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Notation

j7 k7l7 m7 n
p
(m,n)

natural numbers
prime number

greatest common divisor of naturals m and n

set of all prime numbers
set of all natural numbers
Nu {0}

set of all integer numbers
set of all real numbers

set of all complex numbers
imaginary unity: i = \/—1
complex variable

direct sum of sets A,

Cartesian product of the sets A and B
Cartesian product of m copies of the set A
Lebesgue measure of the set A
cardinality of the set A

space of analytic functions on D
convergence in distribution

class of Borel sets of the space S
Dirichlet character

Dirichlet L-function

cusp form

means that |f(z)|<Cg(z),z € I

Riemann zeta-function defined by

[e.e]
((s)= > A foro>1,

m=1

and by analytic continuation elsewhere



C(s;a)

(s, @)

C(s,;a)

periodic zeta-function defined by
o0

C(s;a) = Y %m foro > 1,
m=1

and by analytic continuation elsewhere

Hurwitz zeta-function defined by
o0
C(s,a) = > m,fora > 1,
m=1

and by analytic continuation elsewhere
periodic Hurwitz zeta-function defined by

[o¢]
C(s,a;a) = > %,fora > 1,
m=0

and by analytic continuation elsewhere
Euler gamma-function defined by

L(s) = [, e e tda foro >0

and by analytic continuation elsewhere



Introduction

Let s = o + it be a complex variable, and a = {a,, : m € N} be
a periodic sequence of complex numbers with minimal period ¢ € N. In the
thesis, the value-distribution of the periodic zeta-function ¢(s; a) is considered.
The function ((s; a) is defined, for o > 1, by the Dirichlet series

[e.o]

a
C(ssa) =) . (1)
m=1
The periodicity of the sequence a implies that there exists a constant ¢, > 0

such that, for all m € N,

lam|<cq.

Clearly, we can take, for example
ca = max(|ai|,...,|aq|)-

This shows that the series (1) is absolutely convergent in the half-plane o > 1,
and defines there an analytic function.

The function ((s;a) also has a meromorphic continuation to the whole
complex plane. For this, the classical Hurwitz zeta-function is applied. Let
a, 0 < a <1, be a fixed parameter. We recall that the Hurwitz zeta-function
((s, @) is defined, for o > 1, by the Dirichlet series

> 1
((s,) = Z_: m7

m=0

and can be continued analytically to the whole complex plane, except for a



simple pole at the point s = 1, and
Res((s,a) = 1.
s=1

The function ((s, ) was introduced and studied by A. Hurwitz in [9], and has
various applications in analytic number theory. From the periodicity of the
sequence a, we have that, for o > 1,

This equality and the properties of the Hurwitz zeta-function show that the
function ((s; a) has the analytic continuation to the whole complex plane, ex-
cept for a simple pole at the point s = 1, and

q
ResC s;a) Z &,

If » = 0, then ((s; a) is an entire function.
We recall that the Riemann zeta-function ((s) is defined, for o > 1, by the

Dirichlet series

1
Q(S) = %7

m=1

or, equivalently, by the Euler product over primes

() =TJ (1—;5)_1,

and has the analytic continuation to the whole complex plane, except for a
simple pole at the point s = 1, and

el =

From definitions of ((s;a) and ((s), it follows that ((s;a) = ((s) if a =
{am : am, = 1}. Therefore, the periodic zeta-function is a generalization of
the famous Riemann zeta-function.

Let yx be a Dirichlet character modulo ¢q. Roughly speaking, a character  is
an arithmetic function y : N — C which is periodic with period ¢ (x(m+¢) =
x(m) for all m € N), completely multiplicative (x(mn) = x(m)x(n) for all

10



m,n € N), x(m) = 0if (m,q) > 1, and x(m) # 0if (m,q) = 1. We recall
that the Dirichlet L-function L(s, x) with a Dirichlet character x is defined,
for o > 1, by the Dirichlet series

L(S»X) = Z X(m)v

mS

m=1

or by the Euler product over primes

L(s,x) =[] <1 - X]Ef))l.

p

If x = xo is the principal Dirichlet character modulo ¢ (xo(m) = 1 for all
m, (m,q) = 1), then the function L(s, xo) is meromorphic, it has the unique
simple pole at the point s = 1, and

Res L(s, xo) = | | <1 - ;)

plg

where p denotes a prime number. If y # xo, then the function L(s, ) is entire.

The definitions of the functions ((s;a) and L(s, x) show that the peri-
odic zeta-function is a generalization of Dirichlet L-functions. Thus, the func-
tion ((s;a) is a generalization of very important in analytic number theory
functions, the Riemann zeta-function and Dirichlet L-functions. This remark
shows the importance of the function ((s; a).

Let b = {b,, : m € Ny = NU{0}} be an another periodic sequence
of complex numbers with minimal period g; € N. The results of the thesis
also are related to the periodic Hurwitz zeta-function ((s, a;b), where « is
the same fixed parameter as in the classical Hurwitz zeta-function, which is
defined, for o > 1, by the Dirichlet series

19 l
C(S,O[; b) = = blC<3, —i_OC)?O- > 1,
a7 q1
can be continued analytically to the whole complex plane, except for a simple

11



pole at the point s = 1 with

ResC(sab isz &y
i

=0

If r; = 0, then the function ((s, c; b) is entire.
Since ((s,a;b) = ((s,a) withb = {by,, : by, = 1}, the function {(s, a; b)
is a generalization of the classical Hurwitz zeta-function ((s, a).

Aims and problems

The aim of the thesis is the approximations of a wide class of analytic
functions by shifts ((s+ i7; a) of the periodic zeta-function with a multiplica-
tive sequence a (amn = amay for all myn € N, (m,n) = 1), i.e., the aim
of this thesis are universality theorems for the function {(s; a). The problems
investigated in the thesis are the following:

1. Universality of the function ((s; a) with multiplicative coefficients.
2. Universality of the function {(s; a) with a special sequence a.

3. Weighted universality of the function ((s; a).

4. Weighted discrete universality of the function ((s; a).

5. Value distribution of certain compositions involving periodic zeta-functions.

Actuality

Value distribution of zeta and L-functions is one of the most important
problems of analytic number theory and occupies a honorable place in math-
ematics in general. One of the most important seven Millennium problems is
devoted to zero-distribution of the Riemann zeta-function, more precisely, to
the Riemann hypothesis which asserts that all non-trivial zeros of ((s) lie on
the critical line o = % In 1975, the universality of zeta-functions was discov-
ered [52] and this strengthened still the positions of zeta-functions because new
theoretical and practical applications appeared. The approximation of compli-
cated analytic functions by shifts of comparatively simple zeta-functions found
deep applications in quantum mechanics [3], [7]. It became known that the
Riemann hypothesis is equivalent to the self-approximation problem for the

12



function ((s). Finally, the last Fermat theorem was proved by using connec-
tion between zeta-functions of certain cusp forms and L-functions of elliptic
curves [3]. All these examples show the importance of investigations of value
distribution of zeta-functions, and stimulate the researches in the field.

Investigations of value distribution of zeta-functions is one of the priority
successfully cultivated directions of Lithuanian mathematicians. The latter
direction was began to study by Professor Jonas Kubilius and is continued by
his students. Applications of probabilistic methods in number theory plays a
significant role in the Kubilius school, and it is our obligation to develop this
interesting direction of the theory of zeta-functions.

Methods

For the proof of universality theorems for the periodic zeta-function, the
method of limit theorems on weakly convergent probability measures in the
space of analytic functions is applied, while the proofs of limit theorems are
based on the Fourier transform method and other classical approaches of the
weak convergence theory.

Novelty

All results of the thesis are new. The first part of Theorem 1.1 under a
certain additional condition on the sequence a was proved in [31]. Weighted
universality theorems for the periodic zeta-function earlier were not known.

History of the problem and the results

The periodic zeta-function ((s;a) is an attractive analytic object, and it
was studied in various aspects by many mathematicians. To our knowledge,
the first important result was obtained by W. Schnee in [45]. It is well known
that zeta-functions usually satisfy certain functional equations. In [45], such
an equation was proved for the function ((s;a). Let b = {b,,, : m € Z} be a
sequence related to a, and be defined by

q—1
o 1 2mik ™
by = — g aie a.
q k=0

13



Moreover, let b = {Bm : m € Z}, where sz = b_,,. Then the main result
of [45] is the following functional equation. As usual, I'(s) denotes the Euler

gamma-function.

Theorem A. Forall s € C,

is ~

= si0) = () T (¥ elsst) + e F ).

The paper [10] is also devoted to the value distribution of the function
((s;a). In that paper, the Laurent expansion at the point s = 1 is presented,
the Dirichlet series for powers (" (s;a), » € N, are obtained, and a certain
approximation for {(s; a) by the Riemann zeta-function is given.

Further investigations of the function ((s;a) are related to the name of
J. Steuding. In [46], he created the zero-distribution theory for ((s;a). He
proved that there exists a positive constant depending on the sequence a, say,
A(a), such that (s;a) has no zeros for o > 1+ A(a). J. Steuding also
introduced the notions of trivial and non-trivial zeros of ((s;a) and obtained
[46] the Mangoldt type formula for the number of non-trivial zeros of {(s; a).
Let

1< o
Gy = Z ape™>*a

q k=1

S

and let a* = {a : m € N}, B(a) = max(A(a*), A(a™)). Then the zeros
p = [+i~y of the function ((s; a) are called trivial if 5 < —B(a), and remained
zeros are called non-trivial. They lie in the region

{s e C: —B(a)<o<1+ B(a)}.

Let N(T;a) be the number of non-trivial zeros p = (3 + i7 of ((s;a) with
|7|<T counted with multiplicity. Then the most interesting result of [46] is

the following formula.
Theorem B. Suppose that T' — oco. Then

qT
2mmay/mg- + Mg+

where my = min{1<m<q : an, # 0} and myx = min{1<m<q : af, # 0}.

T
N(T;a) = P log + O(logT),

14



The first results on the moments of the function ((s; a),

T

(T, 0 a) = / C(o + it ) [2dt,
0

where k is a non-negative integer and 02%,

the best moment results for (s; a) were given by D. Siaui@nas in his thesis

were obtained in [13]. However,

[50] and the corresponding papers. For this aim, the approximate functional
equation for the function ((s; a) was applied [50].

Theorem C. Suppose that t>1, y = \/%, n=Iy,r= [y — g] l=n-—r,
and %gagl. Then

q
C(S;G)Z%Zak b

54 (K
4 1s<2t7r) Zakelf(q:t)w(zy —2n+1— k) + qlsR(s,q),

q 1 q
where
2
COS?T(% —a— %)
la) = cos Ta ’
2T t Tn wa? 7l
=tl —— - — 4 — 4+ — — 2 —
f(a,t) tog(t)+2 8+ 5 +2+7rn mad + 21y (l — )
and

R(s,q) = o<t‘z’—1 kzq::l |ak|>.

Applications of Theorem C led to a series of results for the moments
I(T,0;a). Their statements are sufficiently complicated, therefore, we re-
call only one mean square estimate [50]. Let g be the Euler constant.

Theorem D. Suppose that T' — oco. Then
1
L (T, 5 a) =q 'K (q)T1ogT + ¢~ 'K(q)T (2o — logm — 1)
1 1
— ¢\ T(Ki(q) - Ka(@)) + O(4* K ()T log T ) + (g (q)),

15



where

q
= Z ‘ak‘Qv
k=1
Zk‘lakzl2 Z 7(mq+ A

and

= Jag?
Ks(g)=a) , ——
k=1

The first result of probabilistic type for the function {(s;a) was given in
[13]. Denote by H(G) the space of analytic functions on the region G C C
endowed with the topology of uniform convergence on compacta. Let B(X)
stand for the Borel o-field of the space X, and let D = {s eC: % <o < 1}.
For A € B(H (D)), define

Pr(A) = %meas{T €[0,7]: (s +it;a) € A},

where measA denotes the Lebegue measure of a measurable set A C R. In
[14], the weak convergence for Pr, as T' — oo, was considered. Let P and
P,, n € N, be probability measures on (X, B(X)). We recall that P,, converges
weakly to P, as n — oo, if, for every real bounded continuous function f on
X,

lim [ fdP, = / fdp.

n—00
X X

Lety={seC: % < 0 < 1} be the unit circle on the complex plane, and
Q = H f)/pv
P

where 7, = -y for all primes p. With the product topology and pointwise multi-
plication, the torus €2 is a compact topological group, therefore, on (2, B(2)),
the probability Haar measure mp exists. This gives the probability space
(Q,B(£2), mp). Denote by w(p) the pth component of an element w € €2,
and, for m € N, define

I «*@)

p*m
pa+1+m

16



On the probability space (2, B(2), mp ), define the H (D)-valued random el-
ement ((s,w;a) by the formula

2. apmw(m)
((s,wia)= ) ———.
=

Then in [14], Theorem 4, the following statement has been proved.

Theorem E. Pr converges weakly to the distribution of the random element
((s,w;a)as T — oo.

However, since w(m) are dependent random variable, Theorem E can’t be
applied for the investigation of universality for the function ((s; a).

Limit theorems of the type of Theorem E also were considered in [15],
including multidimensional limit theorems and limit theorems in the space of
meromorphic functions.

Now, we pass to the main problem of the thesis, i.e., to the universality of
((s;a). We recall that the universality of the Riemann zeta-function ((s) was
discovered by S. M. Voronin in [52]. He proved thatif 0 < r < i, the function
f(s) is continuous and non-vanishing on the disc |s|<r, and is analytic in the
interior of this disc, then, for every ¢ > 0, there exists 7(¢) € R such that

max < €.

[s|<r

g(s+i+w> — f(s)

Later, the famous Voronin theorem was improved. We will recall its modern
statement. Denote by K the class of compact subsets of the strip D = {s € C :
1+ < o < 1} with connected complements, and by Hy(K), K € K, the class
of continuous non-vanishing functions on K that are analytic in the interior of
K. The following version of the Voronin theorem is known, see, for example
[22].

Theorem F. Suppose that K € K and f(s) € Ho(K). Then, for every e > 0,

1
lim inf — meas {7’ € [0,7] :sup [C(s +iT) — f(5)] < 5} > 0.
T—o0 T seK

Theorem F shows that there are infinitely many of shifts {(s + i7) approx-
imating a given function f(s) € Hy(K).
J. Steuding was the first who began to study the universality of the function

C(s;a). In [46], he proved the following theorem. Let H(K), K € K, be the
class of continuous functions on K that are analytic in the interior of K.

17



Theorem G. Suppose that q is an odd prime number; a., is not multiple of a
Dirichlet character modulo q, and a; = 0. Let K € K and f(s) € H(K).
Then, for every € > (),

liminfl meas {T €10, 7] :sup |((s+ir;a) — f(s)] < 8} > 0.
T—oo T seK

Note that, under conditions of Theorem G, the periodic sequence a is not
multiplicative. This follows from the characterization of periodic multiplica-
tive functions given in [32].

In [47], J. Steuding extended Theorem G in the following manner. He
proved that the assertion of Theorem G is valid if a is a periodic sequence
with minimal period ¢ > 2, not a multiple of a Dirichlet character modulo ¢,
satisfying a,,, = 0 for (m, q) > 1.

Universality of the periodic zeta-function is not a simple problem. J. Kac-
zorowski observed in [12] that not all functions ((a;a) are universal in the
above sense. He presented the following example of the periodic sequence
ap = {aom : m € N}. Let ¢ = 2, and ap; = 1, and ap2 = 23 + 1. Then we
have that

((s1a0) = (1+217)((s).
Moreover, let
5 7

K = [8’8] X [—co, o

be a rectangle in the right-half of the critical strip. If ¢ > @, then every shift
((s + i7;a0) has a zero inside K, therefore, it can’t approximate uniformly
functions which do not vanish inside K, for example, it can’t approximate the
constant function f(s) = 1in K.

J. Kaczorowski also introduced [12] a certain restricted universality prop-
erty. Let K € K. Then the number

h(K) = max &s — min s
€K s€K

is called the height of K. The Kaczorowski theorem is the following statement
[12].

Theorem H. There exists a positive constant ¢y = co(a) such that, for K € K

18



with h(K)<co, f(s) € Hyo(K) and every € > 0,

liminfl meas {T €[0,7] : sup |[((s +iT;a) — f(s)| < 8} > 0.
T—oo T scK
The thesis is devoted to the universality of the periodic zeta-function
((s; a) with multiplicative sequence a. We recall that the sequence a = {a,, :
m € N} is multiplicative if a; = 1 and @y, = amay, for (m,n) = 1.
An universality theorem for the function ((s;a) with multiplicative se-
quence a was proved in [31] with additional condition that

o0
S
a=1

|<c< 1 )

SRS

p

for all primes p. In the thesis, the latter condition is removed, and in Chapter
1, the following theorem is obtained.

Theorem 1.1. Suppose that the sequence a is multiplicative. Let K € K and

f(s) € Hy(K). Then, for every e > 0,

1
lim inf — meas {7’ €[0,7]: sup|((s+it;a) — f(s)] < s} > 0.
T—o00 T seK

Moreover, the same inequality with "lim" holds for all but at most count-

ably many € > 0.

We note that the second fact of Theorem 1.1 for the Riemann zeta-function
was independently obtained in [29] and [37], see also the thesis of L. Meska
[39].

A proof of Theorem 1.1 is probabilistic and is based on a limit theorem of
type of Theorem E. First, in view of multiplicativity of the sequence a, it is
proved that, for almost all w € €2, the equality

) 0 l
4(57(,‘); a) _ Z am::Lim) _ H (1 + Z apl;';s(p)>’o_ > %7
=1

m=1 peP

is valid. Let P; be the distribution of the random element ((s,w; a), i.e.,
Pe(A) =mp{w € Q:((s,w;a) € A}, A € B(H(D)).

Then a limit theorem for Pr is of the following form.

19



Theorem 1.6. The measure Pr converges weakly to Py as'T" — oo. Moreover,
the support of P is the set

S¥ 1ge H(D): g(s) £ 0 or g(s) = 0}.

Chapter 2 of the thesis is devoted to universality of ((s;a) with a special
periodic sequence. For this, universality of Dirichlet L-functions is applied.
We recall that an analogue of Theorem G for Dirichlet L-functions L(s, x) is
known [52].

Theorem L. Suppose that K € K and f(s) € Ho(K). Then, for every € > 0,

1
lim inf — meas {7‘ €[0,T]: sup |L(s+ir,x) — f(s)| < 5} > 0.
T—oo T scK

Suppose that a,,, Z 0, the period ¢ of the sequence a is a prime number,

and )

Lo
ag=—> a, 2.1)
v(q) =

L)

where ¢(q) is the Euler totient function. The main result of the chapter is the
following statement.
Define

qg—1
b(Q7 X) = Z alX(l)v
=1

where x is a Dirichlet character modulo g. We say, that the function is universal
if the inequality of universality

1
lim inf — meas {7’ €10, 7] : sup |C(s+it;a) — f(s)] < 5} >0
T—oo T s€K

with every ¢ is satisfied for f(s) € Ho(K), K € K. If the above inequality
holds for f(s) € H(K), K € K, then we say that the function ((s;a) is
strongly universal.

Theorem 2.2. Suppose that the periodic sequence a = {a,, : m € N} with
minimal period q satisfies equality (2.1), and that q is a prime number.

1° If the sequence a satisfies at least one of the hypothesis

i) am=cmeN;

20



ii) an, is a multiple of a Dirichlet character modulo q;
iii) q =2;
iv) only one of the numbers b(q,x) # 0, ¢ > 2,

then the function ((s, a) is universal.

2° If ¢ > 2 and at least two numbers b(q, x) # 0, then the function ((s; a) is

strongly universal.

The results of the chapter are published in [49].

In Chapter 3, a weighted universality theorem for the periodic zeta-
function is proved. A theorem of such a type for the Riemann zeta-function
was obtained in [21] by using an additional condition for the weight func-
tion related to the Birkhoff-Khintchine ergodic theorem (see Lemma 1.12 bel-
low). Suppose that {(7,w) is an ergodic process on a certain probability space
(Q,2p), 7 € R,w e Q, E[((T,w)| < oo, and sample paths are integrable
almost surely over any finite interval. In [21], it was assumed that

T
Gy [ W+ ) = E(C0.)) + of(1+ 1))
To

almost surely for any ¢ € R, with o > 0, as " — oo. The same condition was
used in [21] for the weighted universality of the Matsumoto zeta-function. In
the thesis, the latter condition is removed.

