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Abstract: Direct electron transfer (DET)-capable oxidoreductases are enzymes that have the ability to
transfer/receive electrons directly to/from solid surfaces or nanomaterials, bypassing the need for an
additional electron mediator. More than 100 enzymes are known to be capable of working in DET
conditions; however, to this day, DET-capable enzymes have been mainly used in designing biofuel
cells and biosensors. The rapid advance in (semi) conductive nanomaterial development provided new
possibilities to create enzyme-nanoparticle catalysts utilizing properties of DET-capable enzymes and
demonstrating catalytic processes never observed before. Briefly, such nanocatalysts combine several
cathodic and anodic catalysis performing oxidoreductases into a single nanoparticle surface. Hereby,
to the best of our knowledge, we present the first review concerning such nanocatalytic systems
involving DET-capable oxidoreductases. We outlook the contemporary applications of DET-capable
enzymes, present a principle of operation of nanocatalysts based on DET-capable oxidoreductases,
provide a review of state-of-the-art (nano) catalytic systems that have been demonstrated using
DET-capable oxidoreductases, and highlight common strategies and challenges that are usually
associated with those type catalytic systems. Finally, we end this paper with the concluding discussion,
where we present future perspectives and possible research directions.

Keywords: nanocatalyst; nanobiocatalysis; bioelectrocatalysis; oxidoreductase; direct electron
transfer; biofuel cell

1. General Overview of the Enzyme-Based Heterogeneous Catalysis

Chemical kinetics without catalysis is like “skiing without skis” [1] and every living system
depends on nature’s designed catalysts to make chemical reactions proceed faster. Some enzymes
catalyze reactions that otherwise would take years or decades to occur, for example, triose phosphate
isomerase [1] or cytochrome c peroxidase [2], which increase the rate of catalyzed chemical processes
billion-fold. Besides that, enzymes are also capable of high selectivity (e.g., di↵erentiation between
di↵erent enantiomeric forms [3,4]) and operation at mild conditions, for example, ambient temperatures
and neutral pH [5]. Despite apparent advantages, the enzymatic catalysis approach inheres several
flaws: enzymes can be unstable during the catalytic process and thus require stabilization solutions [6],
and the enzyme–substrate/product separation comes with di�culties [7]. Various methods have
been used to overcome the above-mentioned issues, typically involving the immobilization of
enzymes on solid inorganic (e.g., silica, porous glass) and organic (e.g., chitosan, cellulose) carriers [8].
The recent emergence of nanomaterial production techniques has enabled many nanocatalysts-based
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applications [9]. Many of the newly discovered properties are attributable to their nanometer-range size,
such as a very high surface area–volume ratio (>60 m2 cm�3) [10], spectrophotometric properties [11,12]
or catalytic capabilities [13]. The catalytic performance of most nanomaterials (e.g., metallic
nanoparticles) is also dependent on their physical or chemical parameters [14], and they can readily
catalyze oxidation of organic compounds (e.g., carbohydrates) directly on their surface [15], provided
they operate in relatively pure solutions—the untreated nanosurfaces are prone to contamination
and catalytic passivation when used in media containing organic additives [16–18]. It was noticed
that nanomaterials can very well, and in some cases even irreversibly, adsorb certain proteins [19,20],
even for in vivo applications [21]. It was demonstrated that proteins on the nanoparticle surface
form a protein corona—in some cases, the corona forms in less than a minute after exposure—and
determine the pathophysiology of certain nanoparticles [22,23]. Moreover, it was also demonstrated
that nanomaterial–enzyme conjugates possess certain distinct qualities such as increased activity,
stability, as well as separability from reaction media of certain enzymes [24,25]. A number of various
catalysts were synthesized using enzymes and nanomaterials for various applications, for example,
glucose oxidase (GOx) and urease were immobilized in mesoporous silica nanoparticles in order
to control the pH of target medium [26], GOx and peroxidase were immobilized using polystyrene
for cascade reaction [27], and organophosphorus hydrolase was immobilized using a metal–organic
framework for the degradation of organophosphate nerve agents [28], among other examples [29–31].
Additional attention was given to oxidoreductases, especially dehydrogenases and hydrogenases, as
possible candidates for (nano) catalytic applications [32]. However, till this day, the majority of direct
electron transfer (DET)-capable oxidoreductases were applied mainly for the development of biofuel
cells and biosensors. The following chapter will focus on reviewing the DET-capable oxidoreductases
and their widespread application.

