, ey

L @0 + i), L' Oy 0, 0+ i), s LE D (O, 0, 0 + itm)> e
for fixed o, % < o < 1. From this and (6.6), we obtain that

o + ity |70

Vi, (L(Al, ar, 0+ itm), L'\, 01,0 + i), ooy
LE=D (N ar,0 +itm), ooy LA, 0y 0 4 b))y L Ay iy 0 + i) ) oo

L(kr_l)()\r, o, 0+ ztm)> ‘ — 400

as m — oo. This contradicts the hypothesis of the theorem. The theorem is
proved. O

90



Conclusions

1. The Lerch zeta-function L(\, c, s) with parameter « such that the set {log(m-+
a) : m € Ny} is linearly independent over Q has a continuous universality
property on the approximation of analytic functions by shifts L(\, «, s+i7).

2. The Lerch zeta-function L(\, a, s) with parameter « such that the set { (log(m-+
a):m € Np), 2—’7} is linearly independent over Q, for all A\, 0 < A < 1, has
a discrete universality property on the approximation of analytic functions
by shifts L(\, «, s + ikh).

3. The Lerch zeta-functions L(A1, a1, $), ..., L(Ay, ay, §) with parameters o, ...,
such that the set {log(m + «;) : m € Ng, k = 1,...,r} is linearly inde-
pendent over Q for all 0 < A; < 1, have a joint continuous universality
property on the approximation of collections of analytic functions by shifts
(L(A1,00,8 4+ 07), ooy L(Ar, atpy 8 4 07))

4. The Lerch zeta-functions L(\1, a1, s), ..., L(\y, o, s) with parameters oy, ..., a;

2
such that the set { (log(m+a1) : m € Ny), ..., (log(m+a,) : m € Ny), %}

is linearly independent over Q, for all 0 < A; < 1, have a joint discrete
universality property on the simultaneous approximation of collections of
analytic functions by shifts (L(A1, a1, s + ikh), ..., L(A\r, oy, s + tkh)).

5. The Lerch zeta-function L(\, a, s) with parameter « such that the set {log(m-+
«) : m € Ny} is linearly independent over Q is functionally independent.

6. The Lerch zeta-functions L(\1, a1, S), ..., L(A\y, ayr, §) with parameters oy, ..., o
such that the set {(log(m + «a1) : m € Ny), ..., (log(m + a,-) : m € Np)} is
linearly independent over QQ are functionally independent.
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Notation

k. l,m,n,r integer integers
P prime number
Z set of all integer numbers
Q set of all rational numbers
N set of all positive integers
No set of all non-negative integers
R set of all real numbers
C set of all complex numbers
s=c+it,ot €R,i=+/—1 complex number
¢(s) Rieman zeta-function defined for o > 1,
by the series ((s) = ioj 7,{5
m=0
and by analytic continuation elsewhere
L(s,x) Dirichle L-function defined, for
o > 1, by the series L(s, x) = i Xél”;‘),
m=0
and by analytic continuation elsewhere
((s, ) Hurwitz zeta-function defined, for o > 1,
* 1

by the series ((s, o) = _
sl = & o

and by analytic continuation elsewhere
L\ a,s) Lerch zeta-function defined, for o > 1,
0o 627ri)\m
by the series L(\, a, s) = _—
e L) =

and by analytic continuation elsewhere

EX expectation of a random element X
D e
X, — X convergence in distribution
n—oo
meas A Lebesgue measure of a set A
#A cardinality of a set A

f(z) <y g(x),9(x) >0,z € X there exists a constant C'(\) > 0 such that,
forallz € X, |f(x)] < Cg(x)
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