Let w(t) be a positive function of bounded variation on [Tj, c0), Ty > 0,
such that the variation V’w on the interval [a, b] satisfies the inequality

Viw<ecw(a)

with a certain positive constant ¢ for any subinterval [a, b] C [Tp, c0). Denote

T
U(T,w)= [ w(t)dt,
/

and suppose that
lim U(T,w) = +o0.

T—o00

Denote the class of the functions w(t) satisfying the above conditions by W.
Moreover, let I(A) be the indicator function of the set A. Then the main result
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for Chapter 3 is the following universality theorem of continuous type (7 in
shifts {(s + 7; a) takes arbitrary real values).

Theorem 3.1. Suppose that w € W, and the sequence a is multiplicative. Let
K € Kand f(s) € Hy(K). Then, for every e > 0,

T

1

I%iogfm /w(t)[({T € [Ty, T) : Sél[[; IC(s+iT;a)—f(s)| < 5})d7 > 0.
To

Moreover, the same inequality with "lim" holds for all but at most countably

many € > 0.

The proof of Theorem 3.1 uses a weighted limit theorem for the function
¢(s;a) in the space of analytic functions H (D) (Theorem 3.2). The results of
Chapter 3 are published in [34].

Chapter 4 of the thesis is devoted to the weighted discrete universality of
periodic zeta-function. In this case, in approximating shifts {(s+i7; a), 7 takes
values from certain discrete sets, for example, from the arithmetic progression
{kh : k € Ny} with fixed h > 0. The discrete universality for zeta-functions
was proposed by A. Reich. In [44], he obtained the following statement. Let
N run over non-negative integers, and # A denotes the cardinality of the set A.

Theorem J. Let K € K and f(s) € Ho(K). Then, for every h > 0 and
e >0,

1
lim inf <kLN : ] — .
imin N+1#{0 k SSEK(s—i—zkh) f(s)\<£}>0

Theorem J by another method was independently proved in [1].

The first weighted discrete universality theorem of the thesis deals with the
arithmetic progression {kh}. Suppose that w(t) is a non-increasing positive
function for ¢>1 having a continuous derivative such that, for h > 0, w(t) <,
w(ht) and (w'(t))? < w(t). Moreover, let

V(N,w) =Y w(k)

k=1

be such that
lim V(N,w) = +o0.
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The class of the above function w(t) is denoted by V7. Then the first weighted
discrete universality theorem for the function ((s; a) has the following form.

Theorem 4.1. Suppose that w € V1, the sequence a is multiplicative, and the

set
2T
L, h,m) = {(logp:peP), =" |

is linearly independent over the field of rational numbers Q. Let K € K and
f(s) € Hy(K). Then, for every ¢ > 0,

N
hmlnf N ) ;w ({léké]\f : Ssgllg\g(s—l—ikh; a)—f(s)] < 8}) > 0.

Moreover, the same inequality with "lim" holds for all but at most countably
many € > 0.

It is well known that, in view of the Lindemann theorem, the number ¢”
with k € Z\{0} is transcendental. Therefore, in Theorem 4.1, we can take, for
example, h = 7 and w(t) = 1.

The second weighted discrete universality theorem for the function {(s; a)
of the thesis uses a more complicated discrete set {k“h} with fixed o, 0 < o <
1, and h > 0. Suppose that the weight w(t¢) be such that A}E}noo V(N,w) =

400, and has a continuous derivative such that

N
/ ! (£)|dt < V(N, w).
1

We denote the class of above functions w(t) by Va. Then the following theo-
rem is true.

Theorem 4.7. Suppose that w € Vb, the sequence a is multiplicative, and
0 < a<lisfixed Let K € K and f(s) € Hy(K). Then, for every ¢ > 0 and
h >0,

lim inf
N—oco

w(k)I({1<k<N : sup |((s+ikh;a)—f(s)] <e}) >0
seK

Mz

k::l

Moreover, the same inequality with "lim" holds for all but at most countably
many € > 0.

For the proof of Theorem 4.7, the uniform distribution modulo 1 of the
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sequence {ak®} with fixed 0 < a < 1 and every real a # 0 is applied. We
recall that a sequence {z; : & € N} C R is called uniformly distributed
modulo 1 if, for every interval [a,b) C (0,1),

I
nlgrolo ﬁ ; I[a,b) ({xk}) = b — a,

where {x } denotes the fractional part of xy, and 1 [a,b) 18 the indicator function
of the interval [a, ).

The results of Chapter 4 are published in [35], [36] and [48].

In the last chapter, Chapter 5, of the thesis, joint universality of the func-
tions ((s; a) and (s, «; b) is considered. The joint theorem of such a type was
known under certain additional restrictions. For example, in [16], the follow-
ing theorem was proved.

Theorem K. Suppose that « is a transcendental number, the sequence a is
multiplicative and the condition (2) is satisfied. Let K1, Ko € K, and f1(s) €
Hy (K1), fa(s) € H(K2). Then, for every e > 0,

1
lim inf meas{T €[0,7]: sup |¢(s+ir;a) — fi(s)] <e,
T—oo T seKy

sup |C(s +iT,a;b) — fa(s)| < 5} > 0.
s€EKo

In the thesis, the transcendence of « is replaced by a weaker requirement
that the set L(P;a) = {(logp : p € P), (log(m + «) : m € Ny)} is linear
independent over the field of rational numbers. Moreover, the condition (2) is
removed. Thus, the following statement is true.

Theorem 5.1. Suppose that the sequence a is multiplicative, and the set
L(P; ) is linearly independent over the field of rational numbers Q. Let
K1,Ky € Kand fi(s) € Hy(K1), fa(s) € H(K2). Then, for every € > 0,

1
lim inf meas{T €[0,7]: sup |¢(s+it;a) — fi(s)] < e,
T—o00 T 86K1

sup (s + i1, a5 b) — fas)| < 5} S 0.
seKo

Moreover, the same inequality with "lim" holds for all but at most countably
many € > 0.
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Also, in Chapter 5, the value distribution of some compositions of the func-
tions ((s; a) and ((s, a; b) is discussed. The first composition is

((s;a5a,b) = c1((s;a) + cal(s,a;b), c1,c2 € C\{0}.

The following theorem on the number of zeros for the function ¢ (s;asa,b)is
obtained.

Theorem 5.8. Suppose that the set L(IP, o) is linearly independent over Q, and
the sequence a is multiplicative. Then, for every o1, 03, % < o1 <oy <1,
there exists a constant ¢ = c(o1,09,a,a,b) > 0 such that, for sufficiently

large T, the function ((s, a; a, b) has more than cT zeros in the rectangle
{s€eC:01<0<09,0<t<T}.

Note that the first theorem of type of Theorem 5.8 was obtained by
S. M. Voronin [54] for the Hurwitz zeta-function (s, o) with rational parame-
ter a. For other zeta-functions and their compositions, the lower estimates for
the number of zeros were considered in [6], [41] and [42].

In the thesis, also a more complicated composition than (s, a;a,b) is
considered. We say that the operator F' : H?(D) — H(D) belongs to class
Lip(f1, B2), B1 > 0, B2 > 0, if the following conditions are satisfied:

1° For each polynomial p = p(s) and any set K € K, there exists an element
(91,92) € F~'{p} C H*(D) such that g1(s) # 0 on K;

2° For any set K € IC, there exist a positive constant ¢ and sets K7, Ko € K
such that

sup |[F(g11(s), g12(5)) — F(go1(s), goa(s)) |<c sup sup |gu;(s)—ga;(s)|”
seEK 1<j<2 seK;

for all (gj1,g52) € H*(D),j =1,2.
For the composition F'({(s,a),{(s,a;b)) with F' € Lip(f1, B2), the fol-
lowing universality theorem in the thesis is obtained.

Theorem 5.9. Suppose that the set L(P, «) is linearly independent over Q,
the sequence a is multiplicative and F' € Lip(B1, B2). Let K € K and f(s) €
H(K). Then, for every e > 0,

1
lim inf —meas{7 € [0, 7] : sup |F({(s+it;a),((s+iT,a;b))—f(s)] < e} > 0.
T—oo T seK
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In [18], the condition (2) and the transcendence of o were assumed.

We observe that the universality for certain composition of zeta-functions
has proposed by A. LaurinCikas in [24] and [27]. For example, there the
following theorem was proved. We recall that S = {g € H(D) : g(s) #
0org(s) =0}.

Theorem L. Suppose that F' : H(D) — H (D) is a continuous operator such
that, for every open set G C H(D), the set (F~1G) N S is non-empty. Let
K € Kand f(s) € H(K). Then, for every ¢ > 0,

1
lim inf meas{r € [0, 7] :sup |F(¢(s+i1)) — f(s)] < E} > 0.
T—oo T s€K

Theorem 5.9 implies the last result of the thesis for the composition

F(((s;a),((s,5b)).

Theorem 5.10. Suppose that the set L(IP, o) is linearly independent over Q,
the sequence a is multiplicative, and F' € Lip(S1, B2). Then, for every o1, o9,
% < 01 < 09 < 1, there exists a constant ¢ = c(o1,092,a,a,b, F') > 0 such
that, for sufficiently large T, the function F'({(s;a),((s,a;b)) has more than

cT’ zeros in the rectangle
{seC:01<0<0,0<t<T}.

The result of Chapter 5 are published in [30].

Approbation

The results of the thesis were presented at the International MMA (Math-
ematical Modeling and Analysis) conferences (MMA 2015, May 26-29, 2015,
Sigulda, Latvia), (MMA 2016, June 1-4, 2016 Tartu, Estonia), (MMA 2017,
May 30 - June 2, 2017, Druskininkai), (MMA 2018, May 29 - June 1, 2018,
Sigulda, Latvia), the 14th International Conference "Algebra and Number The-
ory: Modern Problems and Applications" (September 12-15, 2016, Saratov,
Russia), Vilnius Conference in Combinatorics and Number Theory (July 16-
22, 2017, Vilnius), the 15th International Conference "Algebra, Number The-
ory and Discrete Geometry: Modern Problems and Applications" (May 28-31,
2018, Tula, Russia), the International Conference on Number Theory dedi-
cated to the 70th birthdays of Professors Antanas LaurinCikas and Eugenijus
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Manstavicius (September 9-15, 2018, Palanga), The Conferences of Lithua-
nian Mathematical Society (LMS 2017, June 21-22, 2017, Vilnius), (LMS
2018, June 18-19, 2018, Vilnius), (LMS 2019, June 19-20, 2019, Vilnius),
as wel as at the Number Theory Seminar of Vilnius University.
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Chapter 1

Universality of the periodic
zeta-function with
multiplicative coefficients

Let s = o + it be a complex variable, and let a = {a,, : m € N} be
a periodic sequence of complex numbers with minimal period ¢ € N. The
periodic zeta-function ((s; a) is defined, for o > 1, by the Dirichlet series

m=l(mod q) (1.1)
1L & 1 1 <
=y = s ac (s ).
LA (/H—g) A

where ((s, @), 0 < a<1, is the Hurwitz zeta-function, i.e. for o > 1,

((s,) = Z ﬁ-

m=0

Since the function ((s,«) has analytic continuation to the whole complex
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plane, except for a simple pole at the point s = 1 with residue 1, the equality
(1.1) gives analytic continuation for the function ((s; a) to the whole complex
plane, except for a simple pole at the point s = 1 with residue

1 q
qlz:;al.

q
If > a; = 0, then the function ((s; a) is entire.
=1
We suppose additionally that the sequence a is multiplicative, i.e., Gy =

amay, for all m,n € N such that (m,n) = 1 and a,, Z 0.

In this chapter, we prove an universality theorem for the function ((s; a)
with a multiplicative sequence a on the approximation of analytic functions by
shifts {(s + iT;a), 7 € R.

1.1 Statement of the main theorem

LetD = { seC: % <o < 1}. Denote by K the class of compact subsets
of the strip D with connected complements, and by Hy(K), K € K, the class
of continuous non-vanishing functions on K that are analytic in the interior
of K. Moreover, denote by measA Lebesgue measure of a measurable set
ACR.

The main result of this chapter is the following universality theorem.

Theorem 1.1. Suppose that the sequence a is multiplicative. Let K € K and
f(s) € Hy(K). Then, for every ¢ > 0,

1
lim inf — meas {T €[0,7]: sup|C(s+it;a) — f(s)| < 5} > 0.
T—oo T s€K

Moreover, the same inequality with "lim" holds for all but at most count-
ably many € > 0.

We notice that Theorem 1.1, under an additional condition that, for every
prime number p,

o Jape|
Y e <e<l, (1.2)
a=1 bz
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was proved in [31]. We observe that if
¢o = max (|ay), ..., |ag) < V2 -1,

then (1.2) holds.

1.2 Definition of one random element

Denote by H (D) the space of analytic functions on D endowed with the
topology of uniform convergence on compacta. In this topology, {g,} €
H(D) converges to g € H(D) if and only if, for every compact set K € D,

lim sup |gn(s) — g(s)| = 0.
n—oo seK
In this section, we will define an H (D)-valued random element connected to
the function ((s; a).
Denote by B(X) the Borel o-field of the space X, i.e., the minimal o-field

generated by open sets of the space X. Lety = {s € C: |s| = 1} be the unit
circle on the complex plane, and

Q= H’Vpa
p

where v, = v for all p € P (P is the set of all prime numbers). With the
product topology and positive multiplication, the infinite-dimensional torus {2
is a compact topological Abelian group. Therefore, on (2, 3(£2)) the proba-
bility Haar measure my can be defined. We note that the measure m has the
invariance property, i.e., for every A € B(f2) and w € (2,

mg(A) = mpg(wA) = my(Aw).

Thus we have the probability space (€2, B(2), mp). Denote by w(p) the pth
component of the element w € 2, p € PP, and extend the function w(p) to the
set N by the formula

Prm g im
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Since the Haar measure is the product of Haar measures on (y,,, B(7,)) ,p € P,
we have that {w(p) : p € P} is a sequence of independent random complex-
valued random variables defined on the probability space (€2, B(2), mp).

Proposition 1.2. Define

X(s,w0) =Y amw(m) (1.3)

ms
m=1

Then X (s,w;a) is an H(D)-valued random element on the probability space
(2, B(?2), mp).

For the proof of Proposition 1.2, we will use the Rademacher theorem, see
[33], which is stated as the following lemma. Denote by EX the expectation
of the random variable X, and recall that the random variables X and Y we
said to be orthogonal if EXY = 0.

Lemma 1.3. Suppose that {X,, : m € N} is the sequence of positive orthog-
onal random variables (real or complex), and

o0
Z E | X log?m < oco.

m=1

Then the series
0
> X
m=1

converges almost surely.

Proof of Proposition 1.2. 1t suffices to show that, for almost all w € (2, the
series (1.3) converges uniformly on compact subsets of D. Let g > % be
fixed, and

amw(m)
Then {X,,(w) : m € N} is a sequence of complex-valued random elements

on the probability space (€2, B (2) ,m ). We have that

/w(k)w(l)de = /de =1

Q Q
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for k = 1. If k # [, then

/w(k‘)w(l)de =0

Q

because always will be an integral with k € Z

1
/eQﬂkxd:p =0.
0

Here, {w(m) : m € Z} is a sequence of pairwise orthogonal random variables.

Therefore,
- aa; — 0 if k#I,
E (X, X;) = E)w(l)d =
(6X) = o [ woiaamy {;Q,ﬂj -

Q

and {X,,,(w) : m € N} is sequence of pairwise orthogonal random variables.

Moreover,
E X 2 _ |am|2
| m| - mggo .
Therefore,
2 |am|2log -
> B ogtm = 3 el
m=1

and, by Lemma 1.3, the series

o0 o0

> K=y )
m — moo

m=1 m=1

converges almost surely. The latter series is a Dirichlet series, and its con-
vergence for s = og implies the uniform convergence on compacta in the
half-plane ¢ > 0. This shows that the series (1.3), for almost all w € (2,
converges on compacta of the half-plane o > oy.

The number o¢ > % is arbitrary. We take o9 = % + %, and denote by
A, the set of all w € € such that the series (1.3) converges uniformly on
compacta of the half-plane ¢ > 1 + L. Then we have that my(A,) = 1.

o

We set A = (| A,. Then again we have that mg(A) = 1, and, forw € A,
n=1

the series (1.3) converges uniformly on compacta of the half-plane o > %
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Of course, this implies that, for almost all w € €2, the series (1.3) converges
uniformly on compact subsets of the strip D.

The terms of the series (1.3) are entire functions. Therefore, the above uni-
form convergence shows that the random element X (s, w; a) is H(D)-valued

for almost all w € €.
O

For the proof of the next proposition, we will apply the three series theo-
rem, and state it as the following lemma. For ¢ > 0 and a random variable X,

denote
e — X if |X|<c,
0 if |X|>ec

Moreover, let DX be the variance of X.

Lemma 1.4. Suppose that {X,, : m € N} is the sequence of independent
random variables on the probability space with the measure P. Moreover
suppose that, for some c > 0, the series

and

are convergent. Then the series

is convergent almost surely.

Proof of the lemma 1.4 can be found, for example, in [19].
Now, we use the multiplicity of the sequence a.

Proposition 1.5. For almost all w € (), the product

2 a Wt
I (37
=1

peP
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converges uniformly on compact subsets of D. Moreover, for almost all w € €},
the equality

s < a W
> et (13-
=1

m=1 peP

holds.

Proof. Since |a,,| < cq, the series and product, for all w € €2, are absolutely

convergent for o > 1. Therefore, the equality of the proposition follows by the
amw(m)
mS

multiplicativity of the function
For brevity, denote, for p € P,

and

The series for x,(s,w) converges uniformly for o > % thus, z,(s,w) is a
H(D)-valued random element. Moreover,

Ca
p7 =1

o0
&
(s, @)I< Y p% =
=1

Therefore, the series

> lzp(s,w)f?

peP

converges uniformly on compact subsets of D. From this, it follows that to
prove almost sure convergence of the product

I @+ (s,0))

peP

it is sufficient to prove that the series

Zzp(s,w)

peP

converges almost surely. By the definitions of z,(s,w) and y,(s,w), we have
that
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pO’

00
C C
|xp(87w) - yp(57w)’< Z pT‘:y = p20 j :
=2

Hence, the series

Z |CCp(8, (,U) - yp(57w)‘

peP
converges uniformly on compact subsets of D for all w € €). Thus, it suffices
to prove that the series

D yp(s,w) (1.4)

pEP

converges almost surely on compact subsets of D. We have seen above that
{w(p) : p € P} is a sequence of independent random variables, thus, the terms
of series (1.4) are independent random elements. Moreover,

1
Eyp(s,w) :/ap;:s( pp/ ™y = 0
0

Q

and

2 jap|* lw(p)|” Ca
Elyp(s,w)|” = | ——5;——dmn<—;.
2 p p

Hence, for o > %,

ZE [Yp (s,w)]? < .

peP
Now, an application of Lemma 1.4 shows that the series (1.4) almost surely
converges for every fixed s € D. Lets = g9 > % Then the series (1.4)
converges uniformly on compact subsets of the half-plane o > ¢¢. Thus, the
series (1.4) converges almost sure uniformly on compact subsets of the half-
plane o > ogy. We take og = % + %, and let A,, be the set of all w € € such
that the series (1.4) converges uniformly on compact sets of the half-plane

0o > 1 + 1. Then, for every n, my(A,) = 1. Define

Then my(A) = 1, and the series (1.4), for w € €, converges uniformly on
compact subsets of D.
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Thus, we proved that the product of the proposition is almost sure conver-
gent on compact subsets of D, and the equality of the proposition follows by
analytic continuation using Proposition 1.2.

O

1.3 Statement of a limit theorem

For the proof of Theorem 1.1, we will apply a probabilistic approach based
on a limit theorem for weakly convergent probability measures in the space
H(D). Let P,, n € N, and P be probability measures on (X, 5(X)). We
recall that P, converges weakly to P as n — oo if, for every real continuous
bounded function g on X

lim [ ¢gdP, = /gdP.

n—oo
X X

In the proof of universality theorems for zeta-functions, the notion of the
support of a probability measure plays an important role. We recall that the
support of a probability measure P on (X, B(X)) is a minimal closed set Sp
such that P(Sp) = 1. The set Sp consists of all elements x € X such that, for
every open neighborhood G of z, the inequality P(G) > 0 is satisfied.