2. Application of Direct Electron Transfer (DET)-Capable Oxidoreductases

To the best of our knowledge, the possibility of DET reactions on solid surfaces (electrodes)
was raised first in 1976, when Yaropolov et al. demonstrated a mediated electron transfer (MET)
for oxygen reduction [33]. Soon after, Eddowes and Hill demonstrated a DET for a cytochrome
c [34] and Kulys et al. showed that DET is possible for cytochrome b2 and peroxidase immobilized
together with the organic metals [35]. After DET was achieved for cytochromes c and b2, an e↵ort was
undertaken to find more DET-capable enzymes. It was noticed that multifactor enzymes containing
cytochromes (e.g., theophylline oxidase, D-fructose dehydrogenase, cellobiose dehydrogenase) can
operate by DET [36]. Some of the heme-containing enzymes (e.g., cytochrome c peroxidase, horseradish
peroxidase, lignin peroxidase, manganese peroxidase) could also transfer electrons directly to the
electrode surface [37,38]. It was noticed that oxidoreductases containing copper ion-based cofactors
(e.g., laccase and bilirubin oxidase) [39], as well as NiFe and FeS hydrogenases [40,41], are also capable
of DET. However, the DET phenomenon is not easily implemented—approximately only 100 out of
1700 known oxidoreductases have been shown to operate in DET applications [42,43]. Interestingly, in
general, some types of oxidoreductases tend to operate by DET (e.g., metalloenzymes), while the others
do not, for example, containing flavin cofactors such as FAD [42], with some exceptions, as reported
recently about FAD-dependent glucose dehydrogenases (FAD-GDH) [44]. It was also noticed that,
for some FAD-dependent enzymes, the cofactor can be eliminated from the protein active site after
immobilization (e.g., native GOx) and exhibit a false impression about the apparent DET [45–47]. For a
real DET, the enzymes should be treated using more complex procedures to make a redox active site
more accessible to the nanostructures of the electrode surface [48]. Those facts demonstrate that, for a
successful DET, the enzyme should have distinctive features ensuring the electron transfer capabilities.
Moreover, e�cient DET, where enzymatic turnover is not limited by the rate of electron transfer,
is rarely observed [49], and thus causes additional problems for a fast and sustainable DET-based
electrocatalysis. In the next section, we will briefly review the principles of the DET and contemporary
application of DET-capable oxidoreductases.
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2.1. Principles of the DET Mechanism

Typically, catalysis and successful operation of oxidoreductases require two substrates that are
coupled by the oxidation and reduction half-reactions. The enzyme transfers electrons from one of the
substrates to another according to the reaction thermodynamics, that is, the electrons are transferred to a
compound with higher redox potential [50]. Typically, oxidoreductases reduce co-enzymes (i.e., NAD+,
FAD, PQQ) to drive the oxidative reaction [51–53]; however, in recent years, artificial electron transfer
mediators have also been synthesized and applied as electron accepting/donating substrates [54–56].
As illustrated in Figure 1A, for the oxidative process, those electroactive and low molecular mass
mediators act as electron transport shuttles from/to the electrode and oxidoreductase and result in MET.
In some cases, the MET approach was successfully used for the development of highly sensitive and
active biosensors [57–59], as well as high current bioanodes for the development of biofuel cells [60–62].
However, this approach has disadvantages. First of all, the electronic properties of the redox mediator
must be in concert with the ones of biocatalysts, for example, in the case of an oxidative process,
the potential of the redox mediator must be more positive than redox potential of the active redox
site (or cofactor) of the enzyme to ensure spontaneous MET bioelectrocatalysis [45]. Also, the redox
mediators typically leak from the electrode surface to a solution, resulting in decreased catalytic activity
of the system [63], with some exceptions [64]. In contrast to MET, DET is a more viable and e↵ective
approach, as electrons can be directly transported from/to the redox active site of oxidoreductase
to/from the electrode, as demonstrated in Figure 1B. Some advantages of the DET approach have been
demonstrated: the oxidation/reduction of the substrate typically occurs at a favorable electrochemical
potential, close to the potential of the redox active site of the enzyme; leakage of potentially toxic redox
mediator is avoided whatsoever; and the design of the biocatalytic system can be simplified [65,66].
However, DET is usually di�cult to achieve, as the typical electron transfer distance is 1.5–2.0 nm [67].
For a longer transfer, the electron should be tunneled, otherwise the rate drops exponentially and
is generally not su�cient for observable catalysis [68,69]. For those reasons, the oxidoreductases
with redox-active groups close to protein surface tend to operate better when immobilized on proper
surfaces. However, the nature of DET is not yet fully understood and is under investigation by many
research groups.
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Figure 1. Principal scheme demonstrating di↵erence between mediated electron transfer (MET)- and
direct electron transfer (DET)-based bioelectrocatalysis during the oxidative process at a solid interface
(e.g., for alcohol dehydrogenase (ADH), which contains a PQQ catalytic site and heme as an electron
transfer site). (A) In MET-based catalysis, a mediator is required to transfer electrons between the
oxidoreductase and electrode. (B) In DET-based catalysis, oxidoreductase is capable to transfer electrons
directly from/to its active redox center to/from the electrode.
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2.2. Development of Biosensors and Biofuel Cells