For A € B(H(D)), define

Pr(A) = %meas{T €[0,7]:¢(s+ir;a) € A}.

We will consider the weak convergence for Pr as T' — oo. Denote by P the
distribution of the H (D)-valued random element X (s, w, a) defined in Propo-
sition 1.2, i.e.,

Pr(A) =mp{w € Q: X(s,w;a) € A}, A € B(H(D)).
We will prove the following theorem.

Theorem 1.6. The measure Pr converges weakly to Py as T' — oo. Moreover,
the support of P is the set

S¥ 1ge H(D): g(s) £ 0 or g(s) = 0}
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We divide the proof of Theorem 1.6 into several steps. First we will ob-
tain limit theorems for absolutely convergent Dirichlet series connected to the
function ((s;a). After this, we will prove certain approximation results and
limit theorems for ((s; a). The next step of the proof be devoted to the identi-
fication of the limit measure. In the last step, we will consider the support of
the limit measure.

1.4 Limit theorems for absolutely convergent Dirichlet
series

Let6 > % be a fixed number, and, for m,n € N,
m\?
v (m) = exp{ - (n) }

Go(sia) = 3 2]

mS

Define the functions

m=1

and -
Gl wiay = 3 2melmon(m) g

ms
m=1

Then the latter series are absolutely convergent for o > L1117, For A €

B(H (D)), define i

1
Pr,(A) = fmeas{T €[0,T]:¢(s+ir;a) € A}
and 1
Prn(A) = Tmeas{T €[0,7]: (s +ir,w;a) € A}.
In this section, we will prove the following theorem.

Theorem 1.7. On (H(D),B(H(D))), there exist a probability measure V,,
such that the measures Pr,,(A) and me(A) both converges weakly to V,, as
T — oc.

We start the proof with a limit theorem on the torus Q. For A € B(Q),
define

Qr(A) = %meas{T €0,7): (p~ :peP) € A}.
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Lemma 1.8. Q)1 converges weakly to the Haar measure mpg as T — oc.

Proof. We apply the Fourier transform method. The dual group (character
group) of the torus €2 is isomorphic to

D =Pz,

peP

where Z, = Z for all p € P. Anelement k = (k, : p € P) € D, where only a
finite number of integers k,, are distinct from zero, acts on {2 by

w— Wk = Hwkp(p).
peP

Therefore, the characters of € are of the form

[[«"®).

peP

Hence, the Fourier transform g (k) of the measure Q7 is given by the formula

peP

gr(k) = / 1" ()@,
Q

where the sign "/" means that only a finite number of integers k,, are distinct
from zero. Thus, by the definition of ()7, we have that

T T
1 ; 1
gr(k) = T / H,Pﬂk”TdT =7 /exp{ - iTZ/kp logp}dr.
0 PEP 0

pEP

It is well known that the logarithms log p of prime numbers are linearly inde-
pendent over the field of rational numbers Q. Therefore, if k& # 0, then

Z/kzp logp # 0.

peP

Thus, after integration, we find that

1-— exp{ —iT > k:plogp}
peP

iT Y kylogp
peP

gr(k) = (1.5)
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for k # 0, Obviously, if £ = 0, then gy (k) = 1. This and (1.5) imply

1 if =
lim gTuc):{ i E=0
T—o00 .

Since the right-hand side of the latter equality is the Fourier transform of the
Haar measure m g, the assertion of the lemma follows from the continuity the-
orem for probability measures on compact topological groups, see for example,
Theorem 1.4.2 in [8]. ]

In the sequel, one property of weak convergence of probability measures
will be useful for us. We recall it. Let P be a probability measure on
(X1,B(Xy)), and u : X3 — Xy. The mapping u is called (B(X;), B(X3))-
measurable if u=!B(Xz) C B(Xi). Suppose that u has the latter prop-
erty. Then the measure P defines the unique probability measure Pu~! on
(X2, B(X2)) by the formula

Pu~'(A) = P(u'A), A € B(Xy).

Here u ! A is the preimage of the set A. It is well known that every continuous
mapping u : X; — Xy is (B(Xj), B(X3))-measurable. The following lemma
often is useful.

Lemma 1.9. Suppose that P,,, n € N, and P are probability measures on
(X1, B(Xy)), u : X1 — Xy is a continuous mapping, and P,, converges weakly

to P as n — oo. Then also P,u~" converges weakly to Pu™" as n — oo.
Proof of the lemma can be find in [2], Section 1.5.

Proof of Theorem 1.6. Define the mapping u,, : @ — H (D) by the formula

U (w) = Z M = (u(s,w;a).

ms
m=1

Since the latter series is absolutely convergent for o > %, and uniformly on
compact subsets of the strip D, the mapping u,, is continuous. Moreover,

—ir - ,
Un(p :pE]P’):ZnﬁJF(iT):C(S—i-ZT;a).
m=1
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Therefore, from the definitions of ()7 and Pr,, we have that, for A €
B(H(D)),

Pr,(A) = %meas{T €0,T]: (p""" :peP) €u, A}
= Qr(u™'4) = Qru,  (A),

ie, Pr, = Qru, L This equality, the continuity of w,, and Lemmas 1.8
and 1.9 show that Pr, converges weakly to the measure V, def My, L as
T — oo.

It remains to prove that the measure pT,n converges weakly to V,, as well

as T' — oo. Define the mapping @y, : Q@ — H (D) by the formula

= ((s,ww;a),w € Q.

(@) = amw(m)iffl oot
m=1

Then, as above, we have that the mapping 1, is continuous, and

in(p™TipEP) =) W = ((s +iT,w; a).

m=1

Therefore, similarly as in the case of Pr,, we find that I—C’Tvn = myd, .

Thus, we have to show that m g, ! = mpyu,*. For this, we will apply the
invariance property of the Haar measure m . Define the mapping u : 2 —
by the formula

u(W) = ww,w,w € Q,

Then
= mp(un(u) = (mpu™Yu,' = myu,' =V,

since, by invariance of m 7, the equality my = mzu~! holds. O

1.5 Approximation in the mean

To pass from (,,(s; a) and (,, (s, w; a) to ((s; a) and ((s, w; a), respectively,
we have to show that (,(s;a) and (,(s,w; a) are, in a certain sense, near the
functions ((s;a) and ((s,w;a), respectively. This is the aim of the present

section.
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Denote by I'(s) the Euler gamma-function, an define
ln(s) = gF(g)ns,n eN,
where the fixed number 6 is the same as in the definition of v, (m). We also
need the metric in the space H (D) inducing its topology of uniform conver-

gence on compacta. It is well known, see, for example, [3], that there exists a
sequence of compact sets { K; : [ € N} of the strip D such that

o0
D=|JK,
=1

K; C Kjqq foralll € N, and if K C D is a compact set, then K C K for
some . For g1, g2 € H(D), we set

sup |g1(s) — g2(s)|

o
—1 SEKZ
p(g1,92) = 2 :
( PO T OETED)]
- seK;

Then p is the desired metric in H (D) inducing its topology.
Now, we are ready to state a lemma on the approximation of ((s;a) by

(n(s; a) in the mean.

Lemma 1.10. The equality

T
1
lim 1imsupT/p({(s+i7‘;a),§n(s—|—ir; a))dr =0

n—=00 T 350

holds.

Proof. Using the Mellin formula

b+ioco
1
— I'(s)a *ds=e"%a,b>0
27TZ (S)a’ S € 70’7 )
b—ioco
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we find that, for o > %,

O0+ico o 0+ioco
Qm
27i / C(s + 2 0)ln Z:lms<2m / mzn )
0—ioco m= 0—ioco
o O+ioco (73)9
A, 1 m 0 z
=Z(2 (G)() ()
m= 9 100 (1.6)
1+i00
L am [ 1 m\9\ *
= Zl(z ((n) ) d2>
m= 1— zoo
> 0
Hm { <g> } Cn(s Cl)

Let K C D be an arbitrary compact set. We fix a positive € such that
% + 2e<0o<1 — ¢ for points s € K. We take 0 > 0. Then the equality (1.6)
and the residue theorem yield

—é—i—ioo
1 dz
(@) — C(s70) = 5 / o+ 50(2) T+ Rals), (1)
—h—ioco
where .
0 if Z a; =0,

R,(s) =

q
% Z: ay l”gl__ss), otherwise.

Denote the point of the set K by s = o + v, and suppose that f=0—c— %
Then, for s € K, we derive from (1.7)

IC(s +it5a) — Cu(s +iT; a)

’|z 0+ i)

dt + |Rp(s + i7)|
)+ it|

(o)
1 .
<ﬂ / ’C(eriT—G—l-it a
—0oQ
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Writing ¢ in place of v + ¢, gives

[((s +it;a) — Cu(s +iT;a)

o0
1 1 In (3 +e—s+it)|
<— —+e+i(t+71);a dt + |Rr(s + 7
27r/ Q(z t+7) > 11 +e—s+il (s + i)
—o0
Hence,
/sup|§s+z7‘ a) — Cu(s+ima)|dr < I + I, (1.8)
seK
where
%) T
1 (3 +e—s+it
—/ /’C< +e+i(t +T);a> dr sup}n(l2 i ,Z)‘dt
T J sek |3 +e—s+it
—0o0

and

/sup]R (s +i7)|dT.
seK

It is well known that uniformly in o1 <o <09
I'(o +it) < exp{—c|t|},c > 0.

Therefore, taking # = 1 + ¢, we find, by the definition of 7,,(s),

2
1 .
s5+e—o  i(t—v)

T 2
‘%—i—e—s—i—it‘ 6 < 0 * 0 >‘

< n- ex _dd (1.9)
K =g &P 9

<Lg n fexp{—aclt|},c1 > 0.

ln(3 +e—s+it)]  nateo

Similarly, we find the estimate

|Rn(s 4 i7)| < n' ™7 exp { — CW}

" (1.10)
<gn'7? exp{ — cg} <gn'7? exp{—ca|7|},c2 > 0.
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It is known [3] that, for o > %,

T

/ 1C(o +it, @) 2dt < T.
0

Hence, using (1.1), we obtain, for o > %,

dt <, T

T 1 q T ; 9
/|g(a+z't; a)2dt < Q%Zmly?/’g(aﬂ't, 5)
0 =1 0

Therefore,

=

dT<<T/T'C<;—|—5—I—i(t+T);a>

< T(1+t])z < T(L+]t)).

2 2
d7'>

Z‘C(;-FE-i—i(t-i-T);a)

This together with (1.9) shows that

[e.e]

I < n /(1 1)) expl{—ca ]}t < n—<. (1.11)

—00

The estimate (1.10) gives

l—0o l1—0o n——Qs

n
/exp{—02|t|}d7'<<K T <LK T
0

n
I <k

Thus, in view of (1.8) and (1.11),

=—2¢

) _ n2

/Sup|€ s+ir;a) — Cu(s+ima)|dr <xg n™° + .
seK T

Now, taking T — oo and then n — oo, we obtain that, for every compact set
K c D,

T
1
lim limsupT/Sup|C s+ir;a), (s +it;a ‘dT—O

n=00 T 00 s€K
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This together with the metric p proves the lemma. 0

The case of the functions ((s,w;a) and (,(s,w;a) is more complicated
because we have not any information about the mean square

T
1
/ IC(o +it,w; a)|?dt, o > 3
0
To obtain an estimate for the above mean square, we will apply some elements
of the ergodic theory.

Let, for brevity,
ar =@ T :peP), TR,

Then {a, : 7 € R} is an one-parametric group. Define the transformation ¢
on the torus €2 by
or(w) = arw,w € Q.

Since the Haar measure my is invariant with respect to translations by point
of Q, we have that {¢, : 7 € R} is an one-parameter group of measurable,
measure preserving transformations on 2. Recall that a set A € B((2) is called
invariant with respect to the group {¢, : 7 € R} if, for every 7 € R, the sets A
and A, = ¢, (A) may differ one from another at most by a set of m y-measure
zero. All invariant sets form a o-field that is a sub-o-field of B(€2). The group
{¢r : 7 € R} is called ergodic if its o-field of invariant sets consists only of
the sets of m g-measure zero or one.

Lemma 1.11. The group {¢, : 7 € R} is ergodic.

Proof. The lemma already was used in the theory of the Riemann zeta-
function, see, for example [22]. However, for fullness, we will present its
modified proof.

Let x : 2 — - be a character of the group 2. We have seen in the proof of
Lemma 1.8 that

x(w) = [T w* ).
peP

where "/" means that only a finite number of integers £, are distinct from zero.
Suppose that  is a non-trivial character (y(w) # 1). Then we have

x(ar) = H/p”kp = exp{ — iTZ/kp logp}.

peP peP

46



Since the set {log p : p € P} is linearly independent over Q, there exists a real
number 7y # 0 such that

X(ar,) # 1. (1.12)

Let A be an invariant set of the group {¢, : 7 € R}, and let I 4 be the indicator
function of A. Then, by the definition of invariant set, we have that, for almost
all w € Q,

Iy(arw) = I4(w). (1.13)

Denote by I 4 Fourier transform of I4. Then, in view of invariance of the
measure my and (1.13), we find that

fa(y) = / 3 (@) L4 () (dw)

X(aTow)IA(aTow>mH(dw>

s

= X(ar) / x(@)La(w)mr (dw) = x(ar) Fa(X)-
Q

Hence, by (1.12), we find that

A0 (1 — x(an)) =0
implies the equality
Ta(x) =0 (1.14)

for all non-trivial characters y of the group €2. Now let xq be the trivial charac-
ter (xo(w) = 0) of €. Suppose that I4(x1) = a. Then, using the orthogonality

1 if X = X0
x(w)mg(dw) = .
Q/() (){OIfx#xO,

of characters,

and (1.14), we obtain that, for every character y of the group {2,

Ia(x)=a / x(w)mp(dw) = aly = a(x).
Q
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Since I 4(w) is uniquely determined by the Fourier transform (), from this
it follows that /4(w) = a for almost all w € €. However, [4(w) is the
indicator function, thus, a = 0, or a = 1. Therefore, either 4(w) = 0, or
Ia(w) = 1 for almost all w € €. This shows that either mg(A) = 0, or
mp(A) = 1, and the lemma is proved. O

Also, we will use the notion of the ergodic process. Let X (t,w),t € T, be
a random process defined on a certain probability space with measure P. Let
t1,t1,...,t, be arbitrary values of £. Then the family of distributions

P(X(t1,w) <z1,..., X(th,w) < xn),n €N,

is called a family of finite-dimensional distributions of X (¢, w). Moreover, let
Y be a space of all functions, ¢ € 7. Then the family of finite-dimensional
distributions of X (¢,w) defines a probability measure @ on (Y, B(Y)), and,
on the probability space (Y, B(Y), Q), the translation g,, : y(t) — y(t + u),
y € Y, can be defined random process is said to be strongly stationary if its
finite-dimensional distributions are invariant with respect to translations g,,. If
a process is strongly stationary, then the translation g, is measure preserving,
i.e., foreach A € B(Y) and u € R, the equality Q(A) = Q(A,) holds, where
Ay = gu(A).

A set A € B(Y) is called invariant of the process if, for each u, the sets
A and A, can differ one from another at most by a set of (J-measure zero.
All invariant sets form a o-field wich is a sub-o-field of the o-field B(Y). A
strongly stationary random process is ergodic if its o-field of invariant sets
consists only if the sets having ()-measure 0 or 1.

Now, we state the classical Birkhoff-Khintchine theorem for ergodic pro-
cesses

Lemma 1.12. Suppose that X (t,w) is ergodic process, E| X (t,w)| < oo, with
sample paths integrable in the Riemann sense over every finite interval. Then,

for almost all w,

T

. 1

TIEI;OT/X(t,w)dt—EX(O,w).
0

Proof of the lemma can be found, for example, in [5].
Lemma 1.12 alows to estimate the mean square for ((s,w; a).
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Lemma 1.13. Suppose that o > % is fixed. Then, for almost all w € (),

T
/ (o + it w; a)dt < T, T — oo,
0

Proof. By the definition of {(s,w;a),

where
Xm =X (s,w) =

We have seen in the proof of Lemma 1.3 that X,,,, m € N, are pairwise or-

thogonal random variables such that

‘am‘Q

E|X|* = o

Since |a,|<cq, we have that, for o > 1,

o0
> E[Xnf* < oo

m=1

Therefore, using the orthogonality and applying the Perseval identity, we find
that, for o > %,

E[¢(o,w;a)* = ) E|Xn|* < 0. (1.15)

m=1

In the view of Lemma 1.11, the group {¢; : t € R} is ergodic. Therefore, the
random process ( (0,¢¢(w); a) is ergodic as well. Hence, by Lemma 1.12 and
(1.15), for o > 5 and almost all w € )

lim /]CU—i—Z?ﬁu} a)2dt = E|¢(o,w; a)|* < oo

because ((o, pi(w);a) = ((o + it,w;a). Hence, for o > % and almost all
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w € Q,
T

/C(U+it,w;a)|2dt < T, T — oo.
0
O

Now, we are in position to prove an analogue of Lemma 1.10 for the func-
tions ¢ (o, w; a) and ¢, (o, w; a).

Lemma 1.14. For almost all w € ), the equality

T
1
lim limsupT/p({(s+i7,w;a),cn(s—|—i7,w;a))d7-:0

n—o0 T—00

holds.

Proof. We repeat the proof of Lemma 1.10 and use the estimate

T
0/ < +eti(t+71)w )

which is implied, for all ¢ € R and almost all w € 2, by Lemma 1.13. O

dt < T(1 + |t])

1.6 Limit theorems for ((s;a) and ((s,w;a)

In this section, together with Pr we consider the measure
1
Pro(A) = Tmeas{T €1[0,T): {(s+it,w;a) € A},a € B(H(D)).

Some of assertions will be true for almost all w € €2, however, this has no any
influence for final results, therefore, we often will omit phrase "for almost all
weN".

Theorem 1.15. On (H(D), B(H(D))), there exists a probability measure P
such that the measures Pr and Pr g both converges to P as T" — oc.

In the proof of Theorem 1.15, we will use two notions of the weak conver-
gence of probability measures. Let { P} be a family of probability measures
on (X, B(X)). The family { P} is called relatively compact if every sequence
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{P,} C {P} contains a subsequence {P,, } such that P,, converges weakly
to a certain probability measure P on (X, 5(X)) as k — oo. The family { P}
is tight if, for every ¢ > 0, there exists a compact set K = K(¢) C X such
that

P(K)>1-¢

for all P € {P}. The notions of the relative compactness and tightness are
connected by the Prokhorov theorem which we state as the following lemma

Lemma 1.16. If the family { P} is tight, then it is relatively compact.

Proof of the lemma is given in [2], Theorem 6.1.
Sometimes, in place of the weak convergence of probability measures it is
convenient to use the notion of the convergence in distribution. We recall that

e D
the random element X, converges to X in distribution as n — oo (Xn —
n—o0

X ) if the distribution of X,, converges weakly to the distribution of X as
n — oo.

The next lemma is very important for the proof of Theorem 1.15.

Lemma 1.17. Suppose that the space (X, d) is separable, the X-valued ele-
ments Yy, Xin, Xon, ..., n € N, are defined on the same probability space
with measure i, for any k € N,

and

Moreover, if, for every e > 0,

lim lim sup p{d(Xgn, Yn)=e} =0,

k—00 n—oo
then

X, -2 X.

n—oo

The lemma is Theorem 4.2 in [2], where its proof is given.
We recall that V,, is the limit measure in Lemma 1.9

Lemma 1.18. The sequence {V,, : n € N} is tight.