To this day, the majority of applications of the DET-capable enzymes include the development
of third generation biosensors and biofuel cells, as they do not require mediators [38,70,71], can be
insensitive to oxygen, and can operate in mass transfer-controlled kinetics [72]. Many biosensors
based on DET-capable oxidoreductases were developed for the measurement of glucose, lactose,
and lactate. Stoica et al. demonstrated a lactose biosensor with DET-capable cellobiose dehydrogenases
from Trametes villosa and Phanerochaete sordida, which were highly sensitive and stable [73].
Successful biosensors for the determination of glucose were produced using DET-capable FAD-GDH,
even for continuous glucose monitoring [74,75]. Moreover, some biosensors for the glucose detection
were capable of operating at low potentials (e.g., �0.4 V versus standard hydrogen electrode (SHE)),
thus reducing the risk of false biosensor response owing to interference [76]. Lactate biosensors based
on DET-capable lactate dehydrogenase were demonstrated as well [77]. Quite an interesting application
of DET-capable oxidoreductases in biosensing was demonstrated recently by Larpant et al. [78]. In this
work, a wireless biosensing application of DET-based oxidoreductase with conductive nanomaterials
was demonstrated, and it may open new possibilities for the development of wireless biosensors.
Other biosensors based on DET-capable oxidoreductases were demonstrated as well [79–83]. Similarly,
DET-capable oxidoreductases were also used in developing third generation bioelectrodes for biofuel
cells. For biocathode development, multicopper oxidases (usually laccases and bilirubin oxidases)
in a bioelectrochemical system with metallic nanoparticles are the most frequent candidates [84,85].
Multicopper oxidases are attractive because of their capability to catalyze highly exergonic oxygen
reduction reaction (E = 0.774 V at pH 7.4 and 37 �C) [86]. One particularly interesting application
of DET-capable laccase from Trametes hirsuta was demonstrated by Pita et al. [87]. In this work,
the laccase was immobilized on the low density graphite electrode and DET was utilized for the
oxygen evolution reaction with low overpotential. Another curious application of multicopper
oxidase was recently demonstrated by our group [88]. In this work, laccase from Didymocrea sp.
was wired to nanostructured gold nanoparticles via the T2/T3 active center, bypassing the usually
intermediary electron-accepting copper center T1. This resulted in the biocathode exhibiting good
performance—the system was able to operate in electrolyte solutions at a broad pH range and in
the presence of high fluoride concentrations. Bioanodes with DET-capable oxidoreductases were
also developed, for example, cellobiose dehydrogenase [89,90], fructose dehydrogenase [91], glucose
dehydrogenase [92–94], and alcohol dehydrogenases [95,96]. Our group has also been working in
this field—recently, we have demonstrated a DET bioanode system with glucose dehydrogenase from
Ewingella americana, immobilized using gold nanoparticle and polyaniline nanocomposite, which
exhibited exceptional performance towards glucose oxidation and operated in whole human blood [97].

3. Performance of DET-Capable Oxidoreductases at Nanomaterial Interface

As established in previous chapters, direct electron exchange between oxidoreductase’s active
center and nanomaterials is the key prerequisite and advantage of the nanocatalysts containing
DET-capable oxidoreductases. For those reasons, nanomaterials act not only as binding enzyme
carriers, but their surfaces participate in electrocatalysis by transferring electrons from/to specific
enzymes. Consequently, catalytic process becomes independent of the second substrate (cofactor)
because nanomaterials act as a cofactor by receiving/transferring the electrons from/to the enzyme.
As depicted in Figure 2, to this date, two types of nanocatalysts have been created: one incorporating a
single enzyme (Figure 2A) and those involving several (Figure 2B). In the case where a single enzyme is
used, electrons are transfer from/to the nanomaterial, which in turn removes/provides those electrons
by additional process. When two enzymes are used, typically, the second higher redox potential
oxidoreductase is added, which catalyzes oxidation of nanoparticle surface by additional process via
the DET mechanism. In the next chapter, we will review nanocatalysts already developed and reported
in the literature, as well as strategies used in their design.
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Figure 2. A principal scheme, demonstrating nanomaterial-based catalysts (nanocatalysts), containing
DET-capable oxidoreductases. In both cases, enzymes are wired to nanomaterial and electron transfer
is achieved. (A) Nanocatalysts incorporating a single enzyme. During the target reaction (oxidation),
the enzyme catalyzes electron transfer to the nanomaterial surface, which is further oxidized by an
additional process (e.g., oxygen reduction reaction (ORR)) (e.g., anodic enzyme is ADH, which contains
a PQQ catalytic site and heme as the electron transfer site). (B) Nanocatalysts incorporating several
enzymes. During the reaction of interest (oxidation), the enzyme also catalyzes electron transfer to the
surface, but here, the surface is oxidized by the DET catalysis facilitated by the second enzyme (e.g.,
anodic enzyme is ADH, cathodic enzyme is laccase (LAC), which contains T2/T3 catalytic site and T1
as the electron accepting site).

3.1. Design Challenges of Enzyme-Nanoparticle Catalysts Containing DET-Capable Oxidoreductases

The variety of enzyme-nanoparticle systems based on DET-capable oxidoreductases, as described
previously, is yet quite limited. To the best of our knowledge, only five research papers have been
reported concerning the development of such systems. Those papers have reported immobilization of
target enzymes on carbon-based nanomaterials (e.g., conductive graphite particles, carbon nanotubes)
or conductive metal nanoparticles (e.g., gold nanoparticles). The enzymes used for the development of
catalysts included hydrogenase, nitrate reductase, glucose dehydrogenase, laccase, and CO2 reductase.
This section will briefly review those papers in the context of di↵erent strategies used to design
enzyme-nanoparticle DET catalysts. Also, we will discuss major challenges that may be the limiting
factors for the development of those types of nanocatalysts.

3.1.1. Designing Enzyme–Nanoparticle Catalysts with Enzymes Immobilized on Carbon Nanomaterials

One of the most viable and simple approaches to designing an enzyme-based catalytic material
is a random immobilization of two di↵erent DET-capable oxidoreductases on a conductive carbon
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nano/micro particle, as carbon is protein-compatible [98]. Carbon nanomaterials, for example, graphite
particles, were successfully used to wire various enzymes and, to the best of our knowledge, for the
first time, the concept that involves incorporation of donor and acceptor enzymes was demonstrated by
Vincent et al. and was used for the reduction of nitrate (and fumarate) using hydrogen gas [99]. In this
work, NiFe hydrogenase from Allochromatium vinosum was wired concordantly with nitrate reductase
from Escherichia coli (or fumarate reductase from Escherichia coli) via conductive graphite particles, as
demonstrated in Figure 3A. At first, the researchers demonstrated that oxidoreductases are indeed
electrochemically active once immobilized on graphite electrodes. From Figure 3B, it is apparent that
hydrogenase is electrochemically active and catalyzes oxidation of H2 to H+ at a potential higher than
�0.5 V versus SHE. It was also demonstrated that nitrate reductase is also electrochemically active and
reduces nitrate to nitrite at the potential lower than 0.1 V versus SHE. The DET ability of both enzymes
at the same conditions and the potential di↵erence between anodic and cathodic half-reactions of
around 0.5 V has given a reason to wire those enzymes directly using conductive graphite particles
(Figure 3C). Graphite particles were treated using diluted solutions of enzymes in a sequence and a
biocatalytic process was expected to be according to the following reaction (Equation (1)):

NO�3 + H2 ! NO�2 + H2O. (1)
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Figure 3. Hydrogenase and nitrate/fumarate reductase wired on conductive graphite particles.
(A) A scheme demonstrating the principle of wiring oxidoreductases catalyzing di↵erent redox
half-reactions, where electrons are transferred from dihydrogen to nitrate/fumarate catalyzed
by hydrogenase and nitrate/fumarate reductase via conducting carbon microparticles. (B) Cyclic
voltamperograms demonstrating electrochemical activity of hydrogenase and nitrate reductase
immobilized on graphite strip electrodes. (C) Electron microscope image of a cluster of particles
immobilized on the adhesive carbon-loaded surface. (D) Graph demonstrating the activity of the
designed hydrogenase-nitrate reductase system toward the production of nitrite (⌅). Adapted with the
permission from Vincent et al. [99]. Copyright (2017) Springer Nature. SHE, standard hydrogen electrode.
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To provide evidence that the reaction was undergoing according to Equation (1), the authors
measured the concentration of nitrite by colorimetry. They demonstrated that, after 90 min, nearly all
of the nitrate was converted to nitrite (Figure 3D), indicating that nitrate was directly reduced by H2.