Proof. Let £ be a random variable defined on a certain probability space with
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measure g, and uniformly distributed on [0, 1]. Define the H (D)-valued ran-
dom element X7 ,, by the formula

XT,n = XT,n(s) = Cn(s + €T Cl)-

Moreover, let X, be the H(D)-valued random element having the distribution

V... Then the assertion of Lemma 1.9 can be written as

Xrn —>X (1.16)

The series for (,(s; a) is absolutely convergent for o > 1 . Therefore, by the
well-known property of Dirichlet series, we know, for o > 1 , that

2,2 e
fim /ycn (o + it = 3 1emltalm)  § Jom
m=1 m=1

for all n € N. Consequently, for o > %,

neN T—oo neN T—oo

T 1
1 3
sup lim sup — /‘Cn (o+it; a)|dt< sup lim sup (T/Kn(a—i—it; a)\2dt> < 00.
0
Thus, foralln € Nand o > %,

1
suplimsup/\Cn(o—i—it;a)]dth < 00. (1.17)
neN T—oo T

Let K; be compact set from the definition of the metric p. Then an application
of the Cauchy integral formula and (1.17) shows that, for all n € N,

T

1
limsup/ sup |Gu(s +it;a)|dT<C < 0. (1.18)
Tooo 1) sek;

For an arbitrary fixed ¢ > 0, let M; = M;(¢) = 2!Cje~!. Then, in view of
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(1.18), we find that, for all n € N,

1imSUPM{ sup | Xrn(s)| > Mz}

T—00 seK;

1
= lim sup fmeas{T € 10,77 : sup [(u(s +iT;a)] > Ml}

T—00 seK;

T

< lim sup ! sup |Cu(s +iT;a)|dT<—=— G c

< — T; < —.

Tooo 1M ) seKi " STM, 2
Hence, in virtue of (1.16),

€
p{ sup [ Xa(s)| > My [ <. (1.19)

seK;

Define the set K = K (c) = {g e H(D) : sup |g(s)| <My, 1 € N}. Then K
seK;
is a compact set in the space H (D). Moreover, by (1.19), for all n € N,

o0

(X, € K)> Z =1—c

=1

Since V,, is the distribution of X,,, this shows that
Va(K)21 —¢

forall n € N, i.e., the sequence {V}, : n € N} is tight. O

Proof of Theorem 1.15. By Lemma 1.18, the sequence {V,, : n € N} is tight,
hence, in view of Lemma 1.16, it is relatively compact. Therefore, there exists
a subsequence {V,,, } C {V,} such that V,,, converges weakly to a certain
probability measure P on (H(D),B(H(D))) as k — oo. Hence, using the
notation of Lemma 1.18, we have that

X,, —— P. (1.20)

k—o0

Define one more H (D)-valued random element Y7 = Y7 (s) by the formula

Yr(s) = C(s + i€T5 a).
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Then Lemma 1.10 implies, for every € > 0, the equality

lim hmsup,u{p(YT,XTn) e}

n—o0 T—s

1
= lim limsup Tmeas{T €10,T]: p(¢(s+iT;a), (uls +iT; a)) 2}

n—=00 T 00 (L1.21)
. T
< Tim T - - _
\nhm hgpnsup Te /p(((s—i—zr, a),Cu(s+it;a))dr =0

0
Now, the relations (1.16) and (1.20) together with equality (1.21) show that all
conditions of Lemma 1.16 are satisfied. Therefore

Ve -2 P, (1.22)

in other words, the measure Pr converges weakly to P as T — oco. More-
over, the relation (1.22) shows that the limit measure P is independent of the
sequence {X,,, }. Since the sequence {X,,} is relatively compact, we deduce
from this that

X, -2 P (1.23)

n—o0

It remains to prove that the measure Pr g also converges weakly to the
measure P as T" — oo. For this, we define two H (D)-valued random elements
Xrna = Xrna(s)and Yr o = Y7 o(s) by the formulas

X1n0(s) = Cu(s + €T, w; a)

and
Yro(s) = ((s + T, w;a).

Then, by Lemma 1.9, we have that
D
X1no — Xn, (1.24)
T—o0
and Lemma 1.14 implies, for every € > 0, the equality

hm limsup p{p(Yr.0, X7 na)=c} =0. (1.25)

T—o0
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From (1.23)-(1.25) and Lemma 1.16, it follows that
Yro —2>— P,
T—o0

and this is equivalent to weak convergence of Prq to PP as T" — oo. The
theorem is proved. 0

1.7 Proof of the first part of Theorem 1.6

In this section, we will prove that Pr converges weakly to the measure P,
in other words, we will identify the limit measure P in Theorem 1.15.

For this, we recall an equivalent of weak convergence in terms of continuity
sets. We remind that A € B(X) is called a continuity set of a probability
measure P on (X, B(X)) if P(OA) = 0, where OA denotes the boundary of
the set A.

Lemma 1.19. Let P,, n € N, and P be probability measures on (X, B(X)).
Then P, converges weakly to P as n — oo if and only if, for every continuity
set A of P,

lim P,(A) = P(A).

n—oo

The lemma is a part of Theorem 2.1 of [2].
Let A be an arbitrary fixed continuity set of the limit measure P. On the
probability space (2, B(€2), mr), define a random variable 7 by the formula

0 otherwise.

() :{ 1 if C(s,w;a) € A,

Obviously,

E, = /nde =mp{w € Q:((s,w;a) € A} = P(A). (1.26)
Q

Moreover, by Theorem 1.15 and Lemma 1.19, we have the equality

: .1 .
Th_rgo Pro(A) = Th_r)réo Tmeas{T €[0,7]:¢(s+iT,w;a) € A} 127

= P(A).
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Since, in view of Lemma 1.11, the group {p, : 7 € R} is ergodic, we have
that the random process (- (w)) is ergodic as well. Therefore, Lemma 1.12
shows that

T

1
Jim /n(sor(w))dT = En. (1.28)

0

However, by the definition of ¢, and 7,

1

T
T /n(ng(w))dT = %meas{T €10, 7] :<(s,pr(w);a) € A}
0

1
= Tmeas{T €[0,7):¢(s+it,w;a) € A}.
This, (1.28) and (1.26) show that

lim %meas{T €10,7]:((s+ir,w;a) € A} = P(A).

T—o0

Hence, in view of (1.27), we obtain that P(A) = P¢(A). Since A was an
arbitrary continuity set of the measure P, we have that P(A) = P:(A) for
all continuity sets A of P. However, it is known [2] that all continuity sets
constitute a determining class. Therefore, the equality P(A) = P¢(A) holds
for every A € B(H(D)). Thus, we have that P = P, and the first part of

Theorem 1.6 is proved.

1.8 The support of the measure

In this section, we will prove that the support of the limit measure in The-
orem 1.4 is the set

S={ge H(D):g(s) #0org(s) =0}.

We start with several statements of known results.
Recall that the support of the distribution of a random element X is called

a support of X, and will be denoted by Sx.

Lemma 1.20. Suppose that {X,, : m € N} is a sequence of independent
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H (D)-valued random elements such that the series

00
> X
m=1
converges almost surely. Then the support of the sum of this series is equal
to the closure of the set of all g € H(D) that can be written as the sum of a
convergent series

)
g = Z 9m, 9m € SXm-

m=1

The lemma is Theorem 1.7.10 of [22].

Lemma 1.21. Suppose that the sequence {g,, : m € N} C H(D) satisfies the
following conditions:

1° If pis a complex-valued Borel measure on (C, 3(C)) with compact support

contained in D such that

’ Z gmd,u’ < 00,
then
/sldu(s) =0
C

foralll € Ny,

2° For every compact subset K C D,

S sup lgm(s)

m=1 seK

3° The series
oo
> 9m
m=1
is convergent in H (D).

Then the set of all convergent series

[e.e]

Z AmGm

m=1

57



with |a,,| = 1 is dense in H(D).
The lemma is Theorem 6.3.10 of [22].

Lemma 1.22. Let ;1 be a complex-valued Borel measure on (C,B(C)) with
compact support contained in the half-plane {s € C : ¢ > o0}, and

o(5) = [ edu(e).
C

If g(s) £ 0, then

1
lim sup M > 0g.
T—00 x

The lemma is Lemma 6.4.10 from [22].
Recall that an analytic function g(s) in an angular region | arg s|<fp, 0 <
Op<m, is called a function of exponential type if

1 0
r—00 r

uniformly in 6, |0]|<6p.

Lemma 1.23. Suppose that g(s) is a function of exponential type, and

lim sup > —1.

T—r00

log [g(x)|
X

Then, for all coprime | an q,

> Jg(logp)| < oo

p=Ilmodq

The lemma is Lemma 4.1 of [28].
We also recall the Hurwitz theorem which we state as the next lemma.

Lemma 1.24. Suppose that {g,(s) : n € N} is a sequence of analytic func-
tions in a region G bounded by a simple closed contour, and that

Jim_ g, (s) = g(s)

uniformly in G, where g(s) # 0. Then an interior point sy of G is a zero of g(s)
if and only if here exist a sequence {s,} C G such that s, — so as n — oo,
and g(sp) = 0 forn > ny = np(so).
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Proof of lemma is given in [51].
Now, we are ready to prove the second statement of Theorem 1.6 on the

support of the measure F;.
Lemma 1.25. The support of the measure P is the set S.
Proof. By Proposition 1.5, we have that
l
((s,w;a) = H<1+Zapw )
peP

where, for almost all w € 2, the product converges uniformly on compact
subsets of D. Let pg be such that, for p > po,

> aplwl 1
Z (p) ' <§

s
=1 p

for all s € D. Such a number pg exists because

o0

> utlley

ls
=1 p =1

1
aplwt(p =1 /b c
ppls( )‘<CaZ=6a =

Next, we consider, for pg > pg, the product
o 1
aplw'(p)
IT (130,
p>Po =1
For brevity, let, as in the proof of Proposition 1.5,

[oe)

Clplw
E p > Po
=1 P

For |z| < 1, define

22 28

log(1 =z——=—4+—=—....
og(l+2z2)==z 2+3

Then the functions log(1 + x,(s,w)) are well defined for s € D. In the proof
of Proposition 1.5, it was obtained, that

pr(s,w)

peP
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converges uniformly on compact sets of D for almost all w € ). Therefore,
there exists a sequence b = {b), : |b,| = 1} such that the series

> ay(s,b) (1.29)

p>Po

converges in the space H (D). Moreover, it was observed in the proof of Propo-

sition 1.5 that
> lap(s,w)f?
peP

converges uniformly on compact sets of the strip D. Thus, for every compact
set K € D,

Z sup |z, (s, b)[* < c0.

popy SEK
This and the convergence of the series (1.29) show that the conditions 2° and
3° of Lemma 1.21 are satisfied by the sequence {z,(s, b)}. It remains to check
the condition 1°.

Suppose that y is a complex-valued Borel measure (C, B(C)) with com-

pact support contained in D such that

>

p>po " ¢

xp(s,b)du(s)| < oo. (1.30)

Write b
a
zp(s,b) = % + yp(s, b),

where, by the proof of Proposition 1.5,

Z ’I‘p(s, b) - yp(s7 b)|
P>Po
converges uniformly on compact subsets of D. Thus, in view of (1.30),

Z ap/plsd/i(s)

P>Po C

< Q.

Hence, by the periodicity of the sequence a, we find that

1
Z al/Sdu(s) < 00 (1.31)
P>Po C p
p=l(modq)
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foralll=1,...,q, (I,q) = 1. Since the sequence a is multiplicative, we have
that a; = 1. Therefore, (1.31) implies the inequality

> p(logp)| < o, (1.32)

P>po
p=1(modq)

where p(z) = [ e 5*du(s), I = 1,...,q. The function p(z) is of exponential
C

type, therefore, in virtue of Lemma 1.22, we have that either p(z) = 0, or

lim sup > —1.

T—00

log |p(x)|
X

If the latter in equality holds, by Lemma 1.22

> lp(logp)| = oo, (1.33)
P>po
p=1(modq)
and this is contradicts (1.32). Thus, we have that p(z) = 0, i.e.,
/e_szdu(s) =0.
C
Differentiating the latter equality m times and then taking z = 0, we find that
/smd,u,(s) =0
C

for all m € Ny. This means that the condition 1° of Lemma 1.21 also holds for
the sequence {z,(s,b) : p > po}. Therefore, the set of all convergent series

> b(p)ay(s, b) (1.34)

p>Po

with |b(p)| = 1, p > Po. is dense in the space H (D).
Let x(s) be an arbitrary point of H (D), ¢ > 0 is an arbitrary number, and
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K C D be an arbitrary compact set. We have that, for p > po,

Then there exist pg such that

o k
p>po \ =2 P k=2 \ =1 k

with every a = {a(p) : |a(p)] = 1}. The denseness of the set of the series
(1.34) implies that there exists a = {a(p) : |a(p)| = 1} such that

sup

< £ (1235
seK 2

. €
sup |zo(s) — Z log (1 + zp(s, b)) — Z a(p)xp(s,b)| < 3 (1.36)
seK . -
Po<p<po P>Po
Now, let
b(p) if po<p < po.
Then we deduce from (1.35) and (1.36) that
sup |zo(s Z log (1 + zp(s a))‘
seK
p>Po
<suplanfs) = Y tog (14 ap(sn) - 3 dlhay(e.0)
sek Po<p<Po p>Po
aplal(p ayal(p ’ (—1)k-1
cap| T (S5 (ot ) ) <
seK - — p
p>po =2
This shows that the set of all convergent series
> log (14 zp(s, d)) (1.37)

pP>po

with a = {a(p) : |a(p)| = 1} is dense in the space H(D).
We already have mention that {w(p) : p € P} is a sequence of independent
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random variables defined on the probability space (2, B(2), m ). Hence

{1og (1+ 2,(5.0) : p € P}

is a sequence of independent H (D)-valued elements on the probability space
(Q,B(£2), mp). The support of each random variable w(p) is the unit circle
on the complex plane. Therefore, the set

{g€ H(D) : g(s) = log (1 +z,(5,8))}

with a = {a(p) : |a(p)|] = 1} is the support of the H(D)-valued random
element
log (1 + ap(s,w)).

Consequently, by Lemma 1.20, the support of the random element
> log (14 zp(s,w)) (1.38)
P>Po

is the closure of the set if all convergent series (1.37). Since this set is dense in
H(D), we have that the support of the random element (1.38) in the whole of
H(D).

Now, let the function u : H(D) — H (D) be given by the formula

u(g) =e%,9g € H(D).
Then u is a continuous function sending
Z log (1 + a?p(s,w))
P>Po
to
I log (1 + 2,(s,w)), (1.39)
pP>po

and mapping H (D) onto S\{0}. This shows that the support of the random
element (1.39) contains the set S\{0}. However, the support of the random
elements (1.39) is a closed set. By Lemma 1.23, the closure of the set S\{0}
is S. This, the support of the random element (1.39) contains the set S.

The product (1.39) consists of non-zero factors and converges uniformly
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on compact subsets of the strip D for almost all w € (2. Therefore, in view
of Lemma 1.23 again, the set S' contains the support of the random element
(1.39). This and the opposite inclusion shows that the support of the random
element (1.39) is the set S.

Write

TT 1+ 2y(5,0)) = Xi o,
peP

where
X1 = H (1+ zp(s,w)), Xo = H (1+ zp(s,w)).
P<Po P>po
Then we have that X; and X5 are independent random elements. Since the
product is uniformly convergent on compact subsets of D for almost all w € (2,
the random element X is not degenerated at zero. Hence, the support of X X9
is the same as Xo, i.e., it is the set S. The lemma is proved. ]

Proof of Theorem 1.6. The theorem follows from Section 1.7 and Lemma
1.25. O

1.9 Proof of Theorem 1.1

We recall one more equivalent of weak convergent of probability measures,
in this case, in terms of open sets.

Lemma 1.26. Ler P, n € N, and P be probability measures on (X, B(X)).
Then P, converges weakly to P as n — oo if and only if, for every open set G
of X,

hnII_l>iOI.}f P,(G)=P(G).

The lemma is a part of Theorem 2.1 of [2].
We also will use the Mergelyan theorem on the approximation of analytic
functions by polynomials.

Lemma 1.27. Let K C C be a compact set with connected complements, and
the function f(s) be continuous on K and analytic in the interior if K. Then,
for every € > 0, there exists a polynomial p(s) such that

sup | f(s) —p(s)| <e.
seK
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Proof of the lemma can be found in [38].

Proof of Theorem 1.1. The case of "liminf". Since the function f(s) is non-
vanishing on K, by Lemma 1.27, there exist a polynomial p(s) such that

sup | f(s) — )] < % (1.40)
seK

Define the set

6. = {g.e (D) ssuplats) - < £}

seK

Then G. is an open neighborhood of e?(*) which, in view of Lemma 1.25, is an
element of the support of the measure ;. Thus

Pc(gg) >0
Hence, by Theorem 1.6 and Lemma 1.26,
liminf Pr(G.)>P¢(G:) > 0
T—00
This and the definition of Pr and G, give the inequality

lim inf —meas{T €[0,7) : sup |{(s + it;a) — e ‘ < } >0. (141)
T—oo T seK 2

Suppose that 7 € R satisfy the inequality

sup}C s+ 1T a)—ep()‘ <<
seK 2

Then, for these 7, taking into account (1.40), we find

sup }C (s+iT;a)— |< sup ‘Q s+iT;a)—ePl®) Hsup ‘f ep(s)} < 2+§

This shows that
{7‘ €10,T] : sup !((s +iT;a) — ep(s)‘ < E}
seK 2

C {T € (0,7 :jél]g‘C(S—l—iT;Cl) — f(s)| < 5}.
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Hence, by the monotonicity of the Lebegue measure and (1.41), we obtain

1
lim inf —meas{T € (0,7 : sup [((s + iT;a) — f(s)] < 5} > 0.
T—oo T scK

The case of "lim". Define the set

6.~ {a € D) ssuplate) - £(9)] < =}.

seK

The boundary 8@ of QE lies in the set

{9 € H(D): sup [g(s) = f(s)] = e},

therefore, the boundaries 8651 and 8@82 do not intersect for different positive
€1 and 9. This shows, that Pc(ﬁéa) is positive for at most countably many
e > 0, in other words, the set QE is the continuity set of the measure P for all
but at most countably many € > (. Therefore, by Theorem 1.6 and Lemma
1.19, the limit

lim Pr(G.) = Pc(G.)

T—o00

exists for all but at most countably many € > 0. By the distributions of Py and
G., the limit

T—o0

lim lmeas{T €[0,7) : sup |¢(s +im;a) — f(s)] < 6} = Pe(G.).(1.42)
T seK

exists for all but at most countably many € > 0. Thus, it remains to prove
that P (QE) > 0. Let G. be the same as in the case of "lim inf". Suppose that
g € G.. then

sup [f(s) — "] < —.
seK 2

Hence, and (1.40), for such g(s),

sup |g(s) — f(s)|<sup |g(s) — ep(s)‘ + sup | f(s) — ep(s)‘ <Z4f-c
seK seK seK 2 2

This shows that g € G.,ie., G. C G.. Since Pr(G:) > 0, hence, we have the
inequality PC(QAE > (, and the theorem follows by (1.42).
The theorem is proved. O
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Chapter 2

Special case of the sequence a

In this chapter, we consider the universality of the function ((s; a) with a
special periodic sequence a, such that a,, # 0. We suppose that the period g
of the sequence a is a prime number, and

ar, 2.1

where ¢(q) = #{1<I<q : (l,q) = 1} is the Euler totient function. Clearly,
the equality (2.1) defines a non-trivial sequence for ¢=3. If ¢ = 2, then ¢(2) =
1, and (2.1) implies az = a;. Thus, by periodicity of a, we have that a,,, = a1
forall m € N.

In this chapter, we do not require the multiplicativity of the sequence a.
For the proofs, we will apply the approach based on properties of Dirichlet
L-functions.

2.1 Statement of the results

Dirichlet characters and Dirichlet L-functions were shortly described in
Introduction, therefore, we recall only that if  is a Dirichlet characters modulo
g, then the corresponding Dirichlet L-function L(s, x) is defined, for o > 1,

by
Lis.y) = i XT(:Z) 11 (1 B X(p))17

s
m=1 P p
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and has a meromorphic continuation to the whole complex plane. The func-
tion L(s, x) is entire if  is the non-principal character modulo ¢, and has the
unique simple pole at the point s = 1 if x is the principal character modulo q.

If ay, = ¢, m € N, with ¢ € C\{0}, then the sequence a is periodic with

period ¢ = 1. In this case, we have

o0

((s;a) = Z%,a>1.

m=1

thus, ((s;a) = ¢((s). Similarly, if a,, is a multiple of a Dirichlet character x
modulo ¢, i.e., a,, = cx(m), m € N, with a certain constant ¢ € C\{0}, then

— cx(m)
((s;a) = Z s 0> 1.
m=1
Thus, ((a; a) = cL(s, x). Since the functions ((s) and L(s, x) are universal in
the Voronin sense, Theorems G and I, in the above cases, the function ((s; a)

is also universal. Thus, we have the following statement.