The other catalysts based on carbon nanostructures and hydrogenases were demonstrated by
Reeve et al. [100]. In this work, hydrogenase and diaphorase moieties of DET-capable NAD+-reducing
soluble hydrogenase from Alcaligenes eutrophus were wired using pyrolytic graphite particles
(Figure 4) [101]. The practical aim of this work was to create an NAD+/NADH cofactor regeneration
system, which is important for a sustainable catalysis [101]. Both moieties were electrochemically
active and electrons were transferred from H2 to NAD+, forming NADH.
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NAD+. Adapted with permission from Reeve et al. [100]. Copyright (2012) Royal Society of Chemistry.

The following approach to wire two DET-capable oxidoreductases was conducted using
single-walled carbon nanotubes (SWCNTs) by a study of our group [102]. In this work, a DET-capable
glucose dehydrogenase from Ewangella americana and a laccase from Trichaptum abietinum were
immobilized on graphite electrode modified with SWCNTs (Figure 5A). It was expected that GDH
should oxidize substrate (glucose or lactose) by transferring electrons directly to SWCNT, while laccase
should reduce oxygen to water receiving the electrons from SWCNT. Thus, the net reaction could be
described as follows (Equation (2)):

2 glucose + O2 ! 2 glucono lactone + 2H2O. (2)

To provide evidence that the catalyzed reaction proceeded according to Equation (2), both enzymes
were immobilized on electrode modified with SWCNTs, and electrochemical analysis using cyclic
voltammetry was carried out (Figure 5B). It was determined that LAC was electrochemically active on
SWCNT and reduced oxygen to water at the potential lower than around 0.5 V versus saturated calomel
electrode (SCE). It was also determined that GDH was electrochemically active on the same SWCNT
electrode at a potential higher than 0.2 V versus SCE and oxidized glucose. Finally, to provide evidence
that the reaction proceeded as suggested, the SWCNT, laccase, and glucose dehydrogenase system was
immobilized on the surface of the Clark oxygen electrode and the oxygen concentration in the solution
was measured following varying addition of substrate (glucose or lactose). It was demonstrated
that the addition of substrate resulted in a direct decrease of oxygen concentration (Figure 5C). Also,
the activity dependence on pH was analyzed, and it was determined that the dependence of activity
on pH of completed nanocatalytic system was related to the activity dependence on the pH of both
enzymes (Figure 5D).
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Figure 5. A mediatorless system composed of glucose dehydrogenase form Ewingella americana
and laccase from Trichaptum abietinum. (A) A principal design scheme of nanocatalyst. (B) Cyclic
voltamperograms demonstrating electrochemical activity of glucose dehydrogenase and laccase
immobilized on graphite electrode. (C) Oxygen consumption measurements of the designed system
in the presence of substrate (glucose). (D) Activity dependence on pH of di↵erent enzymes (glucose
dehydrogenase and laccase) and nanocatalysts. Adapted with permission from Ratautas et al. [102].
Copyright (2015) Elsevier. SWCNT, single-walled carbon nanotube; LAC, laccase; GDH, glucose
dehydrogenases; SCE, saturated calomel electrode.

3.1.2. Designing Enzyme–Nanoparticle Catalysts with Enzymes Immobilized on Metallic Nanoparticles

Nanocatalysts containing DET-capable oxidoreductases can be also designed utilizing conductive
or semi-conductive particles. It was reported in many previous works that enzymes can easily and,
in some cases, almost irreversibly adsorb on metallic nanoparticles [103]. One of the most important
catalytic reactions involves the generation of CO from CO2 [104]. CO may be readily used for the
various synthetic processes for the production of hydrocarbons using Fischer–Tropsch [105] or for the
production of acetic acid using Monsanto processes [106]. Though CO2 is generally abundant, it is
di�cult convert those gases to CO at high yields without many additional byproducts [107]. For this
reason, nanocatalytic systems could be designed containing enzyme–metallic nanoparticle conjugates,
which could produce CO from CO2. Woolerton et al. demonstrated hybrid nanocatalysts composed
of TiO2 particles with immobilized CO2-reducing enzyme (CODH) I from the anaerobic microbe
Carboxydothermus hydrogenoformans and photosensitizer (ruthenium bipyridine-based compound) [108].
In this work, CODH catalyzed the reduction of CO2 to CO using MES bu↵er solution as a sacrificial
electron donor when the system was exposed to visible light (Figure 6).

In this regard, our group has recently published a study, where metallic nanoparticles and
DET-capable enzymes were incorporated, producing novel nanocatalysts [109]. In this work, efforts
were made to produce a clean and efficient synthetic route towards the production of highly desired
and economically valuable aldonic acids (e.g., lactobionic acid) [110]. Glucose dehydrogenase from
Ewangella americana was wired directly with the laccase from Didymocrea sp. J6 (Figure 7A). It was
expected that two enzymes could transfer electrons directly from one to another via highly conductive
gold nanoparticles (AuNPs). Thus, a novel developed catalyst could operate and oxidize carbohydrates



Catalysts 2020, 10, 9 9 of 21

to their aldonic acids directly with the molecular oxygen. At first, both enzymes were immobilized
on gold nanoparticles and electrochemical analysis was carried out to observe that both enzymes are
electrochemically active on the same electrode and receive/transfer electrons by the DET (Figure 7B).
Afterwards, nanocatalysts were synthesized and their performance was tested in the cell isolated from
the atmosphere by measuring oxygen concentration in a solution (Figure 7C). It was demonstrated that
nanocatalysts were capable of oxidizing sugars directly with the molecular oxygen and the kinetic model
of nanocatalysis was developed, incorporating the catalytic parameters of both enzymes (Figure 7D).Catalysts 2019, 9, x FOR PEER REVIEW 9 of 20 
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Figure 6. A principal design scheme of nanocatalyst for CO production. CO2-reducing enzyme (CODH)
was immobilized on TiO2 nanoparticles together with photosensitizer (RuP). Electrons were transferred
from sacrificial electron donor MES to CODH when the system was a↵ected by visible light. Adapted
with permission from Woolerton et al. [108]. Copyright (2010) American Chemical Society.
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Figure 7. Enzyme–nanoparticle (NP) catalysts containing glucose dehydrogenase and laccase
immobilized on gold nanoparticles (AuNPs) for the oxidation of carbohydrates with the molecular oxygen.
(A) Principal design scheme of nanocatalysts. (B) Cyclic voltamperograms demonstrating electrochemical
activity of glucose dehydrogenase and laccase immobilized on gold electrode modified with AuNPs.
(C) The activity dependence of the designed nanocatalysts on lactose concentration. (D) Kinetic
model on the nanocatalysts’ catalyzed process. Adapted with permission from Ratautas et al. [109].
Copyright (2018) John Wiley and Sons. GDH, glucose dehydrogenase; LAC, laccase.

A follow-up work has been published by our group [111], where a practical improvement of the
previously described work has been done using novel conductive nanocomposite particles for the
immobilization of enzymes (Figure 8). Those particles were made using Fe3O4 cores covered with a
thin layer of gold. The most important advantage over the previous work was the ability to separate
nanocatalysts from the reaction mixture using the magnetic field. All catalytic systems involving
DET-capable oxidoreductases are summarized in Table 1.
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Nitrate reduction 
catalyzed by nitrate 

reductase 

푁푂 + 퐻 → 푁푂 + 퐻 푂 
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Hydrogen oxidation 
catalyzed by 
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푁퐴퐷퐻 + 퐻  
퐸 = 0.09 푉 

[100] 

Single-walled 
carbon nanotubes 

Glucose oxidation 
catalyzed by GDH 

Oxygen reduction 
catalyzed by LAC 

2 푔푙푢푐표푠푒 + 푂 →
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glucose dehydrogenase.

3.2. Challenges for Enzyme–Nanoparticle Catalysts Based on DET-Capable Enzymes

In previous chapters, we described the potential benefits of catalytic systems based on DET-capable
oxidoreductases; however, there are many unresolved challenges that limit their possible development.
Some of them are fundamentally inextricable (e.g., reaction thermodynamics), while the others can be
solved by choosing a specific design strategy. Here, based on our previously depicted experience, we
will review some of the common challenges that may arise while designing heterogeneous catalytic
systems based on DET-capable oxidoreductase, as well as present the possible solutions.

3.2.1. Compatibility of the Oxidoreductase Activity Dependence on pH

To begin with, one of the important requirements for the development of a bienzymatic nanocatalyst
is common pH compatibility. Activity dependence on pH is one of the most important properties of
oxidoreductase catalysis [112]. Typically, the dependence of activity on pH can be described by three
protonated and/or deprotonated enzyme-forms model involving two values of pKa, as described by
Equation (3) [113]:

A =
1

1 + 10(pKa1�pH) + 10(pH�pKa2)
, (3)

where A is relative activity (0–1), pKa1–pKa of acidic, and pKa2–pKa of basic amino acid residues.
As demonstrated in Figure 9A, some oxidoreductases may operate well according to DET, but also
could be incompatible for design of the nanocatalysts. Here, the first oxidoreductase has pH optimum
of 4.0, while that of the second one is 8.0. In this case, the optimum pH of the designed nanocatalysts
involving both enzymes should be around 6.0, as demonstrated by a purple cross section in Figure 9A.
However, the designed nanocatalysts may demonstrate a very low activity (less than 10% of the
initial activity of separate enzymes). When oxidoreductases with more similar pKa values are used, as
demonstrated by Figure 9B,C, the activity of designed (nano) catalysts may be acceptable and even
comparable to the activity of the separate enzymes. In the case that enzyme activity depends on a
single amino acid residue [113], the model in Equation (3) becomes simpler, yet similar di�culties
still exist.