Theorem 2.1. Suppose that a,, = ¢ # 0, or a, is a multiple of a Dirichlet
character modulo q. Let K € K and f(s) € Ho(K). Then, for every € > 0,

1
lim inf —meas{r € [0,T] : sup|((s +iT;a) — f(s)| <&} > 0.
T—o0 T sck

For the statement of the main theorem, we need some notation. It is well
known, see, for example, [43], that, for 1<b < ¢, (b,q) =1,b € N,

(s2) =25 X s

x=x(modq)

where the summing runs over all ¢(g) Dirichlet characters modulo g. There-
fore, denoting by ([, q) the greatest common divisor of the numbers [ and ¢,
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and using (1.1), we find

((s;a) = lZ:al <8 l) = izq:alc s (l»lQ)
’ qS 7q qS ) q

Wag) 0 oo

- zq: L X(@)L(s,x).

_4q_ s
=1 ¢<(Z7q)>(laQ) X=X(m0dﬁ)

In this chapter, we do not require the multiplicativity of the sequence a.
Therefore, it is convenient to separate two types of universality. We say that
((s; a) is universal if inequality of universality

1
liminf —meas{r € [0,T] : sup|((s +iT;a) — f(s)| <e} > 0.
T—oo T sck

with every € > 0 is satisfied for all K € K and f(s) € Ho(K). If the latter
inequality is satisfied for all X' € K and f(s) € H(K) (H(K) is the class of
continuous functions on K that are analytic in the interior of K'), then we say,
that the function ((s; a) is strongly universal. For brevity, let

q—1
b(g,x) = D aix(),
I=1
where x is a Dirichlet character modulo q. We suppose that a,,, Z 0, m € N.
Then the following statement is true.

Theorem 2.2. Suppose that the periodic sequence a = {a,, : m € N} with

minimal period q satisfies equality (2.1), and that q is a prime number.
1° If the sequence a satisfies at least one of the hypothesis

i) am =c,meN;

ii) an, is a multiple of a Dirichlet character modulo q;
iii) q =2;
iv) only one of the numbers b(q, x) # 0, ¢ > 2,

then the function (s, a) is universal.
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2° If ¢ > 2 and at least two numbers b(q, x) # 0, then the function {(s; a) is

strongly universal.

For the proof of Theorem 2.2, we will use the Voronin joint universality
theorem for Dirichlet L-functions.

2.2 The Voronin theorem

First we remind the notion of equivalent Dirichlet characters. Let y; and
X2 two Dirichlet characters modulo ¢; and g, respectively. Denote by [q1, g2]
the least common multiple of ¢; and go. For m € N such that (m,q;) = 1
and (m, q2) = 1, we have that (m, [q1,q2]) = 1. Then, for such m, by the

definition of a character,

X1 (m) # 0 and xa(m) # 0.

The characters 1 and x2 are called equivalent if

x1(m) = x2(m)

for (m, [q1,¢2]) = 1, or, in other words, if x; is equal to x5 for m such that
the values x1(m) # 0 and x2(m) # 0.

S. M. Voronin in [53], see also [17] and [54], obtained the joint universality
of Dirichlet L-functions. Roughly speaking, he proved that a collection on an-
alytic functions can be simultaneously approximated by the collection of shifts
of Dirichlet L-functions. We state a modern version of the Voronin theorem as
the following lemma.

Lemma 2.3. Suppose that x1, ..., X, are pairwise non-equivalent Dirich-
let characters, and L(s, x1), ..., L(s, xr) are the corresponding Dirichlet L-
functions. For j =1,...,r, let K; € K and f;(s) € Hyo(Kj). Then, for every
e>0,

1
lim inf —meas{r € [0,T] : sup sup|L(s+ i7, x;) — f(s)| < e} > 0.
T—o0 T 1<j<r sek

Proof of the lemma can be found in [25].
The initial Voronin theorem for a collection of Dirichlet L-functions with

pairwise non-equivalent characters was proved for closed circle in D, j =
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1,...,r. B. Bagchi obtained [1] a joint universality for Dirichlet L-functions

with different character modulo q.

2.3 Proofs of universality

Theorem 2.1 is trivial, however, we present some remarks.

Proof of Theorem 2.1. 1. The case a,, = ¢, ¢ # 0, m € N. By Theorem G
stated in Introduction, for every K € K, f(s) € Ho(K) and e > 0,

1 1
liTrriiorémeeas {7‘ € [0, 7] :SgE‘C(S—i—iT) — Ef(s)\ < ‘%} > 0.

Thus,

1
lim inf — meas {7’ €[0,T] : sup |cC(s +1iT) — f(s)] < 5} >0,
T—o00 T seK

and the theorem follows by the equality ((s + i7;a) = ¢((s + i7).

2. Similarly, if a,, = cx(m), ¢ # 0, m € N, where x is a Dirichlet
character modulo ¢, then, by Theorem I of Introduction, for every K € K,
f(s) € Hy(K) and e > 0,

1 1
liminf — meas {7‘ €[0,T] : sup |L(s +iT,x) — —f(s)] < i} > 0.
T—oo T seK ¢ ‘C’

Hence,

1
lim inf — meas {T € [0,T) : sup |cL(s +it, x) — f(s)| < 5} >0,
T—oo T scK

and the theorem follows by the equality ((s + i7; a) = ¢((s + iT, X). O

The proof of Theorem 2.2 is based on a partial case of equality (2.2) and
Lemma 2.3.

Proof of Theorem 2.2. The cases i) - iii) of the assertion 1° are contained in
Theorem 2.1. Thus, it remains to consider the case iv) of 1°.
Since the modulo g is prime, we have that (I,¢q) = 1 forl =1,...,q¢ — 1,
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and (I, q) = g for [ = q. Therefore, we deduce from the identity (2.2) that

Cssa) =24 N XML+ —= > a Y. XDL(s.x)23)
q)

qS
x:x(modl) =1 X:x(mod
However, x(m) = 1 for y = x(mod1), thus,
> 1
(s,%x0) Z — ,o> 1.

ms
m=1

Therefore, by (2.3),

C((s;a) = aqgs(s) LY Y 3L ). 2.4)

q 90(‘1) I=1 y=x(modq)

It is well known that, for the principal characters yo modulo ¢

ss0 =@ [T (1- %) = (1- %)

pS
plg

because, in this case, ¢ is a prime number. This and (2.4) show that

1 1 &
C(SW):qS(al @Z )C

L S6s) qila L1 1@ > X()L(s.x) (2.5)
1T ! ’ )
olq) = D)= i
q—1 q—1
1
_ C((S)) a; + 2@ ay X()L(s, x)
AN PAIST x=x(modg)

in view of the equality (2.1). Now, in the set {x : x = x(modq)}, we re-
place the principal character xo modulo g by the character y(mod1). Then the
equality (2.5) can be rewritten in the form

()= —Sa Y XL
(9) I=1  x=x(modgq) (2.6)
- (1(]) Z L(57X)b(Qa X)7

Xx=x(modq)

©
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where

q—1
b(g,x) = > arx(l)-
=1

We note that at least one number b(q, x) in (2.6) is non-zero. Actually, if all
the numbers b(q, x) = 0, then ((s; a) = 0, and this contradicts the assumption
that a,,, #Z 0.
Now, let one number b(g, x) # 0. Then the definition of b(g, x) and (2.6)
give
q—1

1
C(s;a) = @L(s, X) Y ax(l).

=1

Hence, by the uniqueness theorem for Dirichlet series, we find that

1 Kk
am = ——x(m) > a;x(l)
o)~ ;}W

for all m € N. Thus,

i
L

arx(l) =...=ag1x(¢—1) = So(lq) arx(1),
=1

and, by periodicity,
am = a;x(m), m € N.

Therefore, this case reduces to case ii).

It remains to prove the assertion 2°. Let, as in Chapter 1, H (D) denote the
space of analytic functions on D. We also preserve the above notation, i.e., in
place of xo(modg) taking X (mod1). Define the operator F' : H¥(0) (D) —
H (D) by the formula

F(gy(s) : x = x(modg)) = ﬂlq) S g (3)b(@,X):
x=x(modq)

where (g, (s) : x = x(modgq)) € H*@ (D). First we will prove that, for every
K € K and a polynomial p = p(s), there exists (g (s) : x(modq)) € F~1{p}
such that g, (s) # 0 on K for all x(modg). Suppose that

b(g,x;) #0,5 =1,2.
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Since the set K is bounded as a compact set, there exists a constant C' € C
such that

p(s) +C #0

on K, and )

-C - 2@ Z b(g,x) # 0.

x=x(modq)
XFX1,X2

We take

9y (8) = @(@)b (g, x1) (p(s) + C)
and

x> (s) = o(@)b™ (4, x2) ( - C - (p(lq) ) > (g, X)>,
e

and g,(s) = 1 for x # x1,x2. Then we have that g, (s) # 0 on K for all
X = x(modg), and

F(gy(s) : x = x(modg)) = p(s),

i.e., (gx(s) : x = x(modq)) € F~'{p}.

For brevity, let

q—1

M = ‘al|a
I=1
and let 7 € R satisfy the inequality

sup  sup |L(s+i7,x) — gy (5)| < = (2.7)

x=x(modgq) s€K 2M°
where the functions g, (s) have the above properties. Then, for such 7, in view
of (2.6),

sup [((s + iT,a) — p(s)|
seK

= jg};; ‘F(L(s +iT,X) i x = X(modq)) — F(gx(s) Cx = X(modq))‘

(2.8)
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M .
<sup —— Z |L(s + 7, x) — gx(3)]
sek 9(q)
x=x(modq)

< sup sup|Lfs+imx) —gx(s)] <
x=x(modgq) s€K 2
The characters x = x(modq), where X is replaced by ¥, are different (all
©(q) characters modulo ¢ are different), i.e., they are pairwise non-equivalent.
Therefore, by Lemma 2.3, the set of 7 € R satisfying the inequality (2.7) has
a positive lower density, i.e.,

1
lim inf —
Thoo T

meaS{T €[0,T]: sup sup|L(s+iT,x) — gx(s)| < i} > 0.
x=x(modq) s€K 2M

(2.9)

Moreover, we have seen that (2.7) implies (2.8). Therefore,

Te|0,T]: sup sup|L(s+1i1,x) —gv(s)| < —
{reom: swp supii ) = ()] < 527}

C{TE[O,T] : sup sup|((s+it;a) — p(s)| <§}.
x=x(modq) s€K 2

Hence, by(2.9) and the monotonicity of the Lebesgue measure

1
lim inf —meaS{T € 10,77 : sup |((s + iT;a) — p(s)]| < E} >0 (2.10)
T—oo T s€K 2

for every polynomial p(s).
It remains to replace the polynomial p(s) by f(s) in (2.10). By Lemma
1.27, we may find a polynomial p(s) such that

sup | f(s) —p(s)| < ° (2.11)

sEK 5
If 7 € R satisfies the inequality

. g
sup [((s +iT;a) — p(s)| < 3
seK

then, in view of (2.11),
sup |((s +i73a) — f(s)|<sup |[((s +iT5a) — p(s)| + sup | f(s) —p(s)| <e.

seK seK seK
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This shows that

{7’ € [0,T7] : sup sup [((s + iT;a) — p(s)]| < E}
seK seK 2

C {7’ €[0,77]: SEEK(SJMT; a) — f(s)] < 5}.

Therefore, by the inequality (2.10),
1
lim inf Tmeas{r €[0,T] : sup |{(s +it;a) — f(s)] < E} > 0.

T—o0 seK

The theorem is proved.
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Chapter 3

Weighted universality of
periodic zeta-function

The aim of this chapter is a generalization of Theorem 1.1. More precisely,
this chapter is devoted to a weighted universality theorem for the periodic zeta-

function with multiplicative coefficients.

3.1 Statement of the theorem

First of all, we define the weight function. Let w(t) be a positive function
of bounded variation on [T, c0), Ty > 0, such that the variation Vabw on the
interval [a, b] satisfies the inequality

Viw<ew(a)

with a certain constant ¢ > 0 for any subinterval [a, b] C [Tp, c0). Define

T
U(T, w) = / w(t)dt,
To
and suppose that
lim U(T,w) = +o0.
T—o00

Denote the class of the above functions w(t) by W, and by I(A) the indicator
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function of the set A.

Theorem 3.1. Suppose that w € W, and the sequence a is multiplicative. Let
K € Kand f(s) € Hy(K). Then, for every € > 0,

T

1

I%iogfm /w(t)[({T € [Ty, T) : ESIE |C(s+iT;a)—f(s)] < 5})d7 > 0.
To

Moreover, the same inequality with "lim" holds for all but at most countably

many € > 0.

We note that Theorem 3.1 does not use any additional condition related
to the Birkhoff-Khintchine ergodic theorem. The mentioned condition was
involved in the papers [21], [23]. The proof of Theorem 3.1 is based on
a weighted limit theorem in the space of analytic function for the function
((s; a). This theorem will be obtained in the next section.

3.2 Weighted limit theorem

We preserve the notation of previous chapters. For A € B(H (D)), define

T
Pru(A) = U(I{, m /w(t)]({T € [To,T) : (s + s 0) € A})dr.
To

Moreover, as in Chapter 1, P is the distribution of the H (D)-valued random

((s,wia) =] <1+Z%(}i(m> ‘
p a=1

Theorem 3.2. The measure P ., converges weakly to Pr as T' — oco. More-

element

over, the support of F¢ is the set

S={g9€ H(D):qg(s) #0org(s) =0}

We start the proof of Theorem 3.2 with a weighted limit theorem on the
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torus . For A € B(2), define

T

/w(t)[({T €Ty, T):(p " :peP)e A})dr.
To

1

Qrw(A) = U(T,w)

Lemma 3.3. ()7, converges weakly to the Haar measure my as T — oo.

Proof. Denote by g1, (k). k = (kp : k, € Z, p € P), the Fourier transform of
the measure ()7,,. As in the proof of Lemma 1.8, we have that

o7(k) = / T <" (0)dQr0.
Q

peP

where the sign "/" means that only a finite number of integers k,, are distinct
from zero. Hence, by the definition of ()7, we find that

T
1 ! 1k T
gTﬂU(E) = U(T 'U)) 'U)(T)H P kp dr
’ To peP
. T 3.1)
. /
T U(Tw) / wire | - ”ZP kylogp .
To pE
Clearly,
) T
grw(0) = U(T, w) /UJ(T)dT =1. (3.2)
To

Since the set {logp : p € P} is linearly independent over Q,

Z/kp logp # 0

peP

for k # 0. Using properties of the weight function w(t), we find by (3.1) that
in the case k # 0
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T

grw(k) = — T w)% 7 long/ (T)dexp{ —iTZ//fplogp}

peP pEP
w(T) exp{ — it >k, logp} T
_ peP
iU(T,w) Y kylogp
peP
T
— kpl d
t T ) Z . 1ng/eXp{ iry ogp} w(r)
peP To pEP
1 T
!/ /
= O( U(T,w)z kplogp ) + ( (T,w)z kplogp /dw(T))
peP peP To
—1
= O< U(T7w)zlkplogp ) +0 ( (T,w)zlkplogp V%w)
pEP peP
= O< U(T,w)zlkplogp )
peP

Since U (T, w) — oo as T" — oo, this shows that

lim g7, (k) = 0

T—o0

for k # 0. Thus, in view of (3.2),

1 if k=0,

lim g7 (k) =
A, 97 (k) {o if k0.

Consequently, the Fourier transform of (), converges to the Fourier trans-
form of the Haar measure m g, and the lemma follows from a continuity theo-

rem for probability measures on compact groups. 0

The next lemma is a weighted limit theorem for the function

Cn(5§a) = Z W7
m=1

whose Dirichlet series is absolutely convergent for o > %, where (,(s;a) is
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the same as in Section 1.4. For A € B(H(D)), define

T
1
Prol4) = Gz / w(r)I({r € [T0,T) : Culs + im; 0) € A})dr.
To
Lemma 3.4. The measure Pr,, ,, converges weakly to the measure V,, =
mpyu, ' as T — oo, where the function u, : @ — H(D) is defined by the
Jormula
2. apmw(m) v, (m)
m=1

Proof. We apply similar arguments to those used in the proof of Theorem 1.6.

First, we observe that

up(p™ T ipEP) = Z M(m) = (u(s+iT;a).

P
Therefore, for A € B(H(D)),
T
Pryw(A) = U(;w) /w(r)[({T €Ty, T]: (p™" :p€P) €, A})dr
To

= Qrw(uy ' A) = Qruuy ' (A).

Thus, we have the relation

PT,n,w = QT,wurgl- (3.3)
The absolute convergence of the series

i A (m) v, (m)
S
m=1 m
foro > %, implies the continuity of the function u,,. Therefore, the equality
(3.3), Lemmas 3.3 and 1.9 show that Pr, ,, converges weakly to the measure
Vi e gu L O
The next lemma is devoted to the weighted approximation of the function
C(s;a) by ¢, (s; a) in the mean. For this, we need the estimate for the weighted
mean square of the periodic zeta-function. We start with some results for the
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Hurwitz zeta-function ((s, «v).

Lemma 3.5. Suppose that 0>0¢ > 0 and 2n<|t|<mx. Then

T+« 1-s
((s,a) = Z ! —i-( o) + Ogy(z77).

0, (m+ «a)? s—1

A proof of the lemma can be found in [27], Theorem 3.1.3.

Lemma 3.6. Suppose that w € W o, % < o <1, is fixed, and T € R. Then
T
/w(t)K(J + it +i7, )| *dt < U(T,w)(1 + |7]).
To

Proof. We use Lemma 3.5 with z = ¢ + |7|. Then, by Lemma 3.5, we have

T T 2
. . 1
To Ty 0<m<t+|7|

T T
(t+ 7] +a)>* —20
T/w(t) TRt (oo 1)2dt +T/w(t)(t+ 7))~ dt. (3.4)

It is not difficult to see that, for Ty < 2|7| < T,

T 27| T
(t+ 7|+ )2 (t+|7])>~>
G e e ey dt<<</ /) SN )i

To To 2|7]
2|7| T
<5 /w(t)(t+yr)“"dt+/ wt)t 2 (t+ |7])* > dt
(3.5)
T 2|
T T T
<o |7 / w(t)dt + / w(t)t>odt + / w(t)t~ 2|22 dt
T 2|7| 27|
<o U(T,w)(1 + |7]).
If 2|7| =T, then t + |7|<3| 7|, thus, again
T
(t+|7]+a)*> /
t dt <z T w)\T 3.6
/“’()(H 2+ (o-1) 7] Il (3.6)

To

82



Thus, estimates (3.5) and (3.6) imply

T
t+|7| + )220
[0 o gt e VT 1+ )

To

Obviously,
T
/w(t) (t+ ‘T’)iQUdt < u(T,w).
To

Denote max(m, k) = 11 + |7|, with T} = T7(m, k). Then

T 2
1
/ wt) Y oo | A
Ty 0<m<t+|7|
T
B 1 1 .
= fuw@® > (m + a)orit+in > (k + a)oitir t
To 0<m<t+|7| 0<k<t+|7|

h it
- Z Z (m + a)a+irl(k T a)a—hq{w(t) <:1—:Z> dt

To+|7|<m,k<T+|7|

+OU(T,w)(1+|1]))

T
1
= Z WT/w(t)dt

To+|7|<m,k<T+|7|

> (m + a)””Tl(k +a)oiT /w(t) (::—:Z) itdt'

To+|7|<m,k<T+|7| e
m#£k

&3

(3.7)

(3.8)

(3.9



Integrating by parts, we find

/ k * r k
+a . +a
/w(t)<m+a> dt—/w(t)e:x;p{ztlogm+ }dt
T

«
1

T

T
k+a
= t)d it 1
ilog k+a/ exp{z Ogm—l-a}
(

T
k k
— t) exp ztlog —i—a} —/exp{itlog +O[}dw(t)
zlogmi%‘[ m+« m 4 o
Ty il
w(T) + w(Ty) + VEw
L () k+>a 7
‘logm_i'_a‘

Therefore, the properties of the class W imply

T

1 it
Z Z ( + )U+’iT(k + )a—iT / < i _:_a ) dtw(t)
TO+|T\<W;]Z<T+|T\ m « o m (%

I (3.10)
w(k —|7|)
< D)
To+|7|<m<k<T+|7| (m + a) (k + Oé) log m—l—a
Ifm+a< HTa,then
log kta > log 2,
m—+ «
and
Z Z w(k — |7|)
To-+|r|<m<k<T+|r| (m + )7 (k + a)7 log %%
(k = I k- O
w — |T w — |T
< > — <>

k?a—l
To+|7|<Sm<k<T+|7|

To+|7|<k<T+|7|
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T+|7|

< Y wk-ih= [ w- i)y

To+|7|<k<T+|7]|

T()-HT|
T+|7| T+|7]
— fwu— )| - / (u — {u})duw(u — |7])
Totlrl - qytir]
T+|7|
= [T+ |7|]w(T) — [To + |7|]w(To) — (vw(u —|7])) Toslr
T+|7| T+|7|
" / w(u — |rl)du + / {u}duw(u — |r)
T()+|7'| T()-HT|
= —{T + |7|}w(T) — [To + |7|]w(To) + (To + 7)w(To)
T T+|7|
+ /w(t)dt + / {u}dw(u — |7]) < |7| + U(T, w).
To T0~HT|
Ifm + a}HT“, then we denote m = k — r, where 1<r<§ + % Hence,

k+a k:—r—i—oz r T T
- — >
log o —log o log <1 ) > >

k+ o k+a k+1’
and
>y s —Ir)
o /C+
To+|r|<m<k<T+|7| (m + a) (k‘ + )7 log ;2%
!T\
< 22 Tk(, ) o
To+||<k<T+|7| r<k 42
w(k —|7])logk
< Z k20—1 L |7+ U(T,w).
To+|7|<k<T+|7|
Clearly
T
1
> T o) /w(t)dt < U(T, w).
To+|7|<m<T+|7| P
This, (3.4), and (3.7)-(3.12) prove the lemma. B
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Lemma 3.7. Suppose that w € W, o, % < o <1, is fixed, and T € R. Then

T
/w(t)\g(a + it + iT; a)\Zdt < U(T,w)(1+|7]).
To

Proof. From the equality (1.1), it follows that

a((s l) <<Zq: C(s l)
"My p= "q

because a; < 1. Therefore, using Lemma 3.6, we find

q
((sia) <>
=1

T T q 2
/w(t)}g(a+it+ir; a)|2dt <</w(t)<z C<U+it+z’7-, l)D dt
7 o =1 q
q T . ' I 2
< ;T{w(t)‘g(aﬂtjtw, 5> dt

< qU(T,w)(1+ |7|) < U(T,w)(1 + |7]).
O

Lemma 3.8. The equality

n—oo T—oo

T
lim lim inf U(;,w) /w(T)p(C(s +it3a), (u(s +iT;a))dT =0
To

holds.
Here p is the metric in the space H (D) defined in Section 1.5.

Proof of Lemma 3.8. We use the integral representation (1.6)

f0+ioco
Cn(s;a) = / C(s+ z; a)ln(z)d—;
O—ico

for the function ¢, (s; @) which is valid for o > 3.

Further, we follow the proof of Lemma 1.10. Thus let KX C D be an

1

arbitrary compact set. We fix a positive € such that 5 +2e<o<1 — ¢ for points
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s € K. Then, using (1.6), and repeating the proof of Lemma 1.10, we obtain
that

w(T)sup [((s+iT;a) — (u(s +im;a)|dT < J1 + J2, (3.13)

=

Nl -

&
S,

seK
where
J1 =
1 i 1 1, (5 + +it)|
nls +e—s4+1
— ~+e+i(t+7)a)ld 2 dt
U(T,w)/(/w(7)<<2 it+) ) T)ié‘%? 1 te—s+it]
—00 To
and
1 T
Jy= —— R, i7)|dT.
0

Using Lemma 3.7 and the Cauchy inequality, we find that

T
Jutn

C(%—I—sjhi(t—l—r);a) dr
" T T ) !
< (/w(T)dT/w(T) C<%+€+i(t+r);a> dr)
Ty Ty

< (U(T, w)U(T,w)(1 + |t))? < U(T,w)(1+ [t]).

Therefore, in view of the estimate (1.9),

J<xn / (1+ [t]) exp{—cu|t[}dt < n<. (3.14)

—00
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The estimate (1.10) implies

n%72€ L
R /w(r)exp{—cle\}dT

To

T

1_
5 2¢e

n
/exp{—02|7|}d7' <LK m

To

U(T,w)

Thus, in view of (3.13) and (3.14)

T
L /w(T) sup [((s +iT;5a) — Cu(s +iT;a)|dr
To

U(Tv ’LU) seK (3 15)
. n%725
SER T T w)

Since U(T,w) — oo as T" — oo, taking 7" — oo and then n — oo we obtain
that, for any compact set K C D,

lim lim sup

n—=00 T 40 ( ,’LU)

T

/w(T) sup [C(s + iT;a) — (p(s +iT;a)[dr = 0.
seK

To

This and the definition of the metric p prove the lemma. O
Recall that V,, = mgu, 1 is the limit measure in Lemma 3.4.
Lemma 3.9. The family of probability measures {V,, : n € N} is tight.

Proof. By Lemma 3.7 with 7 = 0, we have that, for % <o<l1,

lim lim sup w(t)|¢(s +im;a)|dr < 1. (3.16)

T
)

n=00 T 00 U(T,M)T
0

Let K; be a compact set from the definition of the metric p. Then, using the
Cauchy integral formula and (3.16), we obtain that

lim sup

T
P T ’w)T/w(t)K(S +im;a)|dr<A4; < oo. (3.17)
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Clearly, the estimates (3.15) and (3.17) imply

T
1
sup lim sup /w t)|Cn(s +iT;a)ldr
neN T—oo U(T,w) (B)1Gn{ )

T
1
<l t iT;a)|d .
hjrp_)s;p UT.w) /w( )IC(s+iT;a)|dr (3.13)

1
+ sup lim sup i

T
w(t)|C(s+1i1;0) — (s +im;a)|dT<B; < 0.
suplim s <T’“’)T/ (BIC(s +ir:0) — Culs + ims @)ldr<B
0

On a certain probability space with measure u, define a random variable
nr by

T
plor € 4) = = (Tl,w) / w(t)[(A)(t)dt, A € B(R).
To

By Lemma 3.4, we have that Pr, ,, converges weakly to P, as T" — oo.
Define

Xrp = XT,n(S) = Ca(s +inr; a).

Then the assertion of Lemma 3.4 can be written as
D
X1 — Xn, (3.19)
T—o0

where X, is the H (D)-valued random element having the distribution V.
Now, let € > 0 be arbitrary fixed number, and M; = 2!B;e~!. Then

sup lim sup p(sup | X7, (s)| > M)
neN T—oo nek;

T
= suplim sup (; m / W) I{r € [0,T] : sup |Cals +im a)| > Mi})dr
T

neN T—oo nek;

<suplimsup ————— / 7) sup |G (s +it;a)| > M;})dr <=
neN T—oo Ml nek; 2
Therefore, in view of (3.19),
u( sup | X, (s)| > Mz><i (3.20)
nek; 2
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foralln € Nand! € N. Let

H. = {g € H(D) : sup |g(s)|<M;,l € N}.
nek;

Then the set H. in uniformly bounded on every compact set of the strip D,
thus, it is a compact subset of the space H (D). Moreover, by (3.20)

w(Xn(s) € H)=21—¢
for all n € N. Hence,
Va(H)>1—¢
for all n € N, i.e., the family {V,, : n € N} is tight. O

Proof of Theorem 3.2. By Lemmas 3.9 and 1.16, the family {V,, : n € N}
is relatively compact. Thus, every sequence of {V,,} contains a subse-

quence {V},,. } such that V, converges to a certain probability measure P on
(H(D),B(H(D))) as r — o0, i.e.,

X,, —— P. 3.21)
Moreover, using Lemma 3.8, we find that, for every € > 0,

sup limsup
n—oo T—o00 ( 7w)
T

/w(r)[({T € [To,T]: p(C(s+1iT;a),Cu(s +iT;a)) > e})dr
To

T

/w(T)p(C(s +it;a), (s +iT;a))dr = 0.

To

1
< sup limsup ———
N n—>go Tooo eU(T,w)

Now this, (3.21), (3.19) and Lemma 1.18 show that

Xrw(s) = C(s + inr;a) —2— P, (3.22)
T—o00
in other words, Pr ,, converges weakly to P as T" — oo. Moreover, the relation
(3.22) shows that the measure P in (3.22) is independent of the choice of the
subsequence V/,,.. Thus



or V;, converges weakly to P as T" — oo. This means that Pr,, as T" — oo
converges weakly to the measure of P, as n — oo. It remains to identify the
measure P. For this, we apply Theorem 1.6. In its proof, it was obtained that
the limit measure of V;, coincides with the measure P, and its support is the
set S. O

3.3 Proof of Theorem 3.1

Theorem 3.1, as Theorem 1.1, follows from a limit theorem and the

Mergelyan theorem.

Proof of Theorem 3.1. Let p(s) be a polynomial, and

G. - {g € H(D) : sup |g(s) — "] < }
seK 2

Then, by Theorem 3.2, the set G, is an open neighborhood of the element eP(s)
of the support of the measure P:. Therefore, by properties of the support,

Pr(Ge) > 0. (3.23)
This, Theorem 3.2 and Lemma 1.26 show that
liminf Pr,,(G:)>P¢(G:) > 0.
T—o0

Hence, by the definitions of Pr ,, and G, we obtain the inequality

liminf;

T—o00 U(T, w)

T (3.24)
/w(T)I({T € [To,T) : sup [¢(s + it;a) — eP®)| < g})dT > 0.
7 seK

In view of Lemma 1.27, we can choose the polynomial p(s) to satisfy

sup | f(s) — eP®)| < = (3.25)
seK 2
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Let 7 € R satisfy the inequality

sup |C(s +iT;a) — ep(s)\ < <
seK 2

Then, by (3.25), we have

sup [((s+i7;a) — f(s)|< sup [((s+is a) — ")+ sup [£(s) — "] < e.
nekK seK seK

This implies the inclusion

{7’ € [To,T) : sup |¢(s + it;a) — PB)| < E}
seK 2

C {7’ € [To, T) : sup |¢(s +it;a) — f(s)| < 5}
seEK

Thus,
I {7‘ € [Ty, T) : SSEK(S +iria) —eP¥) < %})
<I({7 e m.7): suplc(s +imsa) = f(s)] < <}).
Hence,
T
U(Cl{,w) /w(7)[({7 € [Tv,T] : SSE IC(s+iTya) — f(s)] < €}>dT

w(r)I({T € [Ty, T] : jgg 1C(s +im;a) —eP)] < %})dr.

\V;
=
S| =
&
oﬂ\ﬂ

This together with inequality (3.24) shows that
T

liTrgioréfU(;M /w(T)I({T € [T0. 7] sup [ (s+i7:0) =/ (5)] < H)ar >0

To

Now, we will prove the second part of the theorem. Consider the set

G, = {g € H(D) : sup lg(s) — (s)] < }

seK
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Since the boundary 8@ of the set QE lies in the set

{9 H(D): sup l9(s) — f(s)] = ¢},

we have that

Gsl ﬂgAsg - @

for €1 # €5. From this, it follows that PC(Qg) > ( for at most countably many
£ > 0. This means that the set G, is a continuity set of P for all but at most
countably many € > 0. Therefore, by Theorem 3.2 and Lemma 1.19, the limit

TIEI;O PT,w(Qa) = Pﬁ(gg)

exists for all but at most countably many € > 0. Thus, by the definitions of
Pr.,, and G., the limit

lim

T—o0 U(T,w)

T

/w(7)[<{7 € [Tv,T) : ngg IC(s +iT;a) — f(s)] < 5})d7’ = PC(Qg)
To

exists for all but at most countably many € > 0. Therefore, it is sufficient
to show that PC(Qg) > 0. For this, we observe that G. C G., where G. was
defined at the beginning of the proof. Actually, in virtue of (3.25), it is easily

seen that if

g
sup |g(s) — ") <
seK

then

sup [g(s) — f(s)] <e.
seK

This remark and the definitions of the sets G. and ﬁg imply the inclusion
G. C G.. Therefore, taking into account the inequality (3.23), we obtain that
PC(Qg) > 0. This together with (3.26) completes the proof of the theorem. [
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Chapter 4

Weighted discrete universality
of the periodic zeta-function

In Chapter 3, a weighted universality theorem for periodic zeta-function
((s; a) had been obtained. More precisely, it was proved that, for all K € I,
f(s) € Hy(K) and every € > 0, the set of reals 7 satisfying inequality

sup [C(s +iT;a) — f(s)] < e

s€K
has a positive weighted lower density. Theorem 3.1 can be called a weighted
continuous universality theorem of the function ((s;a) because 7 in ((s +
iT; a) can take arbitrary real value. This chapter is devoted to weigthed discrete
universality theorems for periodic zeta-function, i.e., to the approximation of
analytic functions by shifts {(s+i7; a) when 7 takes values from a certain dis-
crete set. First, we limit ourselves by a very simple discrete set, the arithmetic
progression {kh : k € N} with a certain fixed h > 0. Later, we will prove a
theorem by using the set {k“h : k € N} with fixed 0 < v < 1 and h > 0.

4.1 Statement of a weighted discrete universality theo-
rem involving the arithmetic progression

Suppose that w(t) is a non-increasing positive function for ¢ > 0 having a
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continuous derivative such that, for h >0,
w(t) <, w(ht) and (w'(t))? < w(t).

Define
N
V(N w) =Y wk),
k=1

where IV runs over positive integers, and suppose that

lim V(N,w) = +o0.
N—o00
Denote the class of the above functions w by V. For example, 1 € V7. In this
section, we will prove the following theorem.

Theorem 4.1. Suppose that w € V1, the sequence a is multiplicative, and the
set

L(P,h,7) = {(logp peP), 2%}

is linearly independent over the field of rational numbers Q. Let K € K and
f(s) € Hy(K). Then, for every ¢ > 0,

lim inf

imin: m iw(k)]({1<k<N :sup [C(s+ikh;a)—f(s)| < 5}) > 0.

=1 seK

Moreover, the same inequality with "lim" holds for all but at most countably
many € > 0.

For example, in Theorem 4.1 we can take h = 7 and w(t) = %, because,
by the Lindemann theorem, the number e* with k € R\{0} is transcendental.

4.2 Weighted discrete limit theorem involving the
arithmetic progression

As in previous chapters, for the proof of Theorem 4.1, we will apply a
limit theorem in the space of analytic functions. We preserve the notation of
previous chapters.
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Theorem 4.2. Suppose that w € V1, the sequence a is multiplicative and the
set L(P, h, ) is linearly independent over Q. Then

Praw(A) = méw(kﬂ({lgng L C(s +ikh;a) € A}),

A€ B(H(D)),
converges weakly to Pr as N — oc.

As usual, we start the proof of Theorem 4.2 with a limit theorem on the
torus €. Let, for (2, B(Q2))

Qnw(A) = V(]\l,w) iw(k)[({lgng c(pTkh i peP) e A})
’ k=1

Theorem 4.3. Under hypotheses of Theorem 4.2, ()N ., converges weakly to
the Haar measure mg as N — oo.

Proof. We consider the Fourier transform
/
INw(k) = / (H wkp(P)> dQNw
Q peP

k= (kp : k, € R,p € P) of the measure @y ,,. By the definition of Q n .

k;l peP (41)
1 /
=—> —ikRY " kyl
VN W) 2 w(k) exp { zkhpGIED kp ogp},

where sign "/" means that only a finite number of integers k), are distinct from
zero. We have by (4.1) that

gNw(0) = 1. 4.2)

Since the set {log p : p € P} is linearly independent over Q, we observe that,
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for k # 0,
/
exp{ — ihz kp logp} # 1.
peP
Actually, if the latter inequality was not true, then we would have
/ .
exp { — ihz k, logp} = eZmir
peP
with some r € Z. This leads to the equality

’ 2
S ky logp + 7;:"1 —0
peP

4.3)

with r; € Z which contradicts the linear independence of the set L(P, h, 7).

Thus, inequality (4.3) is true, and, for k& # 0, we find that

exp —ikh /k: logp
o { -3y o |

k<u peP

p€EP peP

exp { —ih >k, logp} — exp { —i([u] + VY 'k logp}
def

1 —exp{ —ihzlk‘plogp}

peP

Then (4.1) and the summation by parts shows that, for £ # 0

W)

N
) = G (V) - V(;w) / r(u)dw(u) + o(1)

W(N) VN w
= 7V(N,w)T(N) + O(V(]l\f,w)> +o(1)

_ o(%) +o(1) = o(1)

as N — oo, where V{¥w denotes the variation of w in the interval [1, N]. This
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together with (4.2) gives

1 if k=0,

0 if k0.

li w(k) =
NgnoogN7 (7) {

Therefore, by a continuity theorem for probability measures on compact
groups, we obtain that (), ,, converges weakly to the Haar measure mpy as
N — 0. ]

Let v, (m) and ¢, (a, a) be the same as in Section 1.4, i.e.,

0 5
m=1

where

For A € B(H (D)), define

Prnw(A) = V(]\lfw) éw(kz)[({lgng L (s +ikhsa) € A}).

Moreover, let the function w,, : 2 — H (D) be given by

Un(w) = W (s, w3 0),
m=1

and let V,, = mpyu, 1. Then we have the following limit lemma for Py, 4.

Lemma 4.4. Under hypotheses of Theorem 4.2, Py ,, ., converges weakly to

the measure V,, as N — oc.

Proof. From the definitions of u,,, Q N, and Py, .,, we have that

(o)
) AmUnp TN .

m=1
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and, for A € B(H(D),
1 N
- E <k< . —ikh . —1

= Qnw(u,'A) = Qnuwuy, ' (A).

Thus, Py pw = QNwiy, L. Therefore, the assertion of the lemma follows from
Lemmas 4.3, 1.9, and the continuity of the function u,, which was noted in the
proof of Theorem 1.6. O

The next step of the proof of Theorem 4.2 is devoted to the approximation
of ((s;a) by (,(s;a). Let p be the metric on H (D) defined in Section 1.5

Lemma 4.5. Under hypotheses of Theorem 4.2, we have the equality

1
lim limsup ——— w(k s+ ikh;a), (s +ikh;a)) =0
i o 57— 3 S wlcl )l )

For the proof of Lemma 4.5, we need the Gallagher lemma which connects
the continuous and discrete mean squares of certain functions.

Lemma 4.6. Suppose that Ty, Ty > § > 0, T is a finite set in the interval
[To+ 5, To+ T — §] and

Ns(z) = E 1.
teT
[t—z|<0

Let the complex-valued function S is continuous in [Ty, To + T'| and have a
continuous derivative on (T, To + T'). Then

To+T To+T To+T
S NlswPsy [ |S<x>12dx+< [ s@pa | \S’<x>2dx>

teT TO TO TO

(ST

Proof of the lemma is given in [40], Lemma 1.4.
Proof of Lemma 4.5. First we observe that
N

N N
/ w(tydt < > w(k) < / w(t)dt.
1 k 1

=1

99



Clearly, if w € V1, then w € W. Therefore, in view of Lemma 3.7, for a fixed
%<0<landT€R,

N
/w IC(o + it + i a)2dt < VN, w)(1+ |7]).
1

Hence, using Lemma 4.6 with § = h and properties of the weight function
w(t), we find that

N

Zw )¢(o + ikh +ims )P < Y w(kh)|((o + ikh + iT; a)|?
k=1

Nh
< / w(t)|¢(o + it + i1 a)|?dt
1

Nh Nh 4.4)

+ (/w(t)]((a—i—it—i—iT;a)\th(/w(t)](’(0+it+i7;a)\2dt

1 1

Nh 1
+/(( w(k:))/)2|C(U+it+i7;a)]2dt>> < V(N,w)(1+ 7)),
1

where we applied the estimate (( w(t))/)2 < w(t).