Thus, it is important, when designing enzymatic nanocatalysts, to choose “pH compatible”
enzymes, to ensure maximal activity of the newly formed nanocatalysts. For example,
Ratautas et al. [109] and Gružauskaitė et al. [111] used GDH and LAC, which had similar activity
dependence on pH (Figure 5D). Thus, newly formed catalysts were relatively active in a solution that
had a pH value relatively suitable for both oxidoreductases. In the case in which it is not possible to use
enzymes, which have similar activity dependence on pH, several methods could be used to engineer a
more suitable environment for a catalytic process. The first method involves the production of similar
oxidoreductase, which has di↵erent activity dependence on pH. It could be achieved by modifying the
growth conditions for the microorganism, which was used for the production of the enzyme [114].
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As many enzymatic reactions either generate or consume protons, the other method could be the
utilization of pH-altering reaction, near the target oxidoreductase. It has been demonstrated previously
that the usage of pH-altering reactions could have a substantial e↵ect on apparent enzymatic activity
dependence on pH for heterogeneous catalysis [115]. Finally, it has been reported that enzymatic
activity dependence on pH during heterogeneous catalysis could be altered by rational engineering of
the surface charge of the enzyme carrier [116]. However, we would like to point out that all of the
above-mentioned approaches could a↵ect the DET capability of the oxidoreductase, and thus should
be used with additional care.
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Figure 9. Theoretical models of an activity dependence on pH of di↵erent oxidoreductases. (A) First
oxidoreductase (red) has pKa values of 3.0 and 5.0, while those of the second one (black) are 7.0 and 9.0.
(B) First oxidoreductase (red) has pKa values of 2.0 and 5.0, while those of the second one (black) are
4.0 and 7.0. (C) First oxidoreductase (red) has pKa values of 2.0 and 6.0, while those of the second one
(black) are 3.0 and 7.0. Purple cross section demonstrates the theoretical activity dependence on pH of
the (nano)catalytic system composed of those oxidoreductases.

3.2.2. Compatibility of the Operational Electrochemical Potential of Enzymes

The second requirement for the nanocatalysts combining two redox reactions is a redox potential
compatibility. This requirement is related to the potential di↵erence and the thermodynamics of
di↵erent half-reactions. Briefly, the redox potential of the reduction half-reaction must be more positive
than the oxidation half-reaction for a process to occur [86,117]. The standard redox potentials at pH 7.0
and 25 �C for some catalytically relevant half-reactions are given in Figure 10 [86,117].
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From Figure 10, one can see the importance of oxygen reduction reaction (ORR) [118].
Because oxygen reduction has a very high thermodynamic potential at pH 7.0, this process is
su�cient to drive many other catalytically relevant reactions, and thus it comes as a no surprise why
multicopper oxidases are usually used for biocathodes in biofuel cells. In all of the reviewed works
(Table 1), the bienzymatic nanocatalysts were demonstrated to catalyze highly exergonic electrochemical



Catalysts 2020, 10, 9 13 of 21

reactions when the standard electrochemical potential reached more than 0.5 V (with the exception
in the work reported by Reeve et al. [100]). However, the reaction thermodynamics is not the only
factor determining the possibility of a catalytic process. Owing to electron transfer ine�ciency, in some
cases, enzymes require a significant overpotential for a reaction to occur [119]. Even the most e↵ective
bioanodes and biocathodes need at least 0.1–0.2 V of overpotential for a reaction to occur [88] and, in
some cases, the overpotential may be as high as 0.8 V [120], making the development of sustainable
catalysts a challenge. In recent works, it was demonstrated that overpotential of oxidoreductase
catalyzed half-reaction could be reduced by a rational immobilization of the enzymes [121]. We would
like to note that significant attention should be given to a highly important hydrogen evolution
reaction [122] using glucose both as a reducer and proton source for hydrogen evolution reaction (HER)
(Equation (4)):

glucose! gluconolactone + H2. (4)