Now, we apply similar arguments as in the proof of Lemma 3.8. Let K C
D be an arbitrary compact subset, and let ¢ > 0 be such that 1 5 +2e<o<l —¢
for s € K. Then, as in the proof of Lemma 1.10, we obtain that

N
Zw sup |((s + ikh;a) — Cu(s + ikh;a)| < S1 + S, (4.5)

k:l seK
where

1
St =
! V(N,w)
+o00 N

1 (L — it

/ w(k)’<<+a+z(t+kh) > p| (12+5 Sﬂ DI dt
Jo\ia 2 seK |5 +e—s+it
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and
1
V(T,w)

Sy = w(k) sup | Ry (s + ikh)|.

seK

M-

By the Cauchy inequality and (4.4),

iw(ls)‘cc + e+ i(t + kh); a>

k=1

A

N N 2 %
<Zw ) w(k ’< + e+ i(t+ kh); > )
k=1 k=1
< (V( w)V (N, w)(1+ |¢| ))§ < V(N,w)(1+ |t]).

Therefore, using (1.9), we obtain the bound

“+o00
S, <x / (1+ |t]) exp{—cy|t]}dt <x n—<. 4.6)

—00

The estimate (1.10) yields

n%—2e N n%—Qe
S — k —cok —_—.
2 <K VN w) kilw( ) exp{—cs }<<V(N,w)

This, (4.6) and (4.5) show that

N
w(k) sup [((s + ikh;a) — (p(s + tkh; a)|

=1 1 sEK (4'7)
n§f2s

V(N,w)’

V(N,w)
Lgn 4+

Thus, taking N — oo and then n — oo, we obtain that

N
lim limsup Zw sup |[((s + ikh;a) — (n(s + ikh; a)| = 0.
n—=00 N_oo 7 k:l seK
Therefore, this and the definition of the metric p prove the lemma. O

Proof of Theorem 4.2. Suppose that the random variable 6 is defined on a
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certain probability space with measure p by

w(k

) — ) g _
w(@n = kh) = V(N,w)’kl_l?n"N‘

Define
XN,n,w = XN,n,w(s) = Cn(s +i0N; a),

and let X, be the H (D)-valued random element having distribution V,,, where
V, is defined in Lemma 4.4. Then, by Lemma 4.4, we have that

D
XNnw — Xn. 4.8)
N—o0

Next, we need to prove that the family of probability measures {V;, : n € N}
is tight.
By (4.4) with 7 = 0, we have that, for fixed o, % <o<l1,

N
limsup Zw )|¢(0 +ikh;a)| < 1.
N—oo k:l

Let K; be a compact set from the definition of the metric p. Then the later
estimate together with the Cauchy integral formula implies

N
lim sup Zw ) sup [¢(s +ikh;a)| < C) < 0. 4.9)
N—oo lc:l seK

Now, the estimates (4.7) and (4.9) give

N
sup lim SUp o s Zw sup |Gu(s + ikh;a)l
n—o00 N—oo 7w) el s€K;
N

glimsup w(k) sup [((s + ikh; a)]

N—oo N,w ; s€K; (4.10)

N

+ sup hmsup ! Zw ) sup |C(s + ikh;a) — (p(s + ikh; a)]

n—o0o N—o0 N)w - seK; " 7

<Ol < 00.
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Now let € > 0 be arbitrary fixed number, and M; = 2lC'le_1. Then

sup lim supu( sup ]XNm,w(s)]}Ml)
neN N—oo seEK;
1 N
= suplimsup ——— w(k:)I({lgng s sup |CGn(s + ikh; a)\)Ml}>
neN N—oo V(va) 1 seK;

k

, £
w(k) sup |Cn(s + ikh; u)]gi
1 seK;

M) =

<suplimsup ————
- neN N—oo MlV(Nv w)

i

for all [ € N. This and relation (4.8) yield the inequality

€
<= .
u(sseu}% | X5 (s)] > Ml)\2l 4.11)

for all n € N and [ € N. Define the set

H. = {g € H(D) : sup lg(s)|<My. | € N}.
S

Then the set H. is compact in the space H (D), and, in virtue of (4.11),
w(Xn(s) € H)>1—«¢
for all n € N. Hence, by the definitions of X,, and V,,,
Vo (H)>1—e

for all n € N. This means that the family of probability measures {V,, : n €
N} is tight.

Since the family {V,, : n € N} is tight, by Lemma 1.16, it is relatively
compact. This means that every sequence of {V,,} contains a subsequence

{V,,,} such that V;, converges weakly to a certain probability measure P on
(H(D),B(H(D))) as r — oo. Hence,

X, —25P. (4.12)

7—00

Define one more H (D)-valued random element

XN,w = XN@(S) = C:(S + 0N Cl).
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Lemma 4.5 implies that, for every € > 0,

lim limsup p(p(XN,w, XNpnw)>€) = lim limsup
n—00 N_soo n=%0 Ny V(N w)
N

w(k) I ({1<k<N @ p(¢(s + ikh;a), Gu(s + ikh; a))>e})
k=1

N
< lim hﬁlj;lop T N ” ;w (s +ikh;a), Culs + ikh;a)) = 0.

This equality together with relations (4.8) and (4.12) and Lemma 1.17 leads to
the relation
((s+1ibn;a) NL> P.

— 00

Thus, the measure Py ,, converges weakly to P as N — oo. Moreover, from
this it follows that the measure P is independent on the choice of the subse-
quence {V,, }. Since {V},} is relatively compact, this shows that

X, 2P

n—oo

and therefore, V;, converges weakly to P as n — oo. Thus, we obtain that
the measure Py ,, converges weakly to the limit measure of V,, as N — oo.
However, by Theorem 1.6, the measure Pr as T — oo, also converges weakly
to the limit measure P of V,,, and that P converges with ;. Therefore, Py .,
also converges weakly to P as N — oo. O

4.3 Proof of the weighted universality

We note that, by Theorem 1.6, the set

S={ge H(D):g(s)#0org(s) =0}
is the support of the measure F.

Proof of Theorem 4.1. The first part. By Lemma 1.27 there exists a polyno-
mial p(s) such that

sup | f(s) — eP®)| < % (4.13)

seK
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Define the set

G = {g € H(D) : sup g(s) — "] < 5}.

seK 2

Since eP(5) =£ 0, the function €”(*) is an element of the support of the measure
Pc. Therefore

Pr(Ge) > 0. (4.14)
This inequality, Theorem 4.2 and Lemma 1.26 imply the inequality
lim inf Py ., (G:) =P (Ge) > 0.
N—o00

Thus, by the definition of Py ,, and G,

N
1 €
liminf —— I(q1<k<N : ikh; a)—eP(®) = .
imin: VN w) kE:1w(l<:) ({ k ngg\C(s—l—zkh, a)—eP¥| < 2}) >0

This and inequality (4.13) show that

N

1
1}\1;215101“ VN0 2 w(k)I({1<k<N : ESE |C(s+ikh;a)—f(s)| < e}) > 0.

[y

The second part. Define the set
G-={ge H(D): sup |g(s) — f(s)] < e}
se

Then the set QE is a continuity set of the measure P for all but at most count-
able many ¢ > 0. Therefore, in virtue of Theorem 4.2 and Lemma 1.19, the
limit

Jim Py u(Ge) = Pe(G2)
exists for all but at most countable many € > 0. Hence, the definitions of Py ,,
and G. imply that the limit

1 N
lim —— B)I({1<k<N : ikh; a) —
im ;w( M ({ SQEK(S“ a) — f(s)] <6}24‘15)
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exists for all but at most countable many € > 0. Moreover, it is easily seen
that, in view of (4.13),

G- CG-.
Thus, by (4.14), we obtain that P, (g}) > 0. This and (4.15) prove the second
part of the theorem. The theorem is proved. O

4.4 Statement of a weighted discrete universality theo-
rem involving the set {£“h}

We preserve the notation of Section 4.1

N
V(N,w) = w(k),
k=1
and suppose that A}im V(N,w) = +4o00. Moreover, we suppose, that the
—00

function w(t) has a continuous derivative w’(¢) such that for t>1

N
/tyu/(t)ydt < V(N,w).
1

Denote by V5 the class of the above functions. This section is devoted to
a weighted discrete theorem for the function ((s;a) with a weight function
w € V5 and a discrete set {k*h : k € N}, where o, 0 < v < 1, and h > 0 are
fixed numbers. The main result of this section is the following theorem.

Theorem 4.7. Suppose that w € Vs, the sequence a is multiplicative, and
0 <a<lisfixed. Let K € K and f(s) € Hyo(K). Then, for every ¢ > 0 and
h >0,

N
1
liminf ——— w(k)I({1<k<N : su s+ik%h;a)—f(s)| < e}) > 0.
it 2 sup o () < =)

Moreover, the same inequality with "lim" holds for all but at most countably

many € > 0.

Let €2 be the same as above. We begin the proof of Theorem 4.7 with a
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limit theorem on the torus 2. For A € B(£2), define

N
> w(k)I({I<k<N : (p™* " :p e P) € A}).
k=1

Qnw(A) = V(]\l,w)

Before the statement of a limit theorem on the torus, we recall some facts on
the uniform distribution modulo 1 of sequences of real numbers.

Lemma 4.8 (Veyl criterion). A sequence {z} C R is uniformly distributed
modulo 1 if and only if, for all m € Z\{0},

1 n
lim — E 2R — (),
n—oo n
m=1

Proof of the lemma can be found, for example, in [19].

Lemma 4.9. The sequence {ak®} with fixed 0 < a < 1 and every real a # 0

is uniformly distributed modulo 1.
The assertion on the lemma is a well-known exercise, see [19].

Lemma 4.10. Suppose that w € Vs, and 0 < o < 1 is fixed. Then Qn
converges weakly to the Haar measure my as N — oc.

Proof. As in the previous sections, we will apply the Fourier transform
method, i.e., we will consider the Fourier transform gy .,(k), k = (kp : k, €
Z,p € P), where

pEP

o) = [ T[] (0)dQx .
Q

By the definition of Q) ,, we find that

e (4.16)
1 o !
= VN Zw(k;) exp { — ik hz k:plogp}.
k=1 peP

We recall that the sign "/" means that only a finite number of integers &, are
distinct from zero. Clearly, by (4.16),

gNw(0) = 1. (4.17)
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Since the set {logp : p € P} is linearly independent over Q, we have that

Zlk‘p logp # 0

peP

for k # 0. Therefore, by Lemmas 4.8 and 4.9, for k # 0,

R(u) &ef Zexp { - iko‘hzlk‘p logp} = o(u)

k<u peP

as u — oo. Hence, using (4.16) and summing by parts, we find that

N
INw(k) = R‘(/]z[])\;jjz(uj;[) - V(]\lf,w) /R(u)w/(u)du
1
N

- o<m> + 0(é /u|w’(u)|du> —o(1)

as N — oo, since

N
Nw(N) < V(N,w) + /u]w'(u)|du < V(N,w).
1

This together with (4.17) gives

1 if k=0
lim g .w(k) = poaTs
Nosoo 7V 0 if k#0.

This equality, as in previous sections, proves the lemma. O

Next, we will prove a limit theorem for absolutely convergent Dirichlet
series (y,(s; a), where (,,(s; a) is the same as in previous sections. We use the
function u,, : 2 — H (D) defined by the formula

Un(w) = Cn(sa w3 Cl).
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Then we have the following analogue of Lemma 4.4 for the measure

R .
Praw(d) = poya) ];w(k)l<{1<ng L C(s + ik%h;a) € A}),
A € B(H(D)).

Lemma 4.11. Suppose that w € V3, and 0 < o < 1 is fixed. Then Pr

converges weakly to the measure V,, = myu, ' as N — oo.

Proof. The lemma follows from Lemmas 4.10 and 1.9 by using the same ar-
guments as in the proof of Lemma 4.4. 0

The next lemma is devoted to the approximation of the function ((s; a) by

Cn(s;a).

Lemma 4.12. Suppose that w € Va, and 0 < o < 1 is fixed. Then

N
> w(k)p(C(s + ik®hs a), (u(s + ik"h; a)) = 0.
k=1

o 1
% N VN W)

Proof. As in the proof of Lemma 4.5, we apply Lemma 4.6. It is easily seen

that, for 2<k<N,
«@

(k+ 1) — ka2W.
Therefore, an application of Lemma 4.6 with § = 2]\’}% gives, for % <o<l1

and 7 € R, the estimate

N%h

> [l + ik h +iT; )| < N1 / 1C(o + it + i7; a)|*dt
k=1 1

=z

|=

N%h N%h

2
+</|C(a+it+i7;a)|2dt / |§/(a+it+z’r;a)\2dt> < N1+ |7
1 1

in view of the known estimate

T
/\c(a it 4 im @)|2dt < T(1+ |7]2)
1
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and
T

/ | (o + it +iT; a)\Zdt < T(1+ |T]2),
1

and the equality
Ns(t) = 1.

Therefore, for the same o and T,

=

N
> wk)|¢(o + ikh + it )P < w(N) > [((o + ik“h + iT; )|
k=1 k=1

+/ZIC (0 + k%h +i; a) *[w’ (u)|du (4.18)

1 k<u

N
< Nw(N)(A+ ) + 1+ |7 /U\w'(U)Idu L V(N w)(1+|7])
1

because
Nw(N) < V(N,w).

The further proof is similar to that of Lemma 4.5. We take an arbitrary compact
set { C D and fix € > 0 such that % + 2e<o<1l —efor s € K. Then

N
Zw sup |C(s + ik%h;a) — Cu(s + ik%h; a)| < Sy + S2(4.19)

7 k:l seK
where
1
S| =
YT V(N w)

\g
/N
1=

L(t+e—s+it
w(k)’C<;+8+i(t+k“h);a>DSup‘ (3+e s+z)\dt

seK {%—{—S—S—F’L’t{
and

N
Zw ) sup | Ry, (s +ik®h)|.
k:l seK
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In view of (4.18),

iw(k)‘gc +e+i(t+ ko‘h);a)‘

k=1
N N 1 2\ 2
< (Zw(k) Zw(kz)‘((Q +e+i(t+k%h); a) ) < V(N,w(l+ t])).
k=1 k=1
Therefore,
+oo
S, <x /(1 1)) expl—cat]} <x . 4.20)

Similarly, as in Section 4.2, we find that

1 N
n2—25

Sy <k V(N.w) ’; w(k) exp{—cak®}

4.21)

52 N
<K m (exp{—czNa}V(N,w) + /exp{—62ua}|w/(u)]du>.
1

Let N7 — oo bet such that

Ny

/ ulw! (u)]du = oV (N, w)) 4.22)

1

as N — oco. Then

N Ny N
/exp{—@ua}\w/(uﬂdu = </+/> exp{—cou®}|w'(u)|du
Ny

1 1
N

< o(V(N,w)) + exp{—caN{'} /u|w'(u)|du = o(V(N,w))
1

as N — oc. Therefore, by (4.21) and (4.22), So = o(1) as N — oc. This and
(4.19), (4.20) together with the definition of the metric p prove the lemma. [
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Now, we state a weighted discrete limit theorem. Let, in this section,

N
Py l(A) = V(;w) D wI{ISKEN s o+ i) < K,
A e B(H(D)).

We also preserve the notation of Section 3.2 for ((s,w; a), P and the set S.

Theorem 4.13. Suppose that w € Vs, o, 0 < v < 1, is fixed, and the sequence

a is multiplicative. Then Py ., converges weakly to the measure P; as n — oo.

Proof. We apply similar arguments used in the proof of Theorem 4.2. On a
certain probability space with measure p, define the random variable 6 by

the formula
w(k

u(O = k) = M

k=1,...,N.

Let
XN,n,w = XN,n,w(S) = Cn(s +i0N; Cl),

and let X,, be the H(D)-valued random element with the distribution V/,,
where the measure V, is defined in Lemma 4.11. Thus, by Lemma 4.11, we
have the relation

XN —2— X (4.23)
N—o0

The series for ,(s;a) and ¢/,(s;a) are absolutely convergent for o > 1.
Therefore

o
lim sup — /Cn (o +it;a)2dt = Z \am\ Un Z [m <C’1 < 00

m
T—00 m=1

and

2,2 (1) loe2
lim sup — /]Cn (o +it;a)|*dt = Z [m [y (m) log” m

20
T—o0 m—1 m
212
a log“m
< }: |m|72g<02 < 0.
m g
m=1
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Hence, using Lemma 4.6, we find as above that, for % <o<1

N*h

Z\gn o +ik%h;a)|? < N7« / (o + ity a)[2dt
k=1

N%h N*h

+<1/ICn(o+it;a)!2dt1/|<;(a+it;a)\2dt> < N.

Therefore, by properties of the weight function w(k), we obtain that, for 1 <
o<1,

=

N
suplimsup Zw )Cn (o +ik%h; a)|<C < 0.
neN N—oo 7 k:l

This and the Cauchy integral formula imply

N
sup lim sup Zw ) sup |Gu(o + ik%h;a)|<C) < 00, (4.24)
neN N—oo k:l seK;

where { K} is a sequence of compact sets from the definition of metric p

Now, we fix ¢ > 0 and define y; = jy(e) = 2!/Cie~!. Then by the
definition of Xy ;, ., and (4.24),
lim SUPM( sup | X n,w(s)] > Mz)
N—o0 seK
1 N
=limsup ———— w(k I({lgkéN : sup s+ ik%h;a)| > Ml}>
Noroo V(N,U)) e~ ( ) SEKZ |CTL( )’
N €
<suplimsup ————— w(k) sup |Cn(s + tk%h;a
neN N—oo Ml ; seK; ‘ " )| 2l
From this and (4.23), we deduce that, for all n,l € N,
u( sup |Xa(s)| > Mi) <. (4.25)
seK;

The set H. = {g € H(D) : sup |g(s)|<M;,l € N} is compact in the space
seK;

113



H(D). Moreover, in view of (4.25),
(X, € Ho)>1—¢ Z l>1 —e.

Hence, by the definition of V,,, for all n € N,
Vo(H:)21 — €.

This shows that the sequence {V;, : n € N} is tight. Therefore, by Lemma
1.16, it is relatively compact. Thus, there exists a subsequence {V;,.} C {V,,}
weakly convergent to a certain probability measure P on (H (D), B(H(D)))
as r — oo. In other words,

X, —2>P. (4.26)

r—00

An application of Lemma 4.12 shows that, for every € > 0,

lim lim sup

n=00 N_oco ( 7w)
Zw(k)[({lgng : p(C(s + tk“h;a), (s + ik“h;a)) >e}) 4.27)
N
< lim limsup ————~ Z w (s +ik%h;a),(n(s + 1k%h;a)) =

TL—>OO N—00 EVN’UJ k':l

Now, in view of relations (4.23), (4.26) and (4.27), we can apply Lemma 1.18
which shows that
C(s+ibn;a) 2P

N—o0
This means that Py, converges weakly to P as N — oo. Moreover, this
shows that the measure P is independent of the subsequence {V}, }. This
remark together with relative compactness of {V},} implies the relation

X, 2P

n—oo

Consequently, by the definition of X,,, we have that V,, converges weakly to
Pasn — oo,ie., Py, as N — oo, converges weakly to the limit measure
of V,, as n — oo. Since, by the proof of Theorem 1.18, the measure Pr, as
T — o0, also converges weakly to the limit measure P of V,, as n — oo, and
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P coincides with ¢, we obtain that Py ,, converges weakly to P as N — oo.
The theorem is proved. 0

4.5 Proof of Theorem 4.7

As all previous universality theorems, Theorem 4.7 follows from a limit
theorem in the space of analytic functions (Theorem 4.13) and the Mergelyan
theorem (Lemma 1.27).

Proof of Theorem 4.7. The first part. We find a polynomial p(s) such that in-
equality (4.13) would be satisfied, and consider the set

G. = {g € H(D) : sup|g(s) — "] < _}.
seK

By Theorem 1.7, the support of the measure P is the set S = {g € H(D) :
g(s) # Oorg(s) = 0}. Thus, G. is an open neighborhood of e(*) € §.
Hence,

P:(G.) > 0. (4.28)

Therefore, Theorem 4.13 and Lemma 1.26 imply the inequality
lim inf PN,w (Qe) >P<(QE) >0
N—oo

This, and the definitions of Py ,, and G. show that

N
<k<N : s R ) —eP()| < £
hniglofv N ) ;w ({1\k\N :g}}g\g(sﬂk h;a)—eP'¥] < 2}) > 0,

and using of inequality (4.13) proves the theorem.
The second part. The set

G- ={ge H(D): sup [g(s) = f(s)] <<}

is a continuity set of the measure I for all but at most countably many £ > 0.
Thus, by Theorem 4.13 and Lemma 1.19,

lim PNw(gs) PC(QE)

N—o0
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for all but at most countably many ¢ > 0. Therefore, the definitions of Py ,,
and G, imply

N
Jm s N 2] kZ:lw ({1<k<N sup |G sk hs0)—f(5)] < g}) = P:(G:)

for all but at most countably many £ > 0. Since, in view of (4.13), G. C Gg,
this together with (4.28) proves the theorem. O
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Chapter 5

Value distribution of a certain
composition

In this chapter, together with the periodic zeta-function ((s;a) we will
consider the periodic Hurwitz zeta-function ((s; a; b), where a, 0 < av < 1, 18
a fixed parameter, and b = {b,,, : m € Ny} is a periodic sequence of complex
numbers with minimal period [ € Ny. Then the function ((s; «; b) is defined,
for o > 1, by the Dirichlet series

o

Clores0) = 3 o

m=0

and, using the equality

C(s;a;b) meg< m—l—oz) >1

can be meromorphically continued to the whole complex plane with unique

simple pole at the point s = 1. If b,,, = 1, then ((s; a; b) becomes the classical
Hurwitz zeta-function ((s; «v).

In this chapter, we will prove a joint universality theorem for the functions
((s;a) and ((s; a; b), and will obtain some estimates for the number of zeros
of certain compositions of the above periodic functions. The results obtained
generalize and extend similar known theorems.
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5.1 A joint universality theorem for periodic zeta-
functions

Let L(P;a) = {(logp : p € P),(log(m + «) : m € Np)}. Moreover,
let H(K) with K € K be the class of continuous functions on K which are
continuous in the interior of /. The main result of this section is the following
joint universality theorem.

Theorem S5.1. Suppose that the sequence a is multiplicative, and the set
L(P; «) is linearly independent over the field of rational numbers Q. Let
K1, Ky € Kand f1(s) € Hy(K1), fa(s) € H(K2). Then, for every € > 0,

1
lim inf meas{T €[0,7]: sup |¢(s+ir;a) — fi(s)] <e,
T—oo T seKy

sup [((s + i1, a5 b) — fa(s)| < 5} > 0.
s€EKo

Moreover, the same inequality with "lim" holds for all but at most countably
many € > 0.

We notice that earlier Theorem 5.1 was known under certain additional
restrictions. For example, in [16], it was required the transcendence of the
parameter o and the inequality

o |apm]
P—<c<1
m=1 b

for each prime p.
We will use the method of Chapter 1, therefore, we will omit some details.
As in Chapter 1, we will use some topological structure. Together with the

Q:H’ypv
p

torus

we define one more torus

QIZ H Yms

m€ENy

where v,, =  for all m € Ny. With the product topology ant pointwise
multiplication, the torus §21, as €2, is a compact topological Abelian group.
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Putting
Q=0x0

again gives a new compact topological Abelian group. Therefore, on
(Q, B()), the probability Haar measure 7i2j; exists, and we obtain the prob-
ability space (€2, B(Q), 7ip7). On this probability space, define the H?(D) =
H(D) x H(D)-valued random element

C(Sawvwla a;a, b) = (C(Saw; Cl), C(val’ Qg b))a

where -
() = 3 2t
m=1
and
00 bm
C(vaaa; b) = Z M’

m=0
and w1 (m) denotes the m-the component of an element wy € Qq, m € Ny,
and by & = (w,w;) the element of 2. Denote by Py the distribution of the
random element é(s, w,wr;a, b), ie.,
Ps(A) = impg{@ € Q: {(s,w,wi;0,b) € A}, A € B(H?(D)).

Let, for brevity,

(s, a;0,b) = (C(s7a),((s, ;b))
The proof of Theorem 5.1 is based on a limit theorem for
1 .
Pre(A) = Tmeas{T €10,T]:{(s +it,a;a,b) € A}, A € B(H*(D)).

Theorem 5.2. Suppose that the set L(P; «) is linearly independent over Q.
Then P, ¢ converges 10 the measure Pf as T — oo.

We start the proof of Theorem 5.2 with a limit theorem for probability
measure on (€2, B(Q)). Let, for A € B(Q),

Qr(A) = %meas{T c[0,7]: ((p~ : peP),((m+a)"" :m e Ny)) € A}.

Lemma 5.3. Suppose that the set L(P, «) is linearly independent over Q. Then
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QT converges weakly to the Haar measure mg as T — oo.

Proof. We consider the Fourier transform g7 (k,1), k = (k, : k, € Z,p € P),
L= (lpm : lm € Z,m € Ny), of the measure Qr, ie.,

(k1) /Hwkp lem )dQr

Q pE]P’ m&ENg
—ikpT —ilyT
/Hp P m+a) PTdr 5.1
peP mENO
/exp{ —ZT(Zk logp + Z l log m+a)) }dT
peP meENy

where "/" means that only a finite number of integers k, and [,,, are distinct

form zero. Clearly, in view of (5.1)
If (k, 1) # (0, 0), then

A1) &3 kylogp+ Y 'l log(m + ) #0

peP meENg

because the set L(P, «) is linearly independent over Q. Thus, integrating in
(5.1), we find that

1 — exp{—iTA(k, 1)}

gr(k,1) = iTA(k, 1)

This and (5.2) show that

f (&,
Jim gr(k, 1) = { F ok

Therefore, the lemma follows by a continuity theorem for probability measures

on compact groups. O

Additionally to v, (m) defined in Section 1.4, we define

0
vn(m,a):exp{— <m+a> },mENo,neN,

n-+aoa
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and
[o@)

b o (m, &)
Cn(s,a;b) = —
m,Z:O (m+ )

Let, for brevity,

Ca(s;a5a,b) = (Ca(s5a), Cals, ;b))

and, for (w,wy) € Q,

Cn(svwawla a; a, b) = (Cn(sa w; Cl), Cn(S,wla a; b))a

where
bmwl (m)vn (m’ a)

Cn(s,wi,a5b) = Z (m+ )

m=0

The series for (,(s,;b) and ¢, (s, w1, ;b), as for (,(s;a) and ¢, (s,w; a),
are absolutely convergent for o > % [11]. Define the function wu,, o (&) : O —
H*(D) by

un,a(wa wl) = (Cn(saw; Cl), Cn(sa w1, a5 b))

This function is continuous because of the absolute convergence of the above
series. Let, for A € B(H?(D)),

1 .
Pra.o(A) = Tmeas{T €10,T]: (s +iT,a;a,b) € A},

andlet V,, o = m HUE}I- Then, similarly to the proof of Theorem 1.7, using of
Lemma 5.3 leads to the following assertion.

Lemma 5.4. Suppose that the set L(P, «) is linearly independent over Q. Then
Pr .« converges weakly to the measure Vy, o as T" — oc.

On the space H?(D), define the metric inducing its product topology. For
g, = (911, 912), g, = (921, g22), we put

P2(£1722) = max(p(glla 912)7 p(9217 g22))7

where p is the metric in H (D) defined in Section 1.5. Then we have
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Lemma 5.5. The equality

T
1 A N
lim lim sup T /pg(C(s +it,;0,0),(p(s + i1, 5a,b))dT =0

n—o0 T_yso

holds.

Proof. By the definition of the metric p, the equality of the lemma follows
from the equalities

T
1
lim lim sup T /p(((s +it;a),(p(s +iT;a))dr =0

n—=0 T 450

and

T
1
lim lim sup T /,0(((8 +iT,a;b),(u(s +iT,a50))dT = 0.

n—o0 T—00

However, the first of these equality is Lemma 1.10, and the second one is
equality (4) of [11]. We note that the proof is independent on arithmetic of the
parameter a. 0

The next lemma repeats the proof of Lemma 1.19, and uses Lemmas 5.4,
5.5 and 1.16, see, also [16].

Lemma 5.6. The sequence {V,, o} is tight.

Proof of Theorem 5.2. By Lemmas 5.6 and 1.16, the sequence {V}, o} is rel-
atively compact. Therefore, there exists a subsequence {V,, o} C {Vi.a}

such that {V},, o} converges weakly to a certain probability measure P, on
(H?(D),B(H*(D))) as k — oo. Hence,

D
Xnpa — Pa, (5.3)

k—o0

where X, o = X, (5) is the H?(D)-valued random element having the dis-
tribution V,, . Let £ bet the same random element as in Section 1.6. Define
the H?(D)-valued random element X7 n,a by

XT,n,oa = XT,n,a(S) = én(s + Z§T7 Qs a, b)

122



Then, in view of Lemma 5.4, we have the relation
D
X1na — Xna- 5.4
T—o0
Define one more H?(D)-valued random element Y7, by
Yra =Yra(s) = é(s + €T, a;a,b).
Then Lemma 5.5 shows that, for every £ > 0,

1
lim limsup p{p2(Y7,0, X7 n.o)=>€} = lim limsup —
n—00 T_yo0 n—oo p_yoo 1

meas{T €[0,7]: pQ((f(s +iT, o5 a, b)7§n(s +iT, a5 a, b))}s} 5.5)

T
1 . .
< lim limsup — /pg(((s +iT,;a,0),(n (s + i1, a5a,b))dr = 0.
n=00 T 00 €
0
From (5.3)-(5.5), it follows that it is possible to apply Lemma 1.19. This ap-
plication gives the relation

Yia —2— P, (5.6)
T—o00

This means that the measure P, ¢ converges weakly to P, as T — o0, and
that the measure P, is independent of the choice of the subsequence {X,,, o }.
Therefore, we have the relation

D
Xn,cx — Paa

n—o0

which together with (5.6) shows that the measure PT’ ¢ converges weakly as
T — oo to the limit measure P, of the measure V;, o as n — oc.

The linear independence of the set L(IP, o) is used only in the proof of
Lemma 5.3. Therefore, the further proof of Theorem 5.2 is independent of .
Since we have obtained that PT’ ¢ converges weakly to the limit measure of
Vi, this limit measure must be the same as in [11] in the case of transcenden-
tal . Thus, P, coincides with Pf‘ The theorem is proved. O

Proof of Theorem 5.1. 1t is known by [11] that the support of the measure P@
is the set S x H (D), where, as in Chapter 1,

S={g9ge€ H(D):g(s) #0org(s) =0}.
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By Lemma 1.27, there exist polynomials p; (s) and pa(s) such that

sup | f1(s) — et < = (5.7)
seKq 2
and
€
sup |f2(s) — p2(s)] < 7 (5.8)
sEKo

Define the set

€ €
9= {(91792) € HA(D) : sup |fi(s)—e" )| < o, sup |fa(s)—pa(s)| < 2}'
seK1 seKo
Then, by the above remark, the set G. is an open neighborhood of an element
(eP1(5) py(s)) of the support of the measure P. Hence, by Lemma 1.26 and
Theorem 5.2,
th;iO%f Pr(G:)=P(G:) > 0.

This, the definitions of P, ¢ and G. together with (5.7) and (5.8) prove the first
part of the theorem.
To prove the second assertion of the theorem, define the set

Qr—%mgQGHWD%smﬂm@%ﬁ@ﬂ<&sme@%h®N<6}
seKy s€EKo

Then the boundary lies in the set

{@hm>eH%Dwsmﬂm@»—ﬁ@ﬂ—asmwm@»—ﬁ@ﬂ<e}

seK1 s€EKo

U{ (01,92 € D)5 sup [01(6) = ()] < &2 p L) — o) =<

seKy seKo

U{0r.92) € D) sup k()= (601 = . sup L) — o)l =<1

seK s€Ko

therefore, 5Q€1 N 6912 = () for different positive £; and 5. Thus, the set Qs is
a continuity set for all but at most countably many € > 0. Hence, in view of
Lemma 1.19 and Theorem 5.2,

A~ ~

lim Py (Ge) = P:(G:) (5.9)

T—o0 <

for all but at most countably many £ > 0. Suppose that (g1, g2) € G.. Then
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taking into account (5.8) and (5.9), we find that

sup |g1(s) = f1(s)|< sup |gi(s) — "] + sup |fi(s) — "] <&
seKq seKq seKy

and

sup |g2(s) — fa(s)|< sup |ga(s) — pa(s) + sup [fa(s) —pa(s)| <e.
seK> seK> seK>
Thus, (g1, 92) € G., and we have the inclusion G. C G.. Since Pé(gg) > 0,
hence it follows that also Pé(g}) > 0. This, the definitions of P, ¢ and G., and
(5.10) prove the second part of the theorem. The theorem is proved. O

5.2 Universality of some compositions

First of all, we recall the classical Rouché Theorem.

Lemma 5.7. Let the functions g1(s) and gi(s) be analytic in the interior of a
closed simple contour L and on L, and let on L the inequalities g1(s) # 0 and
lg2(s)| < |g1(s)| be satisfied, Then the functions g1(s) and g1(s) + g2(s) have
the same number of zeros in the interior of L.

Proof of the lemma can be found, for example, in [51].
Define the function

((s,a5a,b) = c1((s5a) + c2((s, a3 b), 1, c2 € C\{0}.

We will prove a lower bound for the number of zeros of the function

¢(s,a;a,b).

Theorem 5.8. Suppose that the set L(IP, o) is linearly independent over Q, and
the sequence a is multiplicative. Then, for every o1, o3, % < op < o9 <1,
there exists a constant ¢ = c(o1,092,a,a,b) > 0 such that, for sufficiently
large T, the function ((s, a; a, b) has more than cT zeros in the rectangle

{seC:o1<0<02,0<t<T}.

Proof. Let

o1+ 02 o9 — 0]
oo = 9 ' = )
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and let the number € > 0 satisfy the inequality

1 r
< — i — = —. 5.10
(Je1| + [e2l)e 10 |Sj{1;)f|1:r\8 ool 10 (5.10)

We take in Theorem 5.1

fis) =2 2(s) = (s = 0.

Suppose that 7 € R satisfies the inequalities

sup [((s+iT;a) — fi(s)| <e (5.11)
|s—oo|<r
and
sup  [((s +iT,a;b) — fo(s)] <e. (5.12)
|s—oo|<r

Then, for these 7, we have that

sup |e1((s+iT; a)4ca(s+iT, o; b) —(c1 f1(s)+cafa(s))] < 2(ler|+[e2|)e.

|s—oo|<r

Moreover, by the definitions of f;(s) and fa2(s),

sup  [c1f1(s) + cafa(s) — (s — o0)| = |eie.

|s—oo|<r

Therefore,

sup |e1((s +iT;a) 4+ (s + i1, 05 0) — (s — 09)| < 3(|er] + |e2])e.

|s—ao|=r

This and (5.10) show that the functions s — o and
c(s+ir;a) + cal(s +it,a;b) — (s — 00)

on the disc |s — og|<r satisfy the hypotheses of Lemma 5.7. Therefore, the
function ¢1((s +i7; a) 4+ c2((s + 7, a; b) has a zero in the disc |s — og| < 7.
However, by Theorem 5.1, the set of 7 satisfying inequalities (5.11) and (5.12)
has a positive lower density. Hence, there exists a constant ¢(o1, 02, o, a, b) >
0 such that, for sufficiently large 7', the function ((s, a; a, b) has more than cT’
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zeros in the rectangle
{seC:01<0<09,0<t<T}

O

Now, we define one class of operators F' : H?(D) — H(D). Let 8; > 0
and 2 > 0. We say that the operator F' belongs to the class Lip(f1, (o) if it
satisfies the following conditions:

1° For each polynomial p = p(s) and any set K € IC, there exists an element
(91,92) € F~{p} C H*(D) such that g1(s) # 0 on K;

2° For any set K € KC, there exists a positive constant ¢ and sets K, Ky € K
such that

sup |F(g11(s), g12(5)) —F'(921(5), g22(s))|<c sup sup |91j(5)—92j(5)|6j
seK 1<j<2 s€K;

for all (gj1,g952) € H*(D),j = 1,2.

We recall that IC is the class of compact subsets of the strip D with con-
nected complements.

Now, we state an universality theorem for the composition
F({(s;a),((s, ;b)) with F' € Lip(p1, B2).

Theorem 5.9. Suppose that the set L(P, «) is linearly independent over Q,
the sequence a is multiplicative and F' € Lip(B1, B2). Let K € K and f(s) €
H(K). Then, for every € > 0,

1
liminf —meas{7 € [0,T] : sup |F({(s+iT;a),((s+it,a;b))—f(s)| < e} > 0.
T—o00 T seK

Proof. By Lemma 1.27, there exists a polynomial p = p(s) such that

sup | (s) — p(s)] < 5. (5.13)
seK

Let K1, K3 € K correspond the set K in condition 2° of the class Lip(f1, 52).
By 1° of the class Lip(81, 2), we find (g1, g2) € F~{p} such that g1(s) # 0
on K. For simplicity, let c; = max(1, ¢), where ¢ > 0 is from the condition
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2° of the class Lip(f1, 52). Define the set

/N

_1
Gy — { €0,7] ¢ sup [¢(s+imsa) — gi(s)] < ) ?
seKq

s€Ko <

=

sup [¢(s + i1, 0) — g2(s)| < ¢;

DO | ™

where 3 = max(/31, 32). Then, by Theorem 5.1

|
thilo%f Tmeasga,;r > 0. (5.14)

Using 2° of the class Lip(/31, f2), we find that, for 7 € G, 7,

sup |F(¢(s +iT;a),((s+ iT,0;0)) — p(s)]

seK
<ema ( sup [6(s-+ imia) 1 (6)1 7 sup (s +ir,i0) 2]
seKy sEK2
B

YA
<ceey 5 <§.

Hence, taking into account (5.14), we obtain that

1
lim inf —meaS{T € 10,7 : sup |F(¢(s+iT;a),((s+it, a; b)) —p(s)| < E} > 0,
T—o0 T scK 2

and using of (5.13) completes the proof. O

Theorem 5.9 contains an information on the zeros of the composition

F(((s;a),((s,5b)).

Theorem 5.10. Suppose that the set L(IP, o) is linearly independent over Q,
the sequence a is multiplicative, and F' € Lip(B1, B2). Then, for every o1, o9,
% < 01 < 09 < 1, there exists a constant ¢ = c(o1,092,a,a,b, F) > 0 such
that, for sufficiently large T, the function F'(((s;a),((s,a;b)) has more than

cT’ zeros in the rectangle
{seC:01<0<0,0<t<T}.

Proof. We apply arguments similar to those used in the proof of Theorem 5.8.
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We use the same notation as above. Suppose that € > 0 satisfies the inequality

< 1 in | | r
g —  min S — 0| = —
10 [s—oo|=r T 10
and that reals 7 satisfy
sup |F(¢(s+it;a),{(s+iT,a;b)) — (s —0p)| < e. (5.15)

|s—oo|<r

Then the functions s — oy and
F({(s+it;a),((s+iT,a;b)) — (s — 09)

on the disc |s — og|<r satisfy the requirements of Lemma 5.7. Hence, the
function
F((s+i7;a),((s +iT, 03 b))

has a zero in the disc |s — 09| < r. However, in virtue of Theorem
5.9, the set of 7 satisfying (5.15) has a positive lower density. Therefore,
there exists a constant ¢ = ¢(o1, 092, @, a,b, ') > 0 such that, the function
F(¢(s;a),((s, a3 b)), for sufficiently large 7', has more than ¢7" zeros in the
rectangle

{seC:01<0<09,0<t<T}
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Conclusions

1. For the periodic zeta-function ((s;a) with multiplicative periodic se-
quence a, the universality theorem on the approximation of analytic
functions by shifts ((s + i7;a), 7 € R, is valid.

2. For the periodic sequences a = {a,, : m € N} with minimal period ¢
(q is a prime number) satisfying

-1

L=

1
aq—— al
() 4

||M

where ¢(q) is Euler totient function, the function ((s; a) is universal or
strongly universal.

3. For the function ((s; a) with multiplicative sequence a, a weighted uni-
versality theorem is true.

4. For the function ((s; a) with multiplicative sequence a, a weighted dis-
crete universality theorem is true.

5. The compositions F'({(s;a), (s, a; b)), where ((s, a; b) is the periodic
Hurwitz zeta-function, for some classes of operators ' in the space of
analytic functions, are universal. Moreover, they have infinely many
zeros in the critical strip.
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