Even though the standard potential for this reaction (E0 at pH 7.0) is equal to �0.05 V, this reaction
becomes thermodynamically possible, with the E value higher than 0 V when glucose concentration
is kept significantly higher than gluconolactone or when the produced hydrogen gas is constantly
removed from the solution, that is, p(H2) is kept very low. However, to this day, no one successfully
demonstrated enzymatic (nano) catalysts capable of producing hydrogen from carbohydrates and HER
using carbohydrates has been demonstrated using H2 producing bacteria cultures only [123]. If the
reaction is thermodynamically possible (i.e., E � 0 at reaction conditions), the potential incompatibility
could be solved using various methods, which improves the DET contact between oxidoreductase
and nanomaterial, as a fast DET usually results in low overpotential [93,96]. The first approach could
be a rational engineering of the enzyme to produce novel enzyme homologues, which could operate
in DET reactions faster or with lower overpotentials. For example, this approach was successfully
used to produce a downsized variant of D-fructose dehydrogenase with favorable DET properties
when compared with the native enzyme [124]. The genetically engineered enzyme homologue
catalyzed DET-based oxidation of D-fructose more e�ciently, and operational overpotential was
lowered by around 0.2 V. The second way to improve DET between oxidoreductase and nanomaterials
and to overcome redox potential incompatibility is the immobilization of enzymes on specifically
modified nanomaterial surface. It is known that the e�ciency of the DET and an overpotential of the
enzyme catalyzed reaction depends on the surface charge of the nanomaterial [125]. For example, our
group demonstrated that the modification of AuNPs using positive charge inducing molecules (e.g.,
4-aminothiophenol, cysteamine) results in a significantly improved DET for GDH and overpotential
decrease in 0.3 V [93]. However, when several enzymes are used to design the nanocatalysts, it
may be di�cult to use specific surface modifications—one surface modification may increase the
e�ciency of DET for one enzyme, but decrease it for another. A possible solution may come from recent
advances in a nanomaterial development approach known as Janus nanomaterials [126]. Those types
of nanomaterials emerged recently and are important for the unique property—one side of the
nanomaterial can be modified using one type of compound and the other using di↵erent compounds
(e.g., alkyne and azide [127]). As a result, those particles could be selectively modified to ensure
the most e↵ective DET of di↵erent types of oxidoreductases. Thus, when designing nanocatalysts,
attention should be given for immobilization techniques of oxidoreductases and nanomaterial surface
charge to overcome electrochemical potential-related issues.

4. Concluding Discussion and Future Perspectives

The DET-capable oxidoreductases are highly important enzymes for the ability to conduct electron
transfer with nanomaterials. However, to this day, the application of those enzymes is mainly involved
in the development of biofuel cells and biosensors. Recently, a new application possibility to develop
nanocatalysts, by incorporating anodic and cathodic reaction DET-capable enzymes on a single
conductive nanoparticle, was demonstrated. In the reviewed papers, researchers managed to wire
hydrogenase, nitrate/fumarate reductase, glucose dehydrogenase, and laccase oxidoreductases using
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various nanostructured materials. It resulted in the production of novel nanocatalysts that were able to
catalyze interesting and highly desired reactions, that is, NAD+ regeneration to NADH using hydrogen
gas as a reducer, the production of lactobionic acid from lactose using dioxygen as an oxidizer, and so
on. Those and similar reactions are quite di�cult and/or expensive to achieve using standard methods,
thus the development of those type of nanocatalysts opens new possibilities for nanomaterial-based
catalysis. On the other hand, the developed nanocatalytic systems at this moment have significant
flaws: some are sensitive to oxygen, while others have low activity, stability, or use quite expensive
enzymes. Some of those disadvantages come from the reason that the idea of wiring DET-capable
oxidoreductases via conductive nanomaterials is relatively young. We can expect that improvements
to the current nanocatalytic biotechnologies will be made in the future.

The possible research directions involve the further development of nanocatalysts involving
DET-capable oxidoreductases, and there are many directions. Significant attention should be given to
designing nanocatalysts for hydrogen evolution reaction using abundant carbohydrates as an electron
source for H+ reduction. Another research direction could involve the development of enzymatic
cascade reactions, where several DET-capable oxidoreductases are immobilized on nanomaterials and
produce desired products from abundant substrates. In addition, new robotic nanomaterials (e.g.,
nanodiodes) could be developed. At this moment, the transfer of electrons via conductive nanoparticles
does not produce any work and the energy related to the electrochemical reactions is lost to the
surroundings as heat. We envision that this energy could be utilized to perform work or to generate
light, as demonstrated in Figure 11. Here, electrons from one DET-capable enzyme are transferred via
semi-conductive quantum dot to the other, and the electrochemical potential is used to produce light.
Although designing the system demonstrated in Figure 11 would constitute a significant technological
challenge, it is doable in principle. To conclude, we believe that DET-capable oxidoreductases should
be used for more than just in biofuel cells and biosensors—the nanocatalysts designed with those
enzymes could open new roads for future electrocatalysis as well semi-conductive technologies.